JP5287352B2 - Electrolyte for lithium ion battery - Google Patents

Electrolyte for lithium ion battery Download PDF

Info

Publication number
JP5287352B2
JP5287352B2 JP2009046955A JP2009046955A JP5287352B2 JP 5287352 B2 JP5287352 B2 JP 5287352B2 JP 2009046955 A JP2009046955 A JP 2009046955A JP 2009046955 A JP2009046955 A JP 2009046955A JP 5287352 B2 JP5287352 B2 JP 5287352B2
Authority
JP
Japan
Prior art keywords
potential
nitrile
lithium
lithium ion
electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009046955A
Other languages
Japanese (ja)
Other versions
JP2010165653A (en
Inventor
規史 長谷川
昌俊 長濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Original Assignee
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd filed Critical Equos Research Co Ltd
Priority to JP2009046955A priority Critical patent/JP5287352B2/en
Publication of JP2010165653A publication Critical patent/JP2010165653A/en
Application granted granted Critical
Publication of JP5287352B2 publication Critical patent/JP5287352B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Description

本発明は、リチウムイオン電池用の電解液に関する。   The present invention relates to an electrolytic solution for a lithium ion battery.

従来のリチウムイオン電池は、正極としてコバルト酸リチウム(LiCoO2)、ニッケル酸リチウム(LiNiO2)、これらの固溶体、マンガン酸リチウム(LiMn24)等を用い、負極として黒鉛等の炭素からなる負極材料を用いている。そして、エチレンカーボネートやプロピレンカーボネート等の液状の有機化合物を溶媒に、リチウム塩を溶質として溶解させた電解液を用いている。 A conventional lithium ion battery uses lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), a solid solution thereof, lithium manganate (LiMn 2 O 4 ) or the like as a positive electrode, and consists of carbon such as graphite as a negative electrode. A negative electrode material is used. An electrolytic solution in which a liquid organic compound such as ethylene carbonate or propylene carbonate is dissolved in a solvent and a lithium salt as a solute is used.

こうしたリチウムイオン電池のエネルギー密度をさらに高めるべく、新たな正極活物質の探索が進められている。例えば、特許文献1や特許文献2にはLiNiPOF、LiNiPO、LiCoPO及びLiCoPOFがエネルギー密度の高い正極活物質として提案されている。これらの大きなエネルギー密度を有する正極活物質をリチウムイオン電池に利用すれば、理論的には、大きな充電容量のリチウムイオン電池となるはずである。 In order to further increase the energy density of such a lithium ion battery, a search for a new positive electrode active material is underway. For example, Li 2 NiPO 4 F in Patent Documents 1 and 2, LiNiPO 4, LiCoPO 4 and Li 2 CoPO 4 F has been proposed as a high positive electrode active material energy density. If these positive electrode active materials having a large energy density are used in a lithium ion battery, theoretically, a lithium ion battery having a large charge capacity should be obtained.

ところが、このような正極活物質の充電反応は、極めて高い電位において起こるため、環状カーボネートや鎖状カーボネート等の有機溶媒を用いた従来のリチウムイオン電池用電解液では、溶媒が酸化分解されて使用できなくなるという問題があった。このため、実際に取り出せる容量は、理論的な容量の半分以下となってしまうという問題があった(非特許文献1)。   However, since the charging reaction of such a positive electrode active material occurs at an extremely high potential, the conventional lithium ion battery electrolyte using an organic solvent such as cyclic carbonate or chain carbonate is used after the solvent is oxidized and decomposed. There was a problem that it was impossible. For this reason, there is a problem that the capacity that can be actually taken out is less than half of the theoretical capacity (Non-Patent Document 1).

特許第3624205号Patent No. 3624205 特許第3631202号Patent No. 3631202

Journal of Power Sources 146 (2005) 565-569Journal of Power Sources 146 (2005) 565-569

本発明者は、上記従来の課題を解決すべく鋭意試験研究を行ない、ニトリル基を有する有機溶媒が高い正電位においても分解し難く、広い電位窓を有することを見出した。そして、ニトリル化合物が有機溶媒の重量に対して90重量%以上含まれているリチウムイオン電池用電解液を開発し、すでに特許出願を行なっている(特願2007−333829)。このリチウムイオン電池用電解液によれば、特に高い正電位において広い電位窓を有するため、LiCoPOF、LiNiPOF、LiCoPO、LiNiPO等の酸化還元電位の高い正極材料を利用することができる。このため、起電力の大きな電池とすることができる。 The inventor conducted intensive studies to solve the above-described conventional problems, and found that an organic solvent having a nitrile group hardly decomposes even at a high positive potential and has a wide potential window. And the electrolyte solution for lithium ion batteries in which 90 weight% or more of nitrile compounds are contained with respect to the weight of the organic solvent was developed, and the patent application has already been filed (Japanese Patent Application No. 2007-333829). According to this electrolyte solution for lithium ion batteries, because it has a wide potential window, particularly at high positive potential, Li 2 CoPO 4 F, Li 2 NiPO 4 F, a high positive electrode material having the redox potential such LiCoPO 4, LiNiPO 4 Can be used. For this reason, it can be set as a battery with a large electromotive force.

しかし、このリチウムイオン電池用電解液は、粘度の高いニトリル化合物を主たる溶媒成分としているため比伝導度が小さく、大電流を取り出すことが困難となっていた。このため、電位窓が広いだけでなく、粘度が低くて比伝導度の大きなリチウムイオン電池用電解液が求められていた。   However, since this lithium ion battery electrolyte contains a nitrile compound having a high viscosity as the main solvent component, the specific conductivity is small and it is difficult to extract a large current. For this reason, there has been a demand for an electrolyte solution for lithium ion batteries that not only has a wide potential window but also has a low viscosity and a high specific conductivity.

本発明は、上記従来の実情に鑑みてなされたものであり、粘度が低くて比伝導度が大きく、高い電位においても分解し難く、充放電が高い正電位の領域にまで及ぶ物質を正極活物質として利用することが可能なリチウムイオン電池用電解液を提供することを解決すべき課題としている。   The present invention has been made in view of the above-described conventional situation, and a positive electrode active material that has a low viscosity, a high specific conductivity, hardly decomposes even at a high potential, and reaches a positive potential region where charge and discharge are high. Providing an electrolyte for a lithium ion battery that can be used as a substance is an issue to be solved.

本発明者は、上記従来の課題を解決すべく、ニトリル基を有する有機溶媒を用いたリチウムイオン電池用電解液について、さらに鋭意試験研究を行なった。その結果、種々のニトリル化合物に、環状カーボネート、環状エステル及び鎖状カーボネートのうち少なくとも一つを混合しても、電位窓は広いまま保たれ、しかも粘度が低く、比伝導度の大きいリチウムイオン電池用電解液とすることができるという驚くべき事実を見出し、本発明を完成するに至った。   In order to solve the above-described conventional problems, the present inventor has further conducted earnest test research on an electrolytic solution for a lithium ion battery using an organic solvent having a nitrile group. As a result, even when various nitrile compounds are mixed with at least one of cyclic carbonate, cyclic ester, and chain carbonate, the potential window is kept wide, and the lithium ion battery has low viscosity and high specific conductivity. The surprising fact that it can be used as an electrolytic solution has been found and the present invention has been completed.

すなわち、本発明のリチウムイオン電池用電解液は、有機溶媒にリチウム塩が溶解しているリチウムイオン電池用電解液であって、前記有機溶媒には、鎖式飽和炭化水素化合物の両末端にニトリル基が結合した鎖式飽和炭化水素ジニトリル化合物、鎖式エーテル化合物の末端の少なくとも一つにニトリル基が結合した鎖式エーテルニトリル化合物及びシアノ酢酸エステルのうち少なくとも一つのニトリル化合物と、環状カーボネート、環状エステル及び鎖状カーボネートのうち少なくとも一つとが含まれていることを特徴とする。   That is, the electrolyte for a lithium ion battery of the present invention is an electrolyte for a lithium ion battery in which a lithium salt is dissolved in an organic solvent, and the organic solvent includes a nitrile at both ends of the chain saturated hydrocarbon compound. A chain saturated hydrocarbon dinitrile compound having a group bonded thereto, a chain ether nitrile compound having a nitrile group bonded to at least one terminal of the chain ether compound, and at least one nitrile compound of a cyanoacetate, a cyclic carbonate, a cyclic It contains at least one of an ester and a chain carbonate.

本発明のリチウムイオン電池用電解液では、有機溶媒として鎖式飽和炭化水素化合物の両末端にニトリル基が結合した鎖式飽和炭化水素ジニトリル化合物、鎖式エーテル化合物の末端の少なくとも一つにニトリル基が結合した鎖式エーテルニトリル化合物及びシアノ酢酸エステルという粘度の高いニトリル化合物に、環状カーボネート、環状エステル及び鎖状カーボネートのうち少なくとも一つとが混合されているため、粘度が低くなり、比伝導度も大きくなる。   In the electrolyte solution for a lithium ion battery of the present invention, a chain saturated hydrocarbon dinitrile compound in which a nitrile group is bonded to both ends of a chain saturated hydrocarbon compound as an organic solvent, a nitrile group at least at one end of the chain ether compound. Is mixed with at least one of cyclic carbonate, cyclic ester and chain carbonate in a high viscosity nitrile compound called chain ether nitrile compound and cyanoacetate bonded to each other, resulting in low viscosity and specific conductivity. growing.

