JP5288361B2 - Method for producing spherical polyamide particles - Google Patents

Method for producing spherical polyamide particles Download PDF

Info

Publication number
JP5288361B2
JP5288361B2 JP2006259907A JP2006259907A JP5288361B2 JP 5288361 B2 JP5288361 B2 JP 5288361B2 JP 2006259907 A JP2006259907 A JP 2006259907A JP 2006259907 A JP2006259907 A JP 2006259907A JP 5288361 B2 JP5288361 B2 JP 5288361B2
Authority
JP
Japan
Prior art keywords
polyamide particles
spherical polyamide
spherical
particles
meltability
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006259907A
Other languages
Japanese (ja)
Other versions
JP2008081524A (en
Inventor
健史 山崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumika Enviro Science Co Ltd
Original Assignee
Sumika Enviro Science Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumika Enviro Science Co Ltd filed Critical Sumika Enviro Science Co Ltd
Priority to JP2006259907A priority Critical patent/JP5288361B2/en
Priority to PCT/JP2007/068010 priority patent/WO2008038532A1/en
Publication of JP2008081524A publication Critical patent/JP2008081524A/en
Application granted granted Critical
Publication of JP5288361B2 publication Critical patent/JP5288361B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Polyamides (AREA)

Description

本発明は粉体塗料、レーザー焼結用の焼結粉末やプラスチックマグネット用バインダーなどに使用される溶融
性を改善した球状ポリアミド粒子の製造方法及び溶融性を改善した球状ポリアミド粒子に関する。
The present invention relates to a method for producing spherical polyamide particles with improved meltability and spherical polyamide particles with improved meltability, which are used in powder coatings, sintered powders for laser sintering, binders for plastic magnets, and the like.

ポリアミド樹脂粉末は粉体塗料、レーザー焼結用の焼結粉末やプラスチックマグネット用バインダーなどに広く使用されているが、それらの用途に於ける品質向上や新規用途への展開により球状で粒径の比較的そろった品質の高いポリアミド樹脂粉体が求められるようになってきた。 Polyamide resin powders are widely used in powder coatings, sintered powders for laser sintering, binders for plastic magnets, etc., but their spherical and particle size has been improved by improving the quality of these applications and developing new applications. There has been a demand for polyamide resin powder having relatively high quality.

従来これらの用途に用いられるポリアミド樹脂粉末は溶媒の温度による溶解度の差を利用する化学粉砕方式で製造する方法(特許文献1〜3)や高速回転する円盤の上に溶融ポリアミド樹脂を滴下し、周囲に飛散させて微細な粉末を得る方法(特許文献4)等の方法により製造することが知られていたが、公知の方法で得られるものの多くは多孔質状であり球状にならない、あるいは粒度分布が広いという欠点があった。粉体塗料やレーザー焼結用の焼結粉末やプラスチックマグネット用バインダー分野等で使用するためには、球状で粒径の比較的そろった品質の高いポリアミド樹脂粉体が求められていた。 Conventionally, the polyamide resin powder used for these applications is a method of manufacturing by a chemical pulverization method using the difference in solubility depending on the temperature of the solvent (Patent Documents 1 to 3) or a molten polyamide resin is dropped on a high-speed rotating disk, It has been known to produce by a method such as a method of obtaining fine powder by scattering to the surroundings (Patent Document 4). However, most of the products obtained by a known method are porous and do not become spherical or have a particle size. There was a drawback of wide distribution. In order to be used in the fields of powder coatings, sintered powders for laser sintering, binders for plastic magnets, and the like, high quality polyamide resin powders having a spherical shape and a relatively uniform particle size have been demanded.

一方炭素数6〜12のラクタム類の1種又は2種以上をパラフイン等の不活性溶媒中で、重合促進剤として三塩化リンを使用してアルカリ触媒重合を行って得られる球状のポリアミド粒子(特許文献5〜7)は球状で狭い粒度分布を有するが溶融性が悪いという欠点を有しているため用途が限定されていた。 On the other hand, spherical polyamide particles obtained by carrying out alkali-catalyzed polymerization using one or more of 6-12 carbon lactams in an inert solvent such as paraffin using phosphorus trichloride as a polymerization accelerator ( Patent Documents 5 to 7) are spherical and have a narrow particle size distribution, but have the disadvantage of poor meltability, so their applications are limited.

特開昭50−10846号公報Japanese Patent Laid-Open No. 50-10846 特開昭63−186739号公報Japanese Unexamined Patent Publication No. 63-186739 特開2002−80629号公報JP 2002-80629 A 特開平5―70598号公報JP-A-5-70598 特開昭47−25157号公報JP 47-25157 A 特開2000−248061号公報JP 2000-248061 A 特開2005−307096号公報JP 2005-307096 A

粉体塗料、レーザー焼結用の焼結粉末やプラスチックマグネット用バインダーに適する球状で狭い粒度分布を有し溶融性の良好なポリアミド粒子を得ることが本発明の課題である。 It is an object of the present invention to obtain spherical particles having a narrow particle size distribution suitable for powder coatings, sintered powders for laser sintering and binders for plastic magnets and having good meltability.

