WO2021246318A1 - Method for producing methane from co2 in cement production exhaust gas, and methanation apparatus - Google Patents
Method for producing methane from co2 in cement production exhaust gas, and methanation apparatus Download PDFInfo
- Publication number
- WO2021246318A1 WO2021246318A1 PCT/JP2021/020406 JP2021020406W WO2021246318A1 WO 2021246318 A1 WO2021246318 A1 WO 2021246318A1 JP 2021020406 W JP2021020406 W JP 2021020406W WO 2021246318 A1 WO2021246318 A1 WO 2021246318A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- exhaust gas
- methane
- cement
- component
- harmful
- Prior art date
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/14—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/48—Sulfur compounds
- B01D53/50—Sulfur oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/54—Nitrogen compounds
- B01D53/56—Nitrogen oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/62—Carbon oxides
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/46—Removing components of defined structure
- B01D53/68—Halogens or halogen compounds
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D53/00—Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
- B01D53/34—Chemical or biological purification of waste gases
- B01D53/74—General processes for purification of waste gases; Apparatus or devices specially adapted therefor
- B01D53/77—Liquid phase processes
- B01D53/78—Liquid phase processes with gas-liquid contact
-
- C—CHEMISTRY; METALLURGY
- C01—INORGANIC CHEMISTRY
- C01B—NON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
- C01B32/00—Carbon; Compounds thereof
- C01B32/50—Carbon dioxide
-
- C—CHEMISTRY; METALLURGY
- C04—CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
- C04B—LIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
- C04B7/00—Hydraulic cements
- C04B7/36—Manufacture of hydraulic cements in general
- C04B7/43—Heat treatment, e.g. precalcining, burning, melting; Cooling
- C04B7/44—Burning; Melting
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07B—GENERAL METHODS OF ORGANIC CHEMISTRY; APPARATUS THEREFOR
- C07B61/00—Other general methods
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C1/00—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon
- C07C1/02—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon
- C07C1/12—Preparation of hydrocarbons from one or more compounds, none of them being a hydrocarbon from oxides of a carbon from carbon dioxide with hydrogen
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07C—ACYCLIC OR CARBOCYCLIC COMPOUNDS
- C07C9/00—Aliphatic saturated hydrocarbons
- C07C9/02—Aliphatic saturated hydrocarbons with one to four carbon atoms
- C07C9/04—Methane
-
- C—CHEMISTRY; METALLURGY
- C10—PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
- C10L—FUELS NOT OTHERWISE PROVIDED FOR; NATURAL GAS; SYNTHETIC NATURAL GAS OBTAINED BY PROCESSES NOT COVERED BY SUBCLASSES C10G, C10K; LIQUEFIED PETROLEUM GAS; ADDING MATERIALS TO FUELS OR FIRES TO REDUCE SMOKE OR UNDESIRABLE DEPOSITS OR TO FACILITATE SOOT REMOVAL; FIRELIGHTERS
- C10L3/00—Gaseous fuels; Natural gas; Synthetic natural gas obtained by processes not covered by subclass C10G, C10K; Liquefied petroleum gas
- C10L3/06—Natural gas; Synthetic natural gas obtained by processes not covered by C10G, C10K3/02 or C10K3/04
- C10L3/08—Production of synthetic natural gas
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F27—FURNACES; KILNS; OVENS; RETORTS
- F27D—DETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
- F27D17/00—Arrangements for using waste heat; Arrangements for using, or disposing of, waste gases
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/20—Capture or disposal of greenhouse gases of methane
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02C—CAPTURE, STORAGE, SEQUESTRATION OR DISPOSAL OF GREENHOUSE GASES [GHG]
- Y02C20/00—Capture or disposal of greenhouse gases
- Y02C20/40—Capture or disposal of greenhouse gases of CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/10—Reduction of greenhouse gas [GHG] emissions
- Y02P10/143—Reduction of greenhouse gas [GHG] emissions of methane [CH4]
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P10/00—Technologies related to metal processing
- Y02P10/25—Process efficiency
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P20/00—Technologies relating to chemical industry
- Y02P20/151—Reduction of greenhouse gas [GHG] emissions, e.g. CO2
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02P—CLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
- Y02P40/00—Technologies relating to the processing of minerals
- Y02P40/10—Production of cement, e.g. improving or optimising the production methods; Cement grinding
- Y02P40/18—Carbon capture and storage [CCS]
Definitions
- the present invention relates to a method for producing methane from CO 2 in cement production exhaust gas and a methaneization apparatus.
- the methanation method described in Patent Document 1 is conventionally known. That is, it is a method of obtaining methane by separating carbon dioxide contained in combustion exhaust gas and reacting it with hydrogen. In this methanation method, a step of bringing the combustion exhaust gas into contact with a carbon dioxide absorber to absorb carbon dioxide in the combustion exhaust gas, and a gas containing carbon dioxide as a main component by heating the carbon dioxide absorber that has absorbed carbon dioxide.
- carbon dioxide to which hydrogen is added is passed through a desulfurizer filled with a desulfurizing agent to remove sulfur compounds in the gas.
- cement manufacturing exhaust gas contains a large amount of oxides other than sulfur compounds, for example, even if a desulfurizer as described in Patent Document 1 is used, the cement manufacturing exhaust gas can be appropriately used. It cannot be processed and methane cannot be produced properly.
- the present invention has been made in view of such circumstances, and provides a methane production method and a methane conversion apparatus from CO 2 in cement production exhaust gas, which can appropriately treat cement production exhaust gas and appropriately produce methane.
- the purpose is.
- the dust such as halogen contained in the cement manufacturing exhaust gas may degrade the CO 2 absorption capacity affect the CO 2 absorbing material. Furthermore, the dust contained in the cement manufacturing exhaust gas (mainly the powder of the cement raw material) adheres to the inside of the equipment piping to form a scale, which increases the pressure loss of the piping and the amount of gas that can be processed by the CO 2 separation and recovery device. There is a risk of reducing the amount.
- the present invention deterioration of the absorption capacity of the CO 2 absorber can be suppressed by removing the acidic component and the harmful component before separating and recovering the exhaust gas from the cement manufacturing facility. Therefore, CO 2 can be efficiently recovered from the cement manufacturing exhaust gas. Therefore, the efficiency of methanation is also improved.
- the acidic component contains any one of SOx, NOx and halogen.
- the harmful components comprises H 2 O, a dust.
- methane production method in the cement production exhaust gas it is preferable to generate methane after removing water from the separated and recovered CO 2.
- the cement manufacturing facility is provided with a harmful component removing unit for removing acidic components and harmful components from the exhaust gas from the cement manufacturing facility, and the acidic components and the harmful components.
- a harmful component removing unit for removing acidic components and harmful components from the exhaust gas from the cement manufacturing facility, and the acidic components and the harmful components.
- the cement manufacturing exhaust gas CO 2 methane conversion apparatus further includes a dehumidifying section for removing water from the separated and recovered CO 2 , and the methane manufacturing section adds hydrogen to the water-removed CO 2. It is good to produce methane.
- the cement manufacturing exhaust gas is appropriately treated to produce methane. It can be produced properly, which can reduce CO 2 from energy sources.
- methane is generated, and the methane is used as a partial or total alternative fuel for fossil fuels for cement manufacturing facilities. This is an example of using it.
- the CO 2 utilization system 100 includes a cement manufacturing facility 50 and an exhaust gas treatment facility 30 connected to and used in the cement manufacturing facility 50.
- the exhaust gas treatment facility 30 adds hydrogen to the exhaust gas from the exhaust gas or CO 2 separated and recovered from the exhaust gas to generate methane, and the generated methane is used as fossil fuel for the cement production facility 50. Supplied as an alternative fuel in part or in whole.
- the cement manufacturing facility 50 includes a raw material storage 1 for individually storing limestone, clay, silica stone, iron raw materials, etc. as cement raw materials, and a raw material mill and dryer for crushing and drying these cement raw materials. 2 and a preheater 3 that preheats the powdered cement raw material supplied through the raw material supply pipe 22 and obtained by this raw material mill, and a calcining furnace 4 that calcins the cement raw material preheated by the preheater 3.
- a cement calcined kiln 5 for calcining a calcined cement raw material
- a cooler 6 for cooling a cement clinker after being calcined by the cement calcined kiln 5, and the like.
- the cement firing kiln 5 is a cylindrical rotary kiln that is slightly inclined sideways, and by rotating around the axis, the cement raw material supplied from the preheater 3 is sent to the kiln front portion 5b to the kiln tail portion 5a while being sent to the kiln front portion 5b.
- the burner 8 of the front part 5b of the kiln heats and fires at about 1450 ° C. to form a cement clinker.
- the generated cement clinker is sent from the kiln front portion 5b to the cooler 6.
- a fuel supply line 15 for supplying fuel including fossil fuels such as coal and petroleum is connected to the burner 8.
- a supply system (not shown) for an alternative heat source such as waste plastic or waste tire is also provided to supplement the heat energy.
- the cement clinker is cooled to a predetermined temperature by the cooler 6 and then sent to the finishing process.
- the preheater 3 is constructed in which a plurality of cyclones 13 (four in the example shown in FIG. 2) that circulate the exhaust gas generated in the cement firing kiln 5 are connected in the vertical direction.
