JP5286480B2 - Method for producing particulate Ca (OH) 2 and gas absorption method or gas recovery method using the same - Google Patents

Method for producing particulate Ca (OH) 2 and gas absorption method or gas recovery method using the same Download PDF

Info

Publication number
JP5286480B2
JP5286480B2 JP2007226919A JP2007226919A JP5286480B2 JP 5286480 B2 JP5286480 B2 JP 5286480B2 JP 2007226919 A JP2007226919 A JP 2007226919A JP 2007226919 A JP2007226919 A JP 2007226919A JP 5286480 B2 JP5286480 B2 JP 5286480B2
Authority
JP
Japan
Prior art keywords
cao
particulate
calcium oxide
gas
atm
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007226919A
Other languages
Japanese (ja)
Other versions
JP2009057254A (en
Inventor
石英 林
氣駕尚志
印 汪
鈴木善三
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2007226919A priority Critical patent/JP5286480B2/en
Publication of JP2009057254A publication Critical patent/JP2009057254A/en
Application granted granted Critical
Publication of JP5286480B2 publication Critical patent/JP5286480B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02CCAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
    • Y02C20/00Capture or disposal of greenhouse gases
    • Y02C20/40Capture or disposal of greenhouse gases of CO2
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency
    • Y02P20/129Energy recovery, e.g. by cogeneration, H2recovery or pressure recovery turbines

Landscapes

  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Gas Separation By Absorption (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)

Description

本発明は、粒子状のCa(OH)2の製造方法及びそれを用いたガス吸収方法又は回収方法に関し、より詳しくは、一定強度を持つ粒子状のCa(OH)2の製造方法、及びそれを利用した比表面積が大きい粒子状CaOの製造方法、これらを用いたガス吸収方法並びにガス回収方法に関するものである。 The present invention relates to a method for producing particulate Ca (OH) 2 and a gas absorption method or recovery method using the same, and more particularly, a method for producing particulate Ca (OH) 2 having a certain strength, and the same. The present invention relates to a method for producing particulate CaO having a large specific surface area utilizing the above, a gas absorption method using these, and a gas recovery method.

従来、移動層や固定層などにおいて、粒子状のCa(OH)2を反応させる際に、一定強度を持たない粒子状のCa(OH)2は、反応気流により粒子が破壊されて粉末化されてしまうため、気流と共に反応系外に持ち出されてしまうため、反応効率が著しく低下する。 Conventionally, in such moving bed and fixed bed, in the reaction of particulate Ca (OH) 2, particulate Ca (OH) 2 without a constant intensity, the particles are broken is powdered by reaction stream Therefore, it is taken out of the reaction system together with the air flow, and the reaction efficiency is significantly reduced.

とくに、粒子状の酸化カルシウム(CaO)を用いて、これを水ないし水蒸気と反応させて粒子状のCa(OH)2として利用する反応系においては、一定強度を持たない粒子状のCa(OH)2が生成してしまうため、流速が早い反応気流を用いることが出来なかった。
本発明者が開発したHyPr-RING法(特許文献1−7参照)は、粒子状の酸化カルシウム(CaO)を用いて、水素製造と共にカルシウムベース吸収剤(CaO)を使ってガス化炉内でCO2を吸収分離している。
In particular, in a reaction system that uses particulate calcium oxide (CaO) and reacts with water or water vapor as particulate Ca (OH) 2 , particulate Ca (OH) that does not have a constant strength. ) 2 was generated, so it was not possible to use a reaction air flow with a high flow rate.
The HyPr-RING method developed by the present inventor (see Patent Documents 1-7) uses particulate calcium oxide (CaO) in a gasifier using a calcium-based absorbent (CaO) together with hydrogen production. CO 2 is absorbed and separated.

しかし、カ焼と共に酸化カルシウム(CaO)の焼結が進み、酸化カルシウム(CaO)のガス吸収活性が低下してしまうため、従来法では活性が低下した粒子状の酸化カルシウム(CaO)に水や水蒸気を吹き付け、水酸化カルシウムCa(OH)2を生成させて活性を回復する方法が考えられていが、酸化カルシウム(CaO)を粒子状としたものを用いても、生成した水酸化カルシウムCa(OH)2が粉末化するため、気流により排出されてしまって、移動層や固定層などにおいて吸収剤として使用できなくなる問題があった。 However, the sintering of calcium oxide (CaO) proceeds with calcination, and the gas absorption activity of calcium oxide (CaO) decreases, so water and water are added to particulate calcium oxide (CaO), which has decreased activity in the conventional method. Although the method of spraying water vapor and generating calcium hydroxide Ca (OH) 2 to recover the activity has been considered, even if calcium oxide (CaO) in the form of particles is used, the generated calcium hydroxide Ca ( Since OH) 2 is pulverized, it is discharged by an air stream and cannot be used as an absorbent in a moving bed or a fixed bed.

さらに、本発明者は、CaCO3から活性の高い酸化カルシウム(CaO)を製造しつつCO2を回収することができるカ焼方法についても既に提案しているところである(特許文献8参照)。 Furthermore, the present inventor has already proposed a calcining method capable of recovering CO 2 while producing highly active calcium oxide (CaO) from CaCO 3 (see Patent Document 8).