本発明者は鋭意研究した結果、球状ポリアミド粒子を水媒体中で形状を保持したまま加水分解を行い、溶融性を改善できることを見出し本発明を完成した。すなわち本発明は球状ポリアミド粒子を、水媒体中で形状を保持したまま加水分解することを特徴とする溶融性を改善した球状ポリアミド粒子の製造方法、ならびにその製造方法で得られた球状ポリアミド粒子に関するものである。好ましくは球状ポリアミド粒子が炭素数6〜12のラクタム類の1種又は2種以上をパラフイン中で、重合促進剤として三塩化リンを使用してアルカリ触媒重合を行って得られる球状ポリアミド粒子である。水媒体中に加水分解触媒を加えることが好ましく、触媒としては炭素数1〜4の有機酸、硫酸、塩酸、硝酸及び燐酸から選ばれる酸があげられる。さらに炭素数1〜4の低級アルコールから選ばれたアルコール及び/または界面活性剤を添加し目的の球状ポリアミド粒子を製造することができる。 As a result of diligent research, the present inventors have found that spherical polyamide particles can be hydrolyzed while maintaining the shape in an aqueous medium to improve the meltability, thereby completing the present invention. That is, the present invention relates to a method for producing spherical polyamide particles having improved meltability, characterized by hydrolyzing spherical polyamide particles while maintaining their shape in an aqueous medium, and spherical polyamide particles obtained by the production method. Is. Preferably, the spherical polyamide particles are spherical polyamide particles obtained by alkali-catalyzed polymerization using phosphorus trichloride as a polymerization accelerator in one or more kinds of lactams having 6 to 12 carbon atoms in paraffin. . A hydrolysis catalyst is preferably added to the aqueous medium, and examples of the catalyst include acids selected from organic acids having 1 to 4 carbon atoms, sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid. Furthermore, the target spherical polyamide particles can be produced by adding an alcohol and / or a surfactant selected from lower alcohols having 1 to 4 carbon atoms.

本発明の方法で製造された球状ポリアミド粒子は粉体塗料、レーザー焼結用の焼結粉末やプラスチックマグネット用バインダーなどの使用に適するものである。 The spherical polyamide particles produced by the method of the present invention are suitable for use in powder paints, sintered powders for laser sintering, binders for plastic magnets, and the like.