- a calciner 4 is connected between the cyclone 13 at the bottom and the cyclone 13 above it.
- the cement raw material calcined by the combustion gas of the calcining furnace 4 is supplied from the lowermost cyclone 13 to the kiln tail portion 5a of the cement calcined kiln 5.
- the calcining furnace 4 has a burner 41 inside, and by burning fuel such as coal supplied from the fuel supply line 42, the cement raw material sent from the upper cyclone 13 is calcined.
- the calcined cement raw material is supplied to the lowermost cyclone 13 via the rising duct 25 together with the exhaust gas generated by the calcined.
- the cement raw material is supplied from the lowermost cyclone 13 to the kiln tail portion 5a of the cement firing kiln 5.
- the rising duct 25 sends the exhaust gas from the kiln tail portion 5a of the cement firing kiln 5 to the lowermost cyclone 13, and the exhaust gas generated in the calcining furnace 4 is also supplied to the cyclone 13 through the rising duct 25.
- the exhaust gas from the cement firing kiln 5 and the exhaust gas from the calcining furnace 4 are integrated and passed through the preheater 3 from the lower side to the upper side, and then introduced into the raw material mill and the dryer 2 through the exhaust pipe 9.
- the raw material mill and the dryer 2 are adapted to crush and dry the cement raw material at the same time by introducing the exhaust gas from the calcining furnace 4 and the cement firing kiln 5.
- An exhaust gas treatment line 12 including a dust collector 10, a chimney 11, and the like is connected to the raw material mill and the dryer 2.
- the exhaust gas treatment facility 30 includes an exhaust gas collection line 311 that collects exhaust gas generated in the cement firing kiln 5 and the calcination furnace 4 and before being discharged from the chimney 11, and CO from the exhaust gas sent from the exhaust gas collection line 311. It is provided with a methaneization device 31 that separates and recovers 2 and adds hydrogen to the separated and recovered CO 2 to generate methane, and a methane supply device 32 that supplies the generated methane to the cement production facility 50.
- the exhaust gas collection line 311 is connected between the dust collector 10 and the chimney 11 in the exhaust gas treatment line 12 of the cement manufacturing facility 50, and collects a part of the exhaust gas generated during cement firing. Since it is exhaust gas generated by cement firing, it includes some exhaust gas from combustion of fuel such as coal, but it also contains a large amount of exhaust gas derived from limestone.
- Methanation apparatus 31 includes a CO 2 separation and recovery device 310 for separating and recovering CO 2 from flue gas, hydrogen mixed for mixing by supplying hydrogen (e.g. hydrogen gas) in the CO 2 separated recovered by CO 2 separation and recovery device 310 It includes a unit 316 and a methane production unit 317 that produces methane from CO 2 mixed with hydrogen.
- hydrogen e.g. hydrogen gas
- CO 2 separation and recovery device 310 as shown in FIG. 3, and acid components such as SOx and NOx from the exhaust gas collected by the exhaust gas collecting line 311, H 2 O, harmful component removing unit for removing harmful components such as dust and 312, and the CO 2 separation collector 313 for separating and recovering CO 2 from the harmful components have been removed exhaust gas, a compression unit 314 for compressing the recovered CO 2, to remove water from the compressed CO 2 It is provided with a dehumidifying unit 315.
- the exhaust gas sent from the exhaust gas collection line 311 may include not only the combustion exhaust gas of fossil fuels such as coal, petroleum coke, and heavy oil, but also the combustion exhaust gas such as waste plastics and waste tires.
- CO 2 for example, as would fall about 20 several percent, it is included gases and acidic components and harmful components other than CO 2. Therefore, the harmful component removing unit 312 removes acidic components (for example, acid gases such as nitrogen oxides (NOx) and sulfur oxides (SOx)) and harmful components from the exhaust gas, and is filled with an aqueous NaOH solution or the like. It is equipped with a scraper, a dehumidifier, an electrostatic dust collector, etc.
- acidic components for example, acid gases such as nitrogen oxides (NOx) and sulfur oxides (SOx)
- halogens fluorine (F), chlorine (Cl), bromine (Br), iodine (I), etc.
- SOx removal method As a desulfurization method (SOx removal method), a wet limestone gypsum method, a magnesium hydroxide method, and a soda absorption method are known. These are methods of absorbing SOx with an alkaline solution, and there is a method of using coal ash as a dry method. Further, as a method for simultaneously treating desulfurization (SOx removal) and denitration (NOx removal), there are a dry method, an activated carbon method, and an electron beam method.
- the denitration method there are a catalytic reduction method (SCR method and the like) and a non-catalytic reduction method as a dry method, and an oxidation absorption method, an oxidation reduction method and an equimolar absorption method as a wet method.
- the SOx of the exhaust gas from the cement manufacturing equipment is generally several tens of ppm or less because the suspension preheater functions as a desulfurization device.
- the Ni catalyst which is widely used as a catalyst for methanation, removes harmful components because the sulfur compound reacts on the surface of the Ni catalyst under the sulfur compound mixed with H 2 and covers the surface to deteriorate the yield of methanation. It is necessary to remove the sulfur compound in the part 312. Similarly, NOx and halogens (Cl, F, etc.) may adhere to the surface of the Ni catalyst and deteriorate the yield of methanation, so it is necessary to remove them by the harmful component removing unit 312.
- any of the above removal methods may be used as the desulfurization (SOx removal) and denitration (NOx removal) methods by the harmful component removing unit 312.
- SOx removal desulfurization
- NOx removal denitration
- any of the above desulfurization methods and any of the above denitration methods are used to remove oxidizing gases such as nitrogen oxides (NOx) and sulfur oxides (SOx).
- CO 2 separation collector 313 is made common CO 2 recovery apparatus, the inside absorbs CO 2 CO 2 absorbent (amine compound liquid absorbing material dissolved in water, the amine compound to the porous material A supported solid absorbent or the like) is provided, and the exhaust gas after the harmful components or the like are removed comes into contact with the solid absorbent, so that CO 2 in the exhaust gas is absorbed by the CO 2 absorbent. Then, such as by heating the CO 2 absorbing material that has absorbed CO 2, is recovered by extraction of CO 2 from the CO 2 absorber.
- the CO 2 separation / recovery unit 313 discharges the exhaust gas after CO 2 has been removed to the outside.
- the compression unit 314 compresses the recovered CO 2 by applying a pressure of 0.1 MPa or more, preferably 0.5 to 1.0 MPa.
- Dehumidifying unit 315 by cooling the compressed CO 2, removing the moisture contained in the CO 2. This dehumidification is performed to remove the moisture before the methanation because it affects the oxidation of the Ni-based catalyst in the methan
- the hydrogen mixing unit 316 supplies hydrogen to the dehumidified CO 2 to mix and pressurize it.
- hydrogen hydrogen gas generated by artificial photosynthesis using renewable energy, decomposition of water, etc. can be used.
- the amount of hydrogen added by the hydrogen mixing unit 316 is appropriately set so that the concentration of hydrogen in CO 2 (mixed gas) after the hydrogen is mixed becomes a concentration at which methane can be easily produced.
- the methane production unit 317 produces methane from CO 2 mixed with hydrogen.
- the methane production unit 317 is composed of a general methane production apparatus, and includes a plurality of reactors (not shown) filled with catalysts that are active in methaneization, and CO 2 in which hydrogen is mixed in these reactors.
- Methane is produced by supplying and reacting.
- Ni, Pt, Pd, and Cu are used as the hydrogenation catalyst, but in the methanation catalyst, in particular, Al 2 O 3 , Cr 2 O 3 , SiO 2 , Mg Al 2 O 4 , TiO 2 , and so on.
- Supported Ni and Ni alloys such as ZrO 2 are used.
- the conditions for a general methanation reaction are a temperature of 200 ° C. to 700 ° C., preferably 200 ° C. to 350 ° C., and a pressure of 0.1 to 3 MPa.
- the reaction is carried out in multiple stages in order to improve the reaction yield of methane.
- the methane supply device 32 is connected to a tank 322 that compresses and stores methane produced by the methaneization device 31 by a pump 321 and a tank 322, and stores methane in a burner 8 of the kiln front portion 5b.
- a methane supply line 323 for sending to each of the burners 41 of the calcination furnace 4.
- the methane supply line 323 is a fuel supply line 15 that supplies fuel such as coal and petroleum to the burner 8 of the cement firing kiln 5, and a fuel supply line 42 that supplies fuel such as coal to the burner 41 of the calcination furnace 4. Connected to each. As a result, methane is supplied to each of the burners 8 and 41 together with the fuel.
- a powdery cement raw material obtained by crushing and drying limestone, clay, silica stone, iron raw material, etc. as a cement raw material is preheated, and the preheated cement raw material is calcined and then fired. Then, by cooling this, a cement clinker is manufactured.
- Exhaust gas generated in the cement firing kiln 5 and the calcining furnace 4 due to the production of this cement clinker is introduced into the raw material mill and the dryer 2 through the exhaust pipe 9 after passing through the preheater 3 from the lower side to the upper side, and is used as a cement raw material. After being used for drying, it is discharged from the chimney 11 via the dust collector 10.
- the harmful component removing unit 312 removes the acidic component and the harmful component from the exhaust gas.
