WO2008038532A1 - Method for production of spherical polyamide particle having improved melting property - Google Patents

Method for production of spherical polyamide particle having improved melting property Download PDF

Info

Publication number
WO2008038532A1
WO2008038532A1 PCT/JP2007/068010 JP2007068010W WO2008038532A1 WO 2008038532 A1 WO2008038532 A1 WO 2008038532A1 JP 2007068010 W JP2007068010 W JP 2007068010W WO 2008038532 A1 WO2008038532 A1 WO 2008038532A1
Authority
WO
WIPO (PCT)
Prior art keywords
polyamide particles
particles
spherical
producing
polyamide
Prior art date
Application number
PCT/JP2007/068010
Other languages
French (fr)
Japanese (ja)
Inventor
Kenji Yamasaki
Original Assignee
Sumika Enviro-Science Company, Limited
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2006259907A external-priority patent/JP5288361B2/en
Priority claimed from JP2007020364A external-priority patent/JP5334233B2/en
Application filed by Sumika Enviro-Science Company, Limited filed Critical Sumika Enviro-Science Company, Limited
Publication of WO2008038532A1 publication Critical patent/WO2008038532A1/en

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G69/00Macromolecular compounds obtained by reactions forming a carboxylic amide link in the main chain of the macromolecule
    • C08G69/46Post-polymerisation treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J3/00Processes of treating or compounding macromolecular substances
    • C08J3/12Powdering or granulating
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers

