JP5286648B2 - Light source device, spectrum modulator, and spectrum measuring device - Google Patents

Light source device, spectrum modulator, and spectrum measuring device Download PDF

Info

Publication number
JP5286648B2
JP5286648B2 JP2006138319A JP2006138319A JP5286648B2 JP 5286648 B2 JP5286648 B2 JP 5286648B2 JP 2006138319 A JP2006138319 A JP 2006138319A JP 2006138319 A JP2006138319 A JP 2006138319A JP 5286648 B2 JP5286648 B2 JP 5286648B2
Authority
JP
Japan
Prior art keywords
light
polarization
polarized light
modulation elements
separation element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006138319A
Other languages
Japanese (ja)
Other versions
JP2007309758A (en
Inventor
喜和 杉山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2006138319A priority Critical patent/JP5286648B2/en
Publication of JP2007309758A publication Critical patent/JP2007309758A/en
Application granted granted Critical
Publication of JP5286648B2 publication Critical patent/JP5286648B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Liquid Crystal (AREA)
  • Spectrometry And Color Measurement (AREA)

Description

本発明は、光源装置、スペクトル変調器、及びスペクトル測定装置に関するものである。   The present invention relates to a light source device, a spectrum modulator, and a spectrum measuring device.

現在、さまざまな機器の検査に単色光または所望の分光特性を持った光が必要とされる。このうち、単色光については白色光源などの光を分光器に導くことにより比較的簡単に作ることができる。一方、CCD(特にデジカメなどの可視用のもの)などの検査には、特定の波長分布を持った光が使用される。特定の波長分布を持った光を形成する方法として、従来、多層膜を用いたフィルタが用いられていた。   Currently, monochromatic light or light having a desired spectral characteristic is required for inspection of various devices. Of these, monochromatic light can be made relatively easily by guiding light from a white light source or the like to the spectroscope. On the other hand, light having a specific wavelength distribution is used for inspection of a CCD (particularly a visible one such as a digital camera). Conventionally, a filter using a multilayer film has been used as a method for forming light having a specific wavelength distribution.

しかしながら、多層膜を用いたフィルタの場合、比較的安価に作ることができるが、自由にスペクトル分布を作ることは難しい。また、蒸着により多層膜を形成したフィルタは同じものを数多く作る場合、コストを下げることができるが、多くの種類のものを少量作る場合はコストが高くなる。また、特に開発の段階での評価では多くの種類の分光特性を持ったフィルタが要求される。   However, in the case of a filter using a multilayer film, it can be made relatively inexpensively, but it is difficult to make a spectral distribution freely. Further, when many filters having a multilayer film formed by vapor deposition are produced, the cost can be reduced. However, when many kinds of filters are produced in small quantities, the cost is increased. In addition, filters having many types of spectral characteristics are required particularly in evaluation at the development stage.

又、ある波長分布を有する光から、その波長分布と異なる波長分布を有する光を形成するスペクトル変調器は、所望の波長分布を持つ光を形成する目的のために必要とされる。   Further, a spectrum modulator that forms light having a wavelength distribution different from the wavelength distribution from light having a certain wavelength distribution is required for the purpose of forming light having a desired wavelength distribution.

さらには、従来のスペクトル測定装置は、回折格子やプリズム等の分光素子を回転させて、光量測定装置に入射する光の波長を変えることにより、光のスペクトルを測定していたので、可動部があり、機構が複雑になるという問題点があった。   Furthermore, the conventional spectrum measuring apparatus measures the spectrum of light by rotating the spectroscopic element such as a diffraction grating or a prism and changing the wavelength of light incident on the light quantity measuring apparatus. There was a problem that the mechanism was complicated.

本発明はこのような事情に鑑みてなされたもので、可動部が無く、異なった波長分布の光を放出することができる光源装置、スペクトル変調器、及びスペクトル測定装置を提供することを課題とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a light source device, a spectrum modulator, and a spectrum measurement device that have no movable part and can emit light having different wavelength distributions. To do.

前記課題を解決するための第1の手段は、光源と、偏光分離素子と、分光素子と、集光光学系と、2つの偏光変調素子とを有し、前記光源からの光を前記偏光分離素子に導いてP偏光とS偏光の光路を分離して、前記P偏光と前記S偏光の光をそれぞれ前記分光素子に入射させ、前記P偏光と前記S偏光の光ごとに前記分光素子で分散された光波長ごとに前記分光素子の後に置かれた前記集光光学系でそれぞれ結像させ、この結像位置には、前記分散された前記P偏光と前記S偏光の光のそれぞれの波長の光の結像位置に対応するようにライン状に並んだ前記2つの偏光変調素子を配し、前記P偏光または前記S偏光の光の波長ごとに所望の量だけ偏光を変調することができるように前記2つの偏光変調素子が別々に制御可能であり、偏光を変調された各々の光を、光路を逆に進行させることによって前記分光素子に戻し、そこで、分散された各波長の光を合成し、再び前記偏光分離素子へ戻し、前記偏光分離素子では入射時分離した2光路の光と偏光状態が直交する成分の光を、対応する前記各々の光から取り出して出力光とすることを特徴とする光源装置である。
The first means for solving the problem includes a light source, a polarization separation element, a spectroscopic element, a condensing optical system, and two polarization modulation elements, and separates the light from the light source into the polarization separation. The P-polarized light and the S-polarized light are separated from each other by guiding them to the element, and the P-polarized light and the S-polarized light are respectively incident on the spectroscopic element. Each focused light wavelength is imaged by the condensing optical system placed after the spectroscopic element, and at the imaging position, each wavelength of the dispersed P-polarized light and S-polarized light is measured. The two polarization modulation elements arranged in a line so as to correspond to the imaging position of the light are arranged so that the polarization can be modulated by a desired amount for each wavelength of the P-polarized light or the S-polarized light. The two polarization modulation elements can be controlled separately, and the polarization can be controlled. Each modulated light is returned to the spectroscopic element by advancing the optical path in reverse, where the dispersed light of each wavelength is synthesized and returned to the polarization separation element. The light source device is characterized in that light of a component whose polarization state is orthogonal to the separated light of the two optical paths is extracted from each of the corresponding light and used as output light.

