JP3795191B2 - Interferometer for transparent thin plate measurement - Google Patents

Interferometer for transparent thin plate measurement Download PDF

Info

Publication number
JP3795191B2
JP3795191B2 JP19321997A JP19321997A JP3795191B2 JP 3795191 B2 JP3795191 B2 JP 3795191B2 JP 19321997 A JP19321997 A JP 19321997A JP 19321997 A JP19321997 A JP 19321997A JP 3795191 B2 JP3795191 B2 JP 3795191B2
Authority
JP
Japan
Prior art keywords
light
reflected
plate
interferometer
optical
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP19321997A
Other languages
Japanese (ja)
Other versions
JPH1123216A (en
Inventor
精二 遠山
伸明 植木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujinon Corp
Original Assignee
Fujinon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujinon Corp filed Critical Fujinon Corp
Priority to JP19321997A priority Critical patent/JP3795191B2/en
Publication of JPH1123216A publication Critical patent/JPH1123216A/en
Application granted granted Critical
Publication of JP3795191B2 publication Critical patent/JP3795191B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Description

【0001】
【発明の属する技術分野】
本発明は、液晶用ガラス、各種光学フィルタおよびウインドウ等の透明薄板の表面形状を干渉計測する干渉計に関し、特に測定光の一部を迂回させるパスマッチ光学系を設けた透明薄板測定用干渉計に関するものである。
【0002】
【従来の技術】
一般に、フィゾー型干渉計では、被検体のセッティングを行うために基準面と被検面の間隔をある程度まで大きくする必要があることから、光源からの光は少なくともこの間隔の2倍程度の可干渉距離を有することが必要である。しかしそのために、被検面からの反射光との光路差が被検体の厚みの2倍とされた被検体裏面からの反射光により生じる干渉縞が、本来の干渉縞上にノイズの干渉縞として重畳するという問題がある。
【0003】
本願出願人は、この問題を解決する方策として、被検体裏面からの反射光による干渉縞の発生を阻止し得るパスマッチ光学系を備えた透明薄板測定用干渉計を既に開示している。
すなわち、この干渉計は、光源からの出力光の可干渉距離Lcを透明薄板の厚み方向の光学距離ntの2倍よりも小さく設定し、透明薄板に向かう光のうちの一部を分離して、その余の光よりも基準面と被検面との距離L(ただし、L>>nt)の2倍に相当する距離だけ大きい光路長を有するように迂回させた後、分離したその余の光と合成させるパスマッチ光学系を備えている。
【0004】
このような構成とすることにより、迂回しないで直進した測定光の被検面からの反射光と、迂回した測定光の基準面からの反射光との相互干渉による場合以外は干渉縞が生じないようにしており、この結果、被検体裏面からの反射光により生じるノイズとなる干渉縞の発生を阻止することができる。
【0005】
【発明が解決しようとする課題】
しかしながら、この干渉計を用いて透明薄板の観察測定を行うに際し、撮像面上に形成される干渉縞画像のコントラストをより高くして、干渉縞の観察測定の精度を良好なものとしたいという要望がある。この要望を満足するためには上述した干渉計について、光干渉を生じる反射光に、光干渉を生じない反射光がバックグラウンド光として重畳されることを防止することが課題となる。
【0006】
すなわち、上記干渉計では、前述のとおり、迂回しないで直進した測定光の被検面からの反射光と、迂回した測定光の基準面からの反射光とが相互干渉して生じた干渉縞を観察測定して被検面評価を行う。しかし観察系にはそれ以外にも、迂回しないで直進した測定光の基準面や被検体裏面各々からの反射光、さらには迂回した測定光の被検面や被検体裏面各々からの反射光が入射し、バックグラウンド光とされるため、画像全体が明るくなってしまい、干渉縞のコントラストが低下する。干渉縞のコントラストが低下すると観察測定の精度を低下させることになり、特に、干渉縞から被検面の形状を自動的に解析する解析装置の使用が困難なものとなる。
【0007】
本発明は、このような事情に鑑みてなされたものであって、被検面についての干渉縞画像の測定を行うために必要となる反射光だけを観察系に入射させるとともに、それ以外の反射光がその測定用反射光のバックグラウンド光として観察系に入射することを阻止し、コントラストの良好な干渉縞画像を簡易な構成で得ることのできる透明薄板測定用干渉計を提供することを目的とするものである。
【0008】
【課題を解決するための手段】
本発明の透明薄板測定用干渉計は、光源から射出される光の可干渉距離を、透明薄板よりなる被検体の厚みの2倍に相当する距離よりも小さく設定し、該被検体に向かう前記光のうちの一部を第1の光分離手段により分離して、該一部の光を、その余の光よりも基準面と被検面との距離の2倍に相当する距離だけ大きい光路長を有するように迂回させた後、光合成手段により該その余の光と合成させるパスマッチ光学系を備え、この合成された光の、該基準面からの反射光である第1の反射光と、この基準面を透過した該合成された光の、前記被検面からの反射光である第2の反射光との光干渉により生じる干渉縞に基づき、該被検面の表面形状を測定する透明薄板測定用干渉計であって、
前記光源から前記第1の光分離手段に到る光路内に、前記光源からの光のうち所定の振動面を有する偏光成分のみを透過する第1の偏光手段を配置し、
前記第1の光分離手段から前記光合成手段に到る、前記一部の光と前記その余の光のうちのいずれか一方の光路内にλ/2光学位相板を配置し、
前記基準面が形成された基準板と前記被検体の間にλ/4光学位相板を配置し、
前記光源と該基準板の間に前記第1および前記第2の反射光を観察系に導くための第2の光分離手段を配置し、
この第2の光分離手段と該観察系との間に、前記一部の光による前記第1の反射光および前記その余の光による前記第2の反射光を構成する、所定の振動面を有する偏光成分のみを透過させる第2の偏光手段を配置してなることを特徴とするものである。
【0009】
また、前記基準板の前記被検体側の面に前記λ/4光学位相板を密着形成することも可能である。
また、前記パスマッチ光学系が、前記光源からの光の一部を反射し、その余の光を透過せしめる光分離手段と、該光分離手段からの反射光もしくは透過光を少なくとも1回反射せしめる光反射部材と、前記光分離手段からの透過光もしくは反射光と該光反射部材からの反射光を合成せしめる光合成手段とから構成されるのが望ましい。
【0010】
さらに、前記光源と前記パスマッチ光学系との間に所定の波長の光を選択透過する波長選択フィルタを配設するのがより望ましい。
【0011】
【発明の実施の形態】
以下、本発明の実施形態について図面を用いて説明する。
図1は、本発明の透明薄板測定用干渉計に係る実施形態を示す概略図である。この干渉計において、白色光等の広域帯な波長成分を有する光を出力する光源1から出力された測定光はコリメータレンズ2により平行光とされ、コンデンサレンズ8およびコリメータレンズ10によってビーム径を拡大され、透明な基準板11および薄板ガラスの被検体12に照射される。
【0012】
基準板11の基準面11aおよび被検体12の被検面12aからの、上記測定光の反射光は互いに干渉し合い、ハーフプリズム9のハーフミラー面9aで直角反射され、イメージングレンズ13を介して、撮像カメラ14内のCCD素子上に干渉縞画像を形成する。なお、このCCD素子により光電変換された干渉縞画像情報に基づき、CRT等の画像表示部(図示されていない)上に干渉縞画像が表示される。
ところで、本発明の目的はこの干渉縞画像をよりコントラストの良い状態で観察測定することであるが、その前提であるパスマッチ光学系を有する干渉計について、まず説明する。
【0013】
一般に、フィゾー型干渉計を用いて薄板ガラスからなる被検体12を測定する場合には、セッティングの都合上基準面11aと被検面12aとの間隔がどうしても開いてしまう。そのため、干渉距離の大きい測定光を用いて干渉縞画像を得ることになるが、被検面12aからの反射光に対し、被検体12の厚み方向の光学距離ntの2倍の光路差しか有さない被検体12の裏面12bからの反射光も、基準面11aからの反射光や該被検面12aからの反射光と互いに干渉し合うこととなる。このような被検体12の裏面12bからの反射光によって生じた干渉縞は、本来の干渉縞と重畳して測定精度を低下させる。
【0014】
しかし、パスマッチ光学系を有する干渉計では、この被検体裏面からの反射光による干渉縞を除去し、本来の干渉縞画像のみを得ることができる。一般に、このような干渉計においては、前述のとおり、測定光の干渉距離が大きい場合ノイズの干渉縞を生じてしまう。
そこで、被検体裏面からの反射光による干渉縞の発生を防止するために、測定光として、可干渉距離Lcが2ntよりも小となるような光を用い(具体的には光源1として、ハロゲンランプ(可干渉距離が1μm)等が用いられる。)、一方、必要な干渉縞を得るためには、被検面から反射されて観察系に入射する光および基準面から反射光されて観察系に入射する光各々における光源から観察系までの光路長の差を可干渉距離Lc以下にすることが必要となる。
【0015】
この2つの反射光の光路長を等しくするために、パスマッチ光学系が配置される。本実施形態におけるパスマッチ光学系は、コリメータレンズ2とコンデンサレンズ8との間の平行光線束領域内に、2つのハーフミラー4,5と2つの全反射ミラー6,7からなる、測定光の一部を迂回させる光路で、測定光の一部は、ハーフミラー4により直角反射されてその余の測定光から分離され、全反射ミラー6により直角反射され、次いで全反射ミラー7により直角反射され、さらにハーフミラー5により直角反射されて、上記その余の測定光と再合成される。このとき、ハーフミラー4を透過する測定光の、ハーフミラー4とハーフミラー5間の光路長L1に対し、迂回した測定光の、ハーフミラー4からハーフミラー5に到るまでの光路長L2(L2=l1+l2+l3)は、2つのハーフミラー4,5間の距離L1と2つの全反射ミラー6,7間の距離が等しいことから、距離l1+l3(l1=l3)だけ長くなる。これらの距離l1+l3は基準板11の基準面11aと、被検体12の被検面12aとの距離Lの2倍に相当するので、2つのハーフミラー4,5間を直進した測定光の被検面12aからの反射光と、2つのハーフミラー4,5間を迂回した測定光の基準面11aからの反射光の光路長が全く等しくなり、この2つの反射光は相互に干渉を生じる。
【0016】
ところで、このようなパスマッチ光学系を有する干渉計は、ノイズとなる干渉縞画像を取り除いて観察測定の精度を向上させたものではあるが、撮像面上に形成される干渉縞画像のコントラストをより高くして、干渉縞の観察測定の精度をより良好なものとしたいという要望がある。すなわち、上記干渉計では、前述のとおり、迂回しないで直進した測定光の被検面からの反射光と、迂回した測定光の基準面からの反射光とが相互干渉して生じた干渉縞を観察測定して被検面評価を行うのであるが、観察系にはそれ以外にも、迂回しないで直進した測定光の基準面や被検体裏面各々からの反射光さらには迂回した測定光の被検面や被検体裏面各々からの反射光が入射していることが次なる問題となる。これらの反射光は、上記の相互干渉を生じる反射光に対して、測定光の可干渉距離よりも大きな光路差を有するのでノイズの干渉縞を生じることはないが、干渉縞画像のバックグラウンド光とされるため、画像全体が明るくなってしまい、干渉縞のコントラストが低下する。干渉縞のコントラストは観察測定の精度に影響し、特に、干渉縞から被検面の形状を自動的に解析する解析装置を使用するためには、コントラストの良好な画像を得ることが望ましい。
【0017】
そこで本実施形態においては、まず、P偏光を透過する第1の偏光板21を光源1とハーフミラー4の間に配置する。この偏光板21を透過したP偏光の測定光はハーフミラー4により分離され、一部はハーフミラー4により直角反射されてパスマッチ光学系を迂回し、その余の測定光はハーフミラー4からハーフミラー5へ直進する。直進する光はP偏光のままハーフミラー5に至る。これに対し、パスマッチ光学系の光路中にはλ/2光学位相板22が挿入されているので、上記迂回した光はS偏光に変換され、この後ハーフミラー5に至り、このハーフミラー5により直角反射されて、上記その余の測定光と再合成される。