- the nitrogen oxides (NOx) and sulfur oxides (SOx), halogen, and H 2 O, such as dust are removed.
- the CO 2 separation and recovery unit 313 extracts CO 2 from the exhaust gas and separates and recovers it. At this time, the exhaust gas from which CO 2 has been removed is discharged to the outside.
- the recovered CO 2 is compressed by applying a pressure of 0.1 MPa or more, preferably 0.5 to 1.0 MPa by the compression unit 314, and the water contained in the CO 2 is removed by the dehumidifying unit 315.
- hydrogen is supplied to the dehumidified CO 2 by the hydrogen mixing unit 316, mixed, and pressurized.
- the methane production unit 317 produces methane from CO 2 mixed with hydrogen.
- the methane produced in this way is stored in the tank 322 of the methane supply device 32. Then, the methane stored in the tank 322 is supplied to the cement firing kiln 5 and the calcining furnace 4 via the methane supply line 323.
- Fossil fuels such as oil and coal are supplied to the cement fired kiln 5 from the fuel supply line 15. By supplying methane, a part of the fossil fuel can be replaced with methane. Fossil fuels can be reduced. Similarly, in the calcination furnace 4, fossil fuels can be reduced because part or all of the fuel such as coal is replaced with methane.
- the dehumidifying unit 315 by cooling the compressed CO 2, it is assumed that the removal of moisture contained in the CO 2, is not limited thereto, from the CO 2 separated recovered Any method can be used as long as the water can be removed.
- the generated methane is supplied to both the cement firing kiln 5 and the calcining furnace 4, it may be supplied to either one.
- methane was generated using the exhaust gas from both the cement firing kiln 5 and the calcining furnace 4, it can also be applied to cement manufacturing equipment that does not have a calcining furnace. In that case, the cement firing kiln can be used. Produces methane from the exhaust gas of the kiln.
Landscapes
- Chemical & Material Sciences (AREA)
- Engineering & Computer Science (AREA)
- Organic Chemistry (AREA)
- Oil, Petroleum & Natural Gas (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Environmental & Geological Engineering (AREA)
- Analytical Chemistry (AREA)
- Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Ceramic Engineering (AREA)
- Thermal Sciences (AREA)
- Materials Engineering (AREA)
- Structural Engineering (AREA)
- Physics & Mathematics (AREA)
- Inorganic Chemistry (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Treating Waste Gases (AREA)
- Gas Separation By Absorption (AREA)
Abstract
In the production of methane from an exhaust gas from a cement production facility, an acidic component such as SOx, NOx and a halogen and a harmful component such as H2O and dust are removed from the exhaust gas, and the exhaust gas from which the acidic component and the harmful component have been removed is brought into contact with a CO2 absorbent material to separate and collect CO2. In this manner, the deterioration in the absorption capability of the CO2 absorbent material can be prevented and the cement production exhaust gas can be treated properly to produce methane properly. As a result, energy-induced CO2 can be reduced and the greenhouse gas emission reduction effect can be improved.
Description
本発明は、セメント製造排ガス中のCO2からのメタン製造方法及びメタン化装置に関する。
The present invention relates to a method for producing methane from CO 2 in cement production exhaust gas and a methaneization apparatus.
本願は、2020年6月4日に日本国に出願された特願2020-97644号及び特願2020-97645号、及び2020年6月11日に日本国に出願された特願2020-101458号に基づく優先権を主張し、その内容をここに援用する。
The present application is Japanese Patent Application No. 2020-97644 and Japanese Patent Application No. 2020-97645 filed in Japan on June 4, 2020, and Japanese Patent Application No. 2020-101458 filed in Japan on June 11, 2020. Claim priority based on, and use its contents here.
火力発電等の各種燃焼設備において、温室効果ガスの削減のため、燃焼で発生、排出されるCO2を削減する努力がなされている。特に、社会活動に必要なエネルギーの大部分は石炭、石油、天然ガスなどの化石燃料から得ていることから、この化石燃料から発生するCO2の量は膨大であり、このエネルギー起源のCO2を削減することが地球温暖化抑制に有効である。
In various combustion facilities such as thermal power generation, efforts are being made to reduce CO 2 generated and emitted by combustion in order to reduce greenhouse gases. In particular, since most of the energy required for social activities is obtained from fossil fuels such as coal, oil, and natural gas, the amount of CO 2 generated from this fossil fuel is enormous, and CO 2 originating from this energy Is effective in controlling global warming.
燃焼排ガス中のCO2を削減する技術として、従来、例えば、特許文献1に記載のメタン化方法が知られている。すなわち、燃焼排ガス中に含まれる二酸化炭素を分離して水素と反応させることによりメタンを得る方法である。このメタン化方法では、燃焼排ガスを二酸化炭素吸収材に接触させて燃焼排ガス中の二酸化炭素を吸収させる工程と、二酸化炭素を吸収した二酸化炭素吸収材を加熱して二酸化炭素を主成分とするガスを取り出す工程と、二酸化炭素を主成分とするガスに第一の量の水素を添加した後、脱硫剤を充填した脱硫器に通して、ガス中の硫黄化合物を除去する工程と、硫黄化合物を除去する工程を経たガスに第二の量の水素を添加し、メタン化触媒に通じたメタン化反応によりメタンに変換する工程と、を含んでいる。
このメタン化方法では、水素が添加された二酸化炭素を、脱硫剤を充填した脱硫器を通すことにより、ガス中の硫黄化合物を除去している。 As a technique for reducing CO 2 in combustion exhaust gas, for example, the methanation method described in Patent Document 1 is conventionally known. That is, it is a method of obtaining methane by separating carbon dioxide contained in combustion exhaust gas and reacting it with hydrogen. In this methanation method, a step of bringing the combustion exhaust gas into contact with a carbon dioxide absorber to absorb carbon dioxide in the combustion exhaust gas, and a gas containing carbon dioxide as a main component by heating the carbon dioxide absorber that has absorbed carbon dioxide. The step of taking out the sulfur compound, the step of adding the first amount of hydrogen to the gas containing carbon dioxide as the main component, and then passing it through a desulfurizing device filled with a desulfurizing agent to remove the sulfur compound in the gas, and the step of removing the sulfur compound. It includes a step of adding a second amount of hydrogen to the gas that has undergone the removal step and converting it into methane by a methanation reaction that has passed through a methanation catalyst.
In this methanation method, carbon dioxide to which hydrogen is added is passed through a desulfurizer filled with a desulfurizing agent to remove sulfur compounds in the gas.
このメタン化方法では、水素が添加された二酸化炭素を、脱硫剤を充填した脱硫器を通すことにより、ガス中の硫黄化合物を除去している。 As a technique for reducing CO 2 in combustion exhaust gas, for example, the methanation method described in Patent Document 1 is conventionally known. That is, it is a method of obtaining methane by separating carbon dioxide contained in combustion exhaust gas and reacting it with hydrogen. In this methanation method, a step of bringing the combustion exhaust gas into contact with a carbon dioxide absorber to absorb carbon dioxide in the combustion exhaust gas, and a gas containing carbon dioxide as a main component by heating the carbon dioxide absorber that has absorbed carbon dioxide. The step of taking out the sulfur compound, the step of adding the first amount of hydrogen to the gas containing carbon dioxide as the main component, and then passing it through a desulfurizing device filled with a desulfurizing agent to remove the sulfur compound in the gas, and the step of removing the sulfur compound. It includes a step of adding a second amount of hydrogen to the gas that has undergone the removal step and converting it into methane by a methanation reaction that has passed through a methanation catalyst.
In this methanation method, carbon dioxide to which hydrogen is added is passed through a desulfurizer filled with a desulfurizing agent to remove sulfur compounds in the gas.
しかしながら、セメント設備の排ガス(セメント製造排ガス)には硫黄化合物以外の酸化物が多く含まれているため、例えば、特許文献1記載のような脱硫器を用いたとしても、セメント製造排ガスを適切に処理することができず、メタンを適切に製造できない。
However, since the exhaust gas of cement equipment (cement manufacturing exhaust gas) contains a large amount of oxides other than sulfur compounds, for example, even if a desulfurizer as described in Patent Document 1 is used, the cement manufacturing exhaust gas can be appropriately used. It cannot be processed and methane cannot be produced properly.
本発明は、このような事情に鑑みてなされたもので、セメント製造排ガスを適切に処理してメタンを適切に製造できるセメント製造排ガス中のCO2からのメタン製造方法及びメタン化装置を提供することを目的とする。
The present invention has been made in view of such circumstances, and provides a methane production method and a methane conversion apparatus from CO 2 in cement production exhaust gas, which can appropriately treat cement production exhaust gas and appropriately produce methane. The purpose is.
本発明のセメント製造排ガス中のメタン製造方法は、セメント製造設備の排ガスからから酸性成分及び有害成分を除去し、前記酸性成分及び前記有害成分が除去された前記排ガスをCO2吸収材に接触させてCO2を分離回収し、分離回収されたCO2に水素を添加してメタンを生成する。
In the methane production method in the cement production exhaust gas of the present invention, acidic components and harmful components are removed from the exhaust gas of the cement manufacturing facility, and the acidic components and the exhaust gas from which the harmful components have been removed are brought into contact with the CO 2 absorber. CO 2 is separated and recovered, and hydrogen is added to the separated and recovered CO 2 to generate methane.