前記課題を解決するための第2の手段は、前記第1の手段であって、前記偏光分離素子は、偏光ビームスプリッタ(PBS)であり、前記2つの偏光変調素子は、液晶偏光変調素子であることを特徴とするものである。
The second means for solving the problem is the first means, wherein the polarization separation element is a polarization beam splitter (PBS), and the two polarization modulation elements are liquid crystal polarization modulation elements. It is characterized by being.

本発明の第1の参考形態は、前記第2の手段であって、前記PBSと前記分光器の間に、入射光の入射方向に対して光軸が傾いた結晶板、又はサバール板を配置したことを特徴とするものである。
The first reference form of the present invention is the second means, wherein a crystal plate or a Savart plate having an optical axis inclined with respect to the incident direction of incident light is disposed between the PBS and the spectrometer. It is characterized by that.

前記課題を解決するための第の手段は、偏光分離素子と、分光素子と、集光光学系と、2つの偏光変調素子とを有し、前記光源からの光を前記偏光分離素子に導いてP偏光とS偏光の光路を分離して、前記P偏光と前記S偏光の光をそれぞれ前記分光素子に入射させ、前記P偏光と前記S偏光の光ごとに前記分光素子で分散された光を波長ごとに前記分光素子の後に置かれた前記集光光学系でそれぞれ結像させ、この結像位置には、前記分散された前記P偏光と前記S偏光の光のそれぞれの波長の光の結像位置に対応するようにライン状に並んだ前記2つの偏光変調素子を配し、前記P偏光または前記S偏光の光の波長ごとに所望の量だけ偏光を変調することができるように前記2つの偏光変調素子が別々に制御可能であり、偏光を変調された各々の光を、光路を逆に進行させることによって前記分光素子に戻し、そこで、分散された各波長の光を合成し、再び前記偏光分離素子へ戻し、前記偏光分離素子では入射時分離した2光路の光と偏光状態が直交する成分の光を、対応する前記各々の光から取り出して出力光とすることを特徴とするスペクトル変調器である。
A third means for solving the problem includes a polarization separation element, a spectroscopic element, a condensing optical system, and two polarization modulation elements, and guides light from the light source to the polarization separation element. The P-polarized light and the S-polarized light are separated from each other so that the P-polarized light and the S-polarized light are incident on the spectroscopic element, and the P-polarized light and the S-polarized light are dispersed by the spectroscopic element. For each wavelength by the condensing optical system placed after the spectroscopic element, and at the imaging position, the light having the respective wavelengths of the dispersed P-polarized light and S-polarized light is formed. The two polarization modulation elements arranged in a line so as to correspond to the imaging position are arranged, and the polarization can be modulated by a desired amount for each wavelength of the P-polarized light or the S-polarized light. The two polarization modulation elements can be controlled separately and the polarization is modulated Each light is returned to the spectroscopic element by traveling in the reverse direction of the optical path, where the dispersed light of each wavelength is synthesized, returned to the polarization separation element, and separated by the polarization separation element at the time of incidence. A spectral modulator characterized in that light of a component whose polarization state is orthogonal to light of two optical paths is extracted from the corresponding light and used as output light.

前記課題を解決するための第の手段は、前記第の手段であって、前記偏光分離素子は、偏光ビームスプリッタ(PBS)であり、前記2つの偏光変調素子は、液晶偏光変調素子であることを特徴とするものである。
A fourth means for solving the problem is the third means, wherein the polarization separation element is a polarization beam splitter (PBS), and the two polarization modulation elements are liquid crystal polarization modulation elements. It is characterized by being.

本発明の第2の参考形態は、前記第の手段であって、前記PBSと前記分光器の間に、入射光の入射方向に対して光軸が傾いた結晶板、又はサバール板を配置したことを特徴とするものである。
The second reference form of the present invention is the fourth means, wherein a crystal plate or a Savart plate having an optical axis inclined with respect to the incident direction of incident light is disposed between the PBS and the spectrometer. It is characterized by that.