特許第2979149号明細書Japanese Patent No. 2979149 特許第3057250号明細書Japanese Patent No. 3057250 特開2001−019402号公報JP 2001-019402 A 特許第3915010号明細書Japanese Patent No. 3915010 特開2003−082361号公報Japanese Patent Laid-Open No. 2003-083361 特開2004−059816号公報JP 2004-059816 A 特開2005−104595号公報JP 2005-104595 A 特願2007−171323Japanese Patent Application No. 2007-171323

本発明者は、上記の問題点を解決すべく、粒子状の酸化カルシウム(CaO)と水又は水蒸気とを反応させ、水酸化カルシウムCa(OH)2を生成させた際に、一定強度をもつ粒子状の水酸化カルシウムCa(OH)2とする水酸化カルシウムCa(OH)2の製造方法及びそれを利用した比表面積が大きい粒子状CaOの製造方法、これらを用いたガス吸収方法又は回収方法を提供する。 In order to solve the above-mentioned problems, the present inventor has a certain strength when calcium hydroxide Ca (OH) 2 is generated by reacting particulate calcium oxide (CaO) with water or water vapor. method for producing a particulate calcium hydroxide Ca (OH) 2 to calcium hydroxide Ca (OH) 2 preparation and use the large specific surface area particulate CaO it, gas absorption method or recovering method using these I will provide a.

本発明者は、鋭意研究を続けた結果、酸化カルシウム(CaO)と水又は水蒸気とを1気圧以上200〜700℃で反応させることにより、一定強度をもつ粒子状の水酸化カルシウムCa(OH)2とすることができることを見出し、本発明を完成させるに至った。すなわち、本発明は、石灰石若しくは炭酸カルシウム(CaCaO )をカ焼して得られた粒子状酸化カルシウム(CaO)であって、前記粒子状酸化カルシウム(CaO)の粒子径が0.2〜0.8mmである粒子状酸化カルシウム(CaO)を、水と反応させ、
CaO+HO→Ca(OH)2 (1)
で表される反応をさせるに際して、1気圧以上で650〜700℃の水蒸気条件で反応(1)を進行させることにより、圧縮破壊強度が25kg/cm 2 以上で粒子状を保持したままのCa(OH)2を生成させ、次いで、850℃〜900℃で熱分解することを特徴とする比表面積が大きい粒子状CaOの製造方法である。
また、本発明は、石灰石若しくは炭酸カルシウム(CaCaO )をカ焼して得られた粒子状酸化カルシウム(CaO)であって、前記粒子状酸化カルシウム(CaO)の粒子径が0.20〜0.8mmである粒子状酸化カルシウム(CaO)を、水と反応させ、
CaO+HO→Ca(OH)2 (1)
で表される反応をさせるに際して、1気圧以上で650〜700℃の条件で反応(1)を進行させることにより、圧縮破壊強度が25kg/cm 2 以上で粒子状を保持したままのCa(OH)2を生成させ、次いで、それを850℃〜900℃で熱分解して出来たCaOと、HCL,H2S,SO2,CO2,ハロゲンから選ばれる有害ガス(R)を、900℃以下の温度で反応させ、Ca(R)を生成させるガス吸収方法である。
さらに、本発明は上記のガス吸収方法で生成したCa(R)を、温度100℃〜800℃、1気圧〜100気圧の水蒸気で処理し、再びCa(OH)2に再生し、得られたCa(OH)2を有害ガス吸収剤として再利用しながら、生成した高濃度の有害ガス(R)を回収するガス回収方法である。

As a result of continual research, the present inventor has reacted calcium oxide (CaO) with water or water vapor at 1 atm or more at 200 to 700 ° C. to thereby form particulate calcium hydroxide Ca (OH) having a certain strength. As a result, the present invention has been completed. That is, the present invention is particulate calcium oxide (CaO) obtained by calcining limestone or calcium carbonate (CaCaO 3 ), and the particle diameter of the particulate calcium oxide (CaO) is 0.2 to 0. .8 mm of particulate calcium oxide (CaO) is reacted with water,
CaO + H 2 O → Ca (OH) 2 (1)
When the reaction represented by the formula (1) is performed, the reaction (1) is allowed to proceed under a water vapor condition of 650 to 700 ° C. at 1 atm or higher, so that the compressive fracture strength is 25 kg / cm 2 or more while maintaining the particulate form of Ca ( This is a method for producing particulate CaO having a large specific surface area, characterized by producing OH) 2 and then thermally decomposing at 850 ° C to 900 ° C.
The present invention also relates to particulate calcium oxide (CaO) obtained by calcining limestone or calcium carbonate (CaCaO 3 ), wherein the particle diameter of the particulate calcium oxide (CaO) is 0.20 to 0. .8 mm of particulate calcium oxide (CaO) is reacted with water,
CaO + H 2 O → Ca (OH) 2 (1)
When the reaction represented by the formula (1) is carried out under the conditions of 650 to 700 ° C. at 1 atm or more, Ca (OH) with the compressive fracture strength of 25 kg / cm 2 or more and maintaining the particulate form is maintained. ) 2 and then pyrolyzing it at 850 ° C. to 900 ° C. and a harmful gas (R) selected from HCL, H 2 S, SO 2 , CO 2 and halogen at 900 ° C. It is a gas absorption method in which Ca (R) is generated by reacting at the following temperatures.
Furthermore, the present invention was obtained by treating Ca (R) produced by the above gas absorption method with water vapor at a temperature of 100 ° C. to 800 ° C. and 1 atm to 100 atm, and regenerating Ca (OH) 2 again. This is a gas recovery method that recovers high-concentration harmful gas (R) while reusing Ca (OH) 2 as a harmful gas absorbent.

