JP5287242B2 - Extra fine fiber and method for producing the same - Google Patents

Extra fine fiber and method for producing the same Download PDF

Info

Publication number
JP5287242B2
JP5287242B2 JP2008518232A JP2008518232A JP5287242B2 JP 5287242 B2 JP5287242 B2 JP 5287242B2 JP 2008518232 A JP2008518232 A JP 2008518232A JP 2008518232 A JP2008518232 A JP 2008518232A JP 5287242 B2 JP5287242 B2 JP 5287242B2
Authority
JP
Japan
Prior art keywords
resin
fiber
ultrafine fiber
beads
ultrafine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008518232A
Other languages
Japanese (ja)
Other versions
JPWO2008108392A1 (en
Inventor
佳奈 松山
雅彦 中森
吉拡 鶴野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyobo Co Ltd
Original Assignee
Toyobo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyobo Co Ltd filed Critical Toyobo Co Ltd
Priority to JP2008518232A priority Critical patent/JP5287242B2/en
Publication of JPWO2008108392A1 publication Critical patent/JPWO2008108392A1/en
Application granted granted Critical
Publication of JP5287242B2 publication Critical patent/JP5287242B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F1/00General methods for the manufacture of artificial filaments or the like
    • D01F1/02Addition of substances to the spinning solution or to the melt
    • D01F1/10Other agents for modifying properties
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01DMECHANICAL METHODS OR APPARATUS IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS
    • D01D5/00Formation of filaments, threads, or the like
    • D01D5/0007Electro-spinning
    • D01D5/0015Electro-spinning characterised by the initial state of the material
    • D01D5/003Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion
    • D01D5/0038Electro-spinning characterised by the initial state of the material the material being a polymer solution or dispersion the fibre formed by solvent evaporation, i.e. dry electro-spinning
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/02Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D01F6/04Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from homopolymers obtained by reactions only involving carbon-to-carbon unsaturated bonds from polyolefins
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/44Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/54Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds as major constituent with other polymers or low-molecular-weight compounds of polymers of unsaturated nitriles
    • DTEXTILES; PAPER
    • D01NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
    • D01FCHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
    • D01F6/00Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof
    • D01F6/88Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds
    • D01F6/94Monocomponent artificial filaments or the like of synthetic polymers; Manufacture thereof from mixtures of polycondensation products as major constituent with other polymers or low-molecular-weight compounds of other polycondensation products
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/40Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties
    • D04H1/42Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres from fleeces or layers composed of fibres without existing or potential cohesive properties characterised by the use of certain kinds of fibres insofar as this use has no preponderant influence on the consolidation of the fleece
    • DTEXTILES; PAPER
    • D04BRAIDING; LACE-MAKING; KNITTING; TRIMMINGS; NON-WOVEN FABRICS
    • D04HMAKING TEXTILE FABRICS, e.g. FROM FIBRES OR FILAMENTARY MATERIAL; FABRICS MADE BY SUCH PROCESSES OR APPARATUS, e.g. FELTS, NON-WOVEN FABRICS; COTTON-WOOL; WADDING ; NON-WOVEN FABRICS FROM STAPLE FIBRES, FILAMENTS OR YARNS, BONDED WITH AT LEAST ONE WEB-LIKE MATERIAL DURING THEIR CONSOLIDATION
    • D04H1/00Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres
    • D04H1/70Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres
    • D04H1/72Non-woven fabrics formed wholly or mainly of staple fibres or like relatively short fibres characterised by the method of forming fleeces or layers, e.g. reorientation of fibres the fibres being randomly arranged

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Artificial Filaments (AREA)
  • Spinning Methods And Devices For Manufacturing Artificial Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Description

本発明は、極細繊維およびその製造方法に関するものであり、更に詳しくは、極めて低い繊度であっても、高い品位の繊維集合体が得られる極細繊維及びその製造方法に関する。   The present invention relates to an ultrafine fiber and a method for producing the same, and more specifically, relates to an ultrafine fiber and a method for producing the same, which can obtain a high-quality fiber assembly even with an extremely low fineness.

極細繊維は、汎用繊維と比較して比表面積が大きい等の特徴を有するため、軽量で捕集効率を高めることができる、柔軟である等の利点があり、医療分野や高性能フィルター部材などの分野で応用が期待されている。かかる極細繊維を製造する方法の一つとして、静電紡糸法が知られており、かかる静電紡糸法において繊維径を小さくするためには、溶液濃度を下げる、或いは、分子量を小さくする必要がある。しかしながら、溶液濃度を下げると溶媒の蒸発が遅れ、繊維集合体として捕集する際、フィルム状の形態になるため、溶媒濃度を下げることによる細繊度化には限界があった。   Extra-fine fibers have features such as a large specific surface area compared to general-purpose fibers, so they have advantages such as being lightweight, increasing the collection efficiency, and being flexible, such as in the medical field and high-performance filter members. Applications are expected in the field. As one of the methods for producing such ultrafine fibers, an electrospinning method is known. In order to reduce the fiber diameter in the electrospinning method, it is necessary to reduce the solution concentration or the molecular weight. is there. However, when the solution concentration is lowered, the evaporation of the solvent is delayed, and when it is collected as a fiber aggregate, it becomes a film-like form. Therefore, there is a limit to the fineness by lowering the solvent concentration.