前記課題を解決するための第の手段は、偏光分離素子と、分光素子と、集光光学系と、2つの偏光変調素子と、光量検出器とを有し、前記光源からの光を前記偏光分離素子に導いてP偏光とS偏光の光路を分離して、前記P偏光と前記S偏光の光をそれぞれ前記分光素子に入射させ、前記P偏光と前記S偏光の光ごとに前記分光素子で分散された光を波長ごとに前記分光素子の後に置かれた前記集光光学系でそれぞれ結像させ、この結像位置には、前記分散された前記P偏光と前記S偏光の光のそれぞれの波長の光の結像位置に対応するようにライン状に並んだ前記2つの偏光変調素子を配し、前記P偏光または前記S偏光の光の波長ごとに所望の量だけ偏光を変調することができるように前記2つの偏光変調素子が別々に制御可能であり、偏光を変調された各々の光を、光路を逆に進行させることによって前記分光素子に戻し、そこで、分散された各波長の光を合成し、再び前記偏光分離素子へ戻し、前記偏光分離素子では入射時分離した2光路の光と偏光状態が直交する成分の光を、対応する前記各々の光から取り出して、前記光量検出器で光量を測定し、前記2つの偏光変調素子による変調量と前記光量検出器で測定された光量の関係より、入射する光の分光特性を求めることを特徴とするスペクトル測定装置である。
A fifth means for solving the problem includes a polarization separation element, a spectroscopic element, a condensing optical system, two polarization modulation elements, and a light amount detector, and outputs light from the light source. The P-polarized light and the S-polarized light are separated from each other by guiding to a polarization separation element, and the P-polarized light and the S-polarized light are respectively incident on the spectral element. The light dispersed in step S is imaged by the condensing optical system placed after the spectroscopic element for each wavelength, and the dispersed P-polarized light and S-polarized light respectively The two polarization modulation elements arranged in a line so as to correspond to the imaging position of the light of the wavelength of the light are arranged, and the polarization is modulated by a desired amount for each wavelength of the P-polarized light or the S-polarized light. The two polarization modulation elements can be controlled separately so that Each light whose polarization is modulated is returned to the spectroscopic element by traveling in the reverse direction of the optical path, where the dispersed light of each wavelength is synthesized and returned to the polarization separation element again. In the polarization separation element, The light of the component whose polarization state is orthogonal to the light of the two optical paths separated at the time of incidence is taken out from each corresponding light, the light quantity is measured by the light quantity detector, and the modulation amount by the two polarization modulation elements and the The spectrum measuring apparatus is characterized in that a spectral characteristic of incident light is obtained from a relationship between light amounts measured by a light amount detector.

前記課題を解決するための第の手段は、前記第の手段であって、前記偏光分離素子は、偏光ビームスプリッタ(PBS)であり、前記2つの偏光変調素子は、液晶偏光変調素子であることを特徴とするものである。
A sixth means for solving the problem is the fifth means, wherein the polarization separation element is a polarization beam splitter (PBS), and the two polarization modulation elements are liquid crystal polarization modulation elements. It is characterized by being.

本発明の第3の参考形態は、前記第の手段であって、前記PBSと前記分光器の間に、入射光の入射方向に対して光軸が傾いた結晶板、又はサバール板を配置したことを特徴とするものである。 The third reference form of the present invention is the sixth means, wherein a crystal plate or a Savart plate whose optical axis is inclined with respect to the incident direction of incident light is disposed between the PBS and the spectrometer. It is characterized by that.

本発明によれば、可動部が無く、異なった波長分布の光を放出することができる光源装置、スペクトル変調器、及びスペクトル測定装置を提供することができる。   According to the present invention, it is possible to provide a light source device, a spectrum modulator, and a spectrum measuring device that have no movable part and can emit light having different wavelength distributions.

以下、本発明の実施の形態の例を、図を用いて説明する。図1は、本発明の実施の形態の1例であるスペクトル変調器の光学系の概要を示す図である。図1(a)は、光学系の半分(回折格子まで)を上面から見た図、図1(b)は光学系を側面から見た図、図1(c)は、図1(a)に示されなかった光学系の残りの部分(回折格子は両方の図面に示されている)を下面から見た図である。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an outline of an optical system of a spectrum modulator as an example of an embodiment of the present invention. 1A is a view of half of the optical system (up to the diffraction grating) as viewed from above, FIG. 1B is a view of the optical system as viewed from side, and FIG. 1C is a view of FIG. FIG. 6 is a view of the remaining part of the optical system (diffractive grating is shown in both drawings) not shown in FIG.

図1(a)、(b)に示されるように、入射光は、2つの三角形のプリズムを張り合わせた偏光ビームスプリッタ(PBS)1に入射する。PBS1を構成する1つの三角形のプリズムの張り合わせ面2にはS偏光を反射し、P偏光を透過するコートが施してある。そこで、この面に入射した光はそれぞれP偏光、S偏光成分に分けられ、2つの異なる光路へと導かれる。   As shown in FIGS. 1A and 1B, incident light enters a polarization beam splitter (PBS) 1 in which two triangular prisms are bonded together. A coating surface that reflects S-polarized light and transmits P-polarized light is applied to the bonding surface 2 of one triangular prism constituting the PBS 1. Therefore, the light incident on this surface is divided into P-polarized light and S-polarized light components, respectively, and is guided to two different optical paths.