本発明の溶融性を改善した球状ポリアミド粒子の製造方法について以下に詳細に述べる。均質な球状で、狭い粒度分布幅を有するが溶融性が悪い球状ポリアミド粒子の製法は公知であり、特許文献5〜7に示される方法で製造することができる。例えば、ラウロラクタム及び/または炭素数6〜8のラクタム類の1種又は2種以上をパラフイン中で、重合促進剤として三塩化リンを使用してアルカリ触媒重合を行って得られる事が知られている。本発明に用いる球状ポリアミド粒子の粒径は特に限定されないが3μm以上200μm以下が好ましい。
本発明の溶融性を改善した球状ポリアミド粒子は上記の溶融性が悪い球状ポリアミド粒子を水媒体中で形状を保持したまま加水分解して製造することができる。また水媒体中には加水分解を触媒する物質、及び/または、ポリアミド粒子と水の親和性を増すため低級アルコールや界面活性剤を含有させることが好ましい。
水の量は球状ポリアミド粒子1部に対して水1〜20部が用いられるが特に水2〜10部が好ましい。水の量が多いと容積効率が悪くなり、分離に手間がかかり、また水の量が少ないと攪拌が困難となる。
加水分解触媒としてはポリアミド粒子を加水分解させるものであれば特に限定されないが例えば加水分解酵素、有機酸及び無機酸等があげられる。有機酸としては蟻酸、酢酸、プロピオン酸等の炭素数1〜4の有機酸が好ましく、無機酸としては硫酸、塩酸、硝酸、燐酸が好ましく、これらの酸の1種又は2種以上を用いることができる。反応活性や経済性から硫酸、塩酸及び硝酸が特に好ましい。それらの酸の添加量は特に限定されないがポリアミドの1基本モルの0.1〜10倍当量、好ましくは0.3〜5.0倍当量を使用することが好ましい。
球状ポリアミド粒子と水の親和性を増すためにメチルアルコール、エチルアルコール、イソプロピルアルコール、ブチルアルコール等の炭素数1〜4の低級アルコール及び/または界面活性剤を添加することができる。界面活性剤としてはアニオン性界面活性剤、非イオン性界面活性剤やカチオン性界面活性剤が使用できるが、酸に対する安定性や濡れ性改善の性能等から非イオン性界面活性剤が好ましい。非イオン性界面活性剤は特に限定されるものではないが、例えばポリオキシエチレンアルキルフェノール、ポリオキシエチレンスチリルフェニルエーテル、ポリオキシエチレンアルキルエーテル、ポリオキシエチレンアルケニルエーテルなどが上げられる。これらの非イオン性界面活性剤は一種を単独で用いても二種以上を併用しても良い。
低級アルコールや界面活性剤の添加量は限定されないが、添加量が少ないと球状ポリアミド粒子の水媒体中への分散が悪くなり、多すぎると反応時の泡立ちが多くなったり経済性が悪くなるため好ましくない。好ましくは低級アルコールの添加量は球状ポリアミド粒子の濡れ性が改善する量、すなわち水媒体100部に対して5〜20部であり、界面活性剤の添加量は水媒体100部に対して0.05〜5部である。
加水分解の反応温度は処理後の球状ポリアミド粒子の融点以下で行うことができるが、反応操作や反応制御の容易さから80〜150℃が好ましい。反応温度が80℃より低いと処理時間が長くかかり、反応温度が150℃より高いと高加圧下の反応となるため反応が煩雑となったり、加水分解反応の制御が難しくなり加水分解反応が進みすぎて球状ポリアミド粒子の物性が悪くなったりするため好ましくない。
球状ポリアミド粒子の溶融性は触媒の種類や量、処理温度及び処理時間によって容易にコントロールが可能であり目的の性能に合わせてそれらを設定することができる。
The method for producing spherical polyamide particles with improved meltability according to the present invention will be described in detail below. A method for producing spherical polyamide particles having a uniform spherical shape and a narrow particle size distribution width but poor meltability is known, and can be produced by the methods described in Patent Documents 5 to 7. For example, it is known that one or two or more kinds of laurolactam and / or lactams having 6 to 8 carbon atoms can be obtained by carrying out alkali-catalyzed polymerization using phosphorus trichloride as a polymerization accelerator in paraffin. ing. The particle size of the spherical polyamide particles used in the present invention is not particularly limited, but is preferably 3 μm or more and 200 μm or less.
The spherical polyamide particles with improved meltability according to the present invention can be produced by hydrolyzing the above-mentioned spherical polyamide particles with poor meltability while maintaining the shape in an aqueous medium. The aqueous medium preferably contains a substance that catalyzes hydrolysis and / or a lower alcohol or a surfactant in order to increase the affinity of the polyamide particles and water.
The amount of water is 1 to 20 parts of water with respect to 1 part of the spherical polyamide particles, but 2 to 10 parts of water is particularly preferable. When the amount of water is large, the volumetric efficiency is deteriorated, and it takes time and effort to separate. When the amount of water is small, stirring becomes difficult.
The hydrolysis catalyst is not particularly limited as long as it can hydrolyze the polyamide particles, and examples thereof include hydrolase, organic acid and inorganic acid. The organic acid is preferably an organic acid having 1 to 4 carbon atoms such as formic acid, acetic acid and propionic acid, and the inorganic acid is preferably sulfuric acid, hydrochloric acid, nitric acid or phosphoric acid, and one or more of these acids should be used. Can do. In view of reaction activity and economy, sulfuric acid, hydrochloric acid and nitric acid are particularly preferable. The addition amount of these acids is not particularly limited, but it is preferable to use 0.1 to 10 times equivalent, preferably 0.3 to 5.0 times equivalent of one basic mole of polyamide.
In order to increase the affinity of the spherical polyamide particles and water, a lower alcohol having 1 to 4 carbon atoms such as methyl alcohol, ethyl alcohol, isopropyl alcohol and butyl alcohol and / or a surfactant can be added. As the surfactant, an anionic surfactant, a nonionic surfactant or a cationic surfactant can be used, but a nonionic surfactant is preferred from the standpoint of acid stability and performance of improving wettability. The nonionic surfactant is not particularly limited, and examples thereof include polyoxyethylene alkylphenol, polyoxyethylene styryl phenyl ether, polyoxyethylene alkyl ether, polyoxyethylene alkenyl ether and the like. These nonionic surfactants may be used alone or in combination of two or more.
The amount of the lower alcohol or surfactant added is not limited, but if the amount added is small, the dispersion of the spherical polyamide particles in the aqueous medium will be poor, and if it is too large, foaming during the reaction will increase and the economy will be poor. It is not preferable. Preferably, the addition amount of the lower alcohol is an amount that improves the wettability of the spherical polyamide particles, that is, 5 to 20 parts with respect to 100 parts of the aqueous medium, and the addition amount of the surfactant is 0.00 with respect to 100 parts of the aqueous medium. 05 to 5 parts.
The reaction temperature for the hydrolysis can be carried out below the melting point of the spherical polyamide particles after the treatment, but is preferably 80 to 150 ° C. from the viewpoint of easy reaction operation and reaction control. If the reaction temperature is lower than 80 ° C, it takes a long time. If the reaction temperature is higher than 150 ° C, the reaction becomes highly pressurized and the reaction becomes complicated and the hydrolysis reaction becomes difficult to control. This is not preferable because the physical properties of the spherical polyamide particles deteriorate.
The meltability of the spherical polyamide particles can be easily controlled by the type and amount of the catalyst, the processing temperature and the processing time, and can be set according to the target performance.

加水分解処理後はろ過、中和、洗浄等の通常の分離精製操作を行うことにより溶媒中の球状ポリアミド粒子を単離することができる。また必要に応じて過酸化水素等で脱色することができる。 After the hydrolysis treatment, the spherical polyamide particles in the solvent can be isolated by performing ordinary separation and purification operations such as filtration, neutralization, and washing. Moreover, it can decolorize with hydrogen peroxide etc. as needed.

上記の方法によって得られた球状ポリアミド粒子は要求特性に応じて耐熱剤、紫外線吸収剤、耐候剤、帯電防止剤、滑剤、着色剤、安定剤、分散剤などを添加しても良く、また他の粉末状樹脂と混合して用いることもできる。 The spherical polyamide particles obtained by the above method may be added with a heat-resistant agent, an ultraviolet absorber, a weathering agent, an antistatic agent, a lubricant, a colorant, a stabilizer, a dispersant, etc. according to the required properties. It can also be used by mixing with a powdered resin.