本発明のリチウムイオン電池用電解液が、広い電位窓を有しない、環状カーボネート、環状エステル及び鎖状カーボネートのうち少なくとも一つを含んでいるにもかかわらず、広い電位窓を有する理由については、必ずしも明確ではないが、次のように考えられる。すなわち、本発明のリチウムイオン電池用電解液に用いられる有機溶媒のうち、ニトリル化合物は、電位窓を広げる役割を果たす。また、鎖状カーボネートは粘度を下げるため、比伝導度を大きくする役割を果たすと推測される。そして、環状カーボネートや環状エステルは、多くのリチウム塩を溶解する上、カーボン負極上にSEIといわれる保護皮膜を形成することで、耐還元性を向上させつつ、Liイオンを通過させることができる特性を付与することができる。そのため、負側および正側の電位窓拡大に効果を発揮することが可能となると考えられる。
以上より、鎖状カーボネートと環状カーボネート及び/又は環状エステルとを併用することが好ましい。更に好ましくは、鎖状カーボネートと環状カーボネートとの併用である。具体的には、ジメチルカーボネートとエチレンカーボネートとを併用する。両者の配合割合は特に限定されないが、同量とすることが好ましい。
The reason why the electrolyte solution for lithium ion batteries of the present invention has a wide potential window even though it contains at least one of cyclic carbonate, cyclic ester and chain carbonate, which does not have a wide potential window. Although it is not necessarily clear, it is considered as follows. That is, among the organic solvents used in the electrolyte solution for lithium ion batteries of the present invention, the nitrile compound serves to widen the potential window. In addition, chain carbonate is presumed to play a role of increasing specific conductivity in order to lower the viscosity. Cyclic carbonates and cyclic esters dissolve many lithium salts and form a protective film called SEI on the carbon negative electrode, thereby improving the reduction resistance and allowing the passage of Li ions. Can be granted. Therefore, it is considered that it is possible to exert an effect on the enlargement of the negative and positive potential windows.
From the above, it is preferable to use a chain carbonate and a cyclic carbonate and / or a cyclic ester in combination. More preferably, it is a combined use of a chain carbonate and a cyclic carbonate. Specifically, dimethyl carbonate and ethylene carbonate are used in combination. The blending ratio of both is not particularly limited, but the same amount is preferable.

鎖式飽和炭化水素化合物の両末端にニトリル基が結合した鎖式飽和炭化水素ジニトリル化合物としては、例えば、スクシノニトリルNC(CHCN、グルタロニトリルNC(CHCN、アジポニトリルNC(CHCN、セバコニトリルNC(CHCN、ドデカンジニトリルNC(CH10CNなどのような直鎖状のジニトリル化合物の他、2−メチルグルタロニトリルNCCH(CH)CHCHCN等のように分枝を有していても良い。これらの鎖式飽和炭化水素ジニトリル化合物は、炭素数は特に限定されないが、7〜20であることが好ましい。更に好ましくは10〜12である。 Examples of the chain saturated hydrocarbon dinitrile compound in which nitrile groups are bonded to both ends of the chain saturated hydrocarbon compound include succinonitrile NC (CH 2 ) 2 CN, glutaronitrile NC (CH 2 ) 3 CN, adiponitrile In addition to linear dinitrile compounds such as NC (CH 2 ) 4 CN, sebaconitrile NC (CH 2 ) 8 CN, dodecanedinitrile NC (CH 2 ) 10 CN, 2-methylglutaronitrile NCCH (CH 3 ) CH 2 CH 2 CN may have a branched as such. These chain saturated hydrocarbon dinitrile compounds are not particularly limited in carbon number, but are preferably 7 to 20. More preferably, it is 10-12.

また、鎖式エーテル化合物の末端の少なくとも一つにニトリル基が結合した鎖式エーテルニトリル化合物としては、オキシジプロピオニトリルNCCHCH−O−CHCHCNや、3−メトキシプロピオニトリルCH−O−CHCHCN等が挙げられる。これらの鎖式エーテルニトリル化合物は、炭素数は特に限定されないが、20以下であることが好ましい。 Examples of the chain ether nitrile compound in which a nitrile group is bonded to at least one end of the chain ether compound include oxydipropionitrile NCCH 2 CH 2 —O—CH 2 CH 2 CN and 3-methoxypropionitrile. CH 3 -O-CH 2 CH 2 CN , and the like. These chain ether nitrile compounds are not particularly limited in carbon number, but are preferably 20 or less.

さらに、シアノ酢酸エステルとしてはシアノ酢酸メチル、シアノ酢酸エチル、シアノ酢酸プロピル、シアノ酢酸ブチル等が挙げられる。これらのシアノ酢酸エステルは、炭素数は特に限定されないが、20以下であることが好ましい。   Furthermore, examples of the cyanoacetate include methyl cyanoacetate, ethyl cyanoacetate, propyl cyanoacetate, and butyl cyanoacetate. These cyanoacetic acid esters are not particularly limited in carbon number, but are preferably 20 or less.

本発明のリチウムイオン電池用電解液に添加されるリチウム塩としては、LiPF6(六フッ化リン酸リチウム),LiBF(四フッ化ホウ酸リチウム)、LiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド),LiTFS(トリフルオロメタンスルホン酸リチウム)及びLiBETI(リチウムビス(ペンタフルオロエタンスルホニル)イミド)等を用いることができる。これらのリチウム塩は、本発明のリチウムイオン電池用電解液に用いられるニトリル系の有機溶媒へ溶解し、高い電位でも分解しない十分な電位窓を有している。この中でもLiPF6(六フッ化リン酸リチウム),LiBF(四フッ化ホウ酸リチウム)及びLiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)の少なくとも1種が含まれていることが好ましい。LiPF6(六フッ化リン酸リチウム)やLiBF(四フッ化ホウ酸リチウム)はリチウムイオン電池の正極の電極基板としてよく用いられるアルミニウムに対する腐食性が少ない。更に、これらはまたLiTFS(トリフルオロメタンスルホン酸リチウム)及びLiBETI(リチウムビス(ペンタフルオロエタンスルホニル)イミド)に比べて、電位窓を広げる効果が優れている。LiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)は特に分解温度が高く耐熱特性が向上する上、溶解度が高く、比伝導度を大きくすることができる。 Examples of the lithium salt added to the electrolyte for the lithium ion battery of the present invention include LiPF 6 (lithium hexafluorophosphate), LiBF 4 (lithium tetrafluoroborate), LiTFSI (lithium bis (trifluoromethanesulfonyl) imide. ), LiTFS (lithium trifluoromethanesulfonate), LiBETI (lithium bis (pentafluoroethanesulfonyl) imide), and the like can be used. These lithium salts dissolve in the nitrile organic solvent used in the electrolyte for lithium ion batteries of the present invention and have a sufficient potential window that does not decompose even at high potentials. Among these, it is preferable that at least one of LiPF 6 (lithium hexafluorophosphate), LiBF 4 (lithium tetrafluoroborate) and LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) is contained. LiPF 6 (lithium hexafluorophosphate) and LiBF 4 (lithium tetrafluoroborate) are less corrosive to aluminum, which is often used as an electrode substrate for a positive electrode of a lithium ion battery. Furthermore, they are also more effective in expanding the potential window than LiTFS (lithium trifluoromethanesulfonate) and LiBETI (lithium bis (pentafluoroethanesulfonyl) imide). LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) has a particularly high decomposition temperature, improved heat resistance, high solubility, and high specific conductivity.

リチウム塩の濃度は0.01mol/L以上であって、飽和状態よりも低い濃度とされていることが好ましい。リチウム塩の濃度が0.01mol/L未満では、解離したLiイオンが少ないため、極端にLiイオン伝導性が小さくなり、Liイオン伝導を確保できない。そのため、過電圧が大きくなり本来の電解液の電位が大きくずれる可能性がある。他方、リチウム塩の濃度が飽和状態とされた場合、温度の変化によって溶解しているリチウム塩が析出し、電極等を変形させたりするおそれがある。   The concentration of the lithium salt is 0.01 mol / L or more, and is preferably lower than the saturated state. When the concentration of the lithium salt is less than 0.01 mol / L, since the number of dissociated Li ions is small, the Li ion conductivity becomes extremely small and Li ion conduction cannot be ensured. Therefore, there is a possibility that the overvoltage is increased and the potential of the original electrolyte is greatly shifted. On the other hand, when the concentration of the lithium salt is saturated, there is a possibility that the dissolved lithium salt precipitates due to a change in temperature and deforms the electrode or the like.

また、本発明のリチウムイオン電池用電解液に含まれているニトリル化合物の濃度は1容量%以上100容量%未満であることが好ましい。ニトリル化合物の濃度が1容量%未満では電位窓を広げる効果が小さくなる。より好ましくは5容量%以上90容量%未満である。ニトリル化合物の濃度が90容量%以上となると、電解質の溶解度が低くなるとともに、粘度も高くなることから、伝導度が低くなり、ひいては電池の内部抵抗が高くなる。最も好ましいのは30容量%以上70容量%未満である。   Moreover, it is preferable that the density | concentration of the nitrile compound contained in the electrolyte solution for lithium ion batteries of this invention is 1 volume% or more and less than 100 volume%. When the concentration of the nitrile compound is less than 1% by volume, the effect of expanding the potential window is reduced. More preferably, it is 5 volume% or more and less than 90 volume%. When the concentration of the nitrile compound is 90% by volume or more, the solubility of the electrolyte is lowered and the viscosity is also increased. Therefore, the conductivity is lowered, and the internal resistance of the battery is increased. Most preferred is 30% by volume or more and less than 70% by volume.

本発明のリチウムイオン電池用電解液をリチウムイオン電池の電解液に用いれば、充電のための電位が5.2V(対Li/Li+)を超えた領域に存在するような高電位酸化還元正極活物質を利用することができる。このため、起電力が大きく、エネルギー密度の高い電池とすることができる。 When the lithium ion battery electrolyte of the present invention is used as an electrolyte of a lithium ion battery, a high potential redox positive electrode in which the potential for charging is present in a region exceeding 5.2 V (vs. Li / Li + ). An active material can be used. For this reason, it can be set as a battery with a large electromotive force and high energy density.

本発明のリチウムイオン電池用電解液を用いることにより、充電のための電位が5.2V(対Li/Li+)を超える領域に存在するような高電位酸化還元正極活物質を正極活物質として利用することができ、このため、電池の起電力及びエネルギー密度を極めて高くすることができる。このような高電位酸化還元正極活物質としては、例えば、LiCoPOF,LiNiPOF,LiCoPO,LiNiPO等が挙げられる。これらの正極活物質はエネルギー密度が高く、容量の大きなリチウムイオン電池とすることができる。例えば、LiCoPOFは正極活物質としてのエネルギー密度がLiCoOに対して理論値で2倍以上あることが予測されており、十分にポテンシャルを発揮できれば、容量の大きなリチウムイオン電池を作ることができる。また、LiCoPOFが酸化される電位は高い電位領域にまで及ぶため、起電力の大きい電池とすることができる。さらに、LiCoPOFは熱安定性に優れ、400°Cという高温になっても、発熱反応は示さないことが、熱分析結果から分かっており、電池温度の上昇を防ぐことができる。 By using the lithium ion battery electrolyte of the present invention, a high potential redox positive electrode active material that exists in a region where the potential for charging exceeds 5.2 V (vs. Li / Li + ) is used as the positive electrode active material. Therefore, the electromotive force and energy density of the battery can be extremely increased. Such high potential redox positive electrode active material, for example, Li 2 CoPO 4 F, Li 2 NiPO 4 F, LiCoPO 4, LiNiPO 4 , and the like. These positive electrode active materials have high energy density and can be a lithium ion battery having a large capacity. For example, Li 2 CoPO 4 F is predicted to have a theoretical energy density that is at least twice that of LiCoO 2 as a positive electrode active material. If the potential density can be sufficiently exhibited, a lithium-ion battery having a large capacity can be produced. be able to. In addition, since the potential at which Li 2 CoPO 4 F is oxidized extends to a high potential region, a battery with high electromotive force can be obtained. Furthermore, Li 2 CoPO 4 F is excellent in thermal stability, and it is known from the thermal analysis results that it does not show an exothermic reaction even at a high temperature of 400 ° C., and it is possible to prevent the battery temperature from rising.