Definitions

  • the present invention relates to a method for producing spherical polyamide particles having improved meltability, and use of polyamide particles obtained by the production method for a laser sintered body.
  • a method of obtaining a molded body (laser-sintered body) by laser sintering of spherical polyamide particles is known.
  • spherical polyamide particles that can be used in this method Japanese Patent Application Laid-Open No. 2000-07096 discloses spherical polyamide particles having an average particle diameter of 10 to 100 / m, and their The manufacturing method is described. Disclosure of the invention
  • this polyamide particle is spherical and has a narrow particle size distribution, its meltability is insufficient, so that the density, hardness and toughness of the obtained laser sintered body are insufficient. Have the problem.
  • an object of the present invention is to provide a method for producing spherical polyamide particles having a narrow melting point width and a narrow particle size distribution and having improved meltability, and laser firing of polyamide particles obtained by the production method. It is to provide a use for ligation.
  • spherical polyamide particles having improved meltability can be obtained by hydrolyzing spherical polyamide particles in an aqueous medium while maintaining their shape to lower the melting point of the polyamide particles.
  • the present invention is a method for producing a polyamide particle having a melting point lower than that of the polyamide particle, comprising a step of hydrolyzing the spherical polyamide particle in an aqueous medium while maintaining its shape.
  • the present invention is also a laser-sintering powder containing the polyamide particles obtained by the above production method.
  • the present invention is further a method for producing a laser sintered body comprising the following steps: Step 1 Spherical polyamido particles are hydrolyzed in an aqueous medium while maintaining their shape, and are lower than the polyamido particles. Producing polyamide particles having a melting point; and
  • Step 2 A step of laser sintering the polyamide particles.
  • the spherical polyamide particles used in the present invention may be known polyamide particles.
  • the polyamide particles are disclosed in Japanese Patent Application Laid-Open Nos. 4-7-2 5 1 57, Japanese Patent Application Laid-Open No. 2 00 0-2 4 8 061 and Japanese Patent Application Laid-Open No. 2 05- 3 0 7 0 96. It can be obtained by a production method described in a document such as a publication.
  • a lactam having 6 to 12 carbon atoms preferably at least one lactam selected from the group consisting of laurolactam and a lactam having 6 to 8 carbon atoms is used.
  • polyamides applied to polyamide particles include polylaurolactam, polyheptolactam, polycaprolactam, copolymer of laurolactam and heptactam, copolymer of laurolactam and force prolactam, and copolymer of heptlactam and caprolactam. Examples thereof include a polymer and a copolymer of laurolactam, heptolactam, and caprolactam.
  • the particle size of the spherical polyamide particles used in the present invention is preferably Or 3 to 200 xm, particularly preferably 15 to L50 m, and the average particle diameter is 6 to 150 m, preferably 20 to 100 m.
  • 90% by weight or more of the particles constituting the polyamide particles have a particle size in the range of 1/2 to 2 times the average particle size.
  • the term “spherical” above does not mean a spherical shape at a mathematically exact level, but means a spherical shape at a level possessed by the spherical polyamide particles disclosed in each of the above patent publications.
  • the amount of water as a medium in the present invention is preferably 1 to 20 parts by weight, more preferably 2 to 10 parts by weight with respect to 1 part by weight of the polyamide particles used.
  • the amount exceeds 20 parts by weight the volumetric efficiency of the hydrolysis reactor is deteriorated, and the separation of water and the reaction product is troublesome.
  • the amount is less than 1 part by weight, it is difficult to stir the reactor.
  • the hydrolysis in the present invention is preferably carried out in the presence of a hydrolysis catalyst for promoting the hydrolysis reaction.
  • the catalyst may be a known catalyst.
  • the hydrolysis catalyst include hydrolase, organic acid and inorganic acid.
  • the organic acid is preferably an organic acid having 1 to 4 carbon atoms such as formic acid, acetic acid and propionic acid.
  • the inorganic acid is preferably sulfuric acid, hydrochloric acid, nitric acid or phosphoric acid. Of these, sulfuric acid, hydrochloric acid or nitric acid is particularly preferred from the viewpoint of the activity of the hydrolysis reaction and economic efficiency.
  • These catalysts may be used in combination of two or more.
  • the amount of the catalyst used is usually preferably 0.1 to 10 equivalents, more preferably 0.3 to 5.0 equivalents, per mole of amide bond contained in the polyamide particles used.
  • Water as a medium in the present invention is preferably used in combination with an alcohol or a surfactant in order to improve the affinity with polyamide particles.
  • the alcohol include lower alcohols having 1 to 4 carbon atoms such as methyl alcohol, ethyl alcohol, isopropyl alcohol, and butyl alcohol. These alcohols may be used in combination of two or more.
  • surfactants include anionic surfactants, nonionic surfactants and cationic surfactants. Can do. Among these, nonionic surfactants are preferred from the viewpoint of improving the stability to hydrolysis catalysts and the wettability of the polyamide particles used.
  • Polyoxyethylene alkylphenols as nonionic surfactants Polyoxyethylene styryl phenyl ether, polyoxyethylene alkyl ether, and polyoxyethylene alkenyl ether. These surfactants may be used in combination of two or more.
  • the amount of alcohol used is preferably 5 to 20 parts by weight with respect to 100 parts by weight of water as a medium from the viewpoint of improving the wettability of the polyamide particles used.
  • the amount of the surfactant used is preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of water as a medium, from the same viewpoint as the preparation of alcohol.
  • the amount used is less than 0.05 parts by weight, dispersion of the polyamide particles used in water may deteriorate, and when it exceeds 5 parts by weight, foaming during the hydrolysis reaction increases. There is a case.
  • the reaction temperature for hydrolysis is a temperature lower than the melting point of the polyamide particles obtained by the reaction.
  • the reaction temperature is preferably 80 to 15 O: from the viewpoint of easy reaction operation and reaction control. If the reaction temperature is lower than 80, the reaction time may take a long time. When the reaction temperature is higher at 150, the reaction becomes complicated under high pressure, and the reaction becomes difficult because the reaction is difficult to control, resulting in poor physical properties of the resulting polyamide particles.
  • the hydrolysis reaction time may be appropriately selected according to conditions such as the type and concentration of the catalyst and the reaction temperature, and is preferably 4 to 24 hours from the viewpoint of ease of control of the reaction and economical efficiency. It is.
  • the meltability that is, the melting point of the polyamide particles obtained by hydrolysis can be easily determined by the type and amount of the hydrolysis catalyst and the temperature and time of the hydrolysis reaction. Can be controlled.
  • polyamide particles By treating the hydrolysis reaction mixture with ordinary separation and purification operations such as filtration, neutralization and washing, it is possible to isolate polyamide particles with improved meltability and spherical particle size distribution.
  • the polyamide particles may be decolorized with a decolorizing agent such as hydrogen peroxide.
  • the resulting polyamide particles can be used in combination with additives such as heat-resistant agents, UV absorbers, weathering agents, antistatic agents, lubricants, colorants, stabilizers and dispersants, and other powdered resin. Also good.
  • the laser sintering method in the method for producing a laser-sintered body of the present invention may be a known method.
  • Spherical polyamide particles having a narrow melting point width and a narrow particle size distribution obtained by the production method of the present invention and having improved meltability are formed by laser sintering to have a high density and good hardness and toughness.
  • Example 1 of Japanese Patent Laid-Open No. 2000-248 0 61 90 mol parts of laurolactam and 10 mol parts of force prolactam are copolymerized to have a melting point of 200 to 238.
  • spherical polyamide particles having an average particle diameter of 8 m were produced. 90% by weight or more of the particles have a particle diameter in the range of 6.8 to 10.3 m, that is, 2 times 1 (4 z / m) of the average particle diameter of 8 m.
  • the particle size was in the range of up to 6 m), and the particle size distribution was very sharp.
  • the melting point was measured by a method consisting of the following procedure:
  • Micro melting point measuring device MP-S 3 type force burglar made by Yanagimoto Seisakusho Co., Ltd. (2) raising the temperature of the particles at 10 to 2 Ot: / min;
  • the melting point is from the temperature at which the particles begin to melt to the temperature at which the whole becomes uniformly transparent.
  • the above particle diameter and particle size distribution were measured with a laser diffraction particle size distribution measuring device SAL D-2000 manufactured by Shimadzu Corporation.