【0018】
この、直進したP偏光とパスマッチ光学系を経たS偏光の合成光が、各面11a,12aから反射することにより得られる反射光について考察する。なお、以下、ハーフミラー5から基準板11の基準面11aまでの光路長はL3とし、被検体12の屈折率はn、厚みはtとする。
【0019】
ここで、基準面11aからの反射光は、以下の光路長(ただし、ハーフミラー4から各面11a,12aを介して基準面11aに到るまでの光路長;以下同じ)と偏光成分を有する2つの反射光の合成光である。
ハーフミラー4を透過した光の反射光――光路長L1+L3――P偏光・・・・(1)
ハーフミラー4で反射された光の反射光――光路長L2+L3――S偏光・・・・(2)
【0020】
次に、被検面12aからの反射光は、基準板11と被検板12の間に挿入されたλ/4光学位相板23によって、P偏光はS偏光に、S偏光はP偏光に各々変換されるため、以下の光路長と偏光成分を有する2つの反射光の合成光となる。ハーフミラー4を透過した光の反射光――光路長L1+L3+2L――S偏光・・・・(3)
ハーフミラー4で反射した光の反射光――光路長L2+L3+2L――P偏光・・・・(4)
【0021】
ここで、パスマッチ光学系の性質から、
2=L1+2L・・・・・・・・・・・・・・・・・・・・・・(5)
である。したがって、各反射光の光路長を比較すると、上記反射光(2)と上記反射光(3)の値が全く等しく、すなわち2つのハーフミラー4,5間を迂回した測定光の基準面11aからの反射光と、2つのハーフミラー4,5間を直進した測定光の被検面12aからの反射光の光路長が全く等しくなり、その偏光成分はS偏光成分で一致している。
【0022】
一方、P偏光の2つの反射光は上記反射光(1)と上記反射光(4)の光路長から明らかなように、他の反射光との光路差および測定光の可干渉距離両者の関係から、他の反射光との間で干渉縞を生じることはなく単にバックグラウンド光として干渉縞画像のコントラストを低下させることになる。そこで本実施形態の装置においては、撮像カメラ14の前段にS偏光を透過する第2の偏光板24を配置し、バックグラウンド光となるP偏光を遮光するとともに、目的とする干渉縞画像の形成に寄与する上記2つのS偏光のみが撮像カメラ14に入射するようにしている。
【0023】
このようにして、コントラストのよい所望の干渉縞を撮像カメラ14内のCCD素子上に形成することができ、高精度で薄板ガラスの表面形状を測定することができる。
【0024】
また、上記実施形態においては、λ/2光学位相板22をハーフミラー4,5間のパスマッチ光路内に配置しているが、これに代え、図2に示すようにハーフミラー4を透過した光の経路内にλ/2光学位相板22aを配設することも可能である。
このように構成した場合には、必要となる干渉縞画像の情報を担持した反射光(上記反射光(2),(3))はP偏光となり、一方、バックグラウンド光となる反射光(上記反射光(1),(4))はS偏光となるので、バックグラウンド光の撮像カメラへの入射を防止するためには、上記第2の偏光板24を、P偏光を透過する偏光板に代えておく必要がある。
【0025】
なお、上記一連の実施形態の説明では、第1の偏光板22としてP偏光を透過する偏光板を用いているが、もちろん、第1の偏光板22としてS偏光を透過する偏光板を用いることが可能であり、このようにした場合には、第2の偏光板24も、それに応じた透過特性を有するよう設定しておく必要がある。
【0026】
さらに、図1に示す実施形態においては、基準板11と被検板12との間にλ/4光学位相板23を配置しているが、図3に示すように基準板11の被検体12側に膜状のλ/4光学位相板23aを密着形成して、構成することも可能である。この場合の膜は、例えば蒸着、スパッタリング等の種々の周知の膜形成手法を用いて形成することが可能である。
λ/4光学位相板23aを、基準板11の表面に形成することで、この位相板23aの保持手段を特別に設ける必要がなくなり、また光学系の組立時におけるこの位相板23aのアラインメント調整を不要とすることができる。
【0027】
また、通常、被検体12によって厚みが異なることから、上記パスマッチ光学系において、2つの全反射ミラー6,7を一体的にハーフミラー4,5方向に微動させて迂回測定光の光路長を微調整可能とするのが望ましい。
【0028】
また、本実施形態においてはコリメータレンズ3とハーフミラー4との間に波長選択フィルタ板3が配されている。
波長選択フィルタ板3は図4に示すようにターレット板上に全波長透過部3a、赤色光選択透過部3b、緑色光選択透過部3cおよび青色光選択透過部3dが90゜間隔で形成されていて、ターレット板を所定角度だけ回転させることにより測定光として所望の色光を選択できるようになっている。
【0029】
これは、所定の波長の光を反射するダイクロイックミラーが被検体12である場合のように測定光として所定の波長の光を選択することが必要となる場合に有用である。
もちろん、このような波長選択フィルタが全く不要となる場合には、このフィルタ板3を図1中矢印A方向に移動せしめて光路外に退避させるようにしてもよい。
【0030】
なお、本発明の透明薄板測定用干渉計としては上記実施形態に限られるものではなく、その他種々の変更が可能である。例えば、上記パスマッチ光学系において、2つの全反射ミラー6,7に代え、ハーフミラー4からの測定光をハーフミラー5方向に戻すことが可能なコーナキューブとすることも可能である。
このようなコーナキューブを採用することにより、迂回測定光の光路長を調節する際に、その移動操作が容易となる。
また、上記実施形態において、ハ−フミラ−4の透過光を迂回測定光、反射光を直進測定光というように両者を入れ替えることも可能である。
【0031】
また、上記被検体12の支持手段は、被検面12a側で支持する場合には固定保持するような構造としておけばよいが、裏面12b側で支持する場合には被検体12の厚みに応じてこの被検体12を光軸方向に移動し得る構造とするのが望ましく、さらに干渉縞を得る際の被検体12の厚み情報に基づいて被検面12aが適正な位置まで移動するように、被検体12の移動操作を自動的に行うようにすることが望ましい。
さらに、上記ハーフプリズム9に代えてハーフミラーを用いることも可能であるが、本実施形態の如く、発散光線束中にはハーフプリズム9を用いるようにすることで非点収差を良好とすることができる。
【0032】
もちろん、ハーフミラー4,5を、各々ハーフプリズムに代えることも可能である。
なお、本発明の干渉計の被検体としては、ガラス薄板のみならずプラスチック板や石英板等の種々の透明薄板への適用が可能である。
さらに、上記実施例では観察系として撮像カメラ14を用いているが、これに代えて拡散面を有する光学スクリーンを設け、そのスクリーン上に干渉縞画像を形成しこれを目視により観察することも可能である。
【0033】
【発明の効果】
以上説明したように本発明の透明薄板測定用干渉計によれば、測定光の可干渉距離を所定長未満に設定するとともに測定光の一部を迂回させるパスマッチ光学系を設けた透明薄板測定用干渉計において、2つの偏光板と2つの光学位相板を所定の光路位置に配し、被検面の干渉縞画像を得るために必要な2つの光束をP、Sいずれか一方の第1の直線偏光成分とするとともに、これ以外のバックグラウンド光となる光束をP、Sいずれか他方の第2の直線偏光成分とし、観察系には上記第1の偏光成分のみが入射するようにしているので、コントラストの良好な干渉縞画像を簡易な構成で得ることが可能である。これにより、被検面の表面形状の測定を高精度なものとすることができる。
【図面の簡単な説明】
【図1】本発明の一実施形態に係る透明薄板測定用干渉計を示す概略図
【図2】図1に示す実施形態の一部変更例を示す概略図
【図3】図1に示す実施形態の一部変更例を示す概略図
【図4】図1に示す波長選択フィルタ板を示す正面図
【符号の説明】
1 白色光源
2,10 コリメータレンズ
3 波長選択フィルタ板
4,5 ハーフミラー
6,7 全反射ミラー
9 ハーフプリズム
11 基準板
11a 基準面
12 被検体
12a 被検面
12b 裏面
14 撮像カメラ
21 第1の偏光板
22,22a λ/2光学位相板
23,23a λ/4光学位相板
24 第2の偏光板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an interferometer for interferometric measurement of the surface shape of a transparent thin plate such as liquid crystal glass, various optical filters and windows, and more particularly to a transparent thin plate measuring interferometer provided with a path match optical system that bypasses a part of measurement light. Is.
[0002]
[Prior art]
In general, in a Fizeau interferometer, it is necessary to increase the distance between the reference surface and the test surface to some extent in order to set the subject. Therefore, the light from the light source is at least twice the coherence. It is necessary to have a distance. However, for this reason, the interference fringes generated by the reflected light from the back of the subject whose optical path difference with the reflected light from the subject surface is twice the thickness of the subject are noise interference fringes on the original interference fringes. There is a problem of overlapping.
[0003]
As a measure for solving this problem, the applicant of the present application has already disclosed a transparent thin plate measuring interferometer including a path match optical system capable of preventing the generation of interference fringes due to reflected light from the back surface of a subject.
That is, this interferometer sets the coherence distance Lc of the output light from the light source to be smaller than twice the optical distance nt in the thickness direction of the transparent thin plate, and separates a part of the light toward the transparent thin plate. , After diverting to have an optical path length larger than the remaining light by a distance corresponding to twice the distance L (where L >> nt) between the reference surface and the test surface, A path-matching optical system for combining with light is provided.
[0004]
By adopting such a configuration, interference fringes are not generated except by the mutual interference between the reflected light from the test surface of the measurement light that has traveled straight without bypassing and the reflected light from the reference surface of the bypassed measuring light. As a result, it is possible to prevent the generation of interference fringes that are noises caused by the reflected light from the back surface of the subject.