本発明の方法により球形で比較的粒子径の分布幅が狭く、融点幅も狭く、溶融性の良い球状ポリアミド粒子が製造される。一般的にこの方法で製造された球状ポリアミド粒子は粉体塗料、レーザー焼結用の焼結粉末やプラスチックマグネット用バインダー等での使用に適するものである。

(実施例)
According to the method of the present invention, spherical polyamide particles having a spherical shape and a relatively narrow particle diameter distribution width, a narrow melting point width, and a good melting property are produced. In general, the spherical polyamide particles produced by this method are suitable for use in powder coatings, sintered powders for laser sintering, binders for plastic magnets, and the like.

(Example)

次に本発明の実施例及び比較例をあげて説明するが、本発明はこれらに限定されるものではない。 Next, although an example and a comparative example of the present invention are given and explained, the present invention is not limited to these.

下記実施例で用いた評価方法を以下にまとめて示す。なお、%は重量%を示す。
[評価方法]
融点測定方法
微量融点融点測定器MP−S3型(株式会社柳本製作所製))を使用して測定した。カバーグラスの上に
少量のポリアミド粒子をのせ、昇温し、結晶が融け始めてから全体が均一透明になるまでのところを融
点とした。
粒子径及び粒度分布
粒子径及び粒度分布の測定にはレーザー回折式粒度分布測定装置SALD−2000(株式会社島津製作所製)を用いて行った。
(比較例1)
The evaluation methods used in the following examples are summarized below. In addition,% shows weight%.
[Evaluation method]
Melting point measurement method
Measurement was performed using a micro melting point melting point measuring device MP-S3 type (manufactured by Yanagimoto Seisakusho Co., Ltd.) A small amount of polyamide particles were placed on the cover glass, the temperature was raised, and the point from when the crystals began to melt until the whole became uniformly transparent was taken as the melting point.
Particle size and particle size distribution Measurement of particle size and particle size distribution was performed using a laser diffraction particle size distribution analyzer SALD-2000 (manufactured by Shimadzu Corporation).
(Comparative Example 1)

特許文献6の実施例1に記載の方法に準じて平均粒子径8μmの球状ポリアミド粒子を製造した。
なお、90%以上の粒子が粒子径6.8μm〜10.3μmの範囲に入り、その粒度分布は極めてシャープであった。
(比較例2)
According to the method described in Example 1 of Patent Document 6, spherical polyamide particles having an average particle diameter of 8 μm were produced.
In addition, 90% or more of the particles were in the range of 6.8 μm to 10.3 μm in particle size, and the particle size distribution was extremely sharp.
(Comparative Example 2)

温度計、滴下ロート、撹拌機、窒素ガス流入口をセットした1000mlの四つ口フラスコにイソパラフィン(ペガゾールAS−100、エクソンモービル化学有限会社製)408g、ラウロラクタム106g、カプロラクタム6.8g、金属カリウム2.5g、ステアリン酸3.5gを添加し、窒素気流下に500rpmで撹拌しながら175℃まで加温し、そこに三塩化リン1.7gを添加した。次に種として比較例1で製造した平均粒子径8μmのポリアミド微粒子を33.4%含有するスラリー29.0gを添加し、撹拌を45分間続けた。反応液は冷却後、ろ過し、固液分離を行なうことにより、ポリアミドケーキを得た。本ポリアミドケーキにイソプロピルアルコール200gを加え、30分撹拌後ろ過しポリアミドケーキを得た。さらに、本操作を3回繰り返し、得られたポリアミドケーキを10mmHg減圧下、80℃で8時間乾燥し、球状ポリアミド粒子を得た。なお、本製造における最終収率は74%であった。また、得られた球状ポリアミド粒子の平均粒子径を測定した結果、19μmであった。なお90%以上の粒子が粒子径19μm〜34μmの範囲に入り、その粒度分布は極めてシャープであった。
(比較例3)
Isoparaffin (Pegazol AS-100, manufactured by ExxonMobil Chemical Co., Ltd.) 408 g, Laurolactam 106 g, Caprolactam 6.8 g, Metallic potassium 2.5 g and 3.5 g of stearic acid were added and heated to 175 ° C. with stirring at 500 rpm under a nitrogen stream, and 1.7 g of phosphorus trichloride was added thereto. Next, 29.0 g of a slurry containing 33.4% of polyamide fine particles having an average particle diameter of 8 μm produced in Comparative Example 1 was added as a seed, and stirring was continued for 45 minutes. The reaction solution was cooled, filtered, and solid-liquid separation was performed to obtain a polyamide cake. To this polyamide cake, 200 g of isopropyl alcohol was added, stirred for 30 minutes and then filtered to obtain a polyamide cake. Furthermore, this operation was repeated three times, and the obtained polyamide cake was dried at 80 ° C. under reduced pressure of 10 mmHg for 8 hours to obtain spherical polyamide particles. The final yield in this production was 74%. Moreover, it was 19 micrometers as a result of measuring the average particle diameter of the obtained spherical polyamide particle. In addition, 90% or more of the particles were in the range of 19 μm to 34 μm in particle size, and the particle size distribution was extremely sharp.
(Comparative Example 3)