  • Reference example 2
  • the product name made by ExxonMobil Chemical Co., Ltd. becomes Pegasol AS-1100 in a 100-m1 four-necked flask with a thermometer, dropping funnel, stirrer and nitrogen gas inlet. 408 g of isoparaffin, 106 g of Laurora cupum, 6.8 g of strength prolactam, 2.5 g of potassium metal, and 3.5 g of stearic acid were added. The resulting mixture was heated to 1 75 t with stirring at 500 rpm under a nitrogen stream.
  • the obtained polyamide particles had a melting point of 188 to 226 t: and an average particle size of 19 m. 90% by weight or more of the particles have a particle size within the range of 19 to 34 m, that is, from 1/2 (9.5 m) to twice the average particle size of 19 ⁇ m (38 m ) In the range up to The degree distribution was very sharp.
  • Reference example 3
  • Seed Example 2 except that the seed was changed to Pegazol AS-1 100 isoparaffin slurry 31.4 g containing 34.4% by weight of the polyamide particles produced in Reference Example 2. In the same manner as above, spherical polyamide particles were obtained with a yield of 85%.
  • the resulting polyamide particles had a melting point of 1 85 to 230 t: and an average particle size of 44 m. 90% by weight or more of the particles have a particle size in the range of 42 to 77 m, that is, a particle size in the range of 1/2 (22 zm) to twice (88 zm) the average particle size 44 Therefore, the particle size distribution was extremely sharp.
  • Example 1
  • Example 2 The reaction mixture was filtered to separate polyamide particles, and the separated particles were neutralized with an aqueous sodium carbonate solution. The particles were then washed in the order of water and isopropyl alcohol. The washed particles were dried to obtain particles maintaining the shape of the polyamide particles obtained in Reference Example 3 having a melting point of 170 to 172 and an average particle size of 44 m. The results are summarized in Table 1.
  • Example 2 The results are summarized in Table 1.
  • Example 3 A 1 N sulfuric acid aqueous solution containing 10% by weight of isopropyl alcohol was changed to a 1 N hydrochloric acid aqueous solution containing 10% by weight of isopropyl alcohol, and the melting point was 1 Particles that retain the shape of the polyamide particles obtained in Reference Example 3, with 67 to 1 7 2 and an average particle size of 44 // m I got a child. The results are summarized in Table 1.
  • Example 4 A 1 N sulfuric acid aqueous solution containing 10% by weight of isopropyl alcohol was changed to a 0.5 N hydrochloric acid aqueous solution containing 10% of isopropyl alcohol, and the melting point was 1 Particles having the shape of the polyamide particles obtained in Reference Example 3 having an average particle diameter of 6 5 to 1 7 3 and 44 / zm were obtained. The results are summarized in Table 1.
  • Example 4 A 1 N sulfuric acid aqueous solution containing 10% by weight of isopropyl alcohol was changed to a 0.5 N hydrochloric acid aqueous solution containing 10% of isopropyl alcohol, and the melting point was 1 Particles having the shape of the polyamide particles obtained in Reference Example 3 having an average particle diameter of 6 5 to 1 7 3 and 44 / zm were obtained. The results are summarized in Table 1. Example 4
  • Example 5 The same procedure as in Example 1 was conducted except that the 1 N sulfuric acid aqueous solution containing 10% by weight of isopropyl alcohol was changed to the 1 N phosphoric acid aqueous solution containing 10% by weight of isopropyl alcohol. Particles having the shape of the polyamide particles obtained in Reference Example 3 having an average particle diameter of 7 3 to 1 78 and an average particle diameter of 44 m were obtained. The results are summarized in Table 1. Example 5
  • Example 6 10 g of spherical polyamide particles obtained in Reference Example 3 and 100 g of 1 N sulfuric acid aqueous solution containing 10% by weight of isopropyl alcohol were set in a 300 m 1 set with a thermometer and a stirrer. Placed in a one-necked flask. This was hydrolyzed by heating at 89 to 92 for 24 hours to obtain a reaction mixture. The reaction mixture was filtered to separate spherical polyamide particles, and the separated particles were neutralized with an aqueous sodium carbonate solution. The particles were then washed in the order of water and isopropyl alcohol, respectively. The washed particles are dried to obtain particles having the same average particle diameter and shape, lower melting point (168-174) and narrower width than the polyamide particles used as raw materials. It was. The results are summarized in Table 2.
  • Example 7 10 g of spherical polyamide particles obtained in Reference Example 3 and 100 g of 1 N sulfuric acid aqueous solution containing 10% by
  • Example 8 The reaction mixture was filtered to separate spherical polyamide particles, and the separated particles were neutralized with an aqueous sodium carbonate solution. The particles were then washed in the order of water and isopropyl alcohol, respectively. The washed particles were dried to obtain particles maintaining the shape of the polyamide particles obtained in Reference Example 3 having a melting point of 166 to 17 2 t: and an average particle size of 44 / zm. The results are summarized in Table 3.
  • Example 8 The results are summarized in Table 3.
  • Example 9 (1) 1N sulfuric acid aqueous solution containing 0.26% by weight of Naroacti HN 9 5 was changed to 2N sulfuric acid aqueous solution containing 0.26% by weight of Naroacti HN 9 5; and (2) Hydrolysis The reaction time of was changed to 4 hours Except for the above, the same procedure as in Example 7 was carried out, and the particles having the melting point of 16 7 to 1 7 3 t: and the average particle size of 4 4 // m and retaining the shape of the polyamide particles obtained in Reference Example 3 were obtained. Obtained. The results are summarized in Table 3. Example 9
  • Example 1 2 The same procedure as in Example 1 was performed except that the spherical polyamide particles obtained in Reference Example 3 were changed to the spherical polyamide particles obtained in Reference Example 1, and the average particle size was compared with the polyamide particles used as a raw material. And particles of the same shape, lower melting point (from 1 68 to 1 74) and narrower width. The results are summarized in Table 5.
  • Example 1 2 The same procedure as in Example 1 was performed except that the spherical polyamide particles obtained in Reference Example 3 were changed to the spherical polyamide particles obtained in Reference Example 1, and the average particle size was compared with the polyamide particles used as a raw material. And particles of the same shape, lower melting point (from 1 68 to 1 74) and narrower width. The results are summarized in Table 5.
  • Example 1 2 The same procedure as in Example 1 was performed except that the spherical polyamide particles obtained in Reference Example 3 were changed to the spherical polyamide particles obtained in Reference Example 1, and the average particle size was compared with
  • Example 1 3 The same procedure as in Example 1 was performed except that the spherical polyamide particles obtained in Reference Example 3 were changed to the spherical polyamide particles obtained in Reference Example 2, and the average particle size was compared with the polyamide particles used as a raw material. And particles having the same shape, a lower melting point (166-174t :) and a narrower width. The results are summarized in Table 6.
  • Example 1 3 The same procedure as in Example 1 was performed except that the spherical polyamide particles obtained in Reference Example 3 were changed to the spherical polyamide particles obtained in Reference Example 2, and the average particle size was compared with the polyamide particles used as a raw material. And particles having the same shape, a lower melting point (166-174t :) and a narrower width. The results are summarized in Table 6.
  • Example 1 3 The results are summarized in Table 6.
  • Example 1 4 The same procedure as in Example 6 was performed except that the spherical polyamide particles obtained in Reference Example 3 were changed to the spherical polyamide particles obtained in Reference Example 1, and the average particle diameter was compared with the polyamide particles used as a raw material. And particles of the same shape, melting point (lower than 1 68 8 to 1 7 4 0 and narrower). The results are summarized in Table 7.
  • Example 1 4 The same procedure as in Example 6 was performed except that the spherical polyamide particles obtained in Reference Example 3 were changed to the spherical polyamide particles obtained in Reference Example 1, and the average particle diameter was compared with the polyamide particles used as a raw material. And particles of the same shape, melting point (lower than 1 68 8 to 1 7 4 0 and narrower). The results are summarized in Table 7.
  • Example 1 4 The results are summarized in Table 7.
  • Example 1 5 Using the respective particles obtained in Reference Example 3, Example 6, Example 7 and Example 10 to the laser sinter equipment EO SI NT-P manufactured by ⁇ GS Gezelshaft Mit Beschlenktel. Thus, a rectangular parallelepiped shaped body (laser and sintered body) was produced.
  • the density of these sintered bodies was 0.60 gZcm 3 for the sintered bodies from the particles obtained in Reference Example 3, and 0.96 g no cm 3 for all the sintered bodies from the particles obtained in the examples. 7 hot.
  • the sintered bodies from the particles obtained in Reference Example 3 are “soft and brittle”, and the sintered bodies from the particles obtained in the examples are all “hard and tough”. there were.