[0005]
[Problems to be solved by the invention]
However, when performing observation and measurement of a transparent thin plate using this interferometer, there is a desire to improve the accuracy of interference fringe observation measurement by increasing the contrast of the interference fringe image formed on the imaging surface. There is. In order to satisfy this demand, it is a problem to prevent the above-described interferometer from superimposing reflected light that does not cause optical interference as background light on reflected light that causes optical interference.
[0006]
That is, in the interferometer, as described above, the interference fringes generated by the mutual interference between the reflected light from the test surface of the measurement light that has traveled straight without bypassing and the reflected light from the reference surface of the bypassed measurement light are generated. The surface to be measured is evaluated by observation and measurement. However, in the observation system, there are other reflected light from the reference surface and the back of the subject that has traveled straight without detouring, as well as reflected light from the test surface and the back of the subject that has been bypassed. Since it is incident and used as background light, the entire image becomes bright, and the contrast of interference fringes decreases. If the contrast of the interference fringes is lowered, the accuracy of observation measurement is lowered, and in particular, it becomes difficult to use an analysis apparatus that automatically analyzes the shape of the test surface from the interference fringes.
[0007]
The present invention has been made in view of such circumstances, and only the reflected light necessary for measuring the interference fringe image on the test surface is incident on the observation system and the other reflections are made. An object of the present invention is to provide a transparent thin plate measuring interferometer capable of preventing light from entering the observation system as background light of reflected light for measurement and obtaining an interference fringe image having a good contrast with a simple configuration. It is what.
[0008]
[Means for Solving the Problems]
In the interferometer for measuring a transparent thin plate of the present invention, the coherence distance of light emitted from the light source is set to be smaller than a distance corresponding to twice the thickness of the subject made of the transparent thin plate, and is directed to the subject. A part of the light is separated by the first light separation means, and the part of the light is larger than the remaining light by a distance corresponding to twice the distance between the reference surface and the test surface. A path-matching optical system that is detoured to have a length and then combined with the remaining light by a light combining means; a first reflected light that is a reflected light from the reference plane of the combined light; Transparent that measures the surface shape of the test surface based on interference fringes generated by optical interference of the combined light that has passed through the reference surface and second reflected light that is reflected light from the test surface A thin plate measuring interferometer,
In the optical path from the light source to the first light separating means, a first polarizing means that transmits only a polarized light component having a predetermined vibration surface out of the light from the light source is disposed,
A λ / 2 optical phase plate is disposed in the optical path of one of the part of light and the remaining light from the first light separating unit to the light combining unit;
A λ / 4 optical phase plate is disposed between the reference plate on which the reference surface is formed and the subject,
A second light separating means for guiding the first and second reflected lights to an observation system between the light source and the reference plate;
Between the second light separating means and the observation system, a predetermined vibration surface constituting the first reflected light by the part of light and the second reflected light by the remaining light is provided. The second polarizing means that transmits only the polarization component having the light is disposed.
[0009]
Further, the λ / 4 optical phase plate can be formed in close contact with the surface of the reference plate on the subject side.
The path matching optical system reflects a part of the light from the light source and transmits the remaining light, and the light that reflects the reflected light or transmitted light from the light separating means at least once. It is desirable to comprise a reflecting member and light combining means for combining the transmitted light or reflected light from the light separating means and the reflected light from the light reflecting member.
[0010]
Furthermore, it is more desirable to dispose a wavelength selection filter that selectively transmits light of a predetermined wavelength between the light source and the path match optical system.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a schematic view showing an embodiment of the transparent thin plate measuring interferometer of the present invention. In this interferometer, the measurement light output from the light source 1 that outputs light having a wide-band wavelength component such as white light is converted into parallel light by the collimator lens 2 and the beam diameter is expanded by the condenser lens 8 and the collimator lens 10. Then, the transparent reference plate 11 and the thin glass object 12 are irradiated.
[0012]