以下本発明のリチウムイオン電池用電解液を具体化した実施例についてさらに詳細に述べる。   Examples in which the lithium ion battery electrolyte of the present invention is embodied will be described in more detail below.

(実施例1)
実施例1では、有機溶媒としてアジポニトリルと、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)とを容量比で50:25:25の割合で混合した溶媒を用い、これにリチウム塩としてLiPF6(六フッ化リン酸リチウム)を0.05mol/Lとなるように溶解させてリチウムイオン電池用電解液とした。
Example 1
In Example 1, a solvent in which adiponitrile, ethylene carbonate (EC), and dimethyl carbonate (DMC) were mixed at a volume ratio of 50:25:25 was used as the organic solvent, and LiPF 6 ( Lithium hexafluorophosphate) was dissolved at 0.05 mol / L to obtain an electrolyte for a lithium ion battery.

(比較例1)
比較例1では、有機溶媒としてエチレンカーボネート50体積%、ジメチルカーボネート50体積%の混合溶媒を用い、これにリチウム塩としてLiPF6を1mol/Lとなるように溶解させてリチウムイオン電池用電解液とした。
(Comparative Example 1)
In Comparative Example 1, a mixed solvent of 50% by volume of ethylene carbonate and 50% by volume of dimethyl carbonate was used as the organic solvent, and LiPF 6 was dissolved as a lithium salt at a concentration of 1 mol / L. did.

(実施例2〜9)
実施例2〜9では溶媒を、各種ニトリル:エチレンカーボネート:ジメチルカーボネート=50:25:25(容量比)とし、この混合溶媒に電解質をLiPF6(六フッ化リン酸リチウム)を1mol/Lとなるように溶解させたものをリチウムイオン電池用電解液とした(ただし、ニトリル化合物をオキシジプロピオニトリルにした実施例6は、LiPF6を0.5mol/Lとした)。
各実施例に用いたニトリルの種類は以下のとおりである。
実施例1 アジポニトリルNC(CHCN
実施例2 スクシノニトリルNC(CHCN
実施例3 セバコニトリルNC(CHCN
実施例4 ドデカンジニトリルNC(CH10CN
実施例5 2−メチルグルタロニトリルNCCH(CH)CHCHCN
実施例6 オキシジプロピオニトリルNCCHCH-O-CHCHCN
実施例7 3−メトキシプロピオニトリルCH-O-CHCHCN
実施例8 シアノ酢酸メチルNCCHCOOCH
実施例9 シアノ酢酸ブチルNCCHCOO(CHCH
(Examples 2-9)
In Examples 2 to 9, the solvent was various nitrile: ethylene carbonate: dimethyl carbonate = 50: 25: 25 (volume ratio), and the electrolyte was LiPF 6 (lithium hexafluorophosphate) at 1 mol / L in this mixed solvent. The so-dissolved solution was used as an electrolyte solution for a lithium ion battery (however, in Example 6 in which the nitrile compound was oxydipropionitrile, LiPF 6 was 0.5 mol / L).
The types of nitriles used in each example are as follows.
Example 1 Adiponitrile NC (CH 2 ) 4 CN
Example 2 Succinonitrile NC (CH 2 ) 2 CN
Example 3 Sevacononitrile NC (CH 2 ) 8 CN
Example 4 Dodecanedinitrile NC (CH 2 ) 10 CN
Example 5 2-Methylglutaronitrile NCCH (CH 3 ) CH 2 CH 2 CN
Example 6-oxy dipropionate nitrile NCCH 2 CH 2 -O-CH 2 CH 2 CN
EXAMPLE 7 3-methoxy propionitrile CH 3 -O-CH 2 CH 2 CN
Example 8 Methyl cyanoacetate NCCH 2 COOCH 3
Example 9 cyanoacetate butyl NCCH 2 COO (CH 2) 3 CH 3

−評価−
(電位−電流曲線の測定)
以上のようにして調製した実施例1〜9及び比較例1のリチウムイオン電池用電解液について、電位−電流曲線を測定した。測定にはポテンシオガルバノスタットを用い、作用極にはグラッシーカーボンを用い、対極には白金線を用いた。また、参照電極は(Ag/Ag+)または(Li/Li+)を用いた。測定にあたっては、正側及び負側に数回スキャンさせた後、自然電位から正方向、あるいは負方向に5mV/秒の速度で電位の掃引を行い、電位−電流曲線を測定した。結果を図1、図2及び図3に示す。
-Evaluation-
(Measurement of potential-current curve)
With respect to the electrolyte solutions for lithium ion batteries of Examples 1 to 9 and Comparative Example 1 prepared as described above, potential-current curves were measured. A potentiogalvanostat was used for measurement, glassy carbon was used for the working electrode, and a platinum wire was used for the counter electrode. As the reference electrode, (Ag / Ag +) or (Li / Li +) was used. In the measurement, the positive side and the negative side were scanned several times, and then the potential was swept from the natural potential in the positive direction or the negative direction at a rate of 5 mV / sec, and the potential-current curve was measured. The results are shown in FIG. 1, FIG. 2 and FIG.

その結果、図1に示すように、実施例1の電解液の電位窓は、Li電位(Li/Li+)に対し6.9V(電位窓の判断基準は50μA/cmとした。以下同様)となった。これに対して、エチレンカーボネートとジメチルカーボネートの混合溶媒を用いた比較例1の電位窓は、図3に示すように5.2Vであり、実施例1の電解液の電位窓は、比較例1の電解液に比べて、正側に大きく広がっていることが分かった。この結果から、実施例1の電解液を用いれば、充電のための電位が5.2Vを超えた領域に存在するような高電位酸化還元正極活物質をリチウムイオン電池の正極活物質として利用できることとなり、起電力及びエネルギー密度が高く、容量の大きなリチウムイオン電池とすることができる。例えば、比較例1の電解液では、LiCoPOFやLiNiPOFの酸化還元電位でも有機溶媒が電気分解を起こし、これらの正極酸化物質を利用することができないのに対し、実施例1の電解液を用いれば、LiCoPOFやLiNiPOFを正極活物質として利用できるだけでなく、例えば、LiCoPO,LiNiPO等も利用することができる。 As a result, as shown in FIG. 1, the potential window of the electrolyte solution of Example 1 was 6.9 V with respect to the Li potential (Li / Li + ) (the judgment criterion of the potential window was 50 μA / cm 2, and so on). It became. On the other hand, the potential window of Comparative Example 1 using a mixed solvent of ethylene carbonate and dimethyl carbonate is 5.2 V as shown in FIG. 3, and the potential window of the electrolytic solution of Example 1 is Comparative Example 1. Compared to the electrolyte solution of, it was found that it spreads greatly on the positive side. From this result, when the electrolytic solution of Example 1 is used, a high potential redox positive electrode active material that exists in a region where the potential for charging exceeds 5.2 V can be used as the positive electrode active material of the lithium ion battery. Thus, a lithium ion battery having high electromotive force and energy density and large capacity can be obtained. For example, in the electrolytic solution of Comparative Example 1, the organic solvent undergoes electrolysis even at the redox potential of Li 2 CoPO 4 F or Li 2 NiPO 4 F, and these positive electrode oxidizing substances cannot be used. If the electrolytic solution of Example 1 is used, not only Li 2 CoPO 4 F or Li 2 NiPO 4 F can be used as the positive electrode active material, but also LiCoPO 4 , LiNiPO 4, etc. can be used.

また、図2に示すように、実施例2〜9の電解液においても、実施例1と同様、いずれも比較例1の電解液と比較して、電位窓が正方向に広がることが分かった。これらの結果から、エチレンカーボネート及びジメチルカーボネートに、さらに鎖式飽和炭化水素化合物の両末端にニトリル基が結合した鎖式飽和炭化水素ジニトリル化合物(実施例1〜5)、鎖式エーテル化合物の末端の少なくとも一つにニトリル基が結合した鎖式エーテルニトリル化合物(実施例6,7)及びシアノ酢酸エステルのうち少なくとも一つのニトリル化合物(実施例8,9)を加えることによって、溶媒が高い電位まで分解することなく安定に存在できることが分かった。特に電位窓が大きく広がったのは、ニトリル化合物として鎖式飽和炭化水素化合物の両末端にニトリル基が結合した鎖式飽和炭化水素ジニトリル化合物を用いた実施例1〜5であり、分枝を有する実施例5においても大きく電位窓が正方向に広がることが分かった。また、オキシジプロピオニトリルNCCHCH-O-CHCHCNを用いた実施例6においても、大きく電位窓が正方向に広がることが分かった。 Moreover, as shown in FIG. 2, also in the electrolyte solution of Examples 2-9, it turned out that an electric potential window spreads in the positive direction as compared with the electrolyte solution of Comparative Example 1 similarly to Example 1. . From these results, the chain saturated hydrocarbon dinitrile compound (Examples 1 to 5) in which nitrile groups were bonded to both ends of the chain saturated hydrocarbon compound, ethylene carbonate and dimethyl carbonate, the end of the chain ether compound By adding a chain ether nitrile compound (Examples 6 and 7) having at least one nitrile group bonded thereto and at least one nitrile compound (Examples 8 and 9) among cyanoacetic acid esters, the solvent is decomposed to a high potential. It was found that it can exist stably without doing. In particular, the potential window greatly widened in Examples 1 to 5 using a chain saturated hydrocarbon dinitrile compound in which a nitrile group was bonded to both ends of a chain saturated hydrocarbon compound as a nitrile compound, which has branches. Also in Example 5, it was found that the potential window greatly spreads in the positive direction. Also, in Example 6 using oxydipropionitrile NCCH 2 CH 2 —O—CH 2 CH 2 CN, it was found that the potential window greatly expanded in the positive direction.