Abstract

(1) A method for producing a polyamide particle having a lower melting point that that of a spherical polyamide particle used as a starting material, comprising the step of hydrolyzing the spherical polyamide particle in an aqueous medium while keeping its shape; (2) a method for producing a sintered material, comprising the step of sintering the polyamide particle produced by the method (1) with a laser; and (3) a powder for laser sintering, comprising the polyamide particle produced by the method (1).

Description

明 細 書 溶融性の改善された球状のポリアミド粒子の製造方法 技術分野  Description Method for producing spherical polyamide particles with improved meltability TECHNICAL FIELD
本発明は、 溶融性の改善された球状のポリアミド粒子の製造方法、 お よび該製造方法で得られるポリアミ ド粒子のレーザ一焼結体への用途 に関する。 背景技術  The present invention relates to a method for producing spherical polyamide particles having improved meltability, and use of polyamide particles obtained by the production method for a laser sintered body. Background art
球状のポリアミ ド粒子のレーザー焼結により成形体 (レーザ一焼結 体) を得る方法は公知である。 この方法に用い得る球状のポリアミド粒 子として、 特開 2 0 0 5— 3 0 7 0 9 6号公報には、 平均粒子径が 1 0 〜 1 0 0 / mの球状のポリアミド粒子、 およびその製造方法が記載され ている。 発明の開示  A method of obtaining a molded body (laser-sintered body) by laser sintering of spherical polyamide particles is known. As spherical polyamide particles that can be used in this method, Japanese Patent Application Laid-Open No. 2000-07096 discloses spherical polyamide particles having an average particle diameter of 10 to 100 / m, and their The manufacturing method is described. Disclosure of the invention
しかしながら、 このポリアミド粒子は球状で狭い粒度分布を有するも のの、 その溶融性が不十分であるので、 得られるレーザー焼結体の密度 や、 硬さおよび靭性のような物性が不十分であるという問題点を持って いる。  However, although this polyamide particle is spherical and has a narrow particle size distribution, its meltability is insufficient, so that the density, hardness and toughness of the obtained laser sintered body are insufficient. Have the problem.
かかる状況のもと、 本発明の目的は、 狭い融点幅と狭い粒度分布とを 有する溶融性の改善された球状のポリアミド粒子の製造方法、 および該 製造方法で得られるポリアミ ド粒子のレーザ一焼結体への用途を提供 することである。  Under such circumstances, an object of the present invention is to provide a method for producing spherical polyamide particles having a narrow melting point width and a narrow particle size distribution and having improved meltability, and laser firing of polyamide particles obtained by the production method. It is to provide a use for ligation.
本発明者は、前記目的を達成するために鋭意研究してきた。その結果、 球状のポリアミド粒子を水媒体中で、 その形状を保持したまま加水分解 して該ポリアミド粒子の融点を下げることによって、 溶融性の改善され た球状のポリアミド粒子が得られることを見出し、 本発明を完成させる に至った。 The inventor has intensively studied in order to achieve the above object. As a result, it was found that spherical polyamide particles having improved meltability can be obtained by hydrolyzing spherical polyamide particles in an aqueous medium while maintaining their shape to lower the melting point of the polyamide particles. Complete the present invention It came to.
本発明は、 球状のポリアミ ド粒子を水媒体中で、 その形状を保持した まま加水分解する工程を含む、 該ポリアミ ド粒子より低い融点を有する ポリアミ ド粒子の製造方法である。  The present invention is a method for producing a polyamide particle having a melting point lower than that of the polyamide particle, comprising a step of hydrolyzing the spherical polyamide particle in an aqueous medium while maintaining its shape.
本発明はまた、上記の製造方法で得られるポリアミ ド粒子を含むレーザ —焼結用粉体である。  The present invention is also a laser-sintering powder containing the polyamide particles obtained by the above production method.
本発明はさらに、 以下の工程を含むレーザー焼結体の製造方法である : 工程 1 球状のポリアミ ド粒子を水媒体中で、その形状を保持したまま加 水分解して該ポリアミ ド粒子より低い融点を有するポリアミ ド粒子を製 造する工程; および  The present invention is further a method for producing a laser sintered body comprising the following steps: Step 1 Spherical polyamido particles are hydrolyzed in an aqueous medium while maintaining their shape, and are lower than the polyamido particles. Producing polyamide particles having a melting point; and
工程 2 該ポリアミ ド粒子をレーザ一焼結する工程。 発明を実施するための形態 Step 2 A step of laser sintering the polyamide particles. BEST MODE FOR CARRYING OUT THE INVENTION
本発明において用いられる球状のポリアミ ド粒子は、 公知のポリアミ ド粒子であってもよい。 該ポリアミ ド粒子は、 特開昭 4 7 - 2 5 1 5 7 号公報、 特開 2 0 0 0— 2 4 8 0 6 1号公報および特開 2 0 0 5— 3 0 7 0 9 6号公報のような文献に記載された製造方法によって得ること ができる。 該ポリアミ ド粒子の公知の製造方法として、 炭素数 6〜 1 2 のラクタム類を、 好ましくはラウロラクタムと炭素数 6〜8のラクタム とからなる群から選ばれる少なくとも 1種のラクタムを、 パラフィンの ような不活性媒体中で、 三塩化リンを重合促進剤とし、 アルカリ触媒で 重合する製造方法を例示することができる。 ポリアミ ド粒子にかかるポ リアミ ドとして、 ポリラウロラクタム、 ポリヘプ卜ラクタム、 ポリカブ ロラクタム、 ラウロラクタムとヘプトラクタムとの共重合体、 ラウロラ クタムと力プロラクタムとの共重合体、 ヘプトラクタムとカプロラクタ ムとの共重合体、 およびラウロラクタムとヘプトラクタムとカプロラク タムとの共重合体を例示することができる。 中でも、 ポリラウ口ラク夕 ム、 又はラウロラクタムと力プロラクタムとの共重合体が好ましい。 . 本発明において用いられる球状のポリアミ ド粒子の粒子径は、 好まし くは 3〜2 0 0 x m、 特に好ましくは 1 5〜: L 5 0 mであり、 その平 均粒子径は 6〜 1 5 0 m、 好ましくは 2 0〜 1 0 0 mである。 粒度 分布については、 ポリアミド粒子を構成する粒子の 9 0重量%以上が、 該平均粒子径の 2分の 1から 2倍までの範囲内の粒子径を有する。 上記 の 「球状」 なる用語は、 数学的に厳密なレベルでの球状を意味するもの ではなく、 上記の各特許公報に開示されている球状のポリアミド粒子が 有するレベルの球状を意味する。 The spherical polyamide particles used in the present invention may be known polyamide particles. The polyamide particles are disclosed in Japanese Patent Application Laid-Open Nos. 4-7-2 5 1 57, Japanese Patent Application Laid-Open No. 2 00 0-2 4 8 061 and Japanese Patent Application Laid-Open No. 2 05- 3 0 7 0 96. It can be obtained by a production method described in a document such as a publication. As a known method for producing the polyamide particles, a lactam having 6 to 12 carbon atoms, preferably at least one lactam selected from the group consisting of laurolactam and a lactam having 6 to 8 carbon atoms is used. In such an inert medium, a production method in which phosphorus trichloride is used as a polymerization accelerator and polymerization is performed with an alkali catalyst can be exemplified. Polyamides applied to polyamide particles include polylaurolactam, polyheptolactam, polycaprolactam, copolymer of laurolactam and heptactam, copolymer of laurolactam and force prolactam, and copolymer of heptlactam and caprolactam. Examples thereof include a polymer and a copolymer of laurolactam, heptolactam, and caprolactam. Among these, a polylauric lactate or a copolymer of laurolactam and force prolactam is preferable. The particle size of the spherical polyamide particles used in the present invention is preferably Or 3 to 200 xm, particularly preferably 15 to L50 m, and the average particle diameter is 6 to 150 m, preferably 20 to 100 m. Regarding the particle size distribution, 90% by weight or more of the particles constituting the polyamide particles have a particle size in the range of 1/2 to 2 times the average particle size. The term “spherical” above does not mean a spherical shape at a mathematically exact level, but means a spherical shape at a level possessed by the spherical polyamide particles disclosed in each of the above patent publications.
本発明における媒体としての水の量は、 用いられるポリアミド粒子 1 重量部に対して、 好ましくは 1〜2 0重量部、 より好ましくは 2〜 1 0 重量部である。 該量が 2 0重量部を超えると、 加水分解反応器の容積効 率が悪くなつたり、 水と反応生成物との分離に手間がかかったりする。 該量が 1重量部未満であると、 該反応器の攪拌が困難である。  The amount of water as a medium in the present invention is preferably 1 to 20 parts by weight, more preferably 2 to 10 parts by weight with respect to 1 part by weight of the polyamide particles used. When the amount exceeds 20 parts by weight, the volumetric efficiency of the hydrolysis reactor is deteriorated, and the separation of water and the reaction product is troublesome. When the amount is less than 1 part by weight, it is difficult to stir the reactor.
本発明における加水分解は、 加水分解反応を促進させるための加水分 解触媒の存在下に行われることが好ましい。 該触媒は公知の触媒であつ てもよい。 加水分解触媒として、 加水分解酵素、 有機酸および無機酸を 例示することができる。 有機酸は好ましくは、 蟻酸、 酢酸およびプロピ オン酸のような炭素数 1〜4の有機酸である。 無機酸は好ましくは、 硫 酸、 塩酸、 硝酸または燐酸である。 中でも、 加水分解反応の活性や経済 性の観点から、硫酸、塩酸または硝酸が特に好ましい。これらの触媒は、 2種以上を組合せて用いてもよい。 触媒の使用量は通常、 用いられるポ リアミド粒子に含まれるアミド結合の 1モルあたり、 好ましくは 0 . 1 〜 1 0当量、 より好ましくは 0 . 3〜 5 . 0当量である。  The hydrolysis in the present invention is preferably carried out in the presence of a hydrolysis catalyst for promoting the hydrolysis reaction. The catalyst may be a known catalyst. Examples of the hydrolysis catalyst include hydrolase, organic acid and inorganic acid. The organic acid is preferably an organic acid having 1 to 4 carbon atoms such as formic acid, acetic acid and propionic acid. The inorganic acid is preferably sulfuric acid, hydrochloric acid, nitric acid or phosphoric acid. Of these, sulfuric acid, hydrochloric acid or nitric acid is particularly preferred from the viewpoint of the activity of the hydrolysis reaction and economic efficiency. These catalysts may be used in combination of two or more. The amount of the catalyst used is usually preferably 0.1 to 10 equivalents, more preferably 0.3 to 5.0 equivalents, per mole of amide bond contained in the polyamide particles used.