The reflected light of the measurement light from the reference surface 11 a of the reference plate 11 and the test surface 12 a of the subject 12 interfere with each other, and is reflected at right angles by the half mirror surface 9 a of the half prism 9, and passes through the imaging lens 13. Then, an interference fringe image is formed on the CCD element in the imaging camera 14. An interference fringe image is displayed on an image display unit (not shown) such as a CRT based on the interference fringe image information photoelectrically converted by the CCD element.
By the way, an object of the present invention is to observe and measure the interference fringe image in a better contrast state. First, an interferometer having a path match optical system, which is the premise thereof, will be described.
[0013]
In general, when a subject 12 made of thin glass is measured using a Fizeau interferometer, the interval between the reference surface 11a and the subject surface 12a is inevitably increased for convenience of setting. Therefore, an interference fringe image is obtained using measurement light having a large interference distance. However, the reflected light from the test surface 12a has an optical path length twice as long as the optical distance nt in the thickness direction of the test object 12. The reflected light from the back surface 12b of the subject 12 not to interfere with the reflected light from the reference surface 11a and the reflected light from the test surface 12a. The interference fringes generated by the reflected light from the back surface 12b of the subject 12 are superimposed on the original interference fringes to reduce the measurement accuracy.
[0014]
However, in an interferometer having a path-matching optical system, it is possible to remove the interference fringes caused by the reflected light from the back surface of the subject and obtain only the original interference fringe image. In general, in such an interferometer, as described above, when the interference distance of the measurement light is large, noise interference fringes are generated.
Therefore, in order to prevent the occurrence of interference fringes due to the reflected light from the back surface of the subject, light having a coherence distance Lc of less than 2 nt is used as the measurement light (specifically, the light source 1 is halogenated). A lamp (coherence distance is 1 μm) is used.) On the other hand, in order to obtain the necessary interference fringes, the light reflected from the test surface and incident on the observation system and the light reflected from the reference surface are reflected in the observation system. It is necessary to make the difference in the optical path length from the light source to the observation system in each light incident on the light beam equal to or less than the coherence distance Lc.
[0015]
In order to make the optical path lengths of the two reflected lights equal, a path matching optical system is arranged. The path-matching optical system according to the present embodiment is an example of measurement light including two half mirrors 4 and 5 and two total reflection mirrors 6 and 7 in a parallel beam bundle region between the collimator lens 2 and the condenser lens 8. In the optical path that bypasses the part, a part of the measurement light is reflected by the half mirror 4 at a right angle and separated from the remaining measurement light, reflected by the total reflection mirror 6 at a right angle, and then reflected by the total reflection mirror 7 at a right angle, Further, the light is reflected at right angles by the half mirror 5 and recombined with the remaining measurement light. At this time, the optical path length L of the measurement light passing through the half mirror 4 from the half mirror 4 to the half mirror 5 with respect to the optical path length L 1 between the half mirror 4 and the half mirror 5 is measured. 2 (L 2 = l 1 + l 2 + l 3 ) is equal to the distance l 1 + l 3 (l because the distance L 1 between the two half mirrors 4 and 5 and the distance between the two total reflection mirrors 6 and 7 are equal. 1 = l 3 ). These distances l 1 + l 3 correspond to twice the distance L between the reference surface 11a of the reference plate 11 and the test surface 12a of the subject 12, so that the measurement light travels straight between the two half mirrors 4 and 5. The optical path lengths of the reflected light from the test surface 12a and the reflected light from the reference surface 11a of the measurement light bypassing between the two half mirrors 4 and 5 are completely equal, and the two reflected lights interfere with each other. Arise.
[0016]
By the way, although the interferometer having such a path-matching optical system has improved the accuracy of observation measurement by removing the interference fringe image that becomes noise, the contrast of the interference fringe image formed on the imaging surface is more improved. There is a desire to increase the accuracy of observation and measurement of interference fringes. That is, in the interferometer, as described above, the interference fringes generated by the mutual interference between the reflected light from the test surface of the measurement light that has traveled straight without bypassing and the reflected light from the reference surface of the bypassed measurement light are generated. The observation surface is evaluated by observation measurement. In addition to this, the observation system also includes a reference beam of measurement light that has traveled straight without detouring, reflected light from each back surface of the subject, and measurement light subject to detouring. The next problem is that the reflected light from each of the inspection surface and the back surface of the subject is incident. Since these reflected lights have an optical path difference larger than the coherence distance of the measurement light with respect to the reflected lights causing mutual interference, noise interference fringes do not occur, but background light of interference fringe images. Therefore, the entire image becomes bright, and the contrast of interference fringes decreases. The contrast of the interference fringes affects the accuracy of observation and measurement. In particular, in order to use an analysis device that automatically analyzes the shape of the test surface from the interference fringes, it is desirable to obtain an image with good contrast.