(実施例10〜17)
実施例10〜17では溶媒を、各種ニトリル:エチレンカーボネート:ジエチルカーボネート=50:25:25(容量比)とし、この混合溶媒に電解質をLiPF6(六フッ化リン酸リチウム)を1mol/Lとなるように溶解させたものをリチウムイオン電池用電解液とした(ただし、ニトリル化合物をグルタロニトリルにした実施例10では、LiPF6(六フッ化リン酸リチウム)を0.5mol/Lとした)。
各実施例に用いたニトリルの種類は以下のとおりである。
実施例10 グルタロニトリルNC(CHCN
実施例11 セバコニトリルNC(CHCN
実施例12 ドデカンジニトリルNC(CH10CN
実施例13 2−メチルグルタロニトリルNCCH(CH)CHCHCN
実施例14 オキシジプロピオニトリルNCCHCH-O-CHCHCN
実施例15 3−メトキシプロピオニトリルCH-O-CHCHCN
実施例16 シアノ酢酸メチルNCCHCOOCH
実施例17 シアノ酢酸ブチルNCCHCOO(CHCH
(Examples 10 to 17)
In Examples 10 to 17, the solvent was various nitrile: ethylene carbonate: diethyl carbonate = 50: 25: 25 (volume ratio), and the electrolyte was LiPF 6 (lithium hexafluorophosphate) at 1 mol / L in this mixed solvent. What was dissolved in this way was used as the electrolyte solution for lithium ion batteries (however, in Example 10 in which the nitrile compound was glutaronitrile, LiPF 6 (lithium hexafluorophosphate) was 0.5 mol / L. ).
The types of nitriles used in each example are as follows.
Example 10 Glutaronitrile NC (CH 2 ) 3 CN
Example 11 sebaconitrile NC (CH 2) 8 CN
Example 12 Dodecanedinitrile NC (CH 2 ) 10 CN
Example 13 2-methylglutaronitrile NCCH (CH 3) CH 2 CH 2 CN
Example 14 oxy dipropionate nitrile NCCH 2 CH 2 -O-CH 2 CH 2 CN
Example 15 3-Methoxy-propionitrile CH 3 -O-CH 2 CH 2 CN
Example 16 methyl cyanoacetate NCCH 2 COOCH 3
Example 17 cyanoacetate butyl NCCH 2 COO (CH 2) 3 CH 3

(比較例2)
比較例2では、有機溶媒としてエチレンカーボネート:ジエチルカーボネート=50:50(容量比)の混合溶媒を用い、これにリチウム塩としてLiPF6を1mol/Lとなるように溶解させてリチウムイオン電池用電解液とした。
(Comparative Example 2)
In Comparative Example 2, a mixed solvent of ethylene carbonate: diethyl carbonate = 50: 50 (volume ratio) was used as the organic solvent, and LiPF 6 was dissolved as a lithium salt in an amount of 1 mol / L to perform electrolysis for a lithium ion battery. Liquid.

−評価−
(電位−電流曲線の測定)
実施例10〜17及び比較例2の電解液について、前述の方法と同様にして電位−電流曲線を測定した。結果を図4に示す。
この図から、実施例10〜17の電解液では、比較例2の電解液と比較して、電位窓が正方向に広がることが分かった。この結果から、エチレンカーボネート及びジエチルカーボネートを溶媒として用いた場合においても、エチレンカーボネート及びジメチルカーボネートを溶媒として用いた場合(すなわち実施例1〜9の場合)と同様、鎖式飽和炭化水素化合物の両末端にニトリル基が結合した鎖式飽和炭化水素ジニトリル化合物、鎖式エーテル化合物の末端の少なくとも一つにニトリル基が結合した鎖式エーテルニトリル化合物及びシアノ酢酸エステルのうち少なくとも一つのニトリル化合物を加えることによって、溶媒が高い電位まで安定に存在することが分かった。特に電位窓が大きく広がったのは、ニトリル化合物として鎖式飽和炭化水素化合物の両末端にニトリル基が結合した鎖式飽和炭化水素ジニトリル化合物を用いた実施例10〜13であり、分枝を有する実施例13においても大きく電位窓が正方向に広がることが分かった。また、鎖式エーテル化合物の末端の少なくとも一つにニトリル基が結合した鎖式エーテルニトリル化合物を用いた実施例14及び実施例15においても、大きく電位窓が正方向に広がることが分かった。
-Evaluation-
(Measurement of potential-current curve)
About the electrolyte solution of Examples 10-17 and the comparative example 2, it carried out similarly to the above-mentioned method, and measured the electric potential-current curve. The results are shown in FIG.
From this figure, it was found that in the electrolytic solutions of Examples 10 to 17, the potential window spreads in the positive direction as compared with the electrolytic solution of Comparative Example 2. From this result, even when ethylene carbonate and diethyl carbonate were used as solvents, both of the chain saturated hydrocarbon compounds were the same as when ethylene carbonate and dimethyl carbonate were used as solvents (that is, in the case of Examples 1 to 9). Add at least one nitrile compound among a chain saturated hydrocarbon dinitrile compound having a nitrile group bonded to the terminal, a chain ether nitrile compound having a nitrile group bonded to at least one terminal of the chain ether compound, and a cyanoacetate ester. It was found that the solvent exists stably up to a high potential. In particular, the potential window greatly widened in Examples 10 to 13 using a chain saturated hydrocarbon dinitrile compound in which a nitrile group was bonded to both ends of a chain saturated hydrocarbon compound as a nitrile compound, which has branches. Also in Example 13, it was found that the potential window greatly expanded in the positive direction. Also, in Example 14 and Example 15 using a chain ether nitrile compound in which a nitrile group was bonded to at least one end of the chain ether compound, it was found that the potential window greatly expanded in the positive direction.

(実施例18〜25)
実施例18〜25では溶媒を、各種ニトリル:γ−ブチロラクトン:ジメチルカーボネート=50:25:25(容量比)とし、この混合溶媒に電解質をLiPF6(六フッ化リン酸リチウム)を1mol/Lとなるように溶解させたものをリチウムイオン電池用電解液とした。また、ニトリルとしてアジポニトリルを用いた実施例では、LiPF6を0.5mol/Lとした。
各実施例に用いたニトリルの種類は以下のとおりである。
実施例18 グルタロニトリルNC(CHCN
実施例19 アジポニトリルNC(CHCN
実施例20 セバコニトリルNC(CHCN
実施例21 ドデカンジニトリルNC(CH10CN
実施例22 2−メチルグルタロニトリルNCCH(CH)CHCHCN
実施例23 オキシジプロピオニトリルNCCHCH-O-CHCHCN
実施例24 シアノ酢酸メチルNCCHCOOCH
実施例25 シアノ酢酸ブチルNCCHCOO(CHCH
(Examples 18 to 25)
In Examples 18 to 25, the solvent was various nitrile: γ-butyrolactone: dimethyl carbonate = 50: 25: 25 (volume ratio), and the electrolyte was LiPF 6 (lithium hexafluorophosphate) at 1 mol / L in this mixed solvent. What was dissolved so that it might become was set as the electrolyte solution for lithium ion batteries. In the example using adiponitrile as the nitrile, LiPF 6 was 0.5 mol / L.
The types of nitriles used in each example are as follows.
Example 18 Glutaronitrile NC (CH 2 ) 3 CN
Example 19 adiponitrile NC (CH 2) 4 CN
Example 20 sebaconitrile NC (CH 2) 8 CN
Example 21 dodecane dinitrile NC (CH 2) 10 CN
Example 22 2-methylglutaronitrile NCCH (CH 3) CH 2 CH 2 CN
Example 23 oxy dipropionate nitrile NCCH 2 CH 2 -O-CH 2 CH 2 CN
Example 24 methyl cyanoacetate NCCH 2 COOCH 3
Example 25 cyanoacetate butyl NCCH 2 COO (CH 2) 3 CH 3

(比較例3)
比較例3では、有機溶媒としてγ−ブチロラクトン:ジメチルカーボネート=50:50(容量比)の混合溶媒を用い、これにリチウム塩としてLiPF6を1mol/Lとなるように溶解させてリチウムイオン電池用電解液とした。
(Comparative Example 3)
In Comparative Example 3, a mixed solvent of γ-butyrolactone: dimethyl carbonate = 50: 50 (volume ratio) was used as the organic solvent, and LiPF 6 was dissolved as a lithium salt at 1 mol / L so as to be used for a lithium ion battery. An electrolyte was used.

−評価−
(電位−電流曲線の測定)
実施例18〜25及び比較例3の電解液について、前述の方法と同様にして電位−電流曲線を測定した。結果を図5に示す。
この図から、実施例18〜25の電解液においても、比較例3の電解液と比較して、電位窓が正方向に大きく広がることが分かった。この結果から、環状カーボネートであるエチレンカーボネートに替えて、ジメチルカーボネート及び環状エステルであるγ−ブチロラクトンを溶媒として用いた場合においても、鎖式飽和炭化水素化合物の両末端にニトリル基が結合した鎖式飽和炭化水素ジニトリル化合物を加えることによって、溶媒が高い電位まで安定に存在することが分かった。また、鎖式飽和炭化水素ジニトリル化合物のうち、直鎖分子である実施例18〜21のみならず、分枝を有する実施例22においても大きく電位窓が正方向に広がることが分かった。さらに、鎖式エーテル化合物の両末端にニトリル基が結合した鎖式エーテルニトリル化合物を用いた実施例23や、シアノ酢酸エステルを用いた実施例24,25においても、大きく電位窓が正方向に広がることが分かった。
-Evaluation-
(Measurement of potential-current curve)
For the electrolytic solutions of Examples 18 to 25 and Comparative Example 3, potential-current curves were measured in the same manner as described above. The results are shown in FIG.
From this figure, it was found that also in the electrolyte solutions of Examples 18 to 25, the potential window greatly expanded in the positive direction as compared with the electrolyte solution of Comparative Example 3. From this result, even when dimethyl carbonate and cyclic ester γ-butyrolactone are used as a solvent instead of cyclic carbonate ethylene carbonate, a chain formula in which nitrile groups are bonded to both ends of the chain saturated hydrocarbon compound. It was found that by adding the saturated hydrocarbon dinitrile compound, the solvent exists stably to a high potential. Moreover, it turned out that a potential window spreads in the positive direction greatly not only in Examples 18 to 21 which are linear molecules among chain-type saturated hydrocarbon dinitrile compounds but also in Example 22 having branches. Further, in Example 23 using a chain ether nitrile compound in which a nitrile group is bonded to both ends of the chain ether compound, and in Examples 24 and 25 using cyanoacetate, the potential window is greatly widened in the positive direction. I understood that.