2つの光路に分離された光は、それぞれ、PBS1を構成するプリズム側面で全反射され、PBS1を構成するプリズムの後面におかれたピンホール板3のピンホールに入射する。このとき、図にあるようにピンホールはP偏光用とS偏光用の2つが用意されている。また、光源からの光はこのピンホールに集光するように、レンズなどによって集光光でPBS1に入射させる。   The light separated into the two optical paths is totally reflected by the side surfaces of the prisms constituting the PBS 1 and enters the pinholes of the pinhole plate 3 placed on the rear surface of the prisms constituting the PBS 1. At this time, as shown in the figure, two pinholes are prepared for P-polarized light and S-polarized light. Further, the light from the light source is made incident on the PBS 1 with the condensed light by a lens or the like so as to be condensed into the pinhole.

そして、図1(a)、(b)に示されるように、このピンホールから出てきた光はその後に置かれた球面鏡4によりコリメートされて平行光束となり、回折格子5に入射する。そして、回折格子5で、図1(b)に示されるように波長分散された光は、図1(b)、(c)に示すように、球面鏡6により集光され、各波長ごとに、ピンホールに共役な位置にピンホール像を作る。具体的にはP偏光、S偏光のそれぞれの光の分散に対応して2列のライン状の像ができる。この実施の形態においては、この2列のラインのピンホール像の結像位置に合わせて反射型のLCOS(Liquid Crystal on Silicon)素子アレイ7が置かれている、このLCOS素子アレイ7は、図1(c)に示すように2段(P偏光、S偏光に対応)のライン状になっており、ピンホール像に対応するようになっている。   Then, as shown in FIGS. 1A and 1B, the light emitted from the pinhole is collimated by the spherical mirror 4 placed thereafter to become a parallel light beam and enters the diffraction grating 5. Then, the light wavelength-dispersed by the diffraction grating 5 as shown in FIG. 1 (b) is condensed by the spherical mirror 6 as shown in FIGS. 1 (b) and 1 (c). A pinhole image is created at a position conjugate to the pinhole. Specifically, two rows of line-shaped images can be formed corresponding to the dispersion of light of P-polarized light and S-polarized light. In this embodiment, a reflective LCOS (Liquid Crystal on Silicon) element array 7 is placed in accordance with the imaging position of the pinhole image of the two rows of lines. This LCOS element array 7 is shown in FIG. As shown in FIG. 1C, it has a two-stage (corresponding to P-polarized light and S-polarized light) line, and corresponds to a pinhole image.

そして、このLCOS素子アレイ7に入射した光は、LCOS素子により偏光が変調される。具体的にはLCOS素子の偏光軸はP偏光、S偏光の光軸に対して45°傾いており、その方向とそれに直交する方向の電場成分に自由に位相差をかけることができるようになっている。変調によって、直線偏光であった入射光が楕円偏光になり、反射されて入射した光路を逆にたどって進行する。そして球面鏡6でコリメートされた光は回折格子5に入射し、波長分散されていた光が合成されて球面鏡4に入射し、ピンホール上に集光される。ピンホールを通過した光は、PBS1に入射する。   Then, the polarization of the light incident on the LCOS element array 7 is modulated by the LCOS element. Specifically, the polarization axis of the LCOS element is inclined by 45 ° with respect to the optical axes of the P-polarized light and the S-polarized light, and it is possible to freely apply a phase difference between the electric field component in the direction and the direction orthogonal thereto. ing. Due to the modulation, the incident light, which was linearly polarized light, becomes elliptically polarized light, and travels by reversing the incident optical path after being reflected. Then, the light collimated by the spherical mirror 6 enters the diffraction grating 5, and the wavelength-dispersed light is combined and incident on the spherical mirror 4 and is condensed on the pinhole. The light that has passed through the pinhole enters the PBS 1.

PBS1に戻ってきた光は、前述のようにLCOS素子で変調され楕円偏光となっているので、PBS1で分離されてピンホール板3に向かったP偏光には、それがPBS1に帰ってきたときにはS偏光成分が含まれている。このうち、P偏光成分は、PBS1のコートを透過し、入射光と同じ方向に戻っていくが、S偏光成分はPBS1のコートで反射され、図1(a)に射出光と書かれた方向に射出される。   The light that has returned to PBS 1 is modulated by the LCOS element and becomes elliptically polarized light as described above. S polarization component is included. Among these, the P-polarized component passes through the PBS1 coat and returns in the same direction as the incident light, but the S-polarized component is reflected by the PBS1 coat and the direction written as the emitted light in FIG. Is injected into.