本発明の粒子状のCa(OH)2の製造方法は、安価な石灰石からも作ることができ、一定強度をもつ粒子状のCa(OH)2を造ることが出来る。また、粒子状のCa(OH)2として移動層や固定層吸収塔に有効に使用することができる。さらに、本発明の粒子状のCa(OH)2を熱分解することを特徴とする比表面積が大きい粒子状CaOを作ることができ、これらの物質は反応性が高く、有毒ガスのガス吸収方法又はガス回収方法に用いることができる。 The method for producing particulate Ca (OH) 2 of the present invention can be produced from inexpensive limestone, and particulate Ca (OH) 2 having a certain strength can be produced. Further, it can be effectively used as a particulate Ca (OH) 2 in a moving bed or a fixed bed absorption tower. Furthermore, it is possible to produce particulate CaO having a large specific surface area, characterized by thermally decomposing particulate Ca (OH) 2 of the present invention, and these substances are highly reactive and a gas absorption method for toxic gas Or it can use for a gas recovery method.

本発明において、用いることが出来る粒子状酸化カルシウム(CaO)としては、石灰石若
しくは炭酸カルシウム(CaCO3)をカ焼したものや、市販の生石灰である。粒子状酸化カ
ルシウム(CaO)の粒子径は、0.2〜0.8mm程度のもの、好ましくは0.3〜0.
6mmのものを用いることが出来る。
粒子径は0.2mm未満では、移動層や固定層などにおいて、気流と共に反応系外に持ち
出されてしまうため好ましくなく、0.8mmを超えるものは用途が少ない。
また、反応は、1気圧以上で650℃〜700℃で行う。
本発明において、原料として用いる粒子状酸化カルシウム(CaO)の原料としての炭酸カ
ルシウム(CaCO3)は、どのような炭酸カルシウムでも良いが、HyPr-RING法の使用済み生成物としての吸収剤(CaCO3炭酸塩)が好適に用いられる。
In the present invention, particulate calcium oxide (CaO) that can be used is a calcined limestone or calcium carbonate (CaCO3) or commercially available quicklime. The particle diameter of particulate calcium oxide (CaO) is about 0.2 to 0.8 mm, preferably 0.3 to 0.00 mm.
6 mm can be used.
If the particle diameter is less than 0.2 mm, it is not preferable because it is taken out of the reaction system together with the air current in the moving layer, the fixed layer, etc., and those exceeding 0.8 mm have few applications.
Moreover, reaction is performed at 650 degreeC-700 degreeC above 1 atmosphere.
In the present invention, calcium carbonate (CaCO 3 ) as a raw material of particulate calcium oxide (CaO) used as a raw material may be any calcium carbonate, but an absorbent (CaCO as a used product of the HyPr-RING method) 3 carbonate) is preferably used.

得られる粒子状水酸化カルシウム(Ca(OH)2)は、圧縮破壊強度が、一定強度25kg/cm 2 以上であれば、安定的に粒子形状を維持することが出来る。本発明では、圧縮破壊強度が50kg/cm2以上のものも作ることも出来る。得られた粒子状水酸化カルシウム(Ca(OH)2)は、図1に示すように炭酸ガス吸収剤、高温脱硫剤、脱塩化水素剤、脱水剤、ヒートポンプ熱媒体、充填材など多くの用途に用いることが出来る。さらに、高温脱硫剤として用いる具体的な例として、図2に示す排ガス処理システムを示すことが出来る。
The obtained particulate calcium hydroxide (Ca (OH) 2 ) can stably maintain the particle shape if the compressive fracture strength is a constant strength of 25 kg / cm 2 or more. In the present invention, one having a compressive fracture strength of 50 kg / cm 2 or more can also be produced. The obtained particulate calcium hydroxide (Ca (OH) 2 ) has many uses such as carbon dioxide absorbent, high-temperature desulfurizing agent, dehydrochlorinating agent, dehydrating agent, heat pump heat medium, filler as shown in FIG. Can be used. Furthermore, an exhaust gas treatment system shown in FIG. 2 can be shown as a specific example used as a high-temperature desulfurization agent.