また、ポリフメタフェニレンイソフタルアミドを主成分とした溶液に、アルカリ金属塩を溶液に添加することにより、紡糸状態を安定させる静電紡糸方法が開示されている(例えば特許文献1参照)。しかしながら、かかる方法であっても、細繊度化を進めると、ビーズと言われる繊維中の紡錘状の欠点(太細ムラ)の発生は避けえず、品位が劣るものとなり、細繊度で高品位の繊維集合体が得られていないのが現状である。
特開2006−336173号公報
Further, an electrostatic spinning method is disclosed in which a spinning state is stabilized by adding an alkali metal salt to a solution containing polyphmetaphenylene isophthalamide as a main component (for example, see Patent Document 1). However, even with such a method, if finer processing is performed, the occurrence of spindle-shaped defects (thick unevenness) in the fibers called beads is unavoidable, resulting in poor quality, fineness and high quality. The present condition is that the fiber assembly of this is not obtained.
JP 2006-336173 A

本発明は、上記従来技術の課題を背景になされたもので、極細繊維であってもビーズ発生が殆ど無く、極めて高い品位の繊維集合体が得られる極細繊維及びその製造方法を提供することを課題とするものである。   The present invention has been made against the background of the above-described prior art, and provides an ultrafine fiber that can produce an extremely high-quality fiber assembly with almost no bead generation even with an ultrafine fiber, and a method for producing the same. It is to be an issue.

本発明者らは上記課題を解決するため、鋭意研究した結果、遂に本発明を完成するに至った。即ち本発明は、(1)公定水分率0.1%〜5.0%の樹脂からなり、該樹脂に対し0.1〜10%の塩を含んでいることを特徴とする平均繊維径0.01〜1μmの極細繊維、(2)前記樹脂が、ポリエチレン、ポリアミドイミド、ポリイミド、ポリアクリロニトリル、ポリベンゾオキサゾール、ポリイミドベンゾオキサゾール、ポリプロピレンから選択される1種又は2種以上の樹脂を主成分とすることを特徴とする(1)記載の極細繊維、(3)N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドンから選択される溶媒を少なくとも1種以上用いて静電紡糸法により得られたことを特徴とする(1)又は(2)に記載の極細繊維、(4)樹脂と有機溶媒とからなる溶液に塩を添加した溶液を調製し、次いで得られた溶液を静電紡糸法により紡糸し、(1)〜(3)いずれかに記載の極細繊維を得ることを特徴とする極細繊維の製造方法、(5)(1)〜(3)いずれかの極細繊維から成る不織布、である。 As a result of intensive studies to solve the above problems, the present inventors have finally completed the present invention. That is, the present invention comprises (1) a resin having an official moisture content of 0.1% to 5.0%, and contains 0.1 to 10% of salt with respect to the resin. .01-1 μm ultrafine fiber, (2) the resin is composed mainly of one or more resins selected from polyethylene, polyamideimide, polyimide, polyacrylonitrile, polybenzoxazole, polyimide benzoxazole, and polypropylene (1) the ultrafine fiber according to (1), (3) at least one solvent selected from N, N-dimethylacetamide, N, N-dimethylformamide and N-methyl-2-pyrrolidone An ultrafine fiber according to (1) or (2) obtained by an electrospinning method, and (4) a solution obtained by adding salt to a solution comprising a resin and an organic solvent. Then, the obtained solution is spun by an electrostatic spinning method to obtain the ultrafine fiber according to any one of (1) to (3), (5) (1) to (3) A non-woven fabric made of any one of ultrafine fibers.

本発明の極細繊維、その製造方法は、極細繊維を繊維集合体としたとき、広い視野に渡って均一な微細繊維および微細繊維集合体を提供することが可能であり、例えば繊維径を200nm以下として、10000μm当たりビーズが20〜25個以下という極めて品位の優れた製品が得られるという利点がある。The ultrafine fiber of the present invention and the production method thereof can provide a uniform fine fiber and a fine fiber aggregate over a wide field of view when the ultrafine fiber is a fiber aggregate. For example, the fiber diameter is 200 nm or less. As such, there is an advantage that a product having an extremely high quality of 20 to 25 beads per 10,000 μm 2 can be obtained.

以下本発明を詳細に説明する。
本発明の極細繊維は、公定水分率0.1〜5.0%の樹脂からなり、該樹脂に対し0.1〜10%の塩を含んでいることが好ましい。かかる構成を採用することにより、ビーズが少ない高品位の繊維集合体が得られることを本発明者等は知見したものである。かかる構成を採用することにより何故ビーズ発生を抑止できるか定かではないが、以下の通り考えられる。すなわち、ビーズ発生の要因は、紡糸ノズルから紡出された溶液がターゲットに向かって延伸される際、何らかの要因で延伸不十分な部分が発生すると考えられるところ、特定の樹脂、つまり公定水分率が0.1%〜5.0%であれば、一般に水素結合が少なく、紡糸中に低濃度となっても延伸し易い上、荷電し易く、更に塩を加えることによるクーロン斥力増加に伴って延伸応力が強くなり、これらの相乗効果によって、延伸不十分な部分つまりビーズが減少すると考えている。より好ましい樹脂の公定水分率及び、塩の濃度はそれぞれ、公定水分率0.2%〜4.5%、塩含有量0.2%〜10%、より好ましくは公定水分率0.25%〜4.3%、塩含有率0.25%〜9%、更に好ましくは公定水分率0.3%〜4.0%、塩含有量0.3〜8%である。
The present invention will be described in detail below.
The ultrafine fiber of the present invention is made of a resin having an official moisture content of 0.1 to 5.0%, and preferably contains a salt of 0.1 to 10% with respect to the resin. The present inventors have found that by adopting such a configuration, a high-quality fiber assembly with few beads can be obtained. Although it is not certain why the occurrence of beads can be suppressed by adopting such a configuration, it is considered as follows. In other words, the cause of the bead generation is that when the solution spun from the spinning nozzle is stretched toward the target, it is considered that an insufficiently stretched part is generated for some reason. If it is 0.1% to 5.0%, generally there are few hydrogen bonds, it is easy to stretch even if it becomes a low concentration during spinning, it is easy to be charged, and it is stretched along with the increase of coulomb repulsion by adding salt. It is believed that the stress becomes stronger, and these synergistic effects reduce the insufficiently stretched portions, that is, beads. More preferably, the official moisture content of the resin and the salt concentration are 0.2% to 4.5% official moisture content, 0.2% to 10% salt content, and more preferably 0.25% to official moisture content, respectively. 4.3%, salt content 0.25% to 9%, more preferably official moisture content 0.3% to 4.0% and salt content 0.3 to 8%.