ここで、セメント製造排ガスに含まれるSOx、NOx、ハロゲン等の酸性成分及びH2O、ダスト等の有害成分は、CO2吸収材に影響を与えCO2吸収能力を劣化させるおそれがある。さらにセメント製造排ガスに含まれるダスト(主としてセメント原料の粉末)は、装置配管内に付着してスケールを形成するなどにより配管の圧力損失を増大させ、CO2分離回収装置にて処理可能なガス量を低下させる、等のおそれがある。
Here, harmful components SOx, NOx, such as acid component and H 2 O, the dust such as halogen contained in the cement manufacturing exhaust gas may degrade the CO 2 absorption capacity affect the CO 2 absorbing material. Furthermore, the dust contained in the cement manufacturing exhaust gas (mainly the powder of the cement raw material) adheres to the inside of the equipment piping to form a scale, which increases the pressure loss of the piping and the amount of gas that can be processed by the CO 2 separation and recovery device. There is a risk of reducing the amount.
これに対し、本発明では、セメント製造設備からの排ガスを分離回収する前に上記酸性成分及び上記有害成分を除去することで、CO2吸収材の吸収能力の劣化を抑制できる。このため、セメント製造排ガスからCO2を効率的に回収できる。したがって、メタン化の効率も向上する。
On the other hand, in the present invention, deterioration of the absorption capacity of the CO 2 absorber can be suppressed by removing the acidic component and the harmful component before separating and recovering the exhaust gas from the cement manufacturing facility. Therefore, CO 2 can be efficiently recovered from the cement manufacturing exhaust gas. Therefore, the efficiency of methanation is also improved.
このセメント製造排ガス中のメタン製造方法において、前記酸性成分はSOx、NOx、ハロゲンのいずれかを含む。
前記有害成分は、H2O、ダストを含む。 In the method for producing methane in the exhaust gas produced by cement, the acidic component contains any one of SOx, NOx and halogen.
The harmful components comprises H 2 O, a dust.
前記有害成分は、H2O、ダストを含む。 In the method for producing methane in the exhaust gas produced by cement, the acidic component contains any one of SOx, NOx and halogen.
The harmful components comprises H 2 O, a dust.
このセメント製造排ガス中のメタン製造方法において、分離回収されたCO2から水分を除去した後、メタンを生成するとよい。
In the methane production method in the cement production exhaust gas, it is preferable to generate methane after removing water from the separated and recovered CO 2.
メタンの反応は、CO2+4H2→CH4+2H2O であるため、分離回収されたCO2に水分が多く含まれていると、反応式右辺のH2Oが多くなるため、メタンが生成しにくくなる。上記態様では、分離回収されたCO2から水分を除去し、これに水素を添加してメタンを生成するので、メタンの生成反応が進みやすくなるためメタン化の効率が向上する。
Since the reaction of methane is CO 2 + 4H 2 → CH 4 + 2H 2 O, if the separated and recovered CO 2 contains a large amount of water, the amount of H 2 O on the right side of the reaction formula increases, so methane is generated. It becomes difficult to do. In the above aspect, since water is removed from the separated and recovered CO 2 and hydrogen is added thereto to generate methane, the methane production reaction is facilitated and the efficiency of methanogenesis is improved.
本発明のセメント製造排ガスCO2からのメタン化装置は、セメント製造設備に、該セメント製造設備からの排ガスから酸性成分及び有害成分を除去する有害成分除去部と、前記酸性成分及び前記有害成分が除去された前記排ガスをCO2吸収材に接触させてCO2を分離回収するCO2分離回収部と、分離回収したCO2に水素を添加してメタンを生成するメタン製造部と、を備える。
In the methaneization apparatus from the cement manufacturing exhaust gas CO 2 of the present invention, the cement manufacturing facility is provided with a harmful component removing unit for removing acidic components and harmful components from the exhaust gas from the cement manufacturing facility, and the acidic components and the harmful components. comprises a CO 2 separation collector to the removed said exhaust gas into contact with CO 2 absorbent to separate and recover the CO 2, and methane production unit for generating methane by adding hydrogen to the separated and collected CO 2, the.
このセメント製造排ガスCO2からのメタン化装置において、分離回収されたCO2から水分を除去する除湿部をさらに備え、前記メタン製造部は、前記水分が除去されたCO2に水素を添加してメタンを生成するとよい。
The cement manufacturing exhaust gas CO 2 methane conversion apparatus further includes a dehumidifying section for removing water from the separated and recovered CO 2 , and the methane manufacturing section adds hydrogen to the water-removed CO 2. It is good to produce methane.
本発明によれば、セメント製造設備の排ガス中のCO2から有害成分を適切に除去することで、CO2吸収材の吸収能力の劣化を抑制し、セメント製造排ガスを適切に処理してメタンを適切に生成でき、これによりエネルギー起源のCO2を削減できる。
According to the present invention, by appropriately removing harmful components from CO 2 in the exhaust gas of a cement manufacturing facility , deterioration of the absorption capacity of the CO 2 absorber is suppressed, and the cement manufacturing exhaust gas is appropriately treated to produce methane. It can be produced properly, which can reduce CO 2 from energy sources.
以下、本発明のセメント製造排ガス中のCO2からのメタン製造方法及びメタン化装置の、実施形態について図面を用いて説明する。
Hereinafter, embodiments of the methane production method and the methaneization apparatus from CO 2 in the cement production exhaust gas of the present invention will be described with reference to the drawings.
この実施形態は、セメント製造排ガス中のCO2から酸性成分及び有害成分を適切に除去した後、メタンを生成して、そのメタンをセメント製造設備への化石燃料の一部及び全部の代替燃料として利用するようにした例である。
In this embodiment, after appropriately removing acidic components and harmful components from CO 2 in cement manufacturing exhaust gas, methane is generated, and the methane is used as a partial or total alternative fuel for fossil fuels for cement manufacturing facilities. This is an example of using it.
[CO2活用システムの構成]
CO2活用システム100は、図2に示すように、セメント製造設備50と、セメント製造設備50に接続されて用いられる排ガス処理設備30と、を備えている。本実施形態では、排ガス処理設備30がセメント製造設備50からの排ガス又は該排ガスから分離回収したCO2に水素を添加してメタンを生成し、生成したメタンをセメント製造設備50への化石燃料の一部又は全部の代替燃料として供給する。 [ Configuration of CO 2 utilization system]
As shown in FIG. 2, the CO 2utilization system 100 includes a cement manufacturing facility 50 and an exhaust gas treatment facility 30 connected to and used in the cement manufacturing facility 50. In the present embodiment, the exhaust gas treatment facility 30 adds hydrogen to the exhaust gas from the exhaust gas or CO 2 separated and recovered from the exhaust gas to generate methane, and the generated methane is used as fossil fuel for the cement production facility 50. Supplied as an alternative fuel in part or in whole.
CO2活用システム100は、図2に示すように、セメント製造設備50と、セメント製造設備50に接続されて用いられる排ガス処理設備30と、を備えている。本実施形態では、排ガス処理設備30がセメント製造設備50からの排ガス又は該排ガスから分離回収したCO2に水素を添加してメタンを生成し、生成したメタンをセメント製造設備50への化石燃料の一部又は全部の代替燃料として供給する。 [ Configuration of CO 2 utilization system]
As shown in FIG. 2, the CO 2
[セメント製造設備の構成]
セメント製造設備50は、図2に全体を示したように、セメント原料として石灰石、粘土、珪石、鉄原料等を個別に貯蔵する原料貯蔵庫1と、これらセメント原料を粉砕、乾燥する原料ミル及びドライヤ2と、原料供給管22を介して供給され、この原料ミルで得られた粉体状のセメント原料を予熱するプレヒータ3と、プレヒータ3によって予熱されたセメント原料を仮焼する仮焼炉4と、仮焼されたセメント原料を焼成するセメント焼成キルン5と、セメント焼成キルン5で焼成された後のセメントクリンカを冷却するためのクーラ6等とを備えている。 [Structure of cement manufacturing equipment]
As shown in FIG. 2, thecement manufacturing facility 50 includes a raw material storage 1 for individually storing limestone, clay, silica stone, iron raw materials, etc. as cement raw materials, and a raw material mill and dryer for crushing and drying these cement raw materials. 2 and a preheater 3 that preheats the powdered cement raw material supplied through the raw material supply pipe 22 and obtained by this raw material mill, and a calcining furnace 4 that calcins the cement raw material preheated by the preheater 3. It is provided with a cement calcined kiln 5 for calcining a calcined cement raw material, a cooler 6 for cooling a cement clinker after being calcined by the cement calcined kiln 5, and the like.