本件発明において、比表面積が大きいとは、気体吸着によるBET式表面積測定法で、20.0m2/g〜40.0m2/gの値を示すものをいう。
気体吸着によるBET式表面積測定法は、業界周知である。
また、原料の粒子状CaOの比表面積は、12.0m2/g以下であっても良く、生成した粒子状CaOの比表面積は、20.0m2/g〜40.0m2/gとなる。
さらに、本発明における一定強度をもつ粒子状の水酸化カルシウムCa(OH)2の熱分解の温度は、通常400℃〜1000℃であり、850℃〜900℃が好ましい。400℃未満では、反応が遅く、1000℃以上ではエネルギー効率が悪い。
本発明において、原料の粒子状CaOは、石灰石若しくは炭酸カルシウム(CaCO3)をカ焼することにより得られるが、カ焼は、どのような条件でも良く、とくに、水蒸気分圧50〜80%、炭酸ガス分圧20〜50%(水蒸気と炭酸ガスによる全圧0.05−0.15Mpaの条件下)の雰囲気下、温度750〜1000℃以下の条件でカ焼を行うことが好ましい。
さらに、本発明において、粒子状Ca(OH)2若しくはそれを熱分解して出来たCaOと反応させて、ガス吸収を行う有害ガス(R)としては、代表的には、HCL, H2S, SO2, CO2, ハロゲン等を挙げることができる。ガス吸収反応は、エネルギー効率を考えると900℃以下で行うことが望ましい。
これらの有害ガス(R)は、カルシウム(Ca)と化合するが、水蒸気とくに、100℃〜800℃、1気圧〜100気圧の水蒸気で処理すると、
Ca(OH)2と元のガス体に分離させることができ、再生されたCa(OH)2は、再利用することができる。また、水蒸気温度は100℃未満では反応が遅くて効率が悪く、800℃以上ではエネルギー効率が悪くなる。水蒸気圧力は、1気圧未満では反応が遅く、100気圧以上では装置の作成に手間が掛かりすぎる。
In the present invention, the specific surface area is large, the BET equation surface area measurement method by gas adsorption, refers to indicating the value of 20.0m 2 /g~40.0m 2 / g.
The BET surface area measurement method by gas adsorption is well known in the industry.
The specific surface area of the particulate CaO in the raw material may be less than or equal 12.0m 2 / g, a specific surface area of the produced particulate CaO is a 20.0m 2 /g~40.0m 2 / g .
Furthermore, the thermal decomposition temperature of the particulate calcium hydroxide Ca (OH) 2 having a constant strength in the present invention is usually 400 ° C. to 1000 ° C., preferably 850 ° C. to 900 ° C. If it is less than 400 degreeC, reaction will be slow, and if it is 1000 degreeC or more, energy efficiency is bad.
In the present invention, the raw material granular CaO is obtained by calcining limestone or calcium carbonate (CaCO 3 ), and calcining may be performed under any conditions, in particular, a water vapor partial pressure of 50 to 80%, It is preferable to perform calcination under a temperature of 750 to 1000 ° C. under an atmosphere of carbon dioxide partial pressure of 20 to 50% (under conditions of a total pressure of 0.05 to 0.15 MPa by steam and carbon dioxide).
Furthermore, in the present invention, the harmful gas (R) that absorbs gas by reacting with particulate Ca (OH) 2 or CaO obtained by thermally decomposing it is typically HCL, H 2 S. , SO 2 , CO 2 , halogen and the like. The gas absorption reaction is desirably performed at 900 ° C. or lower in view of energy efficiency.
These harmful gases (R) combine with calcium (Ca), but when treated with water vapor, particularly 100 ° C. to 800 ° C., 1 atm to 100 atm,
Ca (OH) 2 can be separated from the original gas body, and the regenerated Ca (OH) 2 can be reused. Further, when the water vapor temperature is less than 100 ° C, the reaction is slow and the efficiency is poor, and when it is 800 ° C or more, the energy efficiency is deteriorated. If the water vapor pressure is less than 1 atm, the reaction is slow, and if it exceeds 100 atm, it takes too much time to create the apparatus.

本発明の実施の形態は以下のとおりである。
(イ)石灰石若しくは炭酸カルシウム(CaCaO )をカ焼して得られた粒子状酸化カルシウム(CaO)であって、前記粒子状酸化カルシウム(CaO)の粒子径が0.2〜0.8mmである粒子状酸化カルシウム(CaO)を、水と反応させ、
CaO+HO→Ca(OH)2 (1)
で表される反応をさせるに際して、1気圧以上で650〜700℃の水蒸気条件で反応(1)を進行させることにより、圧縮破壊強度が25kg/cm 2 以上で粒子状を保持したままのCa(OH)2を生成させ、次いで、850℃〜900℃で熱分解することを特徴とする比表面積が大きい粒子状CaOの製造方法。

(ロ)石灰石若しくは炭酸カルシウム(CaCaO )をカ焼して得られた粒子状酸化カルシウム(CaO)であって、前記粒子状酸化カルシウム(CaO)の粒子径が0.20〜0.8mmである粒子状酸化カルシウム(CaO)を、水と反応させ、
CaO+HO→Ca(OH)2 (1)
で表される反応をさせるに際して、1気圧以上で650〜700℃の条件で反応(1)を進行させることにより、圧縮破壊強度が25kg/cm 2 以上で粒子状を保持したままのCa(OH)2を生成させ、次いで、それを850℃〜900℃で熱分解して出来たCaOと、HCL,H2S,SO2,CO2,ハロゲンから選ばれる有害ガス(R)を、900℃以下の温度で反応させ、Ca(R)を生成させるガス吸収方法。