本発明の極細繊維は、平均繊維径0.01〜1μmであることが好ましい。かかる範囲であれば、種々の用途で極細繊維として高い機能を発揮し、且つ、取り扱い性、強度的にも満足できるからである。より好ましくは0.05〜0.8μm、更に好ましくは0.7〜0.2μmである。 The ultrafine fiber of the present invention preferably has an average fiber diameter of 0.01 to 1 μm. Within such a range, it is possible to exhibit high functions as ultrafine fibers for various applications and to satisfy the handling and strength. More preferably, it is 0.05-0.8 micrometer, More preferably, it is 0.7-0.2 micrometer.

本発明の極細繊維に用いる樹脂は、上記公定水分率のものであれば特に限定されるものではないが、例えば、ポリアミドイミド、ポリイミド、ポリアクリロニトリル、ポリベンゾオキサゾール、ポリイミドベンゾオキサゾール、ポリ乳酸、ポリエチレン、ポリプロピレン、ポリ酢酸ビニル、ポリ安息香酸ビニル、ポリウレタン、ポリヒドロキシブチレート、ポリカーボネート、ポリメタクリル酸メチル、ポリアセタール、ポリエチレンテレフタレート、ポリブチレンテレフタラート、ポリビニルイソブチルエーテル、ポリメチルビニルケトン、ポリアジピン酸ヘキサメチレン、ポリフェニレンスルフィドなど、上述の樹脂から選択される1種又は2種以上の樹脂を主成分とするものであることが好ましい。これらの樹脂であれば、上述のとおり静電紡糸における延伸性に優れ、塩の添加によってビーズが少ない、高品位の繊維集合体が得られるからである。 The resin used for the ultrafine fiber of the present invention is not particularly limited as long as it has the above-mentioned official moisture content. For example, polyamideimide, polyimide, polyacrylonitrile, polybenzoxazole, polyimide benzoxazole, polylactic acid, polyethylene , Polypropylene, polyvinyl acetate, polyvinyl benzoate, polyurethane, polyhydroxybutyrate, polycarbonate, polymethyl methacrylate, polyacetal, polyethylene terephthalate, polybutylene terephthalate, polyvinyl isobutyl ether, polymethyl vinyl ketone, hexamethylene polyadipate, It is preferable that the main component is one or two or more resins selected from the above-mentioned resins such as polyphenylene sulfide. This is because these resins are excellent in stretchability in electrospinning as described above, and a high-quality fiber assembly with few beads can be obtained by adding a salt.

本発明の極細繊維に用いる塩は、溶液に溶解していることが好ましく、使用する溶媒に溶解するものであれば得に限定されるものでないが、例えば、塩化リチウム、塩化ナトリウム、塩化カリウム、塩化カルシウム、塩化アンモニウム、リン酸ナトリウム、リン酸カルシウム、リン酸二水素ナトリウム
、亜硝酸ナトリウム、硝酸アルミニウム、硝酸カリ
ウム、硝酸カルシウム、硝酸ナトリウム、酢酸カルシウム、酢酸ナトリウム、炭酸カリウム、炭酸カルシウム、炭酸ナトリウム、硫酸アルミニウム、硫酸アンモニウム、硫酸カリウム、硫酸カルシウム、硫酸ナトリウム、硫酸バリウムなどから選択される1種又は2種以上の塩であることが好ましい。これらの塩であれば、十分な延伸性を確保することが可能となり、上述の樹脂において、ビーズが少ない、高品位の繊維集合体がえら得るからである。溶液に塩が溶解していない場合、析出した塩が異物となり繊維中の欠点となるため、高品位の極細繊維集合体を得ることができない。また、上記のような無機塩だけでなく、ジラウリルジメチルアンモニウムブロミド、ジメチルジミリスチルアンモニウムブロミド、ジメチルジステアリルアンモニウムクロリド、ジメチルジパルミチルアンモニウムブロミドのような四級アンモニウム塩、1−ブチルー3メチルイミダゾリウムクロリド、1−エチル−3−メチルイミダゾリウムヘキサフルオロリン酸のような1−アルキル−3−メチルイミダゾリウム塩、N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムテトラフルオロほう酸、N,N−ジエチル−N−メチル−N−(2−メトキシエチル)アンモニウムビストリフルオロメタンスルフォニルイミドのような、脂肪族系イオン性液体なども使用することが可能である。
The salt used for the ultrafine fiber of the present invention is preferably dissolved in a solution, and is not particularly limited as long as it is soluble in the solvent used. For example, lithium chloride, sodium chloride, potassium chloride, Calcium chloride, ammonium chloride, sodium phosphate, calcium phosphate, sodium dihydrogen phosphate, sodium nitrite, aluminum nitrate, potassium nitrate, calcium nitrate, sodium nitrate, calcium acetate, sodium acetate, potassium carbonate, calcium carbonate, sodium carbonate, aluminum sulfate One or more salts selected from ammonium sulfate, potassium sulfate, calcium sulfate, sodium sulfate, barium sulfate and the like are preferable. If these salts are used, sufficient stretchability can be secured, and a high-quality fiber assembly with few beads can be obtained in the above-described resin. When the salt is not dissolved in the solution, the deposited salt becomes a foreign substance and becomes a defect in the fiber, so that a high-quality ultrafine fiber aggregate cannot be obtained. In addition to the above inorganic salts, quaternary ammonium salts such as dilauryldimethylammonium bromide, dimethyldimyristylammonium bromide, dimethyldistearylammonium chloride, dimethyldipalmitylammonium bromide, 1-butyl-3-methylimidazo 1-alkyl-3-methylimidazolium salts such as 1-ethyl-3-methylimidazolium hexafluorophosphate, N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium tetra Aliphatic ionic liquids such as fluoroboric acid and N, N-diethyl-N-methyl-N- (2-methoxyethyl) ammonium bistrifluoromethanesulfonylimide can also be used.