(実施例26〜31)
実施例26〜31では溶媒を、各種ニトリル:ジメチルカーボネート=50:50(容量比)とし、この混合溶媒に電解質をLiPF6(六フッ化リン酸リチウム)を1mol/L(実施例30、31では0.1mol/L)となるように溶解させたものをリチウムイオン電池用電解液とした。各実施例に用いたニトリルの種類は以下のとおりである。
実施例26 グルタロニトリルNC(CHCN
実施例27 セバコニトリルNC(CHCN
実施例28 ドデカンジニトリルNC(CH10CN
実施例29 2−メチルグルタロニトリルNCCH(CH)CHCHCN
実施例30 オキシジプロピオニトリルNCCHCH-O-CHCHCN
実施例31 シアノ酢酸メチルNCCHCOOCH
(Examples 26 to 31)
In Examples 26 to 31, the solvent was various nitriles: dimethyl carbonate = 50: 50 (volume ratio), and the electrolyte was LiPF 6 (lithium hexafluorophosphate) 1 mol / L (Examples 30 and 31). In this case, an electrolyte solution for a lithium ion battery was dissolved so as to be 0.1 mol / L. The types of nitriles used in each example are as follows.
Example 26 glutaronitrile NC (CH 2) 3 CN
Example 27 sebaconitrile NC (CH 2) 8 CN
Example 28 Dodecanedinitrile NC (CH 2 ) 10 CN
Example 29 2-methylglutaronitrile NCCH (CH 3) CH 2 CH 2 CN
Example 30 oxy dipropionate nitrile NCCH 2 CH 2 -O-CH 2 CH 2 CN
Example 31 methyl cyanoacetate NCCH 2 COOCH 3

(比較例4)
比較例4では、有機溶媒としてジメチルカーボネートにリチウム塩としてLiPF6を1mol/Lとなるように溶解させてリチウムイオン電池用電解液とした。
(Comparative Example 4)
In Comparative Example 4, LiPF 6 as a lithium salt was dissolved in dimethyl carbonate as an organic solvent so as to be 1 mol / L to obtain an electrolytic solution for a lithium ion battery.

−評価−
(電位−電流曲線の測定)
実施例26〜31及び比較例4の電解液について、前述の方法と同様にして電位−電流曲線を測定した。結果を図6に示す。
この図から、溶媒としてニトリル化合物以外にジメチルカーボネートを単独で加えた実施例26〜31の電解液では、ジメチルカーボネートを単独溶媒とした比較例3の電解液と比較して、電位窓が正方向に広がることが分かった。また、鎖式飽和炭化水素化合物の両末端にニトリル基が結合した鎖式飽和炭化水素ジニトリル化合物を加えることによって(実施例26〜29)、溶媒が高い電位まで安定に存在することが分かった。さらには、鎖式飽和炭化水素ジニトリル化合物のうち、直鎖分子である実施例26〜28のみならず、分枝を有する実施例29においても大きく電位窓が正方向に広がることが分かった。さらに、鎖式エーテル化合物の両末端にニトリル基が結合した鎖式エーテルニトリル化合物を用いた実施例30でも電位窓が大きく広がり、シアノ酢酸エステルを用いた実施例31では、電位窓が広がった。
-Evaluation-
(Measurement of potential-current curve)
About the electrolyte solution of Examples 26-31 and the comparative example 4, the electric potential-current curve was measured like the above-mentioned method. The results are shown in FIG.
From this figure, in the electrolytic solutions of Examples 26 to 31 in which dimethyl carbonate alone was added in addition to the nitrile compound as a solvent, the potential window was positive in comparison with the electrolytic solution of Comparative Example 3 in which dimethyl carbonate was the sole solvent. I understood that it spreads. It was also found that the solvent was stably present up to a high potential by adding a chain saturated hydrocarbon dinitrile compound having nitrile groups bonded to both ends of the chain saturated hydrocarbon compound (Examples 26 to 29). Furthermore, it was found that, among the chain saturated hydrocarbon dinitrile compounds, not only in Examples 26 to 28 which are linear molecules, but also in Example 29 having branches, the potential window greatly spreads in the positive direction. Furthermore, in Example 30 using a chain ether nitrile compound in which a nitrile group was bonded to both ends of the chain ether compound, the potential window was greatly expanded, and in Example 31 using cyanoacetate, the potential window was expanded.

(実施例32,33)
実施例32,33では溶媒を、各種ニトリル:プロピレンカーボネート=50:50(容量比)とし、この混合溶媒に電解質をLiPF6(六フッ化リン酸リチウム)を1mol/Lとなるように溶解させたものをリチウムイオン電池用電解液とした。各実施例に用いたニトリルの種類は以下のとおりである。
実施例32 セバコニトリルNC(CHCN
実施例33 ドデカンジニトリルNC(CH10CN
(Examples 32 and 33)
In Examples 32 and 33, the solvent was various nitrile: propylene carbonate = 50: 50 (volume ratio), and the electrolyte was dissolved in this mixed solvent so that LiPF 6 (lithium hexafluorophosphate) was 1 mol / L. This was used as an electrolyte for lithium ion batteries. The types of nitriles used in each example are as follows.
Example 32 sebaconitrile NC (CH 2) 8 CN
Example 33 dodecane dinitrile NC (CH 2) 10 CN

(比較例5)
比較例5では、有機溶媒としてプロピレンカーボネートにリチウム塩としてLiPF6を1mol/Lとなるように溶解させてリチウムイオン電池用電解液とした。
(Comparative Example 5)
In Comparative Example 5, an electrolyte solution for a lithium ion battery was prepared by dissolving LiPF 6 as a lithium salt in propylene carbonate as an organic solvent so as to be 1 mol / L.

−評価−
(電位−電流曲線の測定)
実施例32,33及び比較例5の電解液について、前述の方法と同様にして電位−電流曲線を測定した。結果を図7に示す。
この図から、溶媒としてニトリル化合物以外にプロピレンカーボネートを単独で加えた実施例32,33の電解液では、プロピレンカーボネートを単独溶媒とした比較例5の電解液と比較して、電位窓が正方向に大きく広がることが分かった。また、鎖式飽和炭化水素化合物の両末端にニトリル基が結合した鎖式飽和炭化水素ジニトリル化合物を加えることによって、溶媒が高い電位まで安定に存在することが分かった。
-Evaluation-
(Measurement of potential-current curve)
With respect to the electrolytic solutions of Examples 32 and 33 and Comparative Example 5, potential-current curves were measured in the same manner as described above. The results are shown in FIG.
From this figure, in the electrolytic solutions of Examples 32 and 33 in which propylene carbonate alone was added in addition to the nitrile compound as the solvent, the potential window was positive in comparison with the electrolytic solution of Comparative Example 5 in which propylene carbonate was the sole solvent. It was found that it spreads greatly. It was also found that the solvent was stably present up to a high potential by adding a chain saturated hydrocarbon dinitrile compound having nitrile groups bonded to both ends of the chain saturated hydrocarbon compound.

(実施例34〜36)
実施例34〜36では溶媒を、各種ニトリル:γ−ブチロラクトン=50:50(容量比)とし、この混合溶媒に電解質をLiPF6(六フッ化リン酸リチウム)を1mol/Lとなるように溶解させたものをリチウムイオン電池用電解液とした。各実施例に用いたニトリルの種類は以下のとおりである。
実施例34 グルタロニトリルNC(CHCN
実施例35 セバコニトリルNC(CHCN
実施例36 ドデカンジニトリルNC(CH10CN
(Examples 34 to 36)
In Examples 34 to 36, the solvent was various nitriles: γ-butyrolactone = 50: 50 (volume ratio), and the electrolyte was dissolved in this mixed solvent so that LiPF 6 (lithium hexafluorophosphate) was 1 mol / L. This was used as an electrolyte for a lithium ion battery. The types of nitriles used in each example are as follows.
Example 34 glutaronitrile NC (CH 2) 3 CN
Example 35 sebaconitrile NC (CH 2) 8 CN
Example 36 dodecane dinitrile NC (CH 2) 10 CN

(比較例6)
比較例6では、有機溶媒としてγ−ブチロラクトンにリチウム塩としてLiPF6を0.1mol/Lとなるように溶解させてリチウムイオン電池用電解液とした。
(Comparative Example 6)
In Comparative Example 6, an electrolyte solution for a lithium ion battery was prepared by dissolving LiPF 6 as a lithium salt in γ-butyrolactone as an organic solvent so as to be 0.1 mol / L.

−評価−
(電位−電流曲線の測定)
実施例34〜36及び比較例6の電解液について、前述の方法と同様にして電位−電流曲線を測定した。結果を図8に示す。
この図から、溶媒としてニトリル化合物以外にγ−ブチロラクトンを単独で加えた実施例34〜36の電解液では、γ−ブチロラクトンを単独溶媒とした比較例5の電解液と比較して、電位窓が正方向に大きく広がることが分かった。また、鎖式飽和炭化水素化合物の両末端にニトリル基が結合した鎖式飽和炭化水素ジニトリル化合物を加えることによって、溶媒が高い電位まで安定に存在することが分かった。
-Evaluation-
(Measurement of potential-current curve)
For the electrolytic solutions of Examples 34 to 36 and Comparative Example 6, potential-current curves were measured in the same manner as described above. The results are shown in FIG.
From this figure, in the electrolytic solutions of Examples 34 to 36 in which γ-butyrolactone was added alone as a solvent in addition to the nitrile compound, the potential window was larger than that of the electrolytic solution of Comparative Example 5 in which γ-butyrolactone was the sole solvent. It turns out that it spreads greatly in the positive direction. It was also found that the solvent was stably present up to a high potential by adding a chain saturated hydrocarbon dinitrile compound having nitrile groups bonded to both ends of the chain saturated hydrocarbon compound.