同様、PBS1で分離されてピンホール板3に向かったS偏光には、それがPBS1に帰ってきたときにはP偏光成分が含まれている。このうち、S偏光成分は、PBS1のコートで反射され、入射光と同じ方向に戻っていくが、P偏光成分はPBS1のコートを透過し、図1(a)に射出光と書かれた方向に射出される。   Similarly, the S-polarized light separated by PBS 1 and directed to the pinhole plate 3 includes a P-polarized component when it returns to PBS 1. Of these, the S-polarized component is reflected by the PBS1 coat and returns in the same direction as the incident light, but the P-polarized component is transmitted through the PBS1 coat and is the direction written as exiting light in FIG. Is injected into.

このようにして、図1(a)に射出光と書かれた方向には、LCOS素子で変調された成分だけを取り出すことができ、従って、LCOS素子アレイ7の各LCOS素子での変調の度合いを制御することにより、異なったスペクトル分布を有する光を取り出すことができ、スペクトル変調器として使用することができる。なお、LCOS素子アレイ7は、P偏光用とS偏光用の2つがあるので、これらを別々に制御することにより、射出光の偏光の状態をも併せて制御することができる。   In this way, only the component modulated by the LCOS element can be extracted in the direction written as “emitted light” in FIG. 1A, and accordingly, the degree of modulation in each LCOS element of the LCOS element array 7 By controlling, light having different spectral distributions can be extracted and used as a spectrum modulator. Since there are two LCOS element arrays 7 for P-polarized light and S-polarized light, the polarization state of the emitted light can also be controlled by controlling these separately.

以上の説明においては、スペクトル変調器としての実施の形態を説明したが、図1に示す光学系に所定の光源を加えれば、これらが、スペクトル分布を制御できる光源として使用できることは明らかである。   In the above description, the embodiment as a spectrum modulator has been described. However, if a predetermined light source is added to the optical system shown in FIG. 1, it is obvious that these can be used as a light source capable of controlling the spectrum distribution.

又、図1に示す光学系に、射出光の光量を測定する光量検出器を加えれば、これらをスペクトル測定装置として使用することができる。例えば、LCOS素子アレイ7を構成するLCOS素子のうち、1つの波長に対応するLCOS素子において、入射するP偏光の全て(又は規定%)をS偏光に、入射するS偏光の全て(又は前述の規定%)をP偏光にするような変調をかけ、他の波長については、変調をかけず、P偏光は全量P偏光で反射させ、S偏光は全量S偏光で反射させるようにすれば、変調をかけられた波長の光のみが光量検出器で検出される。この測定を、変調をかける波長を順次変えて行えば、入射光のスペクトル分布を測定することができる。このスペクトル測定器は、機械的な可動部がなく、機構が簡単である。   If a light amount detector for measuring the amount of emitted light is added to the optical system shown in FIG. 1, these can be used as a spectrum measuring device. For example, among the LCOS elements constituting the LCOS element array 7, in the LCOS element corresponding to one wavelength, all (or specified%) of the incident P-polarized light is converted to S-polarized light, and all of the incident S-polarized light (or the above-mentioned) If modulation is performed so that the specified%) becomes P-polarized light, the other wavelengths are not modulated, P-polarized light is reflected by P-polarized light, and S-polarized light is reflected by full-polarized light. Only the light of the wavelength multiplied by is detected by the light amount detector. If this measurement is performed by sequentially changing the wavelengths to be modulated, the spectral distribution of the incident light can be measured. This spectrum measuring instrument has no mechanical moving parts and has a simple mechanism.

図2は、図1におけるPBS1の変形例を示す図である。PBS1の構成以外の光学系は、図1に示したものと同じであり、簡略化して示してある。このPBS1は、4つのプリズムよりなり、プリズム11とプリズム12の貼り合わせ面にS偏光を反射し、P偏光を透過するコートが施してある。そこで、この面に入射した光はそれぞれP偏光、S偏光成分に分けられ、2つの異なる光路へと導かれる。S偏光は反射されてプリズム13に入射し、プリズム13のカット面で全反射されて、プリズム13から射出し、次の光学系に向かう。P偏光はコート面を透過してプリズム12のカット面で全反射してプリズム14に入射し、プリズム14のカット面で全反射されて、プリズム14から射出し、次の光学系に向かう。この場合、若干形状が複雑であるが、各プリズムの面同士が90°か45°だけで交わるので場合によっては加工が容易である。このビームスプリッタの作用は、図1に示したものと同じである。   FIG. 2 is a diagram showing a modification of PBS 1 in FIG. The optical system other than the configuration of the PBS 1 is the same as that shown in FIG. 1 and is shown in a simplified manner. This PBS 1 is composed of four prisms, and a coating that reflects S-polarized light and transmits P-polarized light is applied to the bonding surface of the prisms 11 and 12. Therefore, the light incident on this surface is divided into P-polarized light and S-polarized light components, respectively, and is guided to two different optical paths. The S-polarized light is reflected and enters the prism 13, is totally reflected by the cut surface of the prism 13, exits from the prism 13, and travels to the next optical system. The P-polarized light passes through the coating surface, is totally reflected by the cut surface of the prism 12 and enters the prism 14, is totally reflected by the cut surface of the prism 14, exits from the prism 14, and travels to the next optical system. In this case, although the shape is slightly complicated, since the surfaces of the prisms intersect at only 90 ° or 45 °, processing is easy depending on the case. The operation of this beam splitter is the same as that shown in FIG.