本発明における媒体としての水は、 ポリアミド粒子との親和性を向上 させるために、 アルコールまたは界面活性剤と組合せて用いることが好 ましい。 アルコールとして、 メチルアルコール、 エチルアルコール、 ィ ソプロピルアルコールおよびブチルアルコールのような炭素数 1〜4 の低級アルコールを例示することができる。 これらのアルコールは、 2 種以上を組合せて用いてよい。 界面活性剤として、 ァニオン性界面活性 剤、 非イオン性界面活性剤およびカチオン性界面活性剤を例示すること ができる。 中でも、 加水分解触媒に対する安定性や、 用いられるポリア ミド粒子の濡れ性を改善する観点から、 非イオン性界面活性剤が好まし レ^ 非イオン性界面活性剤として、 ポリオキシエチレンアルキルフエノ —ル、 ポリオキシエチレンスチリルフエニルエーテル、 ポリオキシェチ レンアルキルエーテル、 およびポリオキシエチレンアルケニルエーテル を例示することができる。 これらの界面活性剤は、 2種以上を組合せて 用いてよい。 Water as a medium in the present invention is preferably used in combination with an alcohol or a surfactant in order to improve the affinity with polyamide particles. Examples of the alcohol include lower alcohols having 1 to 4 carbon atoms such as methyl alcohol, ethyl alcohol, isopropyl alcohol, and butyl alcohol. These alcohols may be used in combination of two or more. Examples of surfactants include anionic surfactants, nonionic surfactants and cationic surfactants. Can do. Among these, nonionic surfactants are preferred from the viewpoint of improving the stability to hydrolysis catalysts and the wettability of the polyamide particles used. レ Polyoxyethylene alkylphenols as nonionic surfactants — , Polyoxyethylene styryl phenyl ether, polyoxyethylene alkyl ether, and polyoxyethylene alkenyl ether. These surfactants may be used in combination of two or more.
アルコールの使用量は、 用いられるポリアミド粒子の濡れ性を改善す る観点から、 媒体としての水 1 0 0重量部に対して、 好ましくは 5〜2 0重量部である。 該使用量が 5重量部未満であると、 用いられるポリア ミド粒子の水中への分散が悪くなる場合があり、 2 0重量部を超えると、 反応時間が長くなり経済性が悪くなる場合がある。 界面活性剤の使用量 は、 アルコールの ί合と同じ観点から、 媒体としての水 1 0 0重量部に 対して、 好ましくは 0 . 0 5〜 5重量部である。 該使用量が 0 . 0 5重 量部未満であると、 用いられるポリアミド粒子の水中への分散が悪くな る場合があり、 5重量部を超えると、 加水分解反応時の泡立ちが多くな る場合がある。  The amount of alcohol used is preferably 5 to 20 parts by weight with respect to 100 parts by weight of water as a medium from the viewpoint of improving the wettability of the polyamide particles used. When the amount used is less than 5 parts by weight, the dispersion of the polyamide particles used in water may deteriorate, and when it exceeds 20 parts by weight, the reaction time may become longer and the economy may deteriorate. . The amount of the surfactant used is preferably 0.05 to 5 parts by weight with respect to 100 parts by weight of water as a medium, from the same viewpoint as the preparation of alcohol. When the amount used is less than 0.05 parts by weight, dispersion of the polyamide particles used in water may deteriorate, and when it exceeds 5 parts by weight, foaming during the hydrolysis reaction increases. There is a case.
加水分解の反応温度は、 該反応によって得られるポリアミド粒子の融 点未満の温度である。 反応温度は、 反応操作や反応制御の容易さの観点 から、好ましくは 8 0〜 1 5 O :である。反応温度が 8 0 より低いと、 反応時間が長くかかる場合がある。 反応温度が 1 5 0でより高いと、 高 加圧下の反応となるため反応が煩雑となったり、 反応の制御が難しくな るため反応が進みすぎて、 得られるポリアミド粒子の物性が悪くなつた りする。  The reaction temperature for hydrolysis is a temperature lower than the melting point of the polyamide particles obtained by the reaction. The reaction temperature is preferably 80 to 15 O: from the viewpoint of easy reaction operation and reaction control. If the reaction temperature is lower than 80, the reaction time may take a long time. When the reaction temperature is higher at 150, the reaction becomes complicated under high pressure, and the reaction becomes difficult because the reaction is difficult to control, resulting in poor physical properties of the resulting polyamide particles. You
加水分解の反応時間は、 触媒の種類 ·濃度および反応温度のような条 件に応じて適宜に選択すればよく、 反応の制御のし易さや経済性の観点 から、 好ましくは 4〜 2 4時間である。  The hydrolysis reaction time may be appropriately selected according to conditions such as the type and concentration of the catalyst and the reaction temperature, and is preferably 4 to 24 hours from the viewpoint of ease of control of the reaction and economical efficiency. It is.
加水分解によって得られるポリアミ ド粒子の溶融性すなわち融点は、 加水分解触媒の種類や量、 加水分解反応の温度や時間によって容易にコ ントロールすることができる。 The meltability, that is, the melting point of the polyamide particles obtained by hydrolysis can be easily determined by the type and amount of the hydrolysis catalyst and the temperature and time of the hydrolysis reaction. Can be controlled.
加水分解反応混合物を、 ろ過,中和 ·洗浄のような通常の分離精製操 作で処理することによって、 溶融性の改善された球状で狭い粒度分布を 有するポリアミ ド粒子を単離することができる。 該ポリアミド粒子は、 過酸化水素のような脱色剤で脱色してもよい。  By treating the hydrolysis reaction mixture with ordinary separation and purification operations such as filtration, neutralization and washing, it is possible to isolate polyamide particles with improved meltability and spherical particle size distribution. . The polyamide particles may be decolorized with a decolorizing agent such as hydrogen peroxide.
得られたポリアミド粒子は、 耐熱剤、 紫外線吸収剤、 耐候剤、 帯電防 止剤、 滑剤、 着色剤、 安定剤および分散剤のような添加剤や、 他の粉末 状榭脂と組合せて用いてもよい。  The resulting polyamide particles can be used in combination with additives such as heat-resistant agents, UV absorbers, weathering agents, antistatic agents, lubricants, colorants, stabilizers and dispersants, and other powdered resin. Also good.
本発明のレーザ一焼結体の製造方法におけるレーザー焼結の方法は、 公知の方法であってもよい。 本発明の製造方法で得られる、 狭い融点幅 と狭い粒度分布とを有する溶融性の改善された球状のポリアミド粒子 は、 レーザ一焼結によって、 高い密度ならびに良好な硬さおよび靭性を 有する成形体(レーザー焼結体)を得るための粉体として特に好ましい。 実施例  The laser sintering method in the method for producing a laser-sintered body of the present invention may be a known method. Spherical polyamide particles having a narrow melting point width and a narrow particle size distribution obtained by the production method of the present invention and having improved meltability are formed by laser sintering to have a high density and good hardness and toughness. Particularly preferred as a powder for obtaining (laser sintered body). Example
以下、 実施例によって本発明を説明する。 参考例 1  Hereinafter, the present invention will be described by way of examples. Reference example 1
特開 2 0 0 0— 248 0 6 1号公報の実施例 1に記載された方法に したがって、 ラウロラクタム 90モル部と力プロラクタム 1 0モル部と を共重合させて、 融点が 200〜238 で平均粒子径が 8 mである 球状のポリアミド粒子を製造した。 該粒子の 9 0重量%以上が、 6. 8 〜 1 0. 3 mの範囲内の粒子径、 つまり、 該平均粒子径 8 mの 2分 の 1 (4 z/m) から 2倍 ( 1 6 m) までの範囲内の粒子径を有してお り、 したがって粒度分布は極めてシャープであった。 上記の融点は、 以下の手順からなる方法で測定した:  According to the method described in Example 1 of Japanese Patent Laid-Open No. 2000-248 0 61, 90 mol parts of laurolactam and 10 mol parts of force prolactam are copolymerized to have a melting point of 200 to 238. Thus, spherical polyamide particles having an average particle diameter of 8 m were produced. 90% by weight or more of the particles have a particle diameter in the range of 6.8 to 10.3 m, that is, 2 times 1 (4 z / m) of the average particle diameter of 8 m. The particle size was in the range of up to 6 m), and the particle size distribution was very sharp. The melting point was measured by a method consisting of the following procedure:
( 1) 株式会社柳本製作所製の微量融点測定器 MP— S 3型の力バーグ ラスの上に少量のポリアミド粒子をのせる ; (2) 該粒子を 1 0 〜 2 Ot:/分で昇温する ; (1) Micro melting point measuring device MP-S 3 type force burglar made by Yanagimoto Seisakusho Co., Ltd. (2) raising the temperature of the particles at 10 to 2 Ot: / min;
(3) 該粒子の融け始めの温度から全体が均一透明になる温度までを融 点とする。 上記の粒子径および粒度分布は、 株式会社島津製作所製のレーザー回 折式粒度分布測定装置 SAL D— 2000にて測定した。 参考例 2  (3) The melting point is from the temperature at which the particles begin to melt to the temperature at which the whole becomes uniformly transparent. The above particle diameter and particle size distribution were measured with a laser diffraction particle size distribution measuring device SAL D-2000 manufactured by Shimadzu Corporation. Reference example 2
温度計、 滴下ロート、 撹拌機および窒素ガス流入口をセッ卜した 1 0 00 m 1の四つ口フラスコに、 ェクソンモービル化学有限会社製の商品 名がぺガゾ一ル A S— 1 0 0なるイソパラフィン 408 gと、 ラウロラ ク夕ム 1 06 gと、 力プロラクタム 6. 8 gと、 金属カリウム 2. 5 g と、 ステアリン酸 3. 5 gどを添加した。 得られた混合物を窒素気流下 に 500 r pmで撹拌しながら 1 7 5 tまで加温した。  The product name made by ExxonMobil Chemical Co., Ltd. becomes Pegasol AS-1100 in a 100-m1 four-necked flask with a thermometer, dropping funnel, stirrer and nitrogen gas inlet. 408 g of isoparaffin, 106 g of Laurora cupum, 6.8 g of strength prolactam, 2.5 g of potassium metal, and 3.5 g of stearic acid were added. The resulting mixture was heated to 1 75 t with stirring at 500 rpm under a nitrogen stream.