[0017]
Therefore, in the present embodiment, first, the first polarizing plate 21 that transmits the P-polarized light is disposed between the light source 1 and the half mirror 4. The P-polarized measurement light transmitted through the polarizing plate 21 is separated by the half mirror 4, and part of the light is reflected at right angles by the half mirror 4 to bypass the path-matching optical system, and the remaining measurement light is transmitted from the half mirror 4 to the half mirror. Go straight to 5. The light traveling straight reaches the half mirror 5 with P polarization. On the other hand, since the λ / 2 optical phase plate 22 is inserted in the optical path of the path-matching optical system, the detoured light is converted into S-polarized light, and then reaches the half mirror 5. It is reflected at right angles and recombined with the remaining measurement light.
[0018]
The reflected light obtained by reflecting the straight P-polarized light and the S-polarized light passing through the path-matching optical system from the surfaces 11a and 12a will be considered. In the following, the optical path length from the half mirror 5 to the reference surface 11a of the reference plate 11 is set to L 3, the refractive index of the specimen 12 is n, the thickness is set to t.
[0019]
Here, the reflected light from the reference surface 11a has the following optical path length (however, the optical path length from the half mirror 4 to the reference surface 11a through the surfaces 11a and 12a; the same applies hereinafter) and the polarization component. This is a combined light of two reflected lights.
Reflected light of light transmitted through the half mirror 4-optical path length L 1 + L 3 -P-polarized light (1)
Reflected light of light reflected by the half mirror 4 —optical path length L 2 + L 3 —S-polarized light (2)
[0020]
Next, the reflected light from the test surface 12a is converted into S-polarized light and S-polarized light into P-polarized light by the λ / 4 optical phase plate 23 inserted between the reference plate 11 and the test plate 12, respectively. Since it is converted, it becomes a combined light of two reflected lights having the following optical path length and polarization component. Reflected light of light transmitted through the half mirror 4-optical path length L 1 + L 3 + 2L -S-polarized light (3)
Reflected light of the light reflected by the half mirror 4—optical path length L 2 + L 3 + 2L—P polarized light (4)
[0021]
Here, from the nature of the path-matching optical system,
L 2 = L 1 + 2L (5)
It is. Therefore, when the optical path lengths of the reflected lights are compared, the values of the reflected light (2) and the reflected light (3) are exactly the same, that is, from the reference surface 11a of the measuring light that bypasses between the two half mirrors 4 and 5. The optical path lengths of the reflected light from the test surface 12a of the measurement light that has traveled straight between the two half mirrors 4 and 5 are exactly the same, and the polarization components thereof coincide with each other.
[0022]
On the other hand, as is apparent from the optical path lengths of the reflected light (1) and the reflected light (4), the two reflected lights of P-polarized light are related to both the optical path difference from the other reflected lights and the coherence distance of the measuring light. Therefore, an interference fringe is not generated with other reflected light, and the contrast of the interference fringe image is simply lowered as background light. Therefore, in the apparatus of the present embodiment, the second polarizing plate 24 that transmits S-polarized light is disposed in front of the imaging camera 14 to block P-polarized light that is background light and to form a desired interference fringe image. Only the two S-polarized lights that contribute to the light are incident on the imaging camera 14.
[0023]
In this way, desired interference fringes with good contrast can be formed on the CCD element in the imaging camera 14, and the surface shape of the thin glass can be measured with high accuracy.
[0024]
In the above embodiment, the λ / 2 optical phase plate 22 is disposed in the path match optical path between the half mirrors 4 and 5, but instead of this, the light transmitted through the half mirror 4 as shown in FIG. It is also possible to arrange the λ / 2 optical phase plate 22a in this path.
In such a configuration, the reflected light carrying the necessary information of the interference fringe image (the reflected light (2), (3)) becomes P-polarized light, while the reflected light (background) Since the reflected lights (1) and (4)) are S-polarized light, in order to prevent the background light from entering the imaging camera, the second polarizing plate 24 is changed to a polarizing plate that transmits P-polarized light. It needs to be replaced.
[0025]
In the above description of the series of embodiments, a polarizing plate that transmits P-polarized light is used as the first polarizing plate 22. However, as a matter of course, a polarizing plate that transmits S-polarized light is used as the first polarizing plate 22. In this case, it is necessary to set the second polarizing plate 24 so as to have a transmission characteristic corresponding to the second polarizing plate 24.