本発明の極細繊維は、アセトン、クロロホルム、エタノール、イソプロパノール、メタノール、トルエン、テトラヒドロフラン、水、ベンゼン、ベンジルアルコール、1,4−ジオキサン、プロパノール、四塩化炭素、シクロヘキサン、シクロヘキサノン、塩化メチレン、フェノール、ピリジン、トリクロロエタン、酢酸などの揮発性の高い溶媒や、N,N−ジメチルホルムアミド(DMF)、ジメチルスルホキシド(DMSO)、N,N−ジメチルアセトアミド(DMAc)、1−メチル−2−ピロリドン(NMP)、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、アセトニトリル、N−メチルモルホリン−N−オキシド、ブチレンカーボネート、γ−ブチロラクトン、ジエチルカーボネート、ジエチルエーテル、1,2−ジメトキシエタン、1,3−ジメチル−2−イミダゾリジノン、1,3−ジオキソラン、エチルメチルカーボネート、メチルホルマート、3−メチルオキサゾリジン−2−オン、メチルプロピオネート、2−メチルテトラヒドロフラン、スルホランなどの揮発性が相対的に低い溶媒からから選択される溶媒を少なくとも1種以上用いて静電紡糸法により得られたものであることが好ましい。これらの溶媒であれば、上述の樹脂を溶解すると同時に、上述の塩を十分に均一に溶解することができるため、本発明の極細繊維によって得られる繊維集合体の品位も向上するからである。   The ultrafine fibers of the present invention are acetone, chloroform, ethanol, isopropanol, methanol, toluene, tetrahydrofuran, water, benzene, benzyl alcohol, 1,4-dioxane, propanol, carbon tetrachloride, cyclohexane, cyclohexanone, methylene chloride, phenol, pyridine. , A highly volatile solvent such as trichloroethane, acetic acid, N, N-dimethylformamide (DMF), dimethyl sulfoxide (DMSO), N, N-dimethylacetamide (DMAc), 1-methyl-2-pyrrolidone (NMP), Ethylene carbonate, propylene carbonate, dimethyl carbonate, acetonitrile, N-methylmorpholine-N-oxide, butylene carbonate, γ-butyrolactone, diethyl carbonate, diethyl ether 1,2-dimethoxyethane, 1,3-dimethyl-2-imidazolidinone, 1,3-dioxolane, ethyl methyl carbonate, methyl formate, 3-methyl oxazolidine-2-one, methyl propionate, 2- It is preferably obtained by an electrospinning method using at least one solvent selected from solvents having relatively low volatility such as methyltetrahydrofuran and sulfolane. This is because these solvents can dissolve the above-mentioned resin and at the same time sufficiently dissolve the above-mentioned salt, thereby improving the quality of the fiber aggregate obtained from the ultrafine fibers of the present invention.

本発明の極細繊維は、上述の樹脂と有機溶媒とからなる溶液に塩を添加した溶液を調製し、次いで得られた溶液を静電紡糸法により紡糸して極細繊維を得る製造方法によることが好ましい。かかる製造方法を採用することにより、ビーズが少ない高い品位の繊維集合体が得られるからである。   The ultrafine fiber of the present invention is based on a production method in which a solution obtained by adding a salt to the above-described resin and organic solvent solution is prepared, and then the obtained solution is spun by an electrostatic spinning method to obtain an ultrafine fiber. preferable. This is because by adopting such a production method, a high-quality fiber assembly with few beads can be obtained.

本発明の製造方法で用いるポリマー溶液の濃度としては、固形分濃度として0.1〜30重量%が好ましく、特に好ましくは1〜25重量%である。かかる範囲であれば、溶媒の蒸発の遅れによる膜化を防ぐことができ、また細繊度の繊維を得ることができるからである。   The concentration of the polymer solution used in the production method of the present invention is preferably 0.1 to 30% by weight, particularly preferably 1 to 25% by weight as the solid content concentration. This is because within such a range, it is possible to prevent film formation due to the delay in evaporation of the solvent and to obtain fine fibers.

本発明の製造方法において、印加電圧は3〜100kVがよく、好ましくは5〜70kV、一層好ましくは5〜50kVである。なお、印加電圧の極性はプラスとマイナスのいずれであっても良い。     In the production method of the present invention, the applied voltage is preferably 3 to 100 kV, preferably 5 to 70 kV, and more preferably 5 to 50 kV. Note that the polarity of the applied voltage may be either positive or negative.