セメント製造設備50は、図2に全体を示したように、セメント原料として石灰石、粘土、珪石、鉄原料等を個別に貯蔵する原料貯蔵庫1と、これらセメント原料を粉砕、乾燥する原料ミル及びドライヤ2と、原料供給管22を介して供給され、この原料ミルで得られた粉体状のセメント原料を予熱するプレヒータ3と、プレヒータ3によって予熱されたセメント原料を仮焼する仮焼炉4と、仮焼されたセメント原料を焼成するセメント焼成キルン5と、セメント焼成キルン5で焼成された後のセメントクリンカを冷却するためのクーラ6等とを備えている。 [Structure of cement manufacturing equipment]
As shown in FIG. 2, the
セメント焼成キルン5は、横向きで若干傾斜した円筒状のロータリーキルンであり、軸芯回りに回転することにより、その窯尻部5aにプレヒータ3から供給されるセメント原料を窯前部5bに送りながら、その送る過程で窯前部5bのバーナ8によって1450℃程度に加熱焼成してセメントクリンカを生成する。生成されたセメントクリンカは窯前部5bからクーラ6に送り出される。バーナ8には、石炭、石油等の化石燃料を含む燃料を供給する燃料供給ライン15が接続されている。また、燃料供給ライン15とは別に、熱エネルギーを補うために、廃プラスチックや廃タイヤなどの代替熱源の供給系(図示略)も備えられている。セメントクリンカは、クーラ6で所定温度まで冷却された後、仕上げ工程へ送られる。
The cement firing kiln 5 is a cylindrical rotary kiln that is slightly inclined sideways, and by rotating around the axis, the cement raw material supplied from the preheater 3 is sent to the kiln front portion 5b to the kiln tail portion 5a while being sent to the kiln front portion 5b. In the process of sending, the burner 8 of the front part 5b of the kiln heats and fires at about 1450 ° C. to form a cement clinker. The generated cement clinker is sent from the kiln front portion 5b to the cooler 6. A fuel supply line 15 for supplying fuel including fossil fuels such as coal and petroleum is connected to the burner 8. In addition to the fuel supply line 15, a supply system (not shown) for an alternative heat source such as waste plastic or waste tire is also provided to supplement the heat energy. The cement clinker is cooled to a predetermined temperature by the cooler 6 and then sent to the finishing process.
プレヒータ3は、図2に示すように、セメント焼成キルン5で発生した排ガスを流通させる複数(図2に示す例では4つ)のサイクロン13が上下方向に連結状態とされて構築されている。最下段のサイクロン13とその上のサイクロン13との間に仮焼炉4が接続されている。仮焼炉4の燃焼ガスによって仮焼されたセメント原料は最下段のサイクロン13からセメント焼成キルン5の窯尻部5aに供給される。
As shown in FIG. 2, the preheater 3 is constructed in which a plurality of cyclones 13 (four in the example shown in FIG. 2) that circulate the exhaust gas generated in the cement firing kiln 5 are connected in the vertical direction. A calciner 4 is connected between the cyclone 13 at the bottom and the cyclone 13 above it. The cement raw material calcined by the combustion gas of the calcining furnace 4 is supplied from the lowermost cyclone 13 to the kiln tail portion 5a of the cement calcined kiln 5.
仮焼炉4は、内部にバーナ41を有しており、燃料供給ライン42から供給される石炭等の燃料を燃焼させることで、上段のサイクロン13から送られてくるセメント原料を仮焼し、仮焼されたセメント原料を、その仮焼により生じた排ガスとともにライジングダクト25を介して最下段のサイクロン13に供給する。そのセメント原料は、最下段のサイクロン13からセメント焼成キルン5の窯尻部5aに供給される。一方、ライジングダクト25はセメント焼成キルン5の窯尻部5aから排ガスを最下段のサイクロン13に送り出しており、仮焼炉4で生じた排ガスも、このライジングダクト25を介してサイクロン13に供給される。このため、セメント焼成キルン5の排ガス及び仮焼炉4からの排ガスが一体となってプレヒータ3を下方から上方に経由した後、排気管9を通って原料ミル及びドライヤ2に導入される。
The calcining furnace 4 has a burner 41 inside, and by burning fuel such as coal supplied from the fuel supply line 42, the cement raw material sent from the upper cyclone 13 is calcined. The calcined cement raw material is supplied to the lowermost cyclone 13 via the rising duct 25 together with the exhaust gas generated by the calcined. The cement raw material is supplied from the lowermost cyclone 13 to the kiln tail portion 5a of the cement firing kiln 5. On the other hand, the rising duct 25 sends the exhaust gas from the kiln tail portion 5a of the cement firing kiln 5 to the lowermost cyclone 13, and the exhaust gas generated in the calcining furnace 4 is also supplied to the cyclone 13 through the rising duct 25. To. Therefore, the exhaust gas from the cement firing kiln 5 and the exhaust gas from the calcining furnace 4 are integrated and passed through the preheater 3 from the lower side to the upper side, and then introduced into the raw material mill and the dryer 2 through the exhaust pipe 9.
原料ミル及びドライヤ2は、仮焼炉4及びセメント焼成キルン5からの排ガスが導入されることにより、セメント原料の粉砕と乾燥を同時に行うようになっている。この原料ミル及びドライヤ2には、集塵機10、煙突11等を備える排ガス処理ライン12が接続されている。
The raw material mill and the dryer 2 are adapted to crush and dry the cement raw material at the same time by introducing the exhaust gas from the calcining furnace 4 and the cement firing kiln 5. An exhaust gas treatment line 12 including a dust collector 10, a chimney 11, and the like is connected to the raw material mill and the dryer 2.
[排ガス処理設備の構成]
排ガス処理設備30は、セメント焼成キルン5及び仮焼炉4で発生し、煙突11から排出される前の排ガスを収集する排ガス収集ライン311と、該排ガス収集ライン311から送られてくる排ガスからCO2を分離回収し、分離回収したCO2に水素を添加してメタンを生成するメタン化装置31と、生成したメタンをセメント製造設備50へ供給するメタン供給装置32とを備えている。 [Composition of exhaust gas treatment equipment]
The exhaustgas treatment facility 30 includes an exhaust gas collection line 311 that collects exhaust gas generated in the cement firing kiln 5 and the calcination furnace 4 and before being discharged from the chimney 11, and CO from the exhaust gas sent from the exhaust gas collection line 311. It is provided with a methaneization device 31 that separates and recovers 2 and adds hydrogen to the separated and recovered CO 2 to generate methane, and a methane supply device 32 that supplies the generated methane to the cement production facility 50.
排ガス処理設備30は、セメント焼成キルン5及び仮焼炉4で発生し、煙突11から排出される前の排ガスを収集する排ガス収集ライン311と、該排ガス収集ライン311から送られてくる排ガスからCO2を分離回収し、分離回収したCO2に水素を添加してメタンを生成するメタン化装置31と、生成したメタンをセメント製造設備50へ供給するメタン供給装置32とを備えている。 [Composition of exhaust gas treatment equipment]
The exhaust
排ガス収集ライン311は、セメント製造設備50の排ガス処理ライン12における集塵機10と煙突11との間に接続され、セメント焼成時に生じた排ガスの一部を収集する。セメント焼成により生じた排ガスであるので、石炭等の燃料の燃焼による排ガスも一部含まれるが、石灰石由来の排ガスを多く含んでいる 。
The exhaust gas collection line 311 is connected between the dust collector 10 and the chimney 11 in the exhaust gas treatment line 12 of the cement manufacturing facility 50, and collects a part of the exhaust gas generated during cement firing. Since it is exhaust gas generated by cement firing, it includes some exhaust gas from combustion of fuel such as coal, but it also contains a large amount of exhaust gas derived from limestone.
(メタン化装置の構成)
メタン化装置31は、排ガスからCO2を分離回収するCO2分離回収装置310と、CO2分離回収装置310で分離回収されたCO2に水素(例えば水素ガス)を供給して混合する水素混合部316と、水素が混合されたCO2からメタンを生成するメタン製造部317と、を備えている。 (Composition of methanizer)
Methanation apparatus 31 includes a CO 2 separation and recovery device 310 for separating and recovering CO 2 from flue gas, hydrogen mixed for mixing by supplying hydrogen (e.g. hydrogen gas) in the CO 2 separated recovered by CO 2 separation and recovery device 310 It includes a unit 316 and a methane production unit 317 that produces methane from CO 2 mixed with hydrogen.
メタン化装置31は、排ガスからCO2を分離回収するCO2分離回収装置310と、CO2分離回収装置310で分離回収されたCO2に水素(例えば水素ガス)を供給して混合する水素混合部316と、水素が混合されたCO2からメタンを生成するメタン製造部317と、を備えている。 (Composition of methanizer)
CO2分離回収装置310は、図3に示すように、排ガス収集ライン311で収集された排ガスからSOxやNOx等の酸性成分や、H2O、ダスト等の有害成分を除去する有害成分除去部312と、有害成分が除去された排ガスからCO2を分離して回収するCO2分離回収部313と、回収されたCO2を圧縮する圧縮部314と、圧縮されたCO2から水分を除去する除湿部315と、を備えている。
CO 2 separation and recovery device 310, as shown in FIG. 3, and acid components such as SOx and NOx from the exhaust gas collected by the exhaust gas collecting line 311, H 2 O, harmful component removing unit for removing harmful components such as dust and 312, and the CO 2 separation collector 313 for separating and recovering CO 2 from the harmful components have been removed exhaust gas, a compression unit 314 for compressing the recovered CO 2, to remove water from the compressed CO 2 It is provided with a dehumidifying unit 315.