イソパラフィン(前述)408g、ラウロラクタム 105.6g、カプロラクタム 6.8g、金属カリウム2.5g、ステアリン酸3.5g、三塩化リン1.7g、種として比較例2で製造した平均粒子径19μmのポリアミド微粒子を33.4%含有するスラリー31.4gを使用して比較例2と同様に重合反応を行った。
得られた球状ポリアミド粒子の最終収率は85%であった。また、得られた球状ポリアミド粒子の平均粒子径を測定した結果、44μmであった。なお90%以上の粒子が粒子径42μm〜77μmの範囲に入り、その粒度分布は極めてシャープであった。
408 g of isoparaffin (previously described), 105.6 g of laurolactam, 6.8 g of caprolactam, 2.5 g of potassium metal, 3.5 g of stearic acid, 1.7 g of phosphorus trichloride, a polyamide having an average particle diameter of 19 μm produced as a seed in Comparative Example 2 A polymerization reaction was carried out in the same manner as in Comparative Example 2 using 31.4 g of a slurry containing 33.4% of fine particles.
The final yield of the obtained spherical polyamide particles was 85%. Moreover, it was 44 micrometers as a result of measuring the average particle diameter of the obtained spherical polyamide particle. In addition, 90% or more of the particles were in the range of 42 μm to 77 μm in particle size, and the particle size distribution was extremely sharp.

比較例3で得られた平均粒径44μmの球状ポリアミド粒子 0.25g及びイソプロピルアルコールを10%含有する1N硫酸水溶液2.5gを封管中に入れ125℃〜130℃で8時間加水分解反応を行った。その後ろ過して球状ポリアミド粒子を分離し、炭酸ナトリウム水溶液で中和、水洗及びイソプロピルアルコール洗浄後乾燥し、目的の球状ポリアミド粒子を得た。     0.25 g of spherical polyamide particles having an average particle size of 44 μm obtained in Comparative Example 3 and 2.5 g of 1N sulfuric acid aqueous solution containing 10% of isopropyl alcohol were placed in a sealed tube and subjected to a hydrolysis reaction at 125 ° C. to 130 ° C. for 8 hours. went. Thereafter, the spherical polyamide particles were separated by filtration, neutralized with an aqueous sodium carbonate solution, washed with water and isopropyl alcohol, and then dried to obtain the desired spherical polyamide particles.

イソプロピルアルコールを10%含有する1N硫酸水溶液の代わりにイソプロピルアルコールを10%含有する1N塩酸水溶液を用いる以外は実施例1と同様に反応を行い目的の球状ポリアミド粒子を得た。     Reaction was carried out in the same manner as in Example 1 except that a 1N hydrochloric acid aqueous solution containing 10% isopropyl alcohol was used instead of a 1N sulfuric acid aqueous solution containing 10% isopropyl alcohol to obtain the desired spherical polyamide particles.

イソプロピルアルコールを10%含有する1N硫酸水溶液の代わりにイソプロピルアルコールを10%含有する0.5N塩酸水溶液を用いる以外は実施例1と同様に反応を行い目的の球状ポリアミド粒子を得た。     The reaction was carried out in the same manner as in Example 1 except that a 0.5N hydrochloric acid aqueous solution containing 10% isopropyl alcohol was used instead of a 1N sulfuric acid aqueous solution containing 10% isopropyl alcohol to obtain the desired spherical polyamide particles.

イソプロピルアルコールを10%含有する1N硫酸水溶液の代わりにイソプロピルアルコールを10%含有する1N燐酸水溶液を用いる以外は実施例1と同様に反応を行い目的の球状ポリアミド粒子を得た。     Reaction was carried out in the same manner as in Example 1 except that a 1N phosphoric acid aqueous solution containing 10% isopropyl alcohol was used instead of a 1N sulfuric acid aqueous solution containing 10% isopropyl alcohol to obtain the desired spherical polyamide particles.

イソプロピルアルコールを10%含有する1N硫酸水溶液の代わりにイソプロピルアルコールを10%含有する1N酢酸水溶液を用いる以外は実施例1と同様に反応を行い目的の球状ポリアミド粒子を得た。     Reaction was carried out in the same manner as in Example 1 except that a 1N aqueous acetic acid solution containing 10% isopropyl alcohol was used instead of a 1N aqueous sulfuric acid solution containing 10% isopropyl alcohol to obtain the desired spherical polyamide particles.

実施例1〜5によって得られた加水分解処理後の球状ポリアミド粒子の融点、平均粒子径及びその形状を比較例3と比較し表1に示した。表1に示すように加水分解処理を行ったものは平均粒子径及びその形状は変化がなかったが融点が低下し、その幅も狭くなり溶融性が改善した。 Table 1 shows the melting point, average particle diameter, and shape of the spherical polyamide particles obtained by hydrolysis in Examples 1 to 5 in comparison with Comparative Example 3. As shown in Table 1, in the case where the hydrolysis treatment was performed, the average particle diameter and the shape thereof were not changed, but the melting point was lowered, the width was narrowed, and the meltability was improved.