(実施例37〜39)
実施例37〜39では溶媒を、各種ニトリル:エチレンカーボネート:γ−ブチロラクトン=50:25:25(容量比)とし、この混合溶媒に電解質をLiPF6(六フッ化リン酸リチウム)を1mol/Lとなるように溶解させたものをリチウムイオン電池用電解液とした。各実施例に用いたニトリルの種類は以下のとおりである。
実施例37 セバコニトリルNC(CHCN
実施例38 2−メチルグルタロニトリルNCCH(CH)CHCHCN
実施例39 オキシジプロピオニトリルNCCHCH-O-CHCHCN
(Examples 37 to 39)
In Examples 37 to 39, the solvent is various nitrile: ethylene carbonate: γ-butyrolactone = 50: 25: 25 (volume ratio), and the electrolyte is LiPF 6 (lithium hexafluorophosphate) at 1 mol / L in this mixed solvent. What was melt | dissolved so that it might become was used as the electrolyte solution for lithium ion batteries. The types of nitriles used in each example are as follows.
Example 37 sebaconitrile NC (CH 2) 8 CN
Example 38 2-methylglutaronitrile NCCH (CH 3) CH 2 CH 2 CN
Example 39 oxy dipropionate nitrile NCCH 2 CH 2 -O-CH 2 CH 2 CN

(比較例7)
比較例7では、有機溶媒としてエチレンカーボネート:γ−ブチロラクトン=50:50(容量比)にリチウム塩としてLiPF6を1mol/Lとなるように溶解させてリチウムイオン電池用電解液とした。
(Comparative Example 7)
In Comparative Example 7, an electrolyte solution for a lithium ion battery was prepared by dissolving LiPF 6 as a lithium salt at 1 mol / L in ethylene carbonate: γ-butyrolactone = 50: 50 (volume ratio) as an organic solvent.

−評価−
(電位−電流曲線の測定)
実施例37〜39及び比較例7の電解液について、前述の方法と同様にして電位−電流曲線を測定した。結果を図9に示す。
この図から、溶媒としてニトリル化合物以外に環状カーボネートであるエチレンカーボネートと、環状エステルであるγ−ブチロラクトンとを溶媒として加えた実施例37〜39の電解液では、ニトリル化合物を入れない比較例7の電解液と比較して、電位窓が正方向及び負方向に大きく広がることが分かった。また、鎖式飽和炭化水素化合物の両末端にニトリル基が結合した鎖式飽和炭化水素ジニトリル化合物を加えることによって、溶媒が高い電位まで安定に存在することが分かった。さらには、鎖式飽和炭化水素ジニトリル化合物のうち、直鎖分子である実施例37のみならず、分枝を有する実施例38においても大きく電位窓が正方向及び負方向に広がることが分かった。さらに、鎖式エーテル化合物の両末端にニトリル基が結合した鎖式エーテルニトリル化合物を用いた実施例39でも電位窓が大きく正負方向に広がった。
-Evaluation-
(Measurement of potential-current curve)
About the electrolyte solution of Examples 37-39 and the comparative example 7, the electric potential-current curve was measured like the above-mentioned method. The results are shown in FIG.
From this figure, in the electrolytic solutions of Examples 37 to 39 in which ethylene carbonate, which is a cyclic carbonate, and γ-butyrolactone, which is a cyclic ester, were added as solvents in addition to the nitrile compound, the nitrile compound was not added. It was found that the potential window spreads greatly in the positive and negative directions as compared with the electrolyte. It was also found that the solvent was stably present up to a high potential by adding a chain saturated hydrocarbon dinitrile compound having nitrile groups bonded to both ends of the chain saturated hydrocarbon compound. Furthermore, it was found that, among the chain-type saturated hydrocarbon dinitrile compounds, not only in Example 37, which is a linear molecule, but also in Example 38 having branches, the potential window greatly spreads in the positive and negative directions. Further, in Example 39 using a chain ether nitrile compound in which a nitrile group was bonded to both ends of the chain ether compound, the potential window was greatly widened in the positive and negative directions.

(実施例40〜44)
実施例40〜44では溶媒を、セバコニトリル(実施例44ではアジポニトリル):エチレンカーボネート:ジメチルカーボネート=50:25:25(容量比)とし、この混合溶媒に各種電解質を1mol/Lとなるように溶解させたものをリチウムイオン電池用電解液とした。各実施例に用いた電解質の種類は以下のとおりである。
実施例40 LiPF6
実施例41 LiTFSI
実施例42 LiTFSI
実施例43 LiBF
実施例44 LiBETI
(Examples 40 to 44)
In Examples 40 to 44, the solvent was sebacononitrile (adiponitrile in Example 44): ethylene carbonate: dimethyl carbonate = 50: 25: 25 (volume ratio), and various electrolytes were dissolved in this mixed solvent so as to be 1 mol / L. This was used as an electrolyte for a lithium ion battery. The types of electrolyte used in each example are as follows.
Example 40 LiPF 6
Example 41 LiTFSI
Example 42 LiTFSI
Example 43 LiBF 4
Example 44 LiBETI

(実施例45)
実施例45では、有機溶媒としてセバコニトリルと、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)とを容量比で50:25:25の割合で混合した溶媒を用い、これにリチウム塩としてLiPF6(六フッ化リン酸リチウム)を0.05mol/L、LiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)を1.0mol/Lとなるように溶解させてリチウムイオン電池用電解液とした。
(Example 45)
In Example 45, a solvent in which sebacononitrile, ethylene carbonate (EC), and dimethyl carbonate (DMC) were mixed at a volume ratio of 50:25:25 was used as the organic solvent, and LiPF 6 ( Lithium hexafluorophosphate) was dissolved at 0.05 mol / L and LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) was dissolved at 1.0 mol / L to obtain an electrolyte for a lithium ion battery.

(実施例46)
実施例46では、有機溶媒としてシアノ酢酸ブチルと、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)とを容量比で50:25:25の割合で混合した溶媒を用い、これにリチウム塩としてLiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)を1.0mol/Lとなるように溶解させてリチウムイオン電池用電解液とした。
(Example 46)
In Example 46, a solvent in which butyl cyanoacetate, ethylene carbonate (EC), and dimethyl carbonate (DMC) were mixed at a volume ratio of 50:25:25 as an organic solvent, and LiTFSI as a lithium salt was used. (Lithium bis (trifluoromethanesulfonyl) imide) was dissolved at 1.0 mol / L to obtain an electrolytic solution for a lithium ion battery.

(実施例47)
実施例47では、有機溶媒としてシアノ酢酸ブチルと、エチレンカーボネート(EC)と、ジメチルカーボネート(DMC)とを容量比で50:25:25の割合で混合した溶媒を用い、これにリチウム塩としてLiBF(四フッ化ホウ酸リチウム)を1.0mol/Lとなるように溶解させてリチウムイオン電池用電解液とした。
(Example 47)
In Example 47, a solvent obtained by mixing butyl cyanoacetate, ethylene carbonate (EC), and dimethyl carbonate (DMC) in a volume ratio of 50:25:25 as an organic solvent, and LiBF as a lithium salt was used. 4 (lithium tetrafluoroborate) was dissolved at 1.0 mol / L to obtain an electrolyte for a lithium ion battery.

(比較例8〜10)
比較例8〜10では、比較例1におけるリチウム塩であるLiPF6の替わりに、各種リチウム塩を添加した。すなわち、有機溶媒としてエチレンカーボネート:ジメチルカーボネート=50:50(容量比)に各種リチウム塩(比較例8ではLiTFSI、比較例9ではLiBF、比較例10ではLiBETI)を1mol/Lとなるように溶解させてリチウムイオン電池用電解液とした。
(Comparative Examples 8 to 10)
In Comparative Examples 8 to 10, various lithium salts were added instead of LiPF 6 which is the lithium salt in Comparative Example 1. That is, various lithium salts (LiTFSI in Comparative Example 8, LiBF 4 in Comparative Example 9, LiBETI in Comparative Example 10) at 1 mol / L as an organic solvent, ethylene carbonate: dimethyl carbonate = 50: 50 (volume ratio). It was made to melt | dissolve and it was set as the electrolyte solution for lithium ion batteries.

−評価−
(電位−電流曲線の測定)
実施例40〜44、比較例1及び比較例8〜10の電解液について、前述の方法と同様にして電位−電流曲線を測定した。結果を図10に示す。またこの図から求めた、電流密度が50μA/cmとなるときの電位の値を表1に示す。
この図10及び表1から、溶媒としてニトリル化合物以外に環状カーボネートであるエチレンカーボネートと鎖状カーボネートであるジメチルカーボネートとを溶媒として加えた実施例40〜44の電解液では、電解質の種類によらず、ニトリル化合物を入れない比較例1及び比較例8〜10の電解液と比較して、電位窓が正方向に大きく広がることが分かった。
また、実施例45の電解液の電位窓は6.6V(図11参照)、実施例46の電解液の電位窓は5.4V(図12参照)、実施例47の電解液の電位窓は6.1V(図13参照)となり、いずれも正側に広がっていることが分かった。
-Evaluation-
(Measurement of potential-current curve)
With respect to the electrolytic solutions of Examples 40 to 44, Comparative Example 1 and Comparative Examples 8 to 10, potential-current curves were measured in the same manner as described above. The results are shown in FIG. In addition, Table 1 shows the value of the potential obtained from this figure when the current density is 50 μA / cm 2 .
From FIG. 10 and Table 1, in the electrolytic solutions of Examples 40 to 44 in which ethylene carbonate as a cyclic carbonate and dimethyl carbonate as a chain carbonate were added as solvents in addition to a nitrile compound as a solvent, regardless of the type of electrolyte. It was found that the potential window greatly expanded in the positive direction as compared with the electrolytic solutions of Comparative Example 1 and Comparative Examples 8 to 10 in which no nitrile compound was added.
In addition, the potential window of the electrolytic solution of Example 45 is 6.6 V (see FIG. 11), the potential window of the electrolytic solution of Example 46 is 5.4 V (see FIG. 12), and the potential window of the electrolytic solution of Example 47 is It became 6.1V (refer FIG. 13), and it turned out that all have spread to the positive side.