本発明の製造方法において、紡糸をする雰囲気としては、一般的には空気中で行うが、二酸化炭素などの空気よりも放電開始電圧の高い気体中で静電紡糸を行うことで、低電圧での紡糸が可能となり、コロナ放電などの異常放電を防ぐこともできる。
水がポリマーの貧溶媒である場合、ポリマーの析出が起こる場合がある。空気中の水分を低下させ、ポリマーの析出を防ぐことが好ましい。しかし、絶対湿度が2g/m以下になると、溶媒の蒸発が抑制され、得られた微細繊維集合体中に溶媒が残存し、これがポリマーを再溶解させ、膜化を招く。このため、空気中の水分は絶対湿度2〜13g/mで紡糸することが必要である。より好ましくは、3〜11g/mがよい。
In the production method of the present invention, the spinning atmosphere is generally carried out in the air, but by performing electrostatic spinning in a gas having a higher discharge starting voltage than air such as carbon dioxide, it is possible to achieve a low voltage. Spinning, and abnormal discharge such as corona discharge can be prevented.
If water is the poor solvent for the polymer, polymer precipitation may occur. It is preferable to reduce moisture in the air and prevent polymer precipitation. However, when the absolute humidity is 2 g / m 3 or less, the evaporation of the solvent is suppressed, and the solvent remains in the obtained fine fiber aggregate, which causes the polymer to be redissolved and causes film formation. For this reason, the moisture in the air needs to be spun at an absolute humidity of 2 to 13 g / m 3 . More preferably, 3 to 11 g / m 3 is preferable.

本願発明の不織布は、10000μm当たりビーズが25個以下であることが好ましい。かかる範囲であれば、製品としての価値、性能に優れるからである。例えば、エアフィルターとして用いた場合、圧力損失を低減される。より好ましくは、23個以下、更に好ましくは20個以下である。The nonwoven fabric of the present invention preferably has 25 beads or less per 10,000 μm 2 . It is because it is excellent in the value and performance as a product if it is this range. For example, when used as an air filter, pressure loss is reduced. More preferably, it is 23 or less, and still more preferably 20 or less.

以下、実施例に基づいて本発明を更に詳細に説明する。なお、実施例における各物性は以下の方法により求めたものである。 Hereinafter, the present invention will be described in more detail based on examples. In addition, each physical property in an Example is calculated | required with the following method.

[繊維径測定法]
評価するものを走査型電子顕微鏡(SEM)にて撮影を行い、5000倍または10000倍のSEM画像に映し出された多数の繊維からランダムに20本の繊維を選び、繊維径を測定する。測定した20本の繊維径の平均値を算出し、(平均)繊維径とした。
[Fiber diameter measurement method]
What is to be evaluated is photographed with a scanning electron microscope (SEM), 20 fibers are randomly selected from a large number of fibers projected on a 5000 times or 10,000 times SEM image, and the fiber diameter is measured. The average value of the measured 20 fiber diameters was calculated and defined as the (average) fiber diameter.

[ビーズ数測定法]
評価するものを走査型電子顕微鏡(SEM)にて撮影を行い、1000倍のSEM画像から、繊維径に対し、長直径が10倍以上、短直径が5倍以上のビーズの数を数える。これを評価するものに対して、ランダムに5点の測定を行い、平均値を算出し、(平均)ビーズ数とした。
[Bead count measurement method]
What is to be evaluated is photographed with a scanning electron microscope (SEM), and the number of beads having a long diameter of 10 times or more and a short diameter of 5 times or more with respect to the fiber diameter is counted from a 1000 times SEM image. With respect to what evaluates this, 5 points | pieces were measured at random, the average value was computed, and it was set as the (average) bead number.

(実施例1)
ポリアミドイミド(公定水分率2.6%)(対数粘度1.38dl/g)にN、N−ジメチルアセトアミドを加え固形分濃度を8%にした。該樹脂溶液中にポリマー重量に対し、4%の塩化リチウムを添加した。このポリアミドイミド溶液を図1に示す装置を用いて、該溶液を繊維状物質捕集電極5に20分間吐出した。紡糸ノズル2に18G(内径:0.8mm)の針を使用し、電圧は22kV、紡糸ノズル2から繊維を捕集する対向電極5までの距離は10.5cmであった。空気中の絶対湿度は9.0g/m3であった。得られた極細繊維集合体の平均繊維径は0.11μmであった。ビーズ数は12個/10000μmであった。
Example 1
N, N-dimethylacetamide was added to polyamideimide (official moisture content 2.6%) (logarithmic viscosity 1.38 dl / g) to a solid content concentration of 8%. 4% lithium chloride was added to the resin solution based on the polymer weight. The polyamideimide solution was discharged to the fibrous material collecting electrode 5 for 20 minutes using the apparatus shown in FIG. An 18 G (inner diameter: 0.8 mm) needle was used for the spinning nozzle 2, the voltage was 22 kV, and the distance from the spinning nozzle 2 to the counter electrode 5 for collecting fibers was 10.5 cm. The absolute humidity in the air was 9.0 g / m3. The average fiber diameter of the obtained ultrafine fiber aggregate was 0.11 μm. The number of beads was 12/10000 μm 2 .

(実施例2)
ポリアミドイミド(公定水分率2.6%)(対数粘度1.34dl/g)にN、N−ジメチルアセトアミドを加え固形分濃度を8%にした。該樹脂溶液中にポリマー重量に対し、4%のジメラウリルジメチルアンモニウムブロミドを添加した。このポリアミドイミド溶液を図1に示す装置を用いて、該溶液を繊維状物質捕集電極5に20分間吐出した。紡糸ノズル2に18G(内径:0.8mm)の針を使用し、電圧は18kV、紡糸ノズル2から繊維を捕集する対向電極5までの距離は10.5cmであった。空気中の絶対湿度は9.0g/m3であった。得られた極細繊維集合体の平均繊維径は0.14μmであった。ビーズ数は4個/10000μmであった。
(Example 2)
N, N-dimethylacetamide was added to polyamideimide (official moisture content 2.6%) (logarithmic viscosity 1.34 dl / g) to a solid content concentration of 8%. 4% of dimelauryldimethylammonium bromide was added to the resin solution based on the polymer weight. The polyamideimide solution was discharged to the fibrous material collecting electrode 5 for 20 minutes using the apparatus shown in FIG. An 18G (inner diameter: 0.8 mm) needle was used for the spinning nozzle 2, the voltage was 18 kV, and the distance from the spinning nozzle 2 to the counter electrode 5 for collecting fibers was 10.5 cm. The absolute humidity in the air was 9.0 g / m3. The average fiber diameter of the obtained ultrafine fiber aggregate was 0.14 μm. The number of beads was 4/10000 μm 2 .