Figure 0005288361
Figure 0005288361

比較例3で得られた平均粒径44μmの球状ポリアミド粒子10g及びイソプロピルアルコール10%含有する1N硫酸水溶液100gを温度計、撹拌機をセットした300mlの四つ口フラスコに入れ、89℃〜92℃で24時間加水分解反応を行った。その後ろ過して球状ポリアミド粒子を分離し、炭酸ナトリウム水溶液で中和、水洗及びイソプロピルアルコール洗浄後乾燥し目的の球状ポリアミド粒子を得た。得られた球状ポリアミド粒子は平均粒子径およびその形状に変化がなかったが融点は168〜174℃と低下し、その幅も狭くなり溶融性が改善した。 10 g of spherical polyamide particles having an average particle size of 44 μm obtained in Comparative Example 3 and 100 g of 1N sulfuric acid aqueous solution containing 10% of isopropyl alcohol were put into a 300 ml four-necked flask equipped with a thermometer and a stirrer, and 89 ° C. to 92 ° C. The hydrolysis reaction was carried out for 24 hours. Thereafter, the spherical polyamide particles were separated by filtration, neutralized with an aqueous sodium carbonate solution, washed with water and isopropyl alcohol, and then dried to obtain the desired spherical polyamide particles. The obtained spherical polyamide particles had no change in average particle diameter and shape, but the melting point was lowered to 168 to 174 ° C., the width was narrowed, and the meltability was improved.

比較例3で得られた平均粒径44μmの球状ポリアミド粒子45g及びナロアクティHN95(ポリオキシエチレンアルキルエーテル型非イオン性界面活性剤、三洋化成株式会社製)を0.26%含有する1N硫酸水溶液100gを95℃〜98℃で21時間加水分解反応を行った。その後ろ過して球状ポリアミド粒子を分離し、炭酸ナトリウム水溶液で中和、水洗及びイソプロピルアルコール洗浄後乾燥し目的の球状ポリアミド粒子を得た。 45 g of spherical polyamide particles having an average particle diameter of 44 μm obtained in Comparative Example 3 and 100 g of 1N sulfuric acid aqueous solution containing 0.26% of Naroacti HN95 (polyoxyethylene alkyl ether type nonionic surfactant, manufactured by Sanyo Chemical Co., Ltd.) Was subjected to a hydrolysis reaction at 95 ° C to 98 ° C for 21 hours. Thereafter, the spherical polyamide particles were separated by filtration, neutralized with an aqueous sodium carbonate solution, washed with water and isopropyl alcohol, and then dried to obtain the desired spherical polyamide particles.

ナロアクティHN95(前述)を0.26%含有する1N硫酸水溶液の代わりにナロアクティHN95(前述)を0.26%含有する2N硫酸水溶液用い、処理時間を4時間とした以外は実施例7と同様に反応を行い目的の球状ポリアミド粒子を得た。     The same procedure as in Example 7 except that instead of the 1N sulfuric acid aqueous solution containing 0.26% Naloacti HN95 (previously described), a 2N sulfuric acid aqueous solution containing 0.26% Naroacti HN95 (previously described) was used and the treatment time was changed to 4 hours. Reaction was performed to obtain the desired spherical polyamide particles.

ナロアクティHN95(前述)を0.26%含有する1N硫酸水溶液の代わりにナロアクティHN95(前述)を0.26%含有する2N塩酸水溶液用い、処理時間を4時間とした以外は実施例7と同様に反応を行い目的の球状ポリアミド粒子を得た。 The same procedure as in Example 7 except that instead of the 1N sulfuric acid aqueous solution containing 0.26% Naloacti HN95 (previously described), a 2N hydrochloric acid aqueous solution containing 0.26% Naroacti HN95 (previously described) was used and the treatment time was changed to 4 hours. Reaction was performed to obtain the desired spherical polyamide particles.

実施例7〜9によって得られた加水分解処理後の球状ポリアミド粒子の融点、平均粒子径及びその形状を比較例3と比較し表2に示した。表2に示すように加水分解処理を行ったものは平均粒子径及びその形状は変化がなかったが融点が低下し、その幅も狭くなり溶融性が改善した。 The melting point, average particle diameter and shape of the spherical polyamide particles after hydrolysis obtained in Examples 7 to 9 are shown in Table 2 in comparison with Comparative Example 3. As shown in Table 2, the average particle diameter and the shape of the product subjected to the hydrolysis treatment were not changed, but the melting point was lowered, the width was narrowed, and the meltability was improved.

Figure 0005288361
Figure 0005288361

比較例3で得られた平均粒径44μmの球状ポリアミド粒子10g及び2N塩酸水溶液100gを温度計、撹拌機をセットした300mlの四つ口フラスコに入れ、95℃〜98℃で4時間加水分解反応を行った。その後ろ過して球状ポリアミド粒子を分離し、炭酸ナトリウム水溶液で中和、水洗及びイソプロピルアルコール洗浄後乾燥することにより目的とする球状ポリアミド粒子を得た。得られた加水分解処理後の球状ポリアミド粒子の融点、平均粒子径及びその形状を比較例3と比較し表3に示した。表3に示すように加水分解処理を行ったものは平均粒子径及びその形状は変化がなかったが融点が低下し、その幅も狭くなり溶融性が改善した。 10 g of spherical polyamide particles having an average particle size of 44 μm obtained in Comparative Example 3 and 100 g of 2N hydrochloric acid aqueous solution are put into a 300 ml four-necked flask equipped with a thermometer and a stirrer, and hydrolyzed at 95 to 98 ° C. for 4 hours. Went. Thereafter, filtration was performed to separate the spherical polyamide particles, and neutralized with an aqueous sodium carbonate solution, washed with water and isopropyl alcohol, and then dried to obtain the desired spherical polyamide particles. The melting point, average particle diameter and shape of the obtained spherical polyamide particles after the hydrolysis treatment are shown in Table 3 in comparison with Comparative Example 3. As shown in Table 3, the average particle diameter and the shape of the product subjected to the hydrolysis treatment were not changed, but the melting point was lowered, the width was narrowed, and the meltability was improved.