以上の説明では、偏光分離素子として偏光ビームスプリッタ(PBS)、偏光変調素子として液晶変調偏光素子LCOSを用いたが、偏光分離素子としては、この他にも、光学結晶で構成されているもの等を使用することができ、又、偏光変調素子としては、磁気光学空間光変調器等を使用することもできる。   In the above description, the polarization beam splitter (PBS) is used as the polarization separation element, and the liquid crystal modulation polarization element LCOS is used as the polarization modulation element. In addition, the polarization separation element is composed of an optical crystal, etc. In addition, a magneto-optic spatial light modulator or the like can also be used as the polarization modulation element.

図3は、図1におけるPBS1の後(PBS1とピンホール板2の間)に、結晶板15を設けた図である。この結晶板の結晶軸は、入射光の光軸方向に対して傾いており、この場合、P偏光が常光線、S偏光が異常光線となるようになっている。よって、S偏光は結晶板14中を斜め方向に進行し、結晶板15を出た後は、元の光軸方向に進行する。すなわち、光軸が図の上下方向にシフトする。   FIG. 3 is a view in which a crystal plate 15 is provided after PBS 1 in FIG. 1 (between PBS 1 and pinhole plate 2). The crystal axis of this crystal plate is inclined with respect to the optical axis direction of the incident light. In this case, the P-polarized light is an ordinary ray and the S-polarized light is an extraordinary ray. Therefore, the S-polarized light travels in the oblique direction in the crystal plate 14 and proceeds in the original optical axis direction after exiting the crystal plate 15. That is, the optical axis shifts in the vertical direction in the figure.

これにより、図3に示されるように、入射光が貼り合わせ面2に入射する点と、射出光が、貼り合わせ面2から射出される点が、図の左右方向に異なる点となる。これにより、PBS1単体を単体で使用したときに比べて消光比を大きくできる利点がある。なお、結晶板の変わりにサバール板を用いても、同じ効果が得られる。   As a result, as shown in FIG. 3, the point where the incident light is incident on the bonding surface 2 and the point where the emitted light is emitted from the bonding surface 2 are different from each other in the horizontal direction of the drawing. Thereby, there is an advantage that the extinction ratio can be increased as compared with the case where the PBS 1 is used alone. The same effect can be obtained by using a Savart plate instead of the crystal plate.

本発明の実施の形態の1例であるスペクトル変調器の光学系の概要を示す図である。It is a figure which shows the outline | summary of the optical system of the spectrum modulator which is an example of embodiment of this invention. 図1におけるPBSの変形例を示す図である。It is a figure which shows the modification of PBS in FIG. 図1におけるPBSの後に、波長板又はサバール板を設けた図である。It is the figure which provided the wavelength plate or the Savart plate after PBS in FIG.

符号の説明Explanation of symbols

1…PBS(偏光ビームスプリッタ)、2…プリズムの貼り合わせ面、3…ピンホール板、4…球面鏡、5…回折格子、6…球面鏡、7…LCOS素子アレイ DESCRIPTION OF SYMBOLS 1 ... PBS (polarization beam splitter), 2 ... Prism bonding surface, 3 ... Pinhole plate, 4 ... Spherical mirror, 5 ... Diffraction grating, 6 ... Spherical mirror, 7 ... LCOS element array

Claims (6)