排ガス収集ライン311から送られてくる排ガスは、石炭、石油コークス、重油などの化石燃料の燃焼排ガスだけでなく、廃プラスチックや廃タイヤなどの燃焼排ガスを含んでいる場合がある。その場合、CO2が例えば、20数%程度含まれるとともに、CO2以外のガスや酸性成分及び有害成分が含まれている。このため、有害成分除去部312は、排ガスから酸性成分(例えば、窒素酸化物(NOx)や硫黄酸化物(SOx)等の酸性ガス)及び有害成分を除去するものであり、NaOH水溶液などを充填したスクラバー、除湿機、電気集塵機等を備える。これら酸性成分及び有害成分の除去により、NOxとともにハロゲン(フッ素(F)、塩素(Cl)、臭素(Br)、ヨウ素(I)等)も除去されるので、次のCO2分離回収で用いられるアミン化合物の吸収材(CO2吸収材)の劣化を防止するとともに、吸収能力の低下を抑制する。
The exhaust gas sent from the exhaust gas collection line 311 may include not only the combustion exhaust gas of fossil fuels such as coal, petroleum coke, and heavy oil, but also the combustion exhaust gas such as waste plastics and waste tires. In this case, CO 2, for example, as would fall about 20 several percent, it is included gases and acidic components and harmful components other than CO 2. Therefore, the harmful component removing unit 312 removes acidic components (for example, acid gases such as nitrogen oxides (NOx) and sulfur oxides (SOx)) and harmful components from the exhaust gas, and is filled with an aqueous NaOH solution or the like. It is equipped with a scraper, a dehumidifier, an electrostatic dust collector, etc. By removing these acidic components and harmful components, halogens (fluorine (F), chlorine (Cl), bromine (Br), iodine (I), etc.) are also removed along with NOx, which will be used in the next CO 2 separation and recovery. It prevents deterioration of the absorbent material (CO 2 absorbent material) of the amine compound and suppresses the decrease in absorption capacity.
脱硫方法(SOx除去方法)としては、湿式の石灰石石膏法、水酸化マグネシウム法、ソーダ吸収法が知られている。これらはアルカリ溶液にてSOxを吸収させる方法で、乾式法として石炭灰利用法がある。また、脱硫(SOx除去)・脱硝(NOx除去)を同時に処理する方法として乾式法の活性炭法、電子ビーム法がある。脱硝方法としては、乾式法として接触還元法(SCR法等)、無触媒還元法があり、湿式法として酸化吸収法、酸化還元法、等モル吸収法がある。
As a desulfurization method (SOx removal method), a wet limestone gypsum method, a magnesium hydroxide method, and a soda absorption method are known. These are methods of absorbing SOx with an alkaline solution, and there is a method of using coal ash as a dry method. Further, as a method for simultaneously treating desulfurization (SOx removal) and denitration (NOx removal), there are a dry method, an activated carbon method, and an electron beam method. As the denitration method, there are a catalytic reduction method (SCR method and the like) and a non-catalytic reduction method as a dry method, and an oxidation absorption method, an oxidation reduction method and an equimolar absorption method as a wet method.
一方、セメント製造設備からの排ガスはサスペンションプレヒータ部が脱硫装置として機能するためSOxは一般的に数十ppm以下となる場合が多い。
On the other hand, the SOx of the exhaust gas from the cement manufacturing equipment is generally several tens of ppm or less because the suspension preheater functions as a desulfurization device.
ここで、CO2分離回収用吸収材への不純物の影響は、化学吸収法及び物理吸着法のいずれもアミン化合物と不純物成分との親和性に大きな差はないと考えられる。CO2分離回収部313によるCO2の回収では、排ガス中のSOxは吸収材中のアミン化合物と結合し、アミン化合物のCO2吸収能力を阻害し時間の経過とともに吸収率が大きく低下する。このようにアミン化合物は塩基性が強く、SOx以外のNOx、Cl及びF等のハロゲンはCO2吸収材に吸着される傾向にある。
Here, it is considered that there is no significant difference in the affinity between the amine compound and the impurity component in either the chemical absorption method or the physical adsorption method regarding the influence of impurities on the absorbent material for CO 2 separation and recovery. In the recovery of CO 2 by the CO 2 separation collector 313, SOx in the exhaust gas is coupled with an amine compound in the absorbent, CO 2 absorption rate with the passage of inhibiting time the absorption capacity of the amine compound is greatly reduced. As described above, the amine compound is strongly basic, and halogens such as NOx, Cl and F other than SOx tend to be adsorbed on the CO 2 absorbent.
また、メタン化の触媒として広く用いられるNi触媒は、H2に混在する硫黄化合物下では、Ni触媒の表面で硫黄化合物が反応し表面を覆いメタン化の収率を悪化させるため、有害成分除去部312で硫黄化合物を除去しておく必要がある。同様にNOxやハロゲン(Cl、F等)についてもNi触媒表面に付着しメタン化の収率を悪化させる可能性があるため、有害成分除去部312で除去しておく必要がある。
In addition, the Ni catalyst, which is widely used as a catalyst for methanation, removes harmful components because the sulfur compound reacts on the surface of the Ni catalyst under the sulfur compound mixed with H 2 and covers the surface to deteriorate the yield of methanation. It is necessary to remove the sulfur compound in the part 312. Similarly, NOx and halogens (Cl, F, etc.) may adhere to the surface of the Ni catalyst and deteriorate the yield of methanation, so it is necessary to remove them by the harmful component removing unit 312.
本実施形態では、有害成分除去部312による脱硫(SOx除去)及び脱硝(NOx除去)方法は、上記いずれの除去方法を用いてもよい。例えば、本実施形態では、上記脱硫方法のいずれか、及び上記脱硝方法のいずれかを用いて窒素酸化物(NOx)や硫黄酸化物(SOx)等の酸化性ガスを除去している。
In the present embodiment, any of the above removal methods may be used as the desulfurization (SOx removal) and denitration (NOx removal) methods by the harmful component removing unit 312. For example, in the present embodiment, any of the above desulfurization methods and any of the above denitration methods are used to remove oxidizing gases such as nitrogen oxides (NOx) and sulfur oxides (SOx).
CO2分離回収部313は、一般的なCO2回収装置からなり、この内部にはCO2を吸収するCO2吸収材(アミン化合物を水に溶解した液体吸収材、アミン化合物を多孔質材に担持させた固体吸収材等)が設けられ、有害成分等が除去された後の排ガスがこれに接触することにより、排ガス中のCO2がCO2吸収材に吸収される。そして、CO2を吸収したCO2吸収材を加熱する等により、CO2吸収材からCO2を取り出して回収する。なお、CO2分離回収部313は、CO2が除去された後の排ガスを外部に排出する。圧縮部314は、回収されたCO2を0.1MPa以上好ましくは0.5~1.0MPaの圧力をかけて圧縮する。除湿部315は、圧縮されたCO2を冷却することにより、CO2内に含まれる水分を除去する。この除湿は、水分がメタン化装置内のNi系触媒の酸化に影響するので、これをメタン化の前に除去するために行われる。
CO 2 separation collector 313 is made common CO 2 recovery apparatus, the inside absorbs CO 2 CO 2 absorbent (amine compound liquid absorbing material dissolved in water, the amine compound to the porous material A supported solid absorbent or the like) is provided, and the exhaust gas after the harmful components or the like are removed comes into contact with the solid absorbent, so that CO 2 in the exhaust gas is absorbed by the CO 2 absorbent. Then, such as by heating the CO 2 absorbing material that has absorbed CO 2, is recovered by extraction of CO 2 from the CO 2 absorber. The CO 2 separation / recovery unit 313 discharges the exhaust gas after CO 2 has been removed to the outside. The compression unit 314 compresses the recovered CO 2 by applying a pressure of 0.1 MPa or more, preferably 0.5 to 1.0 MPa. Dehumidifying unit 315, by cooling the compressed CO 2, removing the moisture contained in the CO 2. This dehumidification is performed to remove the moisture before the methanation because it affects the oxidation of the Ni-based catalyst in the methanation apparatus.
水素混合部316は、除湿されたCO2に水素を供給して混合し、加圧する。水素は、再生可能エネルギーを利用した人工光合成、水の分解等によって生成した水素ガスを利用することができる。この水素混合部316による水素の添加量は、水素が混合された後のCO2(混合ガス)の水素の濃度が、メタンを製造しやすい濃度となるように適宜設定される。
The hydrogen mixing unit 316 supplies hydrogen to the dehumidified CO 2 to mix and pressurize it. As hydrogen, hydrogen gas generated by artificial photosynthesis using renewable energy, decomposition of water, etc. can be used. The amount of hydrogen added by the hydrogen mixing unit 316 is appropriately set so that the concentration of hydrogen in CO 2 (mixed gas) after the hydrogen is mixed becomes a concentration at which methane can be easily produced.
メタン製造部317は、水素が混合されたCO2からメタンを生成する。このメタン製造部317は、一般的なメタン製造装置からなり、メタン化に活性を示す触媒が充填された反応器(図示省略)を複数備えており、これら反応器に水素が混合されたCO2を供給して反応させることによりメタンを製造する。例えば、水素化触媒としては、Ni、Pt、Pd、Cuが利用されるが、メタン化触媒においては、特に、Al2O3、Cr2O3、SiO2、MgAl2O4、TiO2、ZrO2など担持されたNi及びNi合金が利用される。
The methane production unit 317 produces methane from CO 2 mixed with hydrogen. The methane production unit 317 is composed of a general methane production apparatus, and includes a plurality of reactors (not shown) filled with catalysts that are active in methaneization, and CO 2 in which hydrogen is mixed in these reactors. Methane is produced by supplying and reacting. For example, Ni, Pt, Pd, and Cu are used as the hydrogenation catalyst, but in the methanation catalyst, in particular, Al 2 O 3 , Cr 2 O 3 , SiO 2 , Mg Al 2 O 4 , TiO 2 , and so on. Supported Ni and Ni alloys such as ZrO 2 are used.