Figure 0005288361
Figure 0005288361

比較例1で得られた平均粒径8μmの球状ポリアミド粒子0.25g及びイソプロピルアルコールを10%含有する1N硫酸水溶液2.5gを封管中に入れ、125℃〜130℃で8時間加水分解反応を行った。その後ろ過して球状ポリアミド粒子を分離し、炭酸ナトリウム水溶液で中和、水洗及びイソプロピルアルコール洗浄後乾燥して目的とする球状ポリアミド粒子を得た。得られた加水分解処理後の球状ポリアミド粒子の融点、平均粒子径及びその形状を比較例1と比較し表4に示した。表4に示すように加水分解処理を行ったものは平均粒子径及びその形状は変化がなかったが融点が低下し、その幅も狭くなり溶融性が改善した。 0.25 g of spherical polyamide particles having an average particle diameter of 8 μm obtained in Comparative Example 1 and 2.5 g of 1N sulfuric acid aqueous solution containing 10% of isopropyl alcohol were placed in a sealed tube and hydrolyzed at 125 ° C. to 130 ° C. for 8 hours. Went. Thereafter, the spherical polyamide particles were separated by filtration, neutralized with an aqueous sodium carbonate solution, washed with water and isopropyl alcohol, and then dried to obtain the desired spherical polyamide particles. The melting point, average particle diameter and shape of the obtained spherical polyamide particles after the hydrolysis treatment are shown in Table 4 in comparison with Comparative Example 1. As shown in Table 4, the average particle diameter and the shape of the product subjected to the hydrolysis treatment were not changed, but the melting point was lowered, the width was narrowed, and the meltability was improved.

Figure 0005288361
Figure 0005288361

比較例2で得られた平均粒径19μmの球状ポリアミド粒子0.25g及びイソプロピルアルコールを10%含有する1N硫酸水溶液2.5gを封管中に入れ、125℃〜130℃で8時間加水分解反応を行った。その後ろ過して球状ポリアミド粒子を分離し、炭酸ナトリウム水溶液で中和、水洗及びイソプロピルアルコール洗浄後乾燥して目的とする球状ポリアミド粒子を得た。得られた加水分解処理後の球状ポリアミド粒子の融点、平均粒子径及びその形状を比較例2と比較し表5に示した。表5に示すように加水分解処理を行ったものは平均粒子径及びその形状は変化がなかったが融点が低下し、その幅も狭くなり溶融性が改善した。 0.25 g of spherical polyamide particles having an average particle diameter of 19 μm obtained in Comparative Example 2 and 2.5 g of 1N sulfuric acid aqueous solution containing 10% of isopropyl alcohol were placed in a sealed tube and hydrolyzed at 125 ° C. to 130 ° C. for 8 hours. Went. Thereafter, the spherical polyamide particles were separated by filtration, neutralized with an aqueous sodium carbonate solution, washed with water and isopropyl alcohol, and then dried to obtain the desired spherical polyamide particles. The melting point, average particle diameter, and shape of the obtained spherical polyamide particles after the hydrolysis treatment are shown in Table 5 in comparison with Comparative Example 2. As shown in Table 5, the average particle diameter and the shape of those subjected to the hydrolysis treatment were not changed, but the melting point was lowered, the width was narrowed, and the meltability was improved.

Figure 0005288361
Figure 0005288361

本発明による溶融性を改善した球状ポリアミド粒子は球状で粒度分布が狭く良好な溶融性を有し、粉体塗料やレーザー焼結用の焼結粉末やプラスチックマグネット用バインダー分野等に用いることができる。   The spherical polyamide particles with improved meltability according to the present invention are spherical and have a good meltability with a narrow particle size distribution, and can be used in powder coatings, sintered powders for laser sintering, binder fields for plastic magnets, etc. .

Claims (4)

球状ポリアミド粒子が炭素数6〜12のラクタム類の1種又は2種以上をパラフイン中で、重合促進剤として三塩化リンを使用してアルカリ触媒重合を行って得られる球状ポリアミド粒子を水媒体中で形状を保持したまま加水分解を行い溶融性を改善することを特徴とする球状ポリアミド粒子の製造方法。 Spherical polyamide particles obtained by alkali-catalyzed polymerization using one or more lactams having 6 to 12 carbon atoms in paraffin and phosphorus trichloride as a polymerization accelerator in an aqueous medium A method for producing spherical polyamide particles, wherein the meltability is improved by hydrolysis while maintaining the shape. 水媒体中に加水分解触媒を加えることを特徴とする請求項1に記載の球状ポリアミド粒子の製造方法。 The method for producing spherical polyamide particles according to claim 1, wherein a hydrolysis catalyst is added to the aqueous medium. 加水分解触媒が炭素数1〜4の有機酸、硫酸、塩酸、硝酸及び燐酸から選ばれる酸の1種又は2種以上であることを特徴とする請求項1または2に記載の球状ポリアミド粒子の製造方法。 The spherical polyamide particles according to claim 1 or 2, wherein the hydrolysis catalyst is one or more acids selected from organic acids having 1 to 4 carbon atoms, sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid. Production method. 水媒体中に炭素数1〜4の低級アルコールから選ばれたアルコール及び/または界面活性剤を添加することを特徴とする請求項1〜3のいずれかに記載の球状ポリアミド粒子の製造方法。

The method for producing spherical polyamide particles according to any one of claims 1 to 3, wherein an alcohol and / or a surfactant selected from lower alcohols having 1 to 4 carbon atoms are added to the aqueous medium.