光源と、偏光分離素子と、分光素子と、集光光学系と、2つの偏光変調素子とを有し、前記光源からの光を前記偏光分離素子に導いてP偏光とS偏光の光路を分離して、前記P偏光と前記S偏光の光をそれぞれ前記分光素子に入射させ、前記P偏光と前記S偏光の光ごとに前記分光素子で分散された光波長ごとに前記分光素子の後に置かれた前記集光光学系でそれぞれ結像させ、この結像位置には、前記分散された前記P偏光と前記S偏光の光のそれぞれの波長の光の結像位置に対応するようにライン状に並んだ前記2つの偏光変調素子を配し、前記P偏光または前記S偏光の光の波長ごとに所望の量だけ偏光を変調することができるように前記2つの偏光変調素子が別々に制御可能であり、偏光を変調された各々の光を、光路を逆に進行させることによって前記分光素子に戻し、そこで、分散された各波長の光を合成し、再び前記偏光分離素子へ戻し、前記偏光分離素子では入射時分離した2光路の光と偏光状態が直交する成分の光を、対応する前記各々の光から取り出して出力光とすることを特徴とする光源装置。   It has a light source, a polarization separation element, a spectroscopic element, a condensing optical system, and two polarization modulation elements, and guides light from the light source to the polarization separation element to separate the optical paths of P-polarized light and S-polarized light. Then, the P-polarized light and the S-polarized light are respectively incident on the spectroscopic element, and the P-polarized light and the S-polarized light are placed after the spectroscopic element for each light wavelength dispersed by the spectroscopic element. In addition, the light is imaged by the condensing optical system, and the image forming positions are linearly formed so as to correspond to the image forming positions of the dispersed wavelengths of the P-polarized light and the S-polarized light. The two polarization modulation elements are arranged side by side, and the two polarization modulation elements can be separately controlled so that the polarization can be modulated by a desired amount for each wavelength of the P-polarized light or the S-polarized light. Yes, each polarization-modulated light travels backwards in the optical path The light is then returned to the spectroscopic element, where the dispersed wavelengths of light are combined, returned to the polarization separation element, and the polarization separation element is a component in which the polarization state is orthogonal to the light in the two optical paths separated upon incidence. Is extracted from each of the corresponding lights to be output light. 前記偏光分離素子は、偏光ビームスプリッタ(PBS)であり、前記2つの偏光変調素子は、液晶偏光変調素子であることを特徴とする請求項1に記載の光源装置。   The light source device according to claim 1, wherein the polarization separation element is a polarization beam splitter (PBS), and the two polarization modulation elements are liquid crystal polarization modulation elements. 偏光分離素子と、分光素子と、集光光学系と、2つの偏光変調素子とを有し、前記光源からの光を前記偏光分離素子に導いてP偏光とS偏光の光路を分離して、前記P偏光と前記S偏光の光をそれぞれ前記分光素子に入射させ、前記P偏光と前記S偏光の光ごとに前記分光素子で分散された光を波長ごとに前記分光素子の後に置かれた前記集光光学系でそれぞれ結像させ、この結像位置には、前記分散された前記P偏光と前記S偏光の光のそれぞれの波長の光の結像位置に対応するようにライン状に並んだ前記2つの偏光変調素子を配し、前記P偏光または前記S偏光の光の波長ごとに所望の量だけ偏光を変調することができるように前記2つの偏光変調素子が別々に制御可能であり、偏光を変調された各々の光を、光路を逆に進行させることによって前記分光素子に戻し、そこで、分散された各波長の光を合成し、再び前記偏光分離素子へ戻し、前記偏光分離素子では入射時分離した2光路の光と偏光状態が直交する成分の光を、対応する前記各々の光から取り出して出力光とすることを特徴とするスペクトル変調器。   A polarization separation element, a spectroscopic element, a condensing optical system, and two polarization modulation elements, and guides light from the light source to the polarization separation element to separate optical paths of P-polarized light and S-polarized light; The P-polarized light and the S-polarized light are respectively incident on the spectroscopic element, and the light dispersed by the spectroscopic element for each of the P-polarized light and the S-polarized light is placed after the spectroscopic element for each wavelength. Each image is formed by a condensing optical system, and the image forming positions are arranged in a line so as to correspond to the image forming positions of the dispersed wavelengths of the P-polarized light and the S-polarized light. The two polarization modulation elements are arranged, and the two polarization modulation elements can be separately controlled so that the polarization can be modulated by a desired amount for each wavelength of the P-polarized light or the S-polarized light, Each polarization-modulated light travels in the reverse direction of the optical path. Is returned to the spectroscopic element, where the dispersed light of each wavelength is synthesized, returned to the polarization separation element again, and the polarization separation element is light of a component whose polarization state is orthogonal to the light of the two optical paths separated upon incidence. Is extracted from the corresponding light and used as output light. 前記偏光分離素子は、偏光ビームスプリッタ(PBS)であり、前記2つの偏光変調素子は、液晶偏光変調素子であることを特徴とする請求項に記載のスペクトル変調器。 The spectrum modulator according to claim 3 , wherein the polarization separation element is a polarization beam splitter (PBS), and the two polarization modulation elements are liquid crystal polarization modulation elements. 偏光分離素子と、分光素子と、集光光学系と、2つの偏光変調素子と、光量検出器とを有し、前記光源からの光を前記偏光分離素子に導いてP偏光とS偏光の光路を分離して、前記P偏光と前記S偏光の光をそれぞれ前記分光素子に入射させ、前記P偏光と前記S偏光の光ごとに前記分光素子で分散された光を波長ごとに前記分光素子の後に置かれた前記集光光学系でそれぞれ結像させ、この結像位置には、前記分散された前記P偏光と前記S偏光の光のそれぞれの波長の光の結像位置に対応するようにライン状に並んだ前記2つの偏光変調素子を配し、前記P偏光または前記S偏光の光の波長ごとに所望の量だけ偏光を変調することができるように前記2つの偏光変調素子が別々に制御可能であり、偏光を変調された各々の光を、光路を逆に進行させることによって前記分光素子に戻し、そこで、分散された各波長の光を合成し、再び前記偏光分離素子へ戻し、前記偏光分離素子では入射時分離した2光路の光と偏光状態が直交する成分の光を、対応する前記各々の光から取り出して、前記光量検出器で光量を測定し、前記2つの偏光変調素子による変調量と前記光量検出器で測定された光量の関係より、入射する光の分光特性を求めることを特徴とするスペクトル測定装置。   A polarization separation element, a spectroscopic element, a condensing optical system, two polarization modulation elements, and a light amount detector, and guides light from the light source to the polarization separation element to provide optical paths of P-polarized light and S-polarized light The P-polarized light and the S-polarized light are respectively incident on the spectroscopic element, and the light dispersed by the spectroscopic element for each of the P-polarized light and the S-polarized light is separated for each wavelength of the spectroscopic element. Images are formed by the condensing optical system placed later, and the image forming positions correspond to the image forming positions of the dispersed wavelengths of the P-polarized light and the S-polarized light, respectively. The two polarization modulation elements are arranged in a line, and the two polarization modulation elements are separately provided so that the polarization can be modulated by a desired amount for each wavelength of the P-polarized light or the S-polarized light. Controllable, each polarization modulated light, reverse the optical path The light is returned to the spectroscopic element by proceeding there, where the dispersed light of each wavelength is synthesized and returned to the polarization separation element. The polarization separation element and the polarization state of the two light paths separated upon incidence are orthogonal to each other. The component light is extracted from each of the corresponding lights, the light amount is measured by the light amount detector, and incident from the relationship between the modulation amount by the two polarization modulation elements and the light amount measured by the light amount detector. A spectrum measuring apparatus characterized by obtaining a spectral characteristic of light. 前記偏光分離素子は、偏光ビームスプリッタ(PBS)であり、前記2つの偏光変調素子は、液晶偏光変調素子であることを特徴とする請求項に記載のスペクトル測定装置。 The spectrum measuring apparatus according to claim 5 , wherein the polarization separation element is a polarization beam splitter (PBS), and the two polarization modulation elements are liquid crystal polarization modulation elements.
JP2006138319A 2006-05-17 2006-05-17 Light source device, spectrum modulator, and spectrum measuring device Active JP5286648B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006138319A JP5286648B2 (en) 2006-05-17 2006-05-17 Light source device, spectrum modulator, and spectrum measuring device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006138319A JP5286648B2 (en) 2006-05-17 2006-05-17 Light source device, spectrum modulator, and spectrum measuring device