一般的なメタン化の反応(CO2+4H2→CH4+2H2O)の際の条件は温度が200℃~700℃、好ましくは200℃~350℃、圧力は0.1~3MPaであり、メタンの反応収率を向上させるため多段で反応させる。
The conditions for a general methanation reaction (CO 2 + 4H 2 → CH 4 + 2H 2 O) are a temperature of 200 ° C. to 700 ° C., preferably 200 ° C. to 350 ° C., and a pressure of 0.1 to 3 MPa. The reaction is carried out in multiple stages in order to improve the reaction yield of methane.
(メタン供給装置の構成)
メタン供給装置32は、図2に示すように、メタン化装置31により製造されたメタンをポンプ321で圧縮して貯留するタンク322と、タンク322に接続され、メタンを窯前部5bのバーナ8及び仮焼炉4のバーナ41のそれぞれに送るメタン供給ライン323を備えている。このメタン供給ライン323は、セメント焼成キルン5のバーナ8に石炭や石油等の燃料を供給する燃料供給ライン15、及び仮焼炉4のバーナ41に石炭等の燃料を供給する燃料供給ライン42のそれぞれに接続されている。これにより、各バーナ8,41には、燃料とともにメタンが供給される。 (Composition of methane supply device)
As shown in FIG. 2, themethane supply device 32 is connected to a tank 322 that compresses and stores methane produced by the methaneization device 31 by a pump 321 and a tank 322, and stores methane in a burner 8 of the kiln front portion 5b. And a methane supply line 323 for sending to each of the burners 41 of the calcination furnace 4. The methane supply line 323 is a fuel supply line 15 that supplies fuel such as coal and petroleum to the burner 8 of the cement firing kiln 5, and a fuel supply line 42 that supplies fuel such as coal to the burner 41 of the calcination furnace 4. Connected to each. As a result, methane is supplied to each of the burners 8 and 41 together with the fuel.
メタン供給装置32は、図2に示すように、メタン化装置31により製造されたメタンをポンプ321で圧縮して貯留するタンク322と、タンク322に接続され、メタンを窯前部5bのバーナ8及び仮焼炉4のバーナ41のそれぞれに送るメタン供給ライン323を備えている。このメタン供給ライン323は、セメント焼成キルン5のバーナ8に石炭や石油等の燃料を供給する燃料供給ライン15、及び仮焼炉4のバーナ41に石炭等の燃料を供給する燃料供給ライン42のそれぞれに接続されている。これにより、各バーナ8,41には、燃料とともにメタンが供給される。 (Composition of methane supply device)
As shown in FIG. 2, the
[CO2活用方法]
上述したCO2活用システム100を用いてセメント製造設備50の排ガス中のCO2を削減して有効活用する方法について、図1に示すフローチャートに沿って説明する。 [How to utilize CO 2]
A method of reducing and effectively utilizing CO 2 in the exhaust gas of thecement manufacturing equipment 50 by using the CO 2 utilization system 100 described above will be described with reference to the flowchart shown in FIG.
上述したCO2活用システム100を用いてセメント製造設備50の排ガス中のCO2を削減して有効活用する方法について、図1に示すフローチャートに沿って説明する。 [How to utilize CO 2]
A method of reducing and effectively utilizing CO 2 in the exhaust gas of the
セメント製造設備50では、セメント原料としての石灰石、粘土、珪石、鉄原料等を粉砕、乾燥させることにより得られた粉体状のセメント原料を予熱し、予熱されたセメント原料を仮焼した後焼成し、これを冷却することによりセメントクリンカが製造される。このセメントクリンカの製造に伴いセメント焼成キルン5及び仮焼炉4で発生する排ガスは、プレヒータ3を下方から上方に経由した後、排気管9を通って原料ミル及びドライヤ2に導入され、セメント原料の乾燥に用いられた後、集塵機10を介して煙突11から排出される。
In the cement manufacturing facility 50, a powdery cement raw material obtained by crushing and drying limestone, clay, silica stone, iron raw material, etc. as a cement raw material is preheated, and the preheated cement raw material is calcined and then fired. Then, by cooling this, a cement clinker is manufactured. Exhaust gas generated in the cement firing kiln 5 and the calcining furnace 4 due to the production of this cement clinker is introduced into the raw material mill and the dryer 2 through the exhaust pipe 9 after passing through the preheater 3 from the lower side to the upper side, and is used as a cement raw material. After being used for drying, it is discharged from the chimney 11 via the dust collector 10.
このセメント製造プロセスにおいて、セメント焼成時に生じた排ガスの一部を排ガス処理ライン12の集塵機10と煙突11との間からメタン化装置31の排ガス収集ライン311により収集する。次に、有害成分除去部312は、排ガスから酸性成分及び有害成分を除去する。この有害成分除去部312において、窒素酸化物(NOx)や硫黄酸化物(SOx)、ハロゲン、及びH2O、ダストなどが除去される。そして、CO2分離回収部313により、排ガスからCO2が取り出されて分離回収される。このとき、CO2が除去された排ガスを外部に排出する。
In this cement manufacturing process, a part of the exhaust gas generated during cement firing is collected from between the dust collector 10 of the exhaust gas treatment line 12 and the chimney 11 by the exhaust gas collection line 311 of the methanization apparatus 31. Next, the harmful component removing unit 312 removes the acidic component and the harmful component from the exhaust gas. In this noxious component removal unit 312, the nitrogen oxides (NOx) and sulfur oxides (SOx), halogen, and H 2 O, such as dust are removed. Then, the CO 2 separation and recovery unit 313 extracts CO 2 from the exhaust gas and separates and recovers it. At this time, the exhaust gas from which CO 2 has been removed is discharged to the outside.
次に、圧縮部314により、回収されたCO2を0.1MPa以上好ましくは0.5~1.0MPaの圧力をかけて圧縮し、除湿部315によりCO2内に含まれる水分を除去する。そして、水素混合部316により、除湿されたCO2に水素を供給して混合し、加圧する。そして、メタン製造部317により、水素が混合されたCO2からメタンを生成する。
Next, the recovered CO 2 is compressed by applying a pressure of 0.1 MPa or more, preferably 0.5 to 1.0 MPa by the compression unit 314, and the water contained in the CO 2 is removed by the dehumidifying unit 315. Then, hydrogen is supplied to the dehumidified CO 2 by the hydrogen mixing unit 316, mixed, and pressurized. Then, the methane production unit 317 produces methane from CO 2 mixed with hydrogen.
このようにして生成されたメタンは、メタン供給装置32のタンク322に貯蔵される。そして、このタンク322に貯蔵されたメタンを、メタン供給ライン323を介してセメント焼成キルン5及び仮焼炉4に供給する。セメント焼成キルン5には、燃料供給ライン15から石油や石炭等の化石燃料が供給されるが、メタンを供給することにより、その化石燃料の一部をメタンで代替することができ、その分、化石燃料を削減することができる。同様に、仮焼炉4においても石炭等の燃料の一部又は全部をメタンで代替するため、化石燃料を削減することができる。
The methane produced in this way is stored in the tank 322 of the methane supply device 32. Then, the methane stored in the tank 322 is supplied to the cement firing kiln 5 and the calcining furnace 4 via the methane supply line 323. Fossil fuels such as oil and coal are supplied to the cement fired kiln 5 from the fuel supply line 15. By supplying methane, a part of the fossil fuel can be replaced with methane. Fossil fuels can be reduced. Similarly, in the calcination furnace 4, fossil fuels can be reduced because part or all of the fuel such as coal is replaced with methane.
本実施形態では、セメント製造設備50からの排ガスを分離回収する前に、セメント製造排ガスのCO2に含まれるSOx、NOx、ハロゲン等の酸性成分及びH2O、ダスト等の有害成分を除去することで、CO2吸収材の吸収能力の劣化を抑制できる。このため、セメント製造排ガスからCO2を効率的に回収できる。また、CO2吸収材も長期に安定した性能を維持することができる。そして、適切に処理されたCO2をメタンに変換することにより、セメント製造設備50から排出されるCO2を削減できるとともに、このメタンをセメント焼成キルン5及び仮焼炉4の代替燃料として使用することでメタンを有効活用できる。特に、地球温暖化の大きな原因となっている石炭や石油の化石燃料を石灰石由来のメタンで代替するので、化石燃料の使用を削減してエネルギー起源のCO2を低減でき、温室効果ガスの削減効果を高めることができる。
In the present embodiment, before separating and recovering the exhaust gas from the cement manufacturing facility 50, acidic components such as SOx, NOx and halogen contained in CO 2 of the cement manufacturing exhaust gas and harmful components such as H 2 O and dust are removed. As a result, deterioration of the absorption capacity of the CO 2 absorber can be suppressed. Therefore, CO 2 can be efficiently recovered from the cement manufacturing exhaust gas. In addition, the CO 2 absorber can also maintain stable performance for a long period of time. Then, by converting the appropriately treated CO 2 to methane, it is possible to reduce the CO 2 emissions from cement production facility 50 uses this methane as an alternative fuel for cement kiln 5 and the calciner 4 This makes it possible to effectively utilize methane. In particular, since fossil fuels such as coal and petroleum, which are a major cause of global warming, are replaced with methane derived from limestone, the use of fossil fuels can be reduced, CO 2 originating from energy can be reduced, and greenhouse gases can be reduced. The effect can be enhanced.