[0026]
Further, in the embodiment shown in FIG. 1, the λ / 4 optical phase plate 23 is arranged between the reference plate 11 and the test plate 12, but as shown in FIG. A film-like λ / 4 optical phase plate 23a can be formed in close contact with the side. The film in this case can be formed using various known film forming techniques such as vapor deposition and sputtering.
By forming the λ / 4 optical phase plate 23a on the surface of the reference plate 11, there is no need to provide a special holding means for the phase plate 23a, and the alignment of the phase plate 23a can be adjusted when the optical system is assembled. It can be unnecessary.
[0027]
Further, since the thickness usually varies depending on the subject 12, in the path match optical system, the two total reflection mirrors 6 and 7 are finely moved integrally in the direction of the half mirrors 4 and 5 to slightly reduce the optical path length of the detour measurement light. It should be adjustable.
[0028]
In the present embodiment, the wavelength selection filter plate 3 is disposed between the collimator lens 3 and the half mirror 4.
As shown in FIG. 4, the wavelength selection filter plate 3 has a full-wavelength transmission part 3a, a red light selective transmission part 3b, a green light selective transmission part 3c, and a blue light selective transmission part 3d formed at 90 ° intervals on the turret plate. Thus, the desired color light can be selected as the measurement light by rotating the turret plate by a predetermined angle.
[0029]
This is useful when it is necessary to select light having a predetermined wavelength as measurement light, such as when the subject 12 is a dichroic mirror that reflects light having a predetermined wavelength.
Of course, when such a wavelength selection filter is not required at all, the filter plate 3 may be moved in the direction of arrow A in FIG.
[0030]
The transparent thin plate measuring interferometer of the present invention is not limited to the above embodiment, and various other modifications can be made. For example, in the path match optical system, instead of the two total reflection mirrors 6 and 7, a corner cube that can return the measurement light from the half mirror 4 toward the half mirror 5 can be used.
By adopting such a corner cube, when the optical path length of the detour measurement light is adjusted, the moving operation becomes easy.
Moreover, in the said embodiment, it is also possible to replace both so that the transmitted light of half-mirror-4 may be detour measurement light and the reflected light may be straight measurement light.
[0031]
The supporting means for the subject 12 may be structured to be fixedly held when supported on the test surface 12a side, but depending on the thickness of the subject 12 when supported on the back surface 12b side. It is desirable that the test object 12 has a structure that can move in the direction of the optical axis. Further, based on the thickness information of the test object 12 when obtaining interference fringes, the test surface 12a is moved to an appropriate position. It is desirable to automatically perform the movement operation of the subject 12.
Further, a half mirror can be used in place of the half prism 9, but astigmatism is improved by using the half prism 9 in the divergent beam as in this embodiment. Can do.
[0032]
Of course, each of the half mirrors 4 and 5 can be replaced with a half prism.
The subject of the interferometer of the present invention can be applied not only to a glass thin plate but also to various transparent thin plates such as a plastic plate and a quartz plate.
Further, in the above embodiment, the imaging camera 14 is used as an observation system. However, instead of this, an optical screen having a diffusing surface may be provided, and an interference fringe image may be formed on the screen and observed visually. It is.
[0033]
【The invention's effect】
As described above, according to the transparent thin plate measurement interferometer of the present invention, the transparent thin plate measurement is provided with a path match optical system that sets the coherence distance of the measurement light to be less than a predetermined length and bypasses a part of the measurement light. In the interferometer, two polarizing plates and two optical phase plates are arranged at predetermined optical path positions, and two light beams necessary for obtaining an interference fringe image of the test surface are either the first P or S first. In addition to the linearly polarized light component, the light beam that becomes background light other than this is used as the second linearly polarized light component of either P or S, and only the first polarized light component is incident on the observation system. Therefore, it is possible to obtain an interference fringe image with good contrast with a simple configuration. Thereby, the measurement of the surface shape of the test surface can be performed with high accuracy.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an interferometer for measuring a transparent thin plate according to an embodiment of the present invention. FIG. 2 is a schematic diagram showing a modification of the embodiment shown in FIG. 1. FIG. 3 is an implementation shown in FIG. FIG. 4 is a schematic view showing a partial modification of the form. FIG. 4 is a front view showing the wavelength selective filter plate shown in FIG.
DESCRIPTION OF SYMBOLS 1 White light source 2,10 Collimator lens 3 Wavelength selection filter plate 4,5 Half mirror 6,7 Total reflection mirror 9 Half prism 11 Reference plate 11a Reference surface 12 Subject 12a Test surface 12b Back surface 14 Imaging camera 21 First polarization Plate 22, 22a λ / 2 optical phase plate 23, 23a λ / 4 optical phase plate 24 Second polarizing plate