(ハ)上記に係るガス吸収方法で生成したCa(R)を、温度100℃〜800℃、1気圧〜100気圧の水蒸気で処理し、再びCa(OH)2に再生し、得られたCa(OH)2を有害ガス吸収剤として再利用しながら、生成した高濃度の有害ガス(R)を回収するガス回収方法。
次に本発明の具体例を示す。
Embodiments of the present invention are as follows.
(I) It is particulate calcium oxide (CaO) obtained by calcining limestone or calcium carbonate (CaCaO 3 ), and the particle diameter of the particulate calcium oxide (CaO) is 0.2 to 0.8 mm. Some particulate calcium oxide (CaO) reacts with water,
CaO + H 2 O → Ca (OH) 2 (1)
When the reaction represented by the formula (1) is performed, the reaction (1) is allowed to proceed under a water vapor condition of 650 to 700 ° C. at 1 atm or higher, so that the compressive fracture strength is 25 kg / cm 2 or more while maintaining the particulate form of Ca ( OH) 2 is produced, and then pyrolyzed at 850 ° C. to 900 ° C. A method for producing particulate CaO having a large specific surface area.

(B) Particulate calcium oxide (CaO) obtained by calcining limestone or calcium carbonate (CaCaO 3 ), wherein the particle diameter of the particulate calcium oxide (CaO) is 0.20 to 0.8 mm. Some particulate calcium oxide (CaO) reacts with water,
CaO + H 2 O → Ca (OH) 2 (1)
When the reaction represented by the formula (1) is carried out under the conditions of 650 to 700 ° C. at 1 atm or more, Ca (OH) with the compressive fracture strength of 25 kg / cm 2 or more and maintaining the particulate form is maintained. ) 2 and then pyrolyzing it at 850 ° C. to 900 ° C. and a harmful gas (R) selected from HCL, H 2 S, SO 2 , CO 2 and halogen at 900 ° C. A gas absorption method in which Ca (R) is produced by reacting at the following temperatures.

(C) Ca (R) produced by the gas absorption method according to the above is treated with water vapor at a temperature of 100 ° C. to 800 ° C. and 1 atm to 100 atm, regenerated again to Ca (OH) 2 , and obtained Ca A gas recovery method that recovers high concentration of harmful gas (R) while reusing (OH) 2 as a harmful gas absorbent.
Next, specific examples of the present invention will be shown.

石灰石を、通常の方法すなわち、窒素/炭酸ガス=6/4の雰囲気で920℃の温度でカ焼することにより得られた低活性粒子状酸化カルシウム(CaO)(BET10.2m/g)を用いて、3.0Mpaで650℃の水蒸気条件で反応させ、粒子状のCa(OH)2(BET5.3m/g)を生成させた。得られた粒子状のCa(OH)2(BET5.3m/g)の粒度分布及び強度を表1に示す。 Low activity particulate calcium oxide (CaO) (BET 10.2 m 2 / g) obtained by calcining limestone in a usual manner, that is, by calcining at a temperature of 920 ° C. in an atmosphere of nitrogen / carbon dioxide gas = 6/4. It was used and reacted under steam conditions of 3.0 Mpa and 650 ° C. to produce particulate Ca (OH) 2 (BET 5.3 m 2 / g). Table 1 shows the particle size distribution and strength of the obtained particulate Ca (OH) 2 (BET 5.3 m 2 / g).

Figure 0005286480
比較のために、実施例1において、650℃の水蒸気条件に代えて、180℃の水蒸気条件とした以外は同様にして、粒子状のCa(OH)2を作成した。粒子状のCa(OH)2の圧縮破壊強度は、25.0kg/cm であった。
Figure 0005286480
For comparison, particulate Ca (OH) 2 was prepared in the same manner as in Example 1 except that the water vapor condition at 180 ° C. was used instead of the water vapor condition at 650 ° C. The compressive fracture strength of particulate Ca (OH) 2 was 25.0 kg / cm 2 .

石灰石を、通常の方法すなわち、窒素/炭酸ガス=6/4の雰囲気で920℃の温度でカ焼することにより得られた粒子状CaO(BET10.2m/g)を用いて、3.0Mpaで650℃の水蒸気条件で反応させ、粒子状のCa(OH)2(BET5.3m/g)を生成させた。次いで生成したCa(OH)2を900℃1気圧の条件で熱分解したところ、BET30.4m/gの粒子状のCaOを得ることが出来た。
得られた粒子状のCa(OH)2(BET5.3m/g)とCaO(BET30.4m/g)の粒度分布及び強度を表2に示す。
Using particulate CaO (BET 10.2 m 2 / g) obtained by calcining limestone in a usual manner, that is, at a temperature of 920 ° C. in an atmosphere of nitrogen / carbon dioxide gas = 6/4, 3.0 Mpa The reaction was carried out under steam conditions at 650 ° C. to produce particulate Ca (OH) 2 (BET 5.3 m 2 / g). Next, when the produced Ca (OH) 2 was pyrolyzed at 900 ° C. and 1 atmosphere, particulate CaO having a BET of 30.4 m 2 / g could be obtained.
Table 2 shows the particle size distribution and strength of the obtained particulate Ca (OH) 2 (BET 5.3 m 2 / g) and CaO (BET 30.4 m 2 / g).