Figure 0005287352
Figure 0005287352

同様に、リチウム塩をLiPFとした、他の実施例及び比較例の電解液について、電位−電流曲線から求めた、所定の電流密度となるときの電極電位を表2に示す。この表から、鎖式飽和炭化水素化合物の両末端にニトリル基が結合した鎖式飽和炭化水素ジニトリル化合物、鎖式エーテル化合物の末端の少なくとも一つにニトリル基が結合した鎖式エーテルニトリル化合物及びシアノ酢酸エステルのうち少なくとも一つのニトリル化合物と、環状カーボネート、環状エステル及び鎖状カーボネートのうち少なくとも一つとが含まれている場合に、正方向に電位窓が広がることが分かる。 Similarly, the lithium salt and LiPF 6, the electrolyte of the other examples and comparative examples, the potential - was determined from current curve, shown in Table 2 an electrode potential when a predetermined current density. From this table, a chain saturated hydrocarbon dinitrile compound having a nitrile group bonded to both ends of the chain saturated hydrocarbon compound, a chain ether nitrile compound having a nitrile group bonded to at least one of the ends of the chain ether compound, and cyano It can be seen that the potential window widens in the positive direction when at least one nitrile compound of acetic acid ester and at least one of cyclic carbonate, cyclic ester and chain carbonate are contained.

Figure 0005287352
Figure 0005287352

<ニトリル添加量の影響>
本発明の電解液におけるニトリルの添加量の影響を調べるため、エチレンカーボネート:ジメチルカーボネート=1:1(容量比)の混合溶媒に、所定量のセバコニトリルを添加し、電位電流曲線を測定した。なお、電解質はLiPFを1Mとなるように加えた(ただし、セバコニトリル100容量%の場合には、1Mの溶解は困難であったため0.1Mとした)。結果を図14に示す。この図から、セバコニトリルの添加量は、1容量%でも電位窓を広げる効果があり、添加量が増すほど電位窓は高電位方向に広がることが分かった。ただし、セバコニトリル100容量%では、電解質であるLiPFの溶解度が低くなるとともに、粘度も高くなることから、伝導度が低くなり、ひいては電池の内部抵抗が高くなるという問題が生ずる。このため、リチウム電池用の電解液としては好ましいセバコニトリルの添加量は、1容量%以上100容量%未満であり、より好ましくは5容量%以上90容量%未満、最も好ましくは30容量%以上70容量%未満である。
<Influence of nitrile addition amount>
In order to examine the influence of the addition amount of nitrile in the electrolytic solution of the present invention, a predetermined amount of sebacononitrile was added to a mixed solvent of ethylene carbonate: dimethyl carbonate = 1: 1 (volume ratio), and a potential-current curve was measured. Incidentally, the electrolyte was added LiPF 6 as a 1M (However, in the case of sebaconitrile 100% by volume, it was 0.1M for dissolution of 1M was difficult). The results are shown in FIG. From this figure, it was found that the amount of sebacononitrile added had the effect of expanding the potential window even at 1% by volume, and the potential window expanded in the higher potential direction as the amount added increased. However, when 100% by volume of sebacononitrile is used, the solubility of LiPF 6 that is an electrolyte is lowered and the viscosity is also increased. Therefore, there is a problem that the conductivity is lowered and the internal resistance of the battery is increased. For this reason, the preferable amount of sebacononitrile added as an electrolyte for a lithium battery is 1% by volume or more and less than 100% by volume, more preferably 5% by volume or more and less than 90% by volume, and most preferably 30% by volume or more and 70% by volume. %.

以上のように、実施例の電解液についての電位−電流曲線では、有機溶媒にニトリル化合物を加えることにより、電位窓が正の方向に大きく広がることが分かった。上記実施例の電位−電流曲線の測定においては、前述したように、正側及び負側に数回スキャンさせた後、自然電位から正方向、あるいは負方向に5mV/秒の速度で電位の掃引を行い、電位−電流曲線を測定している。この測定前の数回の電位のスキャンにおいては、2回以降において電位窓が広がっており、このことから、本発明の電解液中で正方向に電位掃引することにより、電位窓の広い電極を製造できることが分かる。   As described above, in the potential-current curve for the electrolytic solution of the example, it was found that the potential window greatly expanded in the positive direction by adding the nitrile compound to the organic solvent. In the measurement of the potential-current curve of the above example, as described above, after scanning several times on the positive side and the negative side, the potential is swept at a rate of 5 mV / sec from the natural potential in the positive direction or the negative direction. And the potential-current curve is measured. In the potential scan several times before this measurement, the potential window spreads after the second time. Therefore, by sweeping the potential in the positive direction in the electrolytic solution of the present invention, an electrode having a wide potential window is formed. It turns out that it can manufacture.

以上より、下記の事項を開示する。
(1) ニトリル化合物を含む有機溶媒中に電極を浸漬する浸漬工程と、
前記浸漬工程後、前記電極を前記ニトリル化合物を含まない前記有機溶媒のみの液中に浸漬したときに印加可能な電位よりも高い電位を付与する正電圧付与工程と、を含むことを特徴とする電極の処理方法。
(2) 前記高い電位は(Li/Li+)参照電極に対して5.2Vを超える、好ましくは6.0V以上であることを特徴とする(1)の電極の処理方法。
(3) 前記ニトリル化合物は鎖式飽和炭化水素化合物の両末端にニトリル基が結合した鎖式飽和炭化水素ジニトリル化合物、鎖式エーテル化合物の末端の少なくとも一つにニトリル基が結合した鎖式エーテルニトリル化合物及びシアノ酢酸エステルのうち少なくとも一つであり、
前記電極はカーボンからなる、ことを特徴とする(2)に記載の電極の処理方法。
(4) 鎖式飽和炭化水素化合物の両末端にニトリル基が結合した鎖式飽和炭化水素ジニトリル化合物、鎖式エーテル化合物の末端の少なくとも一つにニトリル基が結合した鎖式エーテルニトリル化合物及びシアノ酢酸エステルのうち少なくとも一つであるニトリル化合物を含む有機溶媒中に電極を浸漬する浸漬工程と、
前記浸漬工程後、前記電極に正電圧を付与する正電圧付与工程と、を含むことを特徴とする電極の処理方法。
From the above, the following matters are disclosed.
(1) an immersion step of immersing the electrode in an organic solvent containing a nitrile compound;
And a positive voltage applying step for applying a potential higher than the potential that can be applied when the electrode is immersed in a liquid containing only the organic solvent that does not contain the nitrile compound after the immersion step. Electrode processing method.
(2) The method for treating an electrode according to (1), wherein the high potential is more than 5.2 V, preferably 6.0 V or more with respect to the (Li / Li + ) reference electrode.
(3) The nitrile compound is a chain saturated hydrocarbon dinitrile compound in which a nitrile group is bonded to both ends of a chain saturated hydrocarbon compound, or a chain ether nitrile in which a nitrile group is bonded to at least one end of a chain ether compound. At least one of a compound and a cyanoacetic acid ester,
The electrode processing method according to (2), wherein the electrode is made of carbon.
(4) A chain saturated hydrocarbon dinitrile compound having a nitrile group bonded to both ends of a chain saturated hydrocarbon compound, a chain ether nitrile compound having a nitrile group bonded to at least one terminal of the chain ether compound, and cyanoacetic acid An immersion step of immersing the electrode in an organic solvent containing a nitrile compound that is at least one of the esters;
And a positive voltage applying step of applying a positive voltage to the electrode after the immersion step.

<電池特性の測定>
本発明のリチウムイオン電池用電解液の電池としての性能を評価するため、リチウム電池用陰極及びリチウム電池用正極を用いた電位−電流曲線を測定した。
すなわち、上記実施例41のリチウムイオン電池用電解液(すなわち、容量比でEC:DMC:セバコニトリル=25:25:50,リチウム塩としてLiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)を1.0mol/L)を用い、作用極にリチウム電池用陰極及びリチウム電池用陽極を用いて、リチウム吸蔵放出の電位−電流曲線を測定した。リチウム電池用陰極としてはLiTiO1を用い、リチウム電池用正極としてはLiCoO及びLiCoPOを用いた。測定にはポテンシオガルバノスタットを用いた。また、参照電極は(Ag/Ag+)を用いた。測定にあたっては、正側及び負側に数回スキャンさせた後、自然電位から正方向、あるいは負方向に0.5mV/秒の速度で電位の掃引を行い、電位−電流曲線を測定した。
<Measurement of battery characteristics>
In order to evaluate the performance of the electrolyte solution for lithium ion batteries of the present invention as a battery, a potential-current curve was measured using a cathode for a lithium battery and a cathode for a lithium battery.
That is, the electrolyte solution for lithium ion batteries of Example 41 (that is, EC: DMC: sebacononitrile = 25: 25: 50 by volume ratio, LiTFSI (lithium bis (trifluoromethanesulfonyl) imide) as a lithium salt was 1.0 mol / L), and a lithium battery cathode and a lithium battery anode were used as working electrodes, and a potential-current curve of lithium occlusion / release was measured. The cathode for a lithium battery using Li 4 Ti 5 O1 2, as a positive electrode for a lithium battery using LiCoO 2 and LiCoPO 4. A potentiogalvanostat was used for the measurement. Further, (Ag / Ag + ) was used as the reference electrode. In the measurement, after scanning several times on the positive side and the negative side, the potential was swept from the natural potential in the positive direction or in the negative direction at a speed of 0.5 mV / sec, and the potential-current curve was measured.

その結果、図15に示すように、リチウム電池用陰極としてのLiTi12、リチウム電池用正極としてのLiCoO及びLiCoPOのいずれの電極においても、リチウム(0)とリチウムイオンとの間での酸化還元に伴うほぼ可逆的な電流が観測された。この結果から、実施例4のリチウムイオン電池用電解液を用いることにより、リチウム(0)−リチウムイオン間の円滑な充放電が可能であることが分かった。 As a result, as shown in FIG. 15, Li 4 Ti 5 O 12 as the cathode for the lithium battery, LiCoO 2 and LiCoPO 4 as the cathode for the lithium battery, both of lithium (0) and lithium ions A nearly reversible current associated with redox was observed. From this result, it was found that by using the lithium ion battery electrolyte of Example 4, smooth charge / discharge between lithium (0) and lithium ions was possible.