これに、 三塩化リン 1. 7 gを添加し、 次いで、 参考例 1で製造した ポリアミド粒子を 3 3. 4重量%の濃度で含有するベガゾール AS— 1 00なるイソパラフィンのスラリー 2 9. O gを種として添加し、 1 7 5 X:で 45分間攪拌してラウロラクタムと力プロラクタムとを共重合 させ、 液状の反応混合物を得た。 反応混合物を冷却後ろ過し、 固液分離 し、 ポリアミドケーキを得た。 これに、 イソプロピルアルコール 200 gを加えて 30分間撹拌した後にろ過するという処理を施して、 ポリア ミドケーキを得た。 このポリアミドケーキに該処理をさらに 3回繰り返 し、 ポリアミドケーキを得た。 該ポリアミドケ一キを 1 OmmHgの減 圧下、 8 Ot:で 8時間乾燥して、球状のポリアミド粒子を収率 74 %で 得た。  To this, 1.7 g of phosphorus trichloride was added, and then a slurry of isoparaffin of Vegazole AS-1 00 containing 33.4% by weight of the polyamide particles produced in Reference Example 1 2. 9. O g Was added as a seed and stirred at 1 75 X: for 45 minutes to copolymerize laurolactam and force prolactam to obtain a liquid reaction mixture. The reaction mixture was cooled, filtered, and solid-liquid separated to obtain a polyamide cake. To this, 200 g of isopropyl alcohol was added and stirred for 30 minutes, followed by filtration to obtain a polyamide cake. This treatment was repeated three more times on this polyamide cake to obtain a polyamide cake. The polyamide cake was dried at 8 Ot: under reduced pressure of 1 OmmHg for 8 hours to obtain spherical polyamide particles in a yield of 74%.
得られたポリアミド粒子の融点は 1 88〜226 t:、 平均粒子径は 1 9 mであった。 該粒子の 9 0重量%以上が、 1 9〜 34 mの範囲内 の粒子径、 つまり、 該平均粒子径 1 9 ^mの 2分の 1 (9. 5 m) か ら 2倍 ( 38 m) までの範囲内の粒子径を有しており、 したがって粒 度分布は極めてシャープであった。 参考例 3 The obtained polyamide particles had a melting point of 188 to 226 t: and an average particle size of 19 m. 90% by weight or more of the particles have a particle size within the range of 19 to 34 m, that is, from 1/2 (9.5 m) to twice the average particle size of 19 ^ m (38 m ) In the range up to The degree distribution was very sharp. Reference example 3
種を、 参考例 2で.製造したポリアミ ド粒子を 33. 4重量%の濃度で 含有するぺガゾ一ル AS - 1 00なるイソパラフィンのスラリー 3 1. 4 gに変更したこと以外は参考例 2と同様に行い、 球状のポリアミド粒 子を収率 8 5 %で得た。  Seed Example 2 except that the seed was changed to Pegazol AS-1 100 isoparaffin slurry 31.4 g containing 34.4% by weight of the polyamide particles produced in Reference Example 2. In the same manner as above, spherical polyamide particles were obtained with a yield of 85%.
得られたポリアミド粒子の融点は 1 8 5〜23 0t:、 平均粒子径は 4 4 mであった。 該粒子の 90重量%以上が、 42〜77 mの範囲内 の粒子径、 つまり、 該平均粒子径 44 の 2分の 1 (22 zm) から 2倍 (88 zm) までの範囲内の粒子径を有しており、 したがって粒度 分布は極めてシャープであった。 実施例 1  The resulting polyamide particles had a melting point of 1 85 to 230 t: and an average particle size of 44 m. 90% by weight or more of the particles have a particle size in the range of 42 to 77 m, that is, a particle size in the range of 1/2 (22 zm) to twice (88 zm) the average particle size 44 Therefore, the particle size distribution was extremely sharp. Example 1
参考例 3で得たポリアミド粒子 0. 2 5 gと、 イソプロピルアルコ一 ルを 1 0重量%含有する 1 N硫酸水溶液 2. 5 gとを封管中に入れた。 これを 1 2 5〜 1 30 で 8時間加熱することにより加水分解し、 反応 混合物を得た。  0.25 g of the polyamide particles obtained in Reference Example 3 and 2.5 g of a 1 N aqueous sulfuric acid solution containing 10% by weight of isopropyl alcohol were placed in a sealed tube. This was hydrolyzed by heating at 1255-130 for 8 hours to obtain a reaction mixture.
該反応混合物をろ過してポリアミド粒子を分離し、 分離された粒子を 炭酸ナトリウム水溶液で中和処理した。 次いで、 粒子を水およびイソプ 口ピルアルコールの順序でそれぞれ洗浄した。 洗浄された粒子を乾燥し、 融点が 1 70〜 1 72でで平均粒子径が 44 mの、 参考例 3で得たポ リアミド粒子の形状を保持した粒子を得た。 結果を表 1にまとめた。 実施例 2  The reaction mixture was filtered to separate polyamide particles, and the separated particles were neutralized with an aqueous sodium carbonate solution. The particles were then washed in the order of water and isopropyl alcohol. The washed particles were dried to obtain particles maintaining the shape of the polyamide particles obtained in Reference Example 3 having a melting point of 170 to 172 and an average particle size of 44 m. The results are summarized in Table 1. Example 2
ィソプロピルアルコールを 1 0重量%含有する 1 N硫酸水溶液を、 ィ ソプロピルアルコールを 1 0重量%含有する 1 N塩酸水溶液に変更し たこと以外は実施例 1と同様に行い、 融点が 1 67〜 1 7 2でで平均粒 子径が 44 //mの、 参考例 3で得たポリアミド粒子の形状を保持した粒 子を得た。 結果を表 1にまとめた。 実施例 3 A 1 N sulfuric acid aqueous solution containing 10% by weight of isopropyl alcohol was changed to a 1 N hydrochloric acid aqueous solution containing 10% by weight of isopropyl alcohol, and the melting point was 1 Particles that retain the shape of the polyamide particles obtained in Reference Example 3, with 67 to 1 7 2 and an average particle size of 44 // m I got a child. The results are summarized in Table 1. Example 3
ィソプロピルアルコールを 1 0重量%含有する 1 N硫酸水溶液を、 ィ ソプロピルアルコールを 1 0 %含有する 0 . 5 N塩酸水溶液に変更した こと以外は実施例 1と同様に行い、 融点が 1 6 5〜 1 7 3でで平均粒子 径が 4 4 /z mの、 参考例 3で得たポリアミド粒子の形状を保持した粒子 を得た。 結果を表 1にまとめた。 、 実施例 4  A 1 N sulfuric acid aqueous solution containing 10% by weight of isopropyl alcohol was changed to a 0.5 N hydrochloric acid aqueous solution containing 10% of isopropyl alcohol, and the melting point was 1 Particles having the shape of the polyamide particles obtained in Reference Example 3 having an average particle diameter of 6 5 to 1 7 3 and 44 / zm were obtained. The results are summarized in Table 1. Example 4
ィソプロピルアルコールを 1 0重量%含有する 1 N硫酸水溶液を、 ィ ソプロピルアルコールを 1 0重量%含有する 1 N燐酸水溶液に変更し たこと以外は実施例 1と同様に行い、 融点が 1 7 3〜 1 7 8 で平均粒 子径が 4 4 mの、 参考例 3で得たポリアミド粒子の形状を保持した粒 子を得た。 結果を表 1にまとめた。 実施例 5  The same procedure as in Example 1 was conducted except that the 1 N sulfuric acid aqueous solution containing 10% by weight of isopropyl alcohol was changed to the 1 N phosphoric acid aqueous solution containing 10% by weight of isopropyl alcohol. Particles having the shape of the polyamide particles obtained in Reference Example 3 having an average particle diameter of 7 3 to 1 78 and an average particle diameter of 44 m were obtained. The results are summarized in Table 1. Example 5
イソプロピルアルコールを 1 0重量%含有する 1 N硫酸水溶液を、 ィ ソプロピルアルコールを 1 0重量%含有する 1 N酢酸水溶液に変更し たこと以外は実施例 1と同様に行い、 融点が 1 7 0〜 1 8 5 t:で平均粒 子径が 4 4 j mの、 参考例 3で得たポリアミド粒子の形状を保持した粒 子を得た。 結果を表 1にまとめた。 表 1から、 原料として用いたポリアミド粒子の平均粒子径および形状 は加水分解によって変化することなくその融点は低下し、 且つ該融点の 幅が狭くなつたことが分る。 したがって、 該ポリアミド粒子の溶融性が 改善されたことが理解できる。 実施例 6 参考例 3で得た球状のポリアミド粒子 1 0 gと、 イソプロピルアルコ —ルを 1 0重量%含有する 1 N硫酸水溶液 1 00 gとを、 温度計および 撹拌機をセッ卜した 300 m 1の四つ口フラスコに入れた。 これを 89 〜92でで 24時間加熱することにより加水分解し、 反応混合物を得た。 該反応混合物をろ過して球状ポリアミド粒子を分離し、 分離された粒 子を炭酸ナトリウム水溶液で中和処理した。 次いで、 粒子を水およびィ ソプロピルアルコールの順序でそれぞれ洗浄した。 洗浄された粒子を乾 燥し、 原料として用いたポリアミド粒子と比べて、 平均粒子径および形 状が同一で、 融点 ( 1 68〜 1 74 ) がより低く且つその幅がより狭 い粒子を得た。 結果を表 2にまとめた。 実施例 7 A 1 N sulfuric acid aqueous solution containing 10% by weight of isopropyl alcohol was changed to a 1 N aqueous acetic acid solution containing 10% by weight of isopropyl alcohol, and the melting point was 1700. Particles retaining the shape of the polyamide particles obtained in Reference Example 3 with an average particle size of 44 jm at ˜185 t: were obtained. The results are summarized in Table 1. From Table 1, it can be seen that the average particle size and shape of the polyamide particles used as the raw material did not change due to hydrolysis, and that the melting point was lowered and the melting point was narrowed. Therefore, it can be understood that the meltability of the polyamide particles is improved. Example 6 10 g of spherical polyamide particles obtained in Reference Example 3 and 100 g of 1 N sulfuric acid aqueous solution containing 10% by weight of isopropyl alcohol were set in a 300 m 1 set with a thermometer and a stirrer. Placed in a one-necked flask. This was hydrolyzed by heating at 89 to 92 for 24 hours to obtain a reaction mixture. The reaction mixture was filtered to separate spherical polyamide particles, and the separated particles were neutralized with an aqueous sodium carbonate solution. The particles were then washed in the order of water and isopropyl alcohol, respectively. The washed particles are dried to obtain particles having the same average particle diameter and shape, lower melting point (168-174) and narrower width than the polyamide particles used as raw materials. It was. The results are summarized in Table 2. Example 7