Publications (2)

Publication Number Publication Date
JP2007309758A JP2007309758A (en) 2007-11-29
JP5286648B2 true JP5286648B2 (en) 2013-09-11

Family

ID=38842748

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006138319A Active JP5286648B2 (en) 2006-05-17 2006-05-17 Light source device, spectrum modulator, and spectrum measuring device

Country Status (1)

Country Link
JP (1) JP5286648B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5067188B2 (en) * 2008-02-20 2012-11-07 株式会社ニコン Tunable filter and light source device and spectrum measuring device using the same
JP5120081B2 (en) * 2008-06-11 2013-01-16 株式会社ニコン Spectrum light source device
CN106094294A (en) * 2016-08-19 2016-11-09 黄成智 Tunable optical filter based on liquid crystal over silicon technology

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05316052A (en) * 1992-05-08 1993-11-26 Fujitsu Ltd Polarized wave diversity optical receiver
WO2001001070A1 (en) * 1999-06-29 2001-01-04 Omron Corporation Light source device, spectroscope comprising the light source device, and film thickness sensor
US6275623B1 (en) * 1999-07-12 2001-08-14 Corning Incorporated Dynamically configurable spectral filter
EP1083457A1 (en) * 1999-09-07 2001-03-14 Corning Incorporated Liquid crystal matrix add/drop system
JP4544828B2 (en) * 2003-03-31 2010-09-15 富士通株式会社 Wavelength selective switch

Also Published As

Publication number Publication date
JP2007309758A (en) 2007-11-29

Similar Documents

Publication Publication Date Title
US7483145B2 (en) Simultaneous phase shifting module for use in interferometry
TWI454745B (en) Adjustable variable filter, light source device and spectral distribution measuring device
US20140078298A1 (en) Snapshot spatial heterodyne imaging polarimetry
JP7131120B2 (en) Lighting system and projector
TWI545385B (en) Light source unit and projection type display apparatus
CN112236666A (en) Instantaneous ellipsometer or scatterometer and related measuring method
JP4729423B2 (en) Optical interferometer
KR20190011229A (en) Three-dimensional-measurement device
JP5023707B2 (en) Tunable filter, light source device, and spectrum distribution measuring device
JP5286648B2 (en) Light source device, spectrum modulator, and spectrum measuring device
JP4645173B2 (en) Spectroscope and microspectroscopic device provided with the same
JP4072452B2 (en) Image display device
WO2017126215A1 (en) Phase shift amount measurement device
JP2001241914A (en) Optical system for oblique incidence interferometer and apparatus using it
JP2000329535A (en) Simiultaneous measuring apparatus for phase-shifting interference fringes
JP5332192B2 (en) 3D shape measuring device
JP3795191B2 (en) Interferometer for transparent thin plate measurement
JP2008139652A (en) Light source device, spectrum modulator, and spectrum measuring instrument
JP5311790B2 (en) Image display device
JP2001142029A (en) Optical information processor
RU2482447C2 (en) Interferometer
JPH0555114A (en) Aligner
JP2003322504A (en) Interference microscope
JPH0562881A (en) Aligner
KR20240073649A (en) Apparatus ans method for extreme ultraviolet beam generation

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090324

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110607

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120213

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130520

R150 Certificate of patent or registration of utility model

Ref document number: 5286648

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250