(実施例3)
ポリアミドイミド(公定水分率2.6%)(対数粘度1.38dl/g)にN、N−ジメチルアセトアミドを加え固形分濃度を8%にした。該樹脂溶液中にポリマー重量に対し、5%の塩化リチウムを添加した。このポリアミドイミド溶液を図1に示す装置を用いて、該溶液を繊維状物質捕集電極5に20分間吐出した。紡糸ノズル2に18G(内径:0.8mm)の針を使用し、電圧は27kV、紡糸ノズル2から繊維を捕集する対向電極5までの距離は10.5cmであった。空気中の絶対湿度は9.0g/m3であった。得られた極細繊維集合体の平均繊維径は0.10μmであった。ビーズ数は15個/10000μmであった。
(Example 3)
N, N-dimethylacetamide was added to polyamideimide (official moisture content 2.6%) (logarithmic viscosity 1.38 dl / g) to a solid content concentration of 8%. 5% lithium chloride was added to the resin solution based on the polymer weight. The polyamideimide solution was discharged to the fibrous material collecting electrode 5 for 20 minutes using the apparatus shown in FIG. An 18 G (inner diameter: 0.8 mm) needle was used for the spinning nozzle 2, the voltage was 27 kV, and the distance from the spinning nozzle 2 to the counter electrode 5 for collecting fibers was 10.5 cm. The absolute humidity in the air was 9.0 g / m3. The average fiber diameter of the obtained ultrafine fiber aggregate was 0.10 μm. The number of beads was 15/10000 μm 2 .

(実施例4)
ウルテム(ゼネラルエレクトリックプラスチック)(公定水分率1.25%)にN、N−ジメチルアセトアミドを加え固形分濃度を10%にした。該樹脂溶液中にポリマー重量に対し、5%の塩化リチウムを添加した。このポリイミド溶液を図1に示す装置を用いて、該溶液を繊維状物質捕集電極5に20分間吐出した。紡糸ノズル2に18G(内径:0.8mm)の針を使用し、電圧は23kV、紡糸ノズル2から繊維を捕集する対向電極5までの距離は10.5cmであった。空気中の絶対湿度は9.0g/m3であった。得られた極細繊維集合体の平均繊維径は0.12μmであった。ビーズ数は12個/10000μmであった。
Example 4
N, N-dimethylacetamide was added to Ultem (General Electric Plastic) (official moisture content 1.25%) to a solid content concentration of 10%. 5% lithium chloride was added to the resin solution based on the polymer weight. The polyimide solution was discharged to the fibrous material collecting electrode 5 for 20 minutes using the apparatus shown in FIG. An 18 G (inner diameter: 0.8 mm) needle was used for the spinning nozzle 2, the voltage was 23 kV, and the distance from the spinning nozzle 2 to the counter electrode 5 for collecting fibers was 10.5 cm. The absolute humidity in the air was 9.0 g / m3. The average fiber diameter of the obtained ultrafine fiber aggregate was 0.12 μm. The number of beads was 12/10000 μm 2 .

(比較例1)
帝人株式会社製コーネックス(登録商標)(公定水分率5.5%)にN、N−ジメチルアセトアミドを加え固形分濃度を10%にした。該樹脂溶液中にポリマー重量に対し、10%の塩化リチウムを添加した。このポリアミドイミド溶液を図1に示す装置を用いて、該溶液を繊維状物質捕集電極5に20分間吐出した。紡糸ノズル2に18G(内径:0.8mm)の針を使用し、電圧は30kV、紡糸ノズル2から繊維を捕集する対向電極5までの距離は10.5cmであった。空気中の絶対湿度は9.0g/m3であった。得られた極細繊維集合体の平均繊維径は0.06μmであった。ビーズ数は36個/10000μmであった。
(Comparative Example 1)
N, N-dimethylacetamide was added to Conex (registered trademark) (official moisture content 5.5%) manufactured by Teijin Limited to a solid content concentration of 10%. 10% lithium chloride was added to the resin solution based on the polymer weight. The polyamideimide solution was discharged to the fibrous material collecting electrode 5 for 20 minutes using the apparatus shown in FIG. An 18 G (inner diameter: 0.8 mm) needle was used for the spinning nozzle 2, the voltage was 30 kV, and the distance from the spinning nozzle 2 to the counter electrode 5 for collecting fibers was 10.5 cm. The absolute humidity in the air was 9.0 g / m3. The average fiber diameter of the obtained ultrafine fiber aggregate was 0.06 μm. The number of beads was 36/10000 μm 2 .