Claims (4)

光源から射出される光の可干渉距離を、透明薄板よりなる被検体の厚みの2倍に相当する距離よりも小さく設定し、該被検体に向かう前記光のうちの一部を第1の光分離手段により分離して、該一部の光を、その余の光よりも基準面と被検面との距離の2倍に相当する距離だけ大きい光路長を有するように迂回させた後、光合成手段により該その余の光と合成させるパスマッチ光学系を備え、この合成された光の、該基準面からの反射光である第1の反射光と、この基準面を透過した該合成された光の、前記被検面からの反射光である第2の反射光との光干渉により生じる干渉縞に基づき、該被検面の表面形状を測定する透明薄板測定用干渉計において、
前記光源から前記第1の光分離手段に到る光路内に、前記光源からの光のうち所定の振動面を有する偏光成分のみを透過する第1の偏光手段を配置し、
前記第1の光分離手段から前記光合成手段に到る、前記一部の光と前記その余の光のうちのいずれか一方の光路内にλ/2光学位相板を配置し、
前記基準面が形成された基準板と前記被検体の間にλ/4光学位相板を配置し、
前記光源と該基準板の間に前記第1および前記第2の反射光を観察系に導くための第2の光分離手段を配置し、
この第2の光分離手段と該観察系との間に、前記一部の光による前記第1の反射光および前記その余の光による前記第2の反射光を構成する、所定の振動面を有する偏光成分のみを透過させる第2の偏光手段を配置してなることを特徴とする透明薄板測定用干渉計。
The coherence distance of the light emitted from the light source is set to be smaller than a distance corresponding to twice the thickness of the subject made of a transparent thin plate, and a part of the light traveling toward the subject is the first light. After separating by the separating means and diverting the part of the light so as to have an optical path length larger than the remaining light by a distance corresponding to twice the distance between the reference surface and the test surface, A path-matching optical system for combining with the remaining light by means, the first reflected light of the combined light reflected from the reference surface, and the combined light transmitted through the reference surface In the interferometer for measuring a transparent thin plate based on interference fringes generated by optical interference with second reflected light that is reflected light from the test surface,
In the optical path from the light source to the first light separating means, a first polarizing means that transmits only a polarized light component having a predetermined vibration surface out of the light from the light source is disposed,
A λ / 2 optical phase plate is disposed in the optical path of one of the part of light and the remaining light from the first light separating unit to the light combining unit;
A λ / 4 optical phase plate is disposed between the reference plate on which the reference surface is formed and the subject,
A second light separating means for guiding the first and second reflected lights to an observation system between the light source and the reference plate;
Between the second light separating means and the observation system, a predetermined vibration surface constituting the first reflected light by the part of light and the second reflected light by the remaining light is provided. An interferometer for measuring a transparent thin plate, characterized in that second polarizing means for transmitting only the polarization component having it is arranged.
前記基準板の前記被検体側の面に前記λ/4光学位相板が密着形成されてなることを特徴とする請求項1記載の透明薄板測定用干渉計。2. The transparent thin plate measuring interferometer according to claim 1, wherein the λ / 4 optical phase plate is formed in close contact with the surface of the reference plate on the subject side. 前記パスマッチ光学系が、前記光源からの光の一部を反射し、その余の光を透過せしめる前記光分離手段と、該光分離手段からの反射光もしくは透過光を少なくとも1回反射せしめる光反射部材と、前記光分離手段からの透過光もしくは反射光と該光反射部材からの反射光を合成せしめる前記光合成手段とからなることを特徴とする請求項1もしくは2記載の透明薄板測定用干渉計。The path-matching optical system reflects part of the light from the light source and transmits the remaining light, and light reflection that reflects the reflected light or transmitted light from the light separating means at least once. 3. The transparent thin plate measuring interferometer according to claim 1, comprising: a member; and the light combining means for combining the transmitted light or reflected light from the light separating means and the reflected light from the light reflecting member. . 前記光源と前記パスマッチ光学系との間に所定の波長の光を選択透過する波長選択フィルタを配設してなることを特徴とする請求項1から3のうちいずれか1項記載の透明薄板測定用干渉計。The transparent thin plate measurement according to any one of claims 1 to 3, wherein a wavelength selection filter that selectively transmits light having a predetermined wavelength is disposed between the light source and the path match optical system. Interferometer.
JP19321997A 1997-07-03 1997-07-03 Interferometer for transparent thin plate measurement Expired - Fee Related JP3795191B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP19321997A JP3795191B2 (en) 1997-07-03 1997-07-03 Interferometer for transparent thin plate measurement