参考例 3で得た球状のポリアミド粒子 45 gと、 三洋化成株式会社製 の商品名がナロアクティ HN 9 5なるポリォキシエチレンアルキルェ 一テル型非イオン性界面活性剤を 0. 26重量%含有する 1 N硫酸水溶 液 1 00 gとを、 温度計および撹拌機をセットした 30 Om 1の四つ口 フラスコに入れた。 これを 9 5〜98 で 2 1時間加熱することにより 加水分解し、 反応混合物を得た。  Contains 45 g of spherical polyamide particles obtained in Reference Example 3 and 0.26% by weight of a polyoxyethylene alkyl ether type nonionic surfactant whose product name is NAROACTY HN 9 5 manufactured by Sanyo Chemical Co., Ltd. 1 N sulfuric acid aqueous solution (100 g) was placed in a 30 Om 1 four-necked flask equipped with a thermometer and a stirrer. This was hydrolyzed by heating at 95-98 for 21 hours to obtain a reaction mixture.
該反応混合物をろ過して球状ポリアミド粒子を分離し、 分離された粒 子を炭酸ナトリウム水溶液で中和処理した。 次いで、 粒子を水およびィ ソプロピルアルコールの順序でそれぞれ洗浄した。 洗浄された粒子を乾 燥し、 融点が 1 66〜 1 7 2 t:で平均粒子径が 44 /zmの、 参考例 3で 得たポリアミド粒子の形状を保持した粒子を得た。 結果を表 3にまとめ た。 実施例 8  The reaction mixture was filtered to separate spherical polyamide particles, and the separated particles were neutralized with an aqueous sodium carbonate solution. The particles were then washed in the order of water and isopropyl alcohol, respectively. The washed particles were dried to obtain particles maintaining the shape of the polyamide particles obtained in Reference Example 3 having a melting point of 166 to 17 2 t: and an average particle size of 44 / zm. The results are summarized in Table 3. Example 8
( 1) ナロアクティ HN 9 5を 0. 26重量%含有する 1 N硫酸水溶 液を、 ナロアクティ HN 9 5を 0. 2 6重量%含有する 2 N硫酸水溶液 に変更したこと、 および (2) 加水分解の反応時間を 4時間に変更した こと以外は実施例 7と同様に行い、 融点が 1 6 7〜 1 7 3 t:で平均粒子 径が 4 4 // mの、 参考例 3で得たポリアミ ド粒子の形状を保持した粒子 を得た。 結果を表 3にまとめた。 実施例 9 (1) 1N sulfuric acid aqueous solution containing 0.26% by weight of Naroacti HN 9 5 was changed to 2N sulfuric acid aqueous solution containing 0.26% by weight of Naroacti HN 9 5; and (2) Hydrolysis The reaction time of was changed to 4 hours Except for the above, the same procedure as in Example 7 was carried out, and the particles having the melting point of 16 7 to 1 7 3 t: and the average particle size of 4 4 // m and retaining the shape of the polyamide particles obtained in Reference Example 3 were obtained. Obtained. The results are summarized in Table 3. Example 9
( 1 ) ナロアクティ H N 9 5を 0 . 2 6重量%含有する 1 N硫酸水溶 液を、 ナロアクティ H N 9 5を 0 . 2 6重量%含有する 2 N塩酸水溶液 に変更したこと、 および (2 ) 加水分解の反応時間を 4時間に変更した こと以外は実施例 7と同様に行い、 融点が 1 6 6〜 1 7 1 で平均粒子 径が 4 4 の、 参考例 3で得たポリアミ ド粒子の形状を保持した粒子 を得た。 結果を表 3にまとめた。 表 3から、 原料として用いたポリアミド粒子の平均粒子径および形状 は加水分解によづて変化することなくその融点は低下し、 且つ該融点の 幅が狭くなつたことが分る。 したがって、 該ポリアミ ド粒子の溶融性が 改善されたことが理解できる。 実施例 1 0  (1) The 1 N sulfuric acid aqueous solution containing 0.26% by weight of Naroacti HN 9 5 was changed to a 2 N hydrochloric acid aqueous solution containing 0.26% by weight of Naroacti HN 9 5; and (2) Except that the decomposition reaction time was changed to 4 hours, the same procedure as in Example 7 was performed. The shape of the polyamide particles obtained in Reference Example 3 with a melting point of 166-17-1 and an average particle size of 44 The particles that retained were obtained. The results are summarized in Table 3. From Table 3, it can be seen that the average particle size and shape of the polyamide particles used as the raw material did not change due to hydrolysis, and that the melting point was lowered and the melting point was narrowed. Therefore, it can be understood that the meltability of the polyamide particles is improved. Example 1 0
参考例 3で得た球状のポリアミド粒子 1 0 gと、 2 N塩酸水溶液 1 0 0 gとを、 温度計および撹拌機をセットした 3 0 0 m lの四つロフラス コに入れた。 これを 9 5〜9 8 で 4時間加熱することにより加水分解 し、 反応混合物を得た。  10 g of the spherical polyamide particles obtained in Reference Example 3 and 100 g of a 2N hydrochloric acid aqueous solution were placed in a 300 ml four-loth flask equipped with a thermometer and a stirrer. This was hydrolyzed by heating at 95-98 for 4 hours to obtain a reaction mixture.
該反応混合物をろ過して球状ポリアミド粒子を分離し、 分離された粒 子を炭酸ナトリウム水溶液で中和処理した。 次いで、 粒子を水およびィ ソプロピルアルコールの順序でそれぞれ洗浄した。 洗浄された粒子を乾 燥し、 原料として用いたポリアミド粒子と比べて、 平均粒子径および形 状が同一で、 融点 ( 1 6 8〜 1 7 4 ) がより低く且つその幅がより狭 い粒子を得た。 結果を表 4にまとめた。 実施例 1 1 The reaction mixture was filtered to separate spherical polyamide particles, and the separated particles were neutralized with an aqueous sodium carbonate solution. The particles were then washed in the order of water and isopropyl alcohol, respectively. The washed particles are dried, and the average particle size and shape are the same, the melting point (168-174) is lower and the width is narrower than the polyamide particles used as the raw material. Got. The results are summarized in Table 4. Example 1 1
参考例 3で得た球状のポリアミド粒子を、 参考例 1で得た球状のポリ アミド粒子に変更したこと以外は実施例 1と同様に行い、 原料として用 いたポリアミド粒子と比べて、平均粒子径および形状が同一で、融点( 1 6 8〜 1 7 4で) がより低く且つその幅がより狭い粒子を得た。 結果を 表 5にまとめた。 実施例 1 2  The same procedure as in Example 1 was performed except that the spherical polyamide particles obtained in Reference Example 3 were changed to the spherical polyamide particles obtained in Reference Example 1, and the average particle size was compared with the polyamide particles used as a raw material. And particles of the same shape, lower melting point (from 1 68 to 1 74) and narrower width. The results are summarized in Table 5. Example 1 2
参考例 3で得た球状のポリアミド粒子を、 参考例 2で得た球状のポリ アミド粒子に変更したこと以外は実施例 1と同様に行い、 原料として用 いたポリアミド粒子と比べて、平均粒子径および形状が同一で、融点( 1 6 8〜 1 7 4 t: ) がより低く且つその幅がより狭い粒子を得た。 結果を 表 6にまとめた。 実施例 1 3  The same procedure as in Example 1 was performed except that the spherical polyamide particles obtained in Reference Example 3 were changed to the spherical polyamide particles obtained in Reference Example 2, and the average particle size was compared with the polyamide particles used as a raw material. And particles having the same shape, a lower melting point (166-174t :) and a narrower width. The results are summarized in Table 6. Example 1 3
参考例 3で得た球状のポリアミド粒子を、 参考例 1で得た球状のポリ アミド粒子に変更したこと以外は実施例 6と同様に行い、 原料として用 いたポリアミド粒子と比べて、平均粒子径および形状が同一で、融点( 1 6 8〜 1 7 4 0 がより低く且つその幅がより狭い粒子を得た。 結果を 表 7にまとめた。 実施例 1 4  The same procedure as in Example 6 was performed except that the spherical polyamide particles obtained in Reference Example 3 were changed to the spherical polyamide particles obtained in Reference Example 1, and the average particle diameter was compared with the polyamide particles used as a raw material. And particles of the same shape, melting point (lower than 1 68 8 to 1 7 4 0 and narrower). The results are summarized in Table 7. Example 1 4
参考例 3で得た球状のポリアミド粒子を、 参考例 2で得た球状のポリ アミド粒子に変更したこと以外は実施例 6と同様に行い、 原料として用 いたポリアミド粒子と比べて、平均粒子径および形状が同一で、融点( 1 6 8〜 1 7 4 ) がより低く且つその幅がより狭い粒子を得た。 結果を 表 8にまとめた。 実施例 1 5 参考例 3、 実施例 6、 実施例 7および実施例 1 0で得たそれぞれの粒 子を用い、 ィ一ォ一エス ゲゼルシャフト ミット べシュレンクテル 社製のレーザ一焼結装置 EO S I NT—Pにて、 直方体の成形体 (レ一 ザ一焼結体) を作った。 The same procedure as in Example 6 was performed except that the spherical polyamide particles obtained in Reference Example 3 were changed to the spherical polyamide particles obtained in Reference Example 2, and the average particle size was compared with the polyamide particles used as a raw material. And particles having the same shape, a lower melting point (168-174) and a narrower width. The results are summarized in Table 8. Example 1 5 Using the respective particles obtained in Reference Example 3, Example 6, Example 7 and Example 10 to the laser sinter equipment EO SI NT-P manufactured by 一 GS Gezelshaft Mit Beschlenktel. Thus, a rectangular parallelepiped shaped body (laser and sintered body) was produced.
これら焼結体の密度は、 参考例 3で得た粒子からの焼結体は 0. 60 gZcm3であり、 実施例で得た粒子からの焼結体は全て 0. 96 gノ c m 3であつ 7こ。 The density of these sintered bodies was 0.60 gZcm 3 for the sintered bodies from the particles obtained in Reference Example 3, and 0.96 g no cm 3 for all the sintered bodies from the particles obtained in the examples. 7 hot.
これら焼結体の性状は、 参考例 3で得た粒子からの焼結体は 「柔らか く脆い」 であり、 実施例で得た粒子からの焼結体は全て 「硬く靭性があ る」 であった。  The sintered bodies from the particles obtained in Reference Example 3 are “soft and brittle”, and the sintered bodies from the particles obtained in the examples are all “hard and tough”. there were.
結果を表 9にまとめた。 この表から、 加水分解された粒子から得られ る成形体は、 加水分解前の粒子から得られる成形体に比べて、 高い密度 および強度 (硬さ、 靭性) を有することが分る。 The results are summarized in Table 9. From this table, it can be seen that the molded body obtained from the hydrolyzed particles has higher density and strength (hardness, toughness) than the molded body obtained from the particles before hydrolysis.
表 1 table 1
表 3 表 4 Table 3 Table 4
表 5 Table 5
表 8Table 8
表 9Table 9
、、  ,,