(比較例2)
ポリアミドイミド(公定水分率2.6%)(対数粘度1.38dl/g)にN、N−ジメチルアセトアミドを加え固形分濃度を8%にした。該樹脂溶液中にポリマー重量に対し、12.5%の塩化リチウムを添加した。このポリアミドイミド溶液を図1に示す装置を用いて、該溶液を繊維状物質捕集電極5に20分間吐出した。紡糸ノズル2に18G(内径:0.8mm)の針を使用し、電圧は28kV、紡糸ノズル2から繊維を捕集する対向電極5までの距離は10.5cmであった。空気中の絶対湿度は9.0g/m3であった。得られた極細繊維集合体の平均繊維径は0.14μmであった。ビーズ数は2個/10000μmであった。しかしながら、得られた極細繊維は、不織布として取り扱うことができず、非常に品位の低いものであった。
(Comparative Example 2)
N, N-dimethylacetamide was added to polyamideimide (official moisture content 2.6%) (logarithmic viscosity 1.38 dl / g) to a solid content concentration of 8%. 12.5% lithium chloride was added to the resin solution based on the polymer weight. The polyamideimide solution was discharged to the fibrous material collecting electrode 5 for 20 minutes using the apparatus shown in FIG. An 18G (inner diameter: 0.8 mm) needle was used for the spinning nozzle 2, the voltage was 28 kV, and the distance from the spinning nozzle 2 to the counter electrode 5 for collecting fibers was 10.5 cm. The absolute humidity in the air was 9.0 g / m3. The average fiber diameter of the obtained ultrafine fiber aggregate was 0.14 μm. The number of beads was 2/10000 μm 2 . However, the obtained ultrafine fibers could not be handled as a non-woven fabric and had very low quality.

(参考例)
ナイロン6(公定水分率4.5%)にN、N−ジメチルホルムアミドとギ酸を重量比率で5対95で混合したものに加え、固形分濃度を10%にした。該樹脂溶液中にポリマー重量に対し、4%の塩化リチウムを添加した。このナイロン溶液を図1に示す装置を用いて、該溶液を繊維状物質捕集電極5に20分間吐出した。紡糸ノズル2に18G(内径:0.8mm)の針を使用し、電圧は14kV、紡糸ノズル2から繊維を捕集する対向電極5までの距離は10.5cmであった。空気中の絶対湿度は9.0g/m3であった。得られた極細繊維集合体の平均繊維径は0.17μmであった。ビーズ数は22個/10000μmであった。
(Reference example)
Nylon 6 (official moisture content: 4.5%) was added to a mixture of N, N-dimethylformamide and formic acid in a weight ratio of 5 to 95 to give a solid content concentration of 10%. 4% lithium chloride was added to the resin solution based on the polymer weight. This nylon solution was discharged to the fibrous material collecting electrode 5 for 20 minutes using the apparatus shown in FIG. An 18 G (inner diameter: 0.8 mm) needle was used for the spinning nozzle 2, the voltage was 14 kV, and the distance from the spinning nozzle 2 to the counter electrode 5 for collecting fibers was 10.5 cm. The absolute humidity in the air was 9.0 g / m3. The average fiber diameter of the obtained ultrafine fiber aggregate was 0.17 μm. The number of beads was 22/10000 μm 2 .

本発明の極細繊維、及びその製造方法によれば、極めて低繊度であっても、ビーズが少ない高品位の繊維集合体が得られ、バラツキが少なく、高い安定性がえられるため、多くの用途に展開することが可能となり、産業界に寄与すること大である。   According to the ultrafine fiber of the present invention and the method for producing the same, a high-quality fiber assembly with few beads can be obtained even with an extremely low fineness, and there is little variation and high stability can be obtained. It is possible to expand to the industry and contribute to the industry.

静電紡糸装置の模式的な断面図Schematic cross-sectional view of an electrostatic spinning device 実施例1記載の極細繊維集合体のSEM写真SEM photograph of the ultrafine fiber assembly described in Example 1 比較例1記載の極細繊維集合体のSEM写真SEM photograph of the ultrafine fiber assembly described in Comparative Example 1 比較例2記載の極細繊維集合体のSEM写真SEM photograph of the ultrafine fiber assembly described in Comparative Example 2

符号の説明Explanation of symbols

1:静電紡糸装置
2:紡糸ノズル
3:溶液槽
4:高電圧電源
5:対向電極(捕集基板)
1: Electrostatic spinning device 2: Spinning nozzle 3: Solution tank 4: High voltage power supply 5: Counter electrode (collecting substrate)

Claims (3)

公定水分率0.1%〜5.0%の樹脂からなり、該樹脂に対し0.1〜10%の塩を含み、繊維径に対して長直径が10倍以上、かつ短直径が5倍以上となるビーズの数が、10000μm 2 当たり25個以下となることを特徴とする平均繊維径0.01〜1μmの極細繊維集合体It consists of a resin with an official moisture content of 0.1% to 5.0%, contains 0.1 to 10% of salt with respect to the resin , has a long diameter of 10 times or more and a short diameter of 5 times the fiber diameter. An ultrafine fiber aggregate having an average fiber diameter of 0.01 to 1 μm, wherein the number of beads is 25 or less per 10,000 μm 2 . 前記樹脂が、ポリエチレン、ポリアミドイミド、ポリイミド、ポリアクリロニトリル、ポリベンゾオキサゾール、ポリイミドベンゾオキサゾール、ポリプロピレンから選択される1種又は2種以上の樹脂を主成分とすることを特徴とする請求項1記載の極細繊維集合体The said resin has as a main component 1 type, or 2 or more types of resin selected from polyethylene, polyamideimide, a polyimide, a polyacrylonitrile, polybenzoxazole, a polyimide benzoxazole, and a polypropylene. Extra fine fiber assembly . N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、N−メチル−2−ピロリドンから選択される溶媒を少なくとも1種以上用いて静電紡糸法により得られたことを特徴とする請求項1又は2に記載の極細繊維集合体2. The method according to claim 1, wherein the solvent is obtained by an electrospinning method using at least one solvent selected from N, N-dimethylacetamide, N, N-dimethylformamide, and N-methyl-2-pyrrolidone. ultrafine fiber assembly according to 2.
JP2008518232A 2007-03-07 2008-03-05 Extra fine fiber and method for producing the same Active JP5287242B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008518232A JP5287242B2 (en) 2007-03-07 2008-03-05 Extra fine fiber and method for producing the same