Figure 0005286480
Figure 0005286480

また、実施例1で得られた粒子状のCa(OH)2(BET5.3m/g)とCaO(BET30.4m/g)の顕微鏡写真を図3に示す。
さらに、通常の方法すなわち、粉末状の石灰石を、窒素/炭酸ガス=6/4の雰囲気で920℃の温度でカ焼することにより得られた通常の粒子状酸化カルシウム(CaO)(BET10.2m/g)を作成したCaO、実施例1により得られたCa(OH)2及び実施例2により得られたCaOの比表面積(BET m/g)を表3に示す。
Further, FIG. 3 shows micrographs of the particulate Ca (OH) 2 (BET 5.3 m 2 / g) and CaO (BET 30.4 m 2 / g) obtained in Example 1.
Furthermore, normal particulate calcium oxide (CaO) (BET10.2 m obtained by calcining powdery limestone at a temperature of 920 ° C. in an atmosphere of nitrogen / carbon dioxide gas = 6/4. 2 / g) was created CaO, specific surface area of CaO obtained by Ca (OH) 2 and example 2 obtained in example 1 (BET m 2 / g) are shown in Table 3.

Figure 0005286480
Figure 0005286480

(粒子状Ca(OH)2によるガス吸収の実施例)
Ca(OH)2による高温H2S吸収工程は、以下の反応で高温H2Sを吸収する。
Ca(OH)2→CaO+H2O; 昇温中
CaO+H2S→CaS+H2O; 高温H2S吸収
1gの粒子状Ca(OH)2を高温高圧固定層吸収塔にセットして、昇温昇圧する。Ca(OH)2は昇温中に粒子状CaOに分解する。800℃、15気圧で400ppmH2SとN2からなる混合ガス2.5L/minを流し、吸収実験を開始する。同時に出口ガス中のH2Sの濃度を測定する。図4には出口ガス測定結果を示す。100分まで供給ガス中のH2Sの殆どが粒子状CaOに吸収されていたことが分かる。
(Example of gas absorption by particulate Ca (OH) 2 )
Ca (OH) 2 at a high temperature H 2 S absorption step absorbs high temperature H 2 S in the following reaction.
Ca (OH) 2 → CaO + H 2 O; heating
CaO + H 2 S → CaS + H 2 O; high temperature H 2 S absorption
1 g of particulate Ca (OH) 2 is set in a high-temperature, high-pressure fixed bed absorption tower, and the temperature is increased. Ca (OH) 2 decomposes into particulate CaO during heating. Absorption experiment is started by flowing 2.5L / min of mixed gas consisting of 400ppmH 2 S and N 2 at 800 ° C and 15 atm. At the same time, the concentration of H 2 S in the outlet gas is measured. FIG. 4 shows the outlet gas measurement results. It can be seen that most of the H 2 S in the feed gas was absorbed by the particulate CaO until 100 minutes.

(生成CaSの再生工程)
実施例3で生成したCaSは、以下の反応により再生することができる。
CaS+高温高圧蒸気→Ca(OH)2+ H2S
まず、CaSを高温高圧装置にセットし、昇温昇圧する。400℃及び30気圧に固定し、高温高圧水蒸気を導入してCaSの再生を開始する。同時に出口ガスを測定し、生成されたH2Sの量からCaSからCa(OH)2への転換率を算出する。図5にはCaSからCa(OH)2への再生試験の例を示す。
図から、120分で、転換率(回収率)が50%以上になることが判る。
(Regeneration process of generated CaS)
The CaS produced in Example 3 can be regenerated by the following reaction.
CaS + high temperature and high pressure steam → Ca (OH) 2 + H 2 S
First, CaS is set in a high-temperature and high-pressure device, and the temperature is raised and raised. The temperature is fixed at 400 ° C. and 30 atmospheres, and high temperature and high pressure steam is introduced to start regeneration of CaS. At the same time, the outlet gas is measured, and the conversion rate from CaS to Ca (OH) 2 is calculated from the amount of H 2 S produced. FIG. 5 shows an example of a regeneration test from CaS to Ca (OH) 2 .
From the figure, it can be seen that the conversion rate (recovery rate) is 50% or more in 120 minutes.