この発明は、上記発明の実施形態の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiment of the invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

実施例1及び比較例1の電位−電流曲線である。2 is a potential-current curve of Example 1 and Comparative Example 1. FIG. 実施例2〜9及び比較例1の電位−電流曲線である。It is the electric potential-current curve of Examples 2-9 and Comparative Example 1. 比較例1の電位−電流曲線である。6 is a potential-current curve of Comparative Example 1. 実施例10〜17及び比較例2の電位−電流曲線である。It is an electric potential-current curve of Examples 10-17 and Comparative Example 2. 実施例18〜25及び比較例3の電位−電流曲線である。It is an electric potential-current curve of Examples 18-25 and Comparative Example 3. 実施例26〜31及び比較例4の電位−電流曲線である。It is an electric potential-current curve of Examples 26-31 and Comparative Example 4. 実施例32、33及び比較例5の電位−電流曲線である。It is an electric potential-current curve of Examples 32 and 33 and Comparative Example 5. 実施例34〜36及び比較例6の電位−電流曲線である。It is an electric potential-current curve of Examples 34-36 and Comparative Example 6. 実施例37〜39及び比較例7の電位−電流曲線である。It is an electric potential-current curve of Examples 37-39 and Comparative Example 7. 実施例41〜45及び比較例1の電位−電流曲線である。4 is a potential-current curve of Examples 41 to 45 and Comparative Example 1. FIG. 実施例45及び比較例8の電位−電流曲線である。10 is a potential-current curve of Example 45 and Comparative Example 8. FIG. 実施例46及び比較例8の電位−電流曲線である。It is an electric potential-current curve of Example 46 and Comparative Example 8. 実施例47及び比較例1の電位−電流曲線である。It is an electric potential-current curve of Example 47 and Comparative Example 1. エチレンカーボネート:ジメチルカーボネート=1:1とし、さらにセバコニトリルを所定量添加した混合溶媒における電位−電流曲線である。It is a potential-current curve in a mixed solvent in which ethylene carbonate: dimethyl carbonate = 1: 1 and a predetermined amount of sebacononitrile was added. 実施例41のリチウムイオン電池用電解液を用いたリチウム吸蔵放出の電位−電流曲線である。42 is a potential-current curve of lithium occlusion / release using the lithium ion battery electrolyte of Example 41. FIG.

Claims (3)

鎖式飽和炭化水素化合物の両末端にニトリル基が結合した鎖式飽和炭化水素ジニトリル化合物、鎖式エーテル化合物の末端の少なくとも一つにニトリル基が結合した鎖式エーテルニトリル化合物及びシアノ酢酸エステルのうち少なくとも一つのニトリル化合物を50容量%以上含む有機溶媒と、該有機溶媒に溶解されたリチウム塩とを備えたリチウムイオン電池用電解液であって、
前記リチウム塩としてLiPF、LiBF、LiBETIのうち少なくとも一種が全体として1mol/L以上溶解しているか、或いは前記リチウム塩としてLiPF、LiBF、LiBETIのうち少なくとも一種及びLiTFSIが溶解しており該LiTFSIの濃度は1mol/L以上とされており、
前記有機溶媒には環状カーボネート、環状エステル及び鎖状カーボネートのうち少なくとも一つが含まれているリチウムイオン電池用電解液。
Of chain saturated hydrocarbon dinitrile compounds having nitrile groups bonded to both ends of the chain saturated hydrocarbon compound, chain ether nitrile compounds having nitrile groups bonded to at least one of the ends of the chain ether compound, and cyanoacetates An electrolyte for a lithium ion battery, comprising: an organic solvent containing at least 50% by volume of at least one nitrile compound; and a lithium salt dissolved in the organic solvent,
As the lithium salt, at least one of LiPF 6 , LiBF 4 , and LiBETI is dissolved as a whole in an amount of 1 mol / L or more, or as the lithium salt, at least one of LiPF 6 , LiBF 4 , and LiBETI and LiTFSI are dissolved. The concentration of LiTFSI is 1 mol / L or more,
The electrolyte solution for a lithium ion battery, wherein the organic solvent contains at least one of a cyclic carbonate, a cyclic ester, and a chain carbonate.
充電のための電位が5.2V(対Li/Li+)を超えた領域で使用するための請求項1に記載のリチウムイオン電池用電解液。 The electrolyte for a lithium ion battery according to claim 1, for use in a region where the potential for charging exceeds 5.2 V (vs. Li / Li + ). 前記ニトリル化合物としてスクシノニトリル、グルタロニトリル、アジポニトリル、セバコニトリル、ドデカンジニトリル、2−メチルグルタロニトリル、シアノ酢酸メチル、シアノ酢酸エチル、シアノ酢酸プロピル及びシアノ酢酸ブチルの少なくとも1つが含まれている請求項1に記載のリチウムイオン電池用電解液。   The nitrile compound includes at least one of succinonitrile, glutaronitrile, adiponitrile, sebaconitrile, dodecandinitrile, 2-methylglutaronitrile, methyl cyanoacetate, ethyl cyanoacetate, propyl cyanoacetate and butyl cyanoacetate. The electrolyte solution for lithium ion batteries according to claim 1.
JP2009046955A 2008-02-29 2009-02-27 Electrolyte for lithium ion battery Active JP5287352B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009046955A JP5287352B2 (en) 2008-02-29 2009-02-27 Electrolyte for lithium ion battery

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
JP2008050964 2008-02-29
JP2008050964 2008-02-29
JP2008322910 2008-12-18
JP2008322910 2008-12-18
JP2009046955A JP5287352B2 (en) 2008-02-29 2009-02-27 Electrolyte for lithium ion battery

Publications (2)

Publication Number Publication Date
JP2010165653A JP2010165653A (en) 2010-07-29
JP5287352B2 true JP5287352B2 (en) 2013-09-11

Family

ID=42581659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009046955A Active JP5287352B2 (en) 2008-02-29 2009-02-27 Electrolyte for lithium ion battery

Country Status (1)

Country Link
JP (1) JP5287352B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467202A (en) * 2019-09-06 2021-03-09 张家港市国泰华荣化工新材料有限公司 Non-aqueous electrolyte and lithium ion battery

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2650958A4 (en) * 2010-12-06 2015-03-18 Ube Industries Nonaqueous electrolyte and electrochemical element using same
JP6280643B2 (en) * 2013-09-30 2018-02-14 エルジー・ケム・リミテッド Lithium secondary battery
WO2015088051A1 (en) * 2013-12-09 2015-06-18 에스케이이노베이션 주식회사 Electrolyte for lithium secondary battery and lithium secondary battery comprising same
WO2015163139A1 (en) * 2014-04-23 2015-10-29 ソニー株式会社 Electrolyte for secondary cell, secondary cell, cell pack, electric vehicle, power storage system, electric tool, and electronic device
US20160118644A1 (en) * 2014-10-24 2016-04-28 Semiconductor Energy Laboratory Co., Ltd. Lithium-ion storage battery and fabricating method thereof
WO2023136985A1 (en) * 2022-01-13 2023-07-20 Pacific Industrial Development Corporation Low temperature electrolyte for safe batteries

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3946825B2 (en) * 1997-09-10 2007-07-18 サンスター技研株式会社 Method for producing cyanoethyl compound for electrolyte of lithium or lithium ion secondary battery
JPH11111333A (en) * 1997-10-02 1999-04-23 Sunstar Eng Inc Electrolyte for lithium or lithium ion secondary battery
TWI302760B (en) * 2004-01-15 2008-11-01 Lg Chemical Ltd Electrochemical device comprising aliphatic nitrile compound
JP4812067B2 (en) * 2004-03-16 2011-11-09 日立マクセルエナジー株式会社 Organic electrolyte and organic electrolyte battery using the same
KR101191636B1 (en) * 2005-02-28 2012-10-18 삼성에스디아이 주식회사 Electrolyte for lithium battery and lithium battery comprising same
TWI341603B (en) * 2006-02-15 2011-05-01 Lg Chemical Ltd Non-aqueous electrolyte and electrochemical device with an improved safety
CN103647108A (en) * 2006-06-02 2014-03-19 三菱化学株式会社 Nonaqueous electrolyte solution and nonaqueous electrolyte battery

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112467202A (en) * 2019-09-06 2021-03-09 张家港市国泰华荣化工新材料有限公司 Non-aqueous electrolyte and lithium ion battery

Also Published As

Publication number Publication date
JP2010165653A (en) 2010-07-29

Similar Documents

Publication Publication Date Title
Abu-Lebdeh et al. New electrolytes based on glutaronitrile for high energy/power Li-ion batteries
JP5287352B2 (en) Electrolyte for lithium ion battery
CN105098246B (en) High voltage electrolytes and lithium ion battery
Borgel et al. On the application of ionic liquids for rechargeable Li batteries: High voltage systems
JP5672464B2 (en) Secondary battery and manufacturing method thereof
JP5668913B2 (en) Lithium ion battery
JP2009158240A (en) Electrolytic solution for lithium ion battery
CN106058315B (en) Lithium ion battery additive, battery containing additive and preparation method
CN104766995A (en) Electrolyte additive and application thereof in lithium ion battery
CN104852087A (en) Electrolyte additive and lithium ion battery using the same
JP2009503769A5 (en)
JP5375580B2 (en) Electrolyte for sodium ion battery
KR20170063639A (en) Organosilicon-containing electrolyte compositions having enhanced electrochemical and thermal stability
JP2011154783A (en) Method of manufacturing electrolyte for electrochemical device
CN1317160A (en) Non-aqueous electrolyte composition for batteries
CN105140558A (en) High-pressure electrolyte of lithium ion battery and preparation method thereof
JP5402363B2 (en) Method for manufacturing electrode for lithium ion battery and electrode for lithium ion battery
WO2017102550A1 (en) Non-aqueous electrolytes for lithium-ion batteries comprising asymmetric borates
JP2011165392A (en) Positive electrode active material, manufacturing method of positive electrode active material, and alkaline metal ion battery
JP2011091019A (en) Collector for positive electrode of secondary battery, collector for negative electrode of secondary battery, positive electrode of secondary battery, negative electrode of secondary battery, and secondary battery
JP2011071083A (en) Lithium ion battery
Di Censo et al. Non-corrosive electrolyte compositions containing perfluoroalkylsulfonyl imides for high power Li-ion batteries
JP4281030B2 (en) Non-aqueous electrolyte battery
CN111129584A (en) Non-aqueous electrolyte and lithium ion battery thereof
JP2010097934A (en) Positive electrode for lithium-ion battery and lithium-ion battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110316

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130226

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130410

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5287352

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250