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2007056776 2007-03-07
JP2007056776 2007-03-07
JP2008518232A JP5287242B2 (en) 2007-03-07 2008-03-05 Extra fine fiber and method for producing the same
PCT/JP2008/053922 WO2008108392A1 (en) 2007-03-07 2008-03-05 Microfiber and method for production thereof

Publications (2)

Publication Number Publication Date
JPWO2008108392A1 JPWO2008108392A1 (en) 2010-06-17
JP5287242B2 true JP5287242B2 (en) 2013-09-11

Family

ID=39738265

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008518232A Active JP5287242B2 (en) 2007-03-07 2008-03-05 Extra fine fiber and method for producing the same

Country Status (2)

Country Link
JP (1) JP5287242B2 (en)
WO (1) WO2008108392A1 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5246652B2 (en) * 2008-05-02 2013-07-24 公立大学法人首都大学東京 Method for producing ultrafine nanofiber
JP6489750B2 (en) 2014-03-26 2019-03-27 キヤノン株式会社 Method for producing polymer nanofiber structure
JP6485681B2 (en) * 2014-11-17 2019-03-20 Dic株式会社 Thermoplastic resin fiber assembly and method for producing the same
JP6570065B2 (en) * 2014-11-17 2019-09-04 公立大学法人首都大学東京 Nanofiber, nanofiber fiber assembly, composite membrane, polymer solid electrolyte, and lithium ion battery
JP7509512B2 (en) * 2017-08-01 2024-07-02 株式会社レゾナック Polyamide-imide resin composition for producing nonwoven fabric
WO2019187827A1 (en) * 2018-03-28 2019-10-03 富士フイルム株式会社 Nonwoven fabric, method for forming fiber, method for manufacturing nonwoven fabric
WO2020218306A1 (en) * 2019-04-24 2020-10-29 東京都公立大学法人 Lithium-ion-conducting nanofiber, nanofiber aggregate, composite film, and cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123995A1 (en) * 2004-06-17 2005-12-29 Korea Research Institute Of Chemical Technology Filament bundle type nano fiber and manufacturing method thereof
JP2006336173A (en) * 2005-06-06 2006-12-14 Teijin Techno Products Ltd Composite structure and method for producing the same
WO2007013552A1 (en) * 2005-07-29 2007-02-01 Toyo Boseki Kabushiki Kaisha Polyamide imide fiber, non-woven fabric composed of the fiber, process for manufacture of the non-woven fabric, and separator for electronic component

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006283240A (en) * 2005-04-01 2006-10-19 Oji Paper Co Ltd Web-producing apparatus

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005123995A1 (en) * 2004-06-17 2005-12-29 Korea Research Institute Of Chemical Technology Filament bundle type nano fiber and manufacturing method thereof
JP2006336173A (en) * 2005-06-06 2006-12-14 Teijin Techno Products Ltd Composite structure and method for producing the same
WO2007013552A1 (en) * 2005-07-29 2007-02-01 Toyo Boseki Kabushiki Kaisha Polyamide imide fiber, non-woven fabric composed of the fiber, process for manufacture of the non-woven fabric, and separator for electronic component

Also Published As

Publication number Publication date
WO2008108392A1 (en) 2008-09-12
JPWO2008108392A1 (en) 2010-06-17

Similar Documents

Publication Publication Date Title
JP5287242B2 (en) Extra fine fiber and method for producing the same
US20050073075A1 (en) Electro-blowing technology for fabrication of fibrous articles and its applications of hyaluronan
JP2009057655A (en) Ultrafine fiber nonwoven cloth, production method thereof, and production apparatus therefor
US9457325B2 (en) Method for fabricating polyethersulfone nanofiber membrane by electrospinning
JP5246652B2 (en) Method for producing ultrafine nanofiber
US20130115456A1 (en) Electrospun doped nanofibers and process of preparation thereof
Amini et al. Morphological optimization of electrospun polyacrylamide/MWCNTs nanocomposite nanofibers using Taguchi’s experimental design
US20180142379A1 (en) Electrospinning of fluoropolymers
JP2005194675A (en) Method for producing fiber aggregate
JP2010274144A (en) Filter medium
Triyana et al. Electrospun nanofibers based on polyvinyl alcohol/chitosan and its stability in KOH solution
Lee et al. Fabrication of poly (vinyl alcohol)/cellulose nanofiber derivative from kenaf bast fiber via electrospinning
JP4612432B2 (en) Nonwoven fabric and method for producing nonwoven fabric
Nie et al. Fabrication and chemical crosslinking of electrospun trans-polyisoprene nanofiber nonwoven
Hemmat et al. Effect of salt additives on the fabrication of poly (vinylidene fluoride-co-hexafluropropylene)(PVDF-HFP) nanofiber membranes for air gap membrane distillation
JP2006342471A (en) Electrically-conductive aromatic polyamide fiber
JP5754703B2 (en) Method and apparatus for producing nanofiber nonwoven fabric
US20220154369A1 (en) Wet spun fibers, wet formed film, and production method therefor
Sohofi et al. Electrospinning of 100% carboxymethyl chitosan nanofibers
JP2017214681A (en) Manufacturing method of polyphenylene sulfide fiber
Kattamuri et al. Uniform polycarbonate nanofibers produced by electrospinning
JP2019194369A (en) Extra fine short fiber and composite comprising extra short fibers dispersed in resin composition
JP5807329B2 (en) Aggregate of collagen fibers and method for producing the same
Manea et al. Mathematical Modeling of the relation between electrospun nanofibers characteristics and the process parameters
JP5165275B2 (en) Rolling pin

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R151 Written notification of patent or utility model registration

Ref document number: 5287242

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350