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP19321997A JP3795191B2 (en) 1997-07-03 1997-07-03 Interferometer for transparent thin plate measurement

Publications (2)

Publication Number Publication Date
JPH1123216A JPH1123216A (en) 1999-01-29
JP3795191B2 true JP3795191B2 (en) 2006-07-12

Family

ID=16304303

Family Applications (1)

Application Number Title Priority Date Filing Date
JP19321997A Expired - Fee Related JP3795191B2 (en) 1997-07-03 1997-07-03 Interferometer for transparent thin plate measurement

Country Status (1)

Country Link
JP (1) JP3795191B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4647967B2 (en) * 2004-11-09 2011-03-09 Hoya株式会社 Mask blank glass substrate manufacturing method, mask blank manufacturing method, exposure mask manufacturing method, and semiconductor device manufacturing method
JP2008286518A (en) 2007-05-15 2008-11-27 Hitachi Ltd Method and device for measuring displacement thereof
JP5181403B2 (en) * 2008-12-01 2013-04-10 株式会社高岳製作所 Interferometer
JP2011257190A (en) * 2010-06-07 2011-12-22 Fujifilm Corp Real-time measurement branch type interferometer
JP2020112381A (en) * 2019-01-09 2020-07-27 株式会社ディスコ Thickness measuring device, and processing device equipped with thickness measuring device

Also Published As

Publication number Publication date
JPH1123216A (en) 1999-01-29

Similar Documents

Publication Publication Date Title
US3958884A (en) Interferometric apparatus
US9880377B1 (en) Multiple wavelengths real time phase shift interference microscopy
US7483145B2 (en) Simultaneous phase shifting module for use in interferometry
JPH10510054A (en) Phase-shift diffraction interferometer
US7675628B2 (en) Synchronous frequency-shift mechanism in Fizeau interferometer
US20060039007A1 (en) Vibration-insensitive interferometer
JP2001512232A (en) Optical device used in image generating Fourier spectrometer and method of using the same
EP2284479B1 (en) Grazing incidence interferometer
JPS61178635A (en) Interference apparatus for measuring wave front aberration
US20050122529A1 (en) Measurement system of three-dimensional shape of transparent thin film using acousto-optic tunable filter
JP3795191B2 (en) Interferometer for transparent thin plate measurement
TW202214996A (en) Device and method for measuring interfaces of an optical element
CN103322912B (en) A kind of reflection type point diffraction is from axle simultaneous phase-shifting interference checking device and detection method
JPS62251627A (en) Polarization interferrometer
WO2017126215A1 (en) Phase shift amount measurement device
US20120026507A1 (en) Interferometric system with reduced vibration sensitivity and related method
JP2000241128A (en) Plane-to-plane space measuring apparatus
JP3694298B2 (en) Surface measuring apparatus and measuring method thereof
JP2000329535A (en) Simiultaneous measuring apparatus for phase-shifting interference fringes
JPH0921606A (en) Interferometer for measuring transparent thin plate
JP5286648B2 (en) Light source device, spectrum modulator, and spectrum measuring device
JPS6024401B2 (en) How to measure the physical constants of a measured object
JPH08271337A (en) Spectroscope
JPH11337321A (en) Method and device for simultaneously measuring phase shift interference fringe
JP4349506B2 (en) Interferometer device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040623

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20051027

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060406

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060412

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 3795191

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090421

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100421

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110421

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120421

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130421

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140421

Year of fee payment: 8

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370