本発明の粒子状のCa(OH)2の製造方法は、安価な石灰石からも作ることができ、一定強度をもつ粒子状のCa(OH)2を造ることが出来る。粒子状のCa(OH)2として移動層や固定層吸収塔に有効に使用することができるばかりか、本発明の粒子状のCa(OH)2を熱分解することで比表面積が大きい粒子状CaOを作ることができる。
さらにこれらの物質は反応性が高く、有毒ガスの吸収方法又は回収方法に用いることができるため、多くに用途があり、産業上利用価値の高いものである。
The method for producing particulate Ca (OH) 2 of the present invention can be produced from inexpensive limestone, and particulate Ca (OH) 2 having a certain strength can be produced. Not only can be effectively used in the transfer layer and the fixed layer absorber column as particulate Ca (OH) 2, particulate Ca (OH) specific surface area by 2 to pyrolysis is large particulate present invention CaO can be made.
Furthermore, since these substances are highly reactive and can be used in a method for absorbing or recovering toxic gases, they have many uses and have high industrial utility value.

粒子状水酸化カルシウム(Ca(OH)2)の製造の一例と用途Example and application of particulate calcium hydroxide (Ca (OH) 2 ) 粒子状水酸化カルシウム(Ca(OH)2)を用いた排ガス処理システムExhaust gas treatment system using particulate calcium hydroxide (Ca (OH) 2 ) 得られた粒子状水酸化カルシウムの顕微鏡写真Micrograph of the obtained particulate calcium hydroxide 粒子状水酸化カルシウム(Ca(OH)2)のHSガス吸収の一例Example of H 2 S gas absorption of particulate calcium hydroxide (Ca (OH) 2 ) CaSからCa(OH)2への再生の一例Example of regeneration from CaS to Ca (OH) 2

Claims (3)

石灰石若しくは炭酸カルシウム(CaCaO )をカ焼して得られた粒子状酸化カルシウム(CaO)であって、前記粒子状酸化カルシウム(CaO)の粒子径が0.2〜0.8mmである粒子状酸化カルシウム(CaO)を、水と反応させ、
CaO+HO→Ca(OH)2 (1)
で表される反応をさせるに際して、1気圧以上で650〜700℃の水蒸気条件で反応(1)を進行させることにより、圧縮破壊強度が25kg/cm 2 以上で粒子状を保持したままのCa(OH)2を生成させ、次いで、850℃〜900℃で熱分解することを特徴とする比表面積が大きい粒子状CaOの製造方法。
Particulate calcium oxide (CaO) obtained by calcining limestone or calcium carbonate (CaCaO 3 ), wherein the particulate calcium oxide (CaO) has a particle diameter of 0.2 to 0.8 mm. Calcium oxide (CaO) reacts with water,
CaO + H 2 O → Ca (OH) 2 (1)
When the reaction represented by the formula (1) is performed, the reaction (1) is allowed to proceed under a water vapor condition of 650 to 700 ° C. at 1 atm or higher, so that the compressive fracture strength is 25 kg / cm 2 or more while maintaining the particulate form of Ca ( OH) 2 is produced, and then pyrolyzed at 850 ° C. to 900 ° C. A method for producing particulate CaO having a large specific surface area.
石灰石若しくは炭酸カルシウム(CaCaO )をカ焼して得られた粒子状酸化カルシウム(CaO)であって、前記粒子状酸化カルシウム(CaO)の粒子径が0.20〜0.8mmである粒子状酸化カルシウム(CaO)を、水と反応させ、
CaO+HO→Ca(OH)2 (1)
で表される反応をさせるに際して、1気圧以上で650〜700℃の条件で反応(1)を進行させることにより、圧縮破壊強度が25kg/cm 2 以上で粒子状を保持したままのCa(OH)2を生成させ、次いで、それを850℃〜900℃で熱分解して出来たCaOと、HCL,H2S,SO2,CO2,ハロゲンから選ばれる有害ガス(R)を、900℃以下の温度で反応させ、Ca(R)を生成させるガス吸収方法。
Particulate calcium oxide (CaO) obtained by calcining limestone or calcium carbonate (CaCaO 3 ), wherein the particulate calcium oxide (CaO) has a particle diameter of 0.20 to 0.8 mm. Calcium oxide (CaO) reacts with water,
CaO + H 2 O → Ca (OH) 2 (1)
When the reaction represented by the formula (1) is carried out under the conditions of 650 to 700 ° C. at 1 atm or more, Ca (OH) with the compressive fracture strength of 25 kg / cm 2 or more and maintaining the particulate form is maintained. ) 2 and then pyrolyzing it at 850 ° C. to 900 ° C. and a harmful gas (R) selected from HCL, H 2 S, SO 2 , CO 2 and halogen at 900 ° C. A gas absorption method in which Ca (R) is produced by reacting at the following temperatures.
請求項2に係るガス吸収方法で生成したCa(R)を、温度100℃〜800℃、1気圧〜100気圧の水蒸気で処理し、再びCa(OH)2に再生し、得られたCa(OH)2を有害ガス吸収剤として再利用しながら、生成した高濃度の有害ガス(R)を回収するガス回収方法。

The Ca (R) produced by the gas absorption method according to claim 2 is treated with water vapor at a temperature of 100 ° C. to 800 ° C. and 1 atm to 100 atm, regenerated again into Ca (OH) 2 , and obtained Ca ( A gas recovery method that recovers high concentration of harmful gas (R) while reusing OH) 2 as a harmful gas absorbent.