Claims

請 求 の 範 囲 The scope of the claims
1 . 球状のポリアミド粒子を水媒体中で、 その形状を保持したまま加水 分解する工程を含む、 該ポリアミド粒子より低い融点を有するポリアミ ド粒子の製造方法。 1. A process for producing polyamide particles having a melting point lower than that of the polyamide particles, comprising a step of hydrolyzing spherical polyamide particles in an aqueous medium while maintaining the shape thereof.
2 . 球状のポリアミド粒子が、 炭素数 6〜 1 2のラクタム類の 1種また は 2種以上を、 不活性媒体中で、 三塩化リンを重合促進剤とし、 アル力 リ触媒で重合して得られるポリアミ ド粒子である請求の範囲第 1項記 載のポリアミド粒子の製造方法。 2. Spherical polyamide particles are polymerized with one or two or more kinds of lactams having 6 to 12 carbon atoms in an inert medium, using phosphorus trichloride as a polymerization accelerator, with an Al force catalyst. The method for producing polyamide particles according to claim 1, wherein the polyamide particles are obtained.
3 . 加水分解が加水分解触媒の存在下に行われる請求の範囲第 1項記載 のポリアミド粒子の製造方法。 3. The method for producing polyamide particles according to claim 1, wherein the hydrolysis is performed in the presence of a hydrolysis catalyst.
4 . 加水分解触媒が、 炭素数 1〜4の有機酸、 硫酸、 塩酸、 硝酸および 燐酸からなる群から選ばれる 1種の酸または 2種以上の酸の組合せで ある請求の範囲第 3項記載のポリアミド粒子の製造方法。 4. The hydrolysis catalyst according to claim 3, wherein the hydrolysis catalyst is one acid selected from the group consisting of organic acids having 1 to 4 carbon atoms, sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid, or a combination of two or more acids. Of producing polyamide particles.
5 . 水媒体が、 炭素数 1〜4の低級アルコール及び 又は界面活性剤と組 合せられる請求の範囲第 1項記載のポリアミド粒子の製造方法。 5. The method for producing polyamide particles according to claim 1, wherein the aqueous medium is combined with a lower alcohol having 1 to 4 carbon atoms and / or a surfactant.
6 . 以下の工程を含むレーザ一焼結体の製造方法: 6. Manufacturing method of laser sintered body including the following steps:
工程 1 球状のポリアミド粒子を水媒体中で、その形状を保持したまま加 水分解して該ポリアミド粒子より低い融点を有するポリアミド粒子を製 造する工程;および Step 1 Steps of hydrolyzing spherical polyamide particles in an aqueous medium while maintaining their shape to produce polyamide particles having a melting point lower than that of the polyamide particles; and
工程 2 該ポリアミド粒子をレーザー焼結する工程。 Step 2 A step of laser sintering the polyamide particles.
7 . 球状のポリアミド粒子が、 炭素数 6〜 1 2のラクタム類の 1種または 2種以上を、 不活性媒体中で、 三塩化リンを重合促進剤とし、 アルカリ触 媒で重合して得られるポリアミド粒子である請求の範囲第 6項記載のレ 一ザ一焼結体の製造方法。 7. Spherical polyamide particles contain one or more lactams having 6 to 12 carbon atoms in an inert medium, phosphorus trichloride as a polymerization accelerator, 7. The method for producing a laser sintered body according to claim 6, which is polyamide particles obtained by polymerization with a medium.
8 .加水分解が加水分解触媒の存在下に行われる請求の範囲第 6項記載の レーザー焼結体の製造方法。 8. The method for producing a laser sintered body according to claim 6, wherein the hydrolysis is performed in the presence of a hydrolysis catalyst.
9 . 加水分解触媒が、 炭素数 1〜4の有機酸、 硫酸、 塩酸、 硝酸および燐 酸からなる群から選ばれる 1種の酸または 2種以上の酸の組合せである 請求の範囲第 8項記載のレーザー焼結体の製造方法。 9. The hydrolysis catalyst is one acid or a combination of two or more acids selected from the group consisting of organic acids having 1 to 4 carbon atoms, sulfuric acid, hydrochloric acid, nitric acid and phosphoric acid. The manufacturing method of the laser sintered compact of description.
1 0 . 水媒体が、 炭素数 1〜4の低級アルコール及び Z又は界面活性剤と 組合せられる請求の範囲第 6項記載のレーザー焼結体の製造方法。 10. The method for producing a laser sintered body according to claim 6, wherein the aqueous medium is combined with a lower alcohol having 1 to 4 carbon atoms and Z or a surfactant.
1 1 . 請求の範囲第 1項記載の製造方法で得られるポリアミド粒子を含 むレーザー焼結用粉体。 1 1. A laser sintering powder containing polyamide particles obtained by the production method according to claim 1.
PCT/JP2007/068010 2006-09-26 2007-09-10 Method for production of spherical polyamide particle having improved melting property WO2008038532A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006-259907 2006-09-26
JP2006259907A JP5288361B2 (en) 2006-09-26 2006-09-26 Method for producing spherical polyamide particles
JP2007020364A JP5334233B2 (en) 2007-01-31 2007-01-31 Spherical polyamide powder used for laser sintering, method for producing molded body using the same, and laser sintered article
JP2007-020364 2007-01-31

Publications (1)

Publication Number Publication Date
WO2008038532A1 true WO2008038532A1 (en) 2008-04-03

Family

ID=39229968

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2007/068010 WO2008038532A1 (en) 2006-09-26 2007-09-10 Method for production of spherical polyamide particle having improved melting property

Country Status (1)

Country Link
WO (1) WO2008038532A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3199265A1 (en) * 2016-01-27 2017-08-02 Ricoh Company, Ltd. Solid freeform fabrication powder material, solid freeform fabrication material set, method of manufacturing solid freeform fabricatoin object, method of manufacturing sintered compact, and device for manufacturing solid freeform fabrication object

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492100A (en) * 1972-04-21 1974-01-09
JPS61233019A (en) * 1985-04-10 1986-10-17 Toray Ind Inc Fine polyamide particle
JPH0472329A (en) * 1990-07-12 1992-03-06 Shinto Paint Co Ltd Production of polyamide resin powder
JPH11216779A (en) * 1997-10-27 1999-08-10 Huels Ag Manufacture of molded body by selective laser sintering of powdery material
JP2002080629A (en) * 2000-06-14 2002-03-19 Ube Ind Ltd Polyamide porous spherical particle and process for preparing it
JP2004143460A (en) * 2002-10-23 2004-05-20 Atofina Method for increasing melting point and enthalpy of fusion of polyamide by aqueous treatment
WO2005082973A1 (en) * 2004-02-27 2005-09-09 Degussa Ag Polymer powder comprising a copolymer, use in a shaping method which uses a non-focussed application of energy and moulded body that is produced from said polymer powder

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS492100A (en) * 1972-04-21 1974-01-09
JPS61233019A (en) * 1985-04-10 1986-10-17 Toray Ind Inc Fine polyamide particle
JPH0472329A (en) * 1990-07-12 1992-03-06 Shinto Paint Co Ltd Production of polyamide resin powder
JPH11216779A (en) * 1997-10-27 1999-08-10 Huels Ag Manufacture of molded body by selective laser sintering of powdery material
JP2002080629A (en) * 2000-06-14 2002-03-19 Ube Ind Ltd Polyamide porous spherical particle and process for preparing it
JP2004143460A (en) * 2002-10-23 2004-05-20 Atofina Method for increasing melting point and enthalpy of fusion of polyamide by aqueous treatment
WO2005082973A1 (en) * 2004-02-27 2005-09-09 Degussa Ag Polymer powder comprising a copolymer, use in a shaping method which uses a non-focussed application of energy and moulded body that is produced from said polymer powder

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3199265A1 (en) * 2016-01-27 2017-08-02 Ricoh Company, Ltd. Solid freeform fabrication powder material, solid freeform fabrication material set, method of manufacturing solid freeform fabricatoin object, method of manufacturing sintered compact, and device for manufacturing solid freeform fabrication object

Similar Documents

Publication Publication Date Title
JP2780902B2 (en) New polyamides and products made from them
KR102222160B1 (en) Process for the preparation of a semi-crystalline semi-aromatic polyamide
KR101349063B1 (en) Method of producing high molecular weight polyamide with high yield
JP2014506614A (en) Polyamide containing monomer units of 1,4-butylenediamine
WO2008038532A1 (en) Method for production of spherical polyamide particle having improved melting property
JP5334233B2 (en) Spherical polyamide powder used for laser sintering, method for producing molded body using the same, and laser sintered article
KR20150114481A (en) Process for the production of polyamides
JP6238988B2 (en) Method for producing thermoplastic preceramic polymer
WO2019067517A1 (en) Polymerization process
CN105339415A (en) Process for producing a semi-aromatic semi-crystalline polyamide
JPH1160664A (en) Production on pressure/heat-sensitive self-curing spherical phenolic resin
CN105837791B (en) A kind of preparation method of glycolylurea epoxide resin
KR20110109338A (en) Polyamid 4 having special structure and method of manufacturing the same
US20230051242A1 (en) Process for polymerizing cyclic oligomers of polyamides
EP3010954A1 (en) Polyamide copolymers having 2,5-furan dicarboxamide units
KR20150114482A (en) Pa-mxdt/zt copolymers
KR101425173B1 (en) Method for preparing nylon 4 with low melting temperature
JP6991527B2 (en) Method for producing silica-containing fine particles, method for coating the surface of a base material, and catalyst for sol-gel reaction.
JP2008081524A (en) Method for producing spherical polyamide particle
JP5207343B2 (en) Biodegradable polyesteramide and method for producing the same
JP3674205B2 (en) Process for producing polysilanes
KR101557543B1 (en) Polyamide resin, method for preparing the same, and article comprising the same
JPS59145210A (en) New graft copolymer derived from high-molecular polysaccharide and its synthesis
JP4911663B2 (en) Method for producing spherical polyamide particles
TW201437260A (en) Process for the production of polyamides

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 07807414

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 07807414

Country of ref document: EP

Kind code of ref document: A1