JP2006259907A 2006-09-26 2006-09-26 Method for producing spherical polyamide particles Active JP5288361B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2006259907A JP5288361B2 (en) 2006-09-26 2006-09-26 Method for producing spherical polyamide particles
PCT/JP2007/068010 WO2008038532A1 (en) 2006-09-26 2007-09-10 Method for production of spherical polyamide particle having improved melting property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006259907A JP5288361B2 (en) 2006-09-26 2006-09-26 Method for producing spherical polyamide particles

Publications (2)

Publication Number Publication Date
JP2008081524A JP2008081524A (en) 2008-04-10
JP5288361B2 true JP5288361B2 (en) 2013-09-11

Family

ID=39352713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006259907A Active JP5288361B2 (en) 2006-09-26 2006-09-26 Method for producing spherical polyamide particles

Country Status (1)

Country Link
JP (1) JP5288361B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015157148A1 (en) 2014-04-07 2015-10-15 Sabic Global Technologies B.V. Powder bed fusing thermoplastic polymers

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4940734A (en) * 1972-08-23 1974-04-16
JPH0686520B2 (en) * 1985-04-10 1994-11-02 東レ株式会社 Polyamide fine particles
JPH0472359A (en) * 1990-07-12 1992-03-06 Akihiro Moriyoshi Asphalt admixture
DE19747309B4 (en) * 1997-10-27 2007-11-15 Degussa Gmbh Use of a polyamide 12 for selective laser sintering
JP4089852B2 (en) * 1999-03-01 2008-05-28 住化エンビロサイエンス株式会社 Production method of coarse copolymer polyamide fine particles
JP2002080629A (en) * 2000-06-14 2002-03-19 Ube Ind Ltd Polyamide porous spherical particle and process for preparing it
FR2846333B1 (en) * 2002-10-23 2004-12-03 Atofina INCREASING THE MELTING POINT AND THE POLYAMIDE MELTING ENHALPIA BY WATER TREATMENT
DE102004010162A1 (en) * 2004-02-27 2005-09-15 Degussa Ag Polymer powder with copolymer, use in a shaping process with unfocused energy input and molding, made from this polymer powder
FR2867190B1 (en) * 2004-03-02 2007-08-17 Arkema METHOD FOR MANUFACTURING POLYAMIDE POWDER 12 WITH A HIGH MELTING POINT

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015157148A1 (en) 2014-04-07 2015-10-15 Sabic Global Technologies B.V. Powder bed fusing thermoplastic polymers
US10669437B2 (en) 2014-04-07 2020-06-02 Sabic Global Technologies B.V. Powder bed fusing thermoplastic polymers

Also Published As

Publication number Publication date
JP2008081524A (en) 2008-04-10

Similar Documents

Publication Publication Date Title
KR101041880B1 (en) Method for production of silver-containing nano-structure, and silver-containing nano-structure
US9636746B2 (en) Method for manufacturing silver nanowires
US9296043B2 (en) Synthesis of metal nanoparticles
JP5537436B2 (en) Method for producing silver oxide
JP2005248180A (en) Method for manufacturing polyamide 12 powder of high melting point
KR20160053352A (en) A process for preparing metal nanoparticles using a multi-functional polymer and a reducing agent
CN108436098B (en) Preparation method of silver nanoring
JP5334233B2 (en) Spherical polyamide powder used for laser sintering, method for producing molded body using the same, and laser sintered article
JP6238211B2 (en) Equipment useful for hydrogenation reaction (III)
CN102659171B (en) Preparation method of water-soluble zinc oxide nanoparticles
JP5288361B2 (en) Method for producing spherical polyamide particles
TW201343727A (en) Production process of polydialkylsilane
JP5640775B2 (en) Method for producing granular gallium oxide
CN106147220B (en) For the long-chain nylon of SLS and nylon66 fiber alloy powder material preparation method
JP6851496B2 (en) Method for producing 4 polyamide particles
KR101040623B1 (en) Fabrication Method of Nanofluid
JP2017214244A (en) Manufacturing method of surface modified nanodiamond and surface modified nanodiamond
JP5142250B2 (en) Method for manufacturing ceramic / organic composite structure
JP2011070008A5 (en)
JP6238212B2 (en) Equipment useful for hydrogenation reaction (II)
KR101936274B1 (en) The preparations of copper alloy nanoparticles, nanodispersions, and sputtering targents
WO2008038532A1 (en) Method for production of spherical polyamide particle having improved melting property
JP5065699B2 (en) Method for producing spherical polyamide particles
JP2005307096A (en) Polyamide particle and process for producing the same
KR101325961B1 (en) Manufacturing method of cobalt powder using slurry reduction method and cobalt powder manufactured through the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090512

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120330

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120404

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130523

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130528

R150 Certificate of patent or registration of utility model

Ref document number: 5288361

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250