JP2007226919A 2007-08-31 2007-08-31 Method for producing particulate Ca (OH) 2 and gas absorption method or gas recovery method using the same Active JP5286480B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007226919A JP5286480B2 (en) 2007-08-31 2007-08-31 Method for producing particulate Ca (OH) 2 and gas absorption method or gas recovery method using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007226919A JP5286480B2 (en) 2007-08-31 2007-08-31 Method for producing particulate Ca (OH) 2 and gas absorption method or gas recovery method using the same

Publications (2)

Publication Number Publication Date
JP2009057254A JP2009057254A (en) 2009-03-19
JP5286480B2 true JP5286480B2 (en) 2013-09-11

Family

ID=40553339

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007226919A Active JP5286480B2 (en) 2007-08-31 2007-08-31 Method for producing particulate Ca (OH) 2 and gas absorption method or gas recovery method using the same

Country Status (1)

Country Link
JP (1) JP5286480B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10532313B2 (en) 2012-03-30 2020-01-14 Rheinkalk Gmbh Activation of a material containing alkaline-earth metal carbonate and alkaline-earth metal hydroxide for the dry scrubbing of flue gas
PT2644267T (en) 2012-03-30 2018-01-19 Rheinkalk Gmbh Activation of an alkaline earth carbonate and alkaline earth carbonate containing material for dry cleaning of flue gas

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07172825A (en) * 1991-10-01 1995-07-11 Yahashi Kogyo Kk Production of highly reactive quick lime by hydration-redehydration treatment of quick lime
JP3576330B2 (en) * 1996-09-09 2004-10-13 三菱重工業株式会社 CaS oxidation / char combustion device
JPH11236216A (en) * 1998-02-25 1999-08-31 Mitsubishi Heavy Ind Ltd Method for swelling calcium oxide-containing material and for making it porous
JP4472075B2 (en) * 1999-12-07 2010-06-02 株式会社Ihi Shell processing method and shell processing apparatus
JP2001354414A (en) * 2000-06-09 2001-12-25 Okayama Prefecture Kyodo Sekkai Kk Method for manufacturing highly reactive alkaline earth metal oxide
TWI359122B (en) * 2004-04-16 2012-03-01 Smidth As F L Method and apparatus for hydration of a particulat
JP5165213B2 (en) * 2006-06-20 2013-03-21 宇部マテリアルズ株式会社 Calcium oxide powder and method for producing the same

Also Published As

Publication number Publication date
JP2009057254A (en) 2009-03-19

Similar Documents

Publication Publication Date Title
Ochedi et al. State-of-the-art review on capture of CO2 using adsorbents prepared from waste materials
Antzara et al. In-depth evaluation of a ZrO2 promoted CaO-based CO2 sorbent in fluidized bed reactor tests
Erans et al. Calcium looping sorbents for CO2 capture
Yu et al. Activation strategies for calcium-based sorbents for CO2 capture: a perspective
Hu et al. Structurally improved CaO-based sorbent by organic acids for high temperature CO2 capture
Seggiani et al. CO2 sorption/desorption performance study on K2CO3-doped Li4SiO4-based pellets
US8999278B2 (en) Method and apparatus for on-site production of lime and sorbents for use in removal of gaseous pollutants
Manovic et al. Sequential SO2/CO2 capture enhanced by steam reactivation of a CaO-based sorbent
JP6194356B2 (en) Renewable sorbent for removing carbon dioxide
Xie et al. HCl absorption by CaO/Ca3Al2O6 sorbent from CO2 capture cycles using calcium looping
CA2543984C (en) Reactivation of lime-based sorbents by co2 shocking
CN1903431A (en) Composite catalyst used for reforming hydrogen prodn. using methane and water vapor as raw material, preparing process and use
Kotyczka-Moranska et al. Comparison of different methods for enhancing CO2capture by CaO-based sorbents. Review
TW201538428A (en) Halogen compound absorbent and method of producing syngas using same
WO2021246317A1 (en) Method for separating and recovering co2 in cement production exhaust gas, and co2 separation and recovery device
JP5286480B2 (en) Method for producing particulate Ca (OH) 2 and gas absorption method or gas recovery method using the same
JP2013081873A (en) Co2 recovery method for reactivatable solid absorbent
WO2015071443A1 (en) Energy integrated carbon dioxide conversion process
KR100888336B1 (en) A desulfurizing sorbent for so2 removal and a process for the preparation thereof
KR20170087812A (en) Device and Process for multi-stage of catalytic reaction occurring in at least two reaction modules including catalytic reactor and adsorption reactor
WO2021246318A1 (en) Method for producing methane from co2 in cement production exhaust gas, and methanation apparatus
WO2018230121A1 (en) Fluorine-containing gas decomposing/removing agent, method for producing same, and fluorine-containing gas removing method and fluorine resource recovery method each using same
CN101780393B (en) Adsorbent, regenerating-recycling method and recycling equipment thereof
JP7230884B2 (en) CO2 Utilization Method and CO2 Utilization System in Exhaust Gas from Cement Manufacturing
JP2000119049A (en) Production of cement

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100811

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100811

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130318

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

R150 Certificate of patent or registration of utility model

Ref document number: 5286480

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250