また、分離回収されたCO2から水分を除去し、これに水素を添加してメタンを製造するので、メタン化装置31内のNi系触媒の酸化を抑制できる。
Further, since water is removed from the separated and recovered CO 2 and hydrogen is added thereto to produce methane, oxidation of the Ni-based catalyst in the methane conversion apparatus 31 can be suppressed.
なお、本発明は上記実施形態の構成のものに限定されるものではなく、細部構成においては、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
The present invention is not limited to the configuration of the above embodiment, and various changes can be made to the detailed configuration without departing from the spirit of the present invention.
例えば、上記実施形態では、除湿部315は、圧縮されたCO2を冷却することにより、CO2内に含まれる水分を除去することとしたが、これに限らず、分離回収されたCO2から水分を除去できれば、その方法は問わない。
For example, in the above embodiment, the dehumidifying unit 315, by cooling the compressed CO 2, it is assumed that the removal of moisture contained in the CO 2, is not limited thereto, from the CO 2 separated recovered Any method can be used as long as the water can be removed.
また、生成したメタンをセメント焼成キルン5及び仮焼炉4の両方に供給するようにしたが、いずれか一方に供給するようにしてもよい。
さらに、セメント焼成キルン5及び仮焼炉4の両方の排ガスを利用してメタンを生成したが、仮焼炉を有しないセメント製造設備への適用も可能であり、その場合は、セメント焼成キルンからの排ガスからメタンを生成する。 Further, although the generated methane is supplied to both thecement firing kiln 5 and the calcining furnace 4, it may be supplied to either one.
Furthermore, although methane was generated using the exhaust gas from both thecement firing kiln 5 and the calcining furnace 4, it can also be applied to cement manufacturing equipment that does not have a calcining furnace. In that case, the cement firing kiln can be used. Produces methane from the exhaust gas of the kiln.
さらに、セメント焼成キルン5及び仮焼炉4の両方の排ガスを利用してメタンを生成したが、仮焼炉を有しないセメント製造設備への適用も可能であり、その場合は、セメント焼成キルンからの排ガスからメタンを生成する。 Further, although the generated methane is supplied to both the
Furthermore, although methane was generated using the exhaust gas from both the
セメント製造設備の排ガス中のCO2から有害成分を適切に除去することで、CO2吸収材の吸収能力の劣化を抑制し、セメント製造排ガスを適切に処理してメタンを適切に生成でき、これによりエネルギー起源のCO2を削減できる。
By appropriately removing harmful components from CO 2 in the exhaust gas of cement manufacturing equipment, deterioration of the absorption capacity of the CO 2 absorber can be suppressed, and the cement manufacturing exhaust gas can be treated appropriately to produce methane appropriately. Therefore, CO 2 originating from energy can be reduced.
1 原料貯蔵庫
2 原料ミル及びドライヤ
3 プレヒータ
4 仮焼炉
5 セメント焼成キルン
5a 窯尻部
5b 窯前部
6 クーラ
8 バーナ
9 排気管
10 集塵機
11 煙突
12 排ガス処理ライン
13 サイクロン
15 燃料供給ライン
22 原料供給管
25 ライジングダクト
30 排ガス処理設備
31 メタン化装置
310 CO2分離回収装置
311 排ガス収集ライン
312 有害成分除去部
313 CO2分離回収部
314 圧縮部
315 除湿部
316 水素混合部
317 メタン製造部
32 メタン供給装置
321 ポンプ
322 タンク
323 メタン供給ライン
41 バーナ
42 燃料供給ライン
50 セメント製造設備
100 CO2活用システム 1Raw material storage 2 Raw material mill and dryer 3 Preheater 4 Temporary firing furnace 5 Cement firing kiln 5a Kiln bottom 5b Kiln front 6 Cooler 8 Burner 9 Exhaust pipe 10 Dust collector 11 Chimney 12 Exhaust gas treatment line 13 Cyclone 15 Fuel supply line 22 Raw material supply Pipe 25 Rising duct 30 Exhaust gas treatment equipment 31 Methaneization device 310 CO 2 Separation and recovery device 311 Exhaust gas collection line 312 Harmful component removal section 313 CO 2 Separation and recovery section 314 Compression section 315 Dehumidifying section 316 Hydrogen mixing section 317 Methane production section 32 Methane supply Equipment 321 Pump 322 Tank 323 Methane supply line 41 Burner 42 Fuel supply line 50 Cement production equipment 100 CO 2 utilization system
2 原料ミル及びドライヤ
3 プレヒータ
4 仮焼炉
5 セメント焼成キルン
5a 窯尻部
5b 窯前部
6 クーラ
8 バーナ
9 排気管
10 集塵機
11 煙突
12 排ガス処理ライン
13 サイクロン
15 燃料供給ライン
22 原料供給管
25 ライジングダクト
30 排ガス処理設備
31 メタン化装置
310 CO2分離回収装置
311 排ガス収集ライン
312 有害成分除去部
313 CO2分離回収部
314 圧縮部
315 除湿部
316 水素混合部
317 メタン製造部
32 メタン供給装置
321 ポンプ
322 タンク
323 メタン供給ライン
41 バーナ
42 燃料供給ライン
50 セメント製造設備
100 CO2活用システム 1
Claims (6)
- セメント製造設備の排ガスからから酸性成分及び有害成分を除去し、前記酸性成分及び前記有害成分が除去された前記排ガスをCO2吸収材に接触させてCO2を分離回収し、分離回収されたCO2に水素を添加してメタンを生成することを特徴とするセメント製造排ガス中のCO2からのメタン製造方法。 The acidic component and the harmful component are removed from the exhaust gas of the cement manufacturing facility, and the exhaust gas from which the acidic component and the harmful component have been removed are brought into contact with the CO 2 absorber to separate and recover CO 2, and the separated and recovered CO. A method for producing methane from CO 2 in cement production exhaust gas, which comprises adding hydrogen to 2 to produce methane.
- 前記酸性成分及び有害成分とともにハロゲンも除去することを特徴とする請求項1に記載のセメント製造排ガス中のCO2からのメタン製造方法。 The method for producing methane from CO 2 in the exhaust gas produced by cement according to claim 1, wherein halogen is removed together with the acidic component and the harmful component.
- 分離回収されたCO2から水分を除去した後、メタンを生成することを特徴とする請求項1又は2に記載のセメント製造排ガス中のCO2からのメタン製造方法。 After water was removed from the CO 2 separated recovered methane production method from CO 2 in cement production in the exhaust gas according to claim 1 or 2, characterized in that to produce methane.
- セメント製造設備に、該セメント製造設備からの排ガスから酸性成分及び有害成分を除去する有害成分除去部と、前記酸性成分及び前記有害成分が除去された前記排ガスをCO2吸収材に接触させてCO2を分離回収するCO2分離回収部と、分離回収したCO2に水素を添加してメタンを生成するメタン製造部と、を備えることを特徴とするセメント製造排ガス中のCO2からのメタン化装置。 The cement manufacturing facility, by contacting the hazardous component removing unit for removing the acidic components and harmful components from the exhaust gas from the cement manufacturing facility, the exhaust gas the acidic component and the harmful components have been removed in the CO 2 absorbing material CO and CO 2 separation collector for a 2 to separate and recover, methanation from CO 2 in cement production in the exhaust gas and by adding hydrogen to the separated and collected CO 2 methane production unit which generates methane, characterized in that it comprises a Device.
- 前記有害成分除去部は、前記酸性成分及び有害成分とともにハロゲンも除去することを特徴とする請求項4に記載のセメント製造排ガス中のCO2からのメタン化装置。 The methaneization apparatus from CO 2 in the cement manufacturing exhaust gas according to claim 4, wherein the harmful component removing unit removes halogen as well as the acidic component and the harmful component.
- 分離回収されたCO2から水分を除去する除湿部をさらに備えることを特徴とする請求項4又は5に記載のセメント製造排ガス中のCO2からのメタン化装置。 Methanation apparatus from CO 2 in cement production in the exhaust gas according to claim 4 or 5, further comprising a dehumidifying unit for removing moisture from the CO 2 separated recovered.
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020-097645 | 2020-06-04 | ||
JP2020-097644 | 2020-06-04 | ||
JP2020097645A JP2021187721A (en) | 2020-06-04 | 2020-06-04 | Utilization method of co2 in cement manufacture exhaust gas and co2 utilization system |
JP2020097644A JP7215462B2 (en) | 2020-06-04 | 2020-06-04 | CO2 Utilization Method and CO2 Utilization System in Exhaust Gas from Cement Manufacturing |
JP2020-101458 | 2020-06-11 | ||
JP2020101458A JP7230885B2 (en) | 2020-06-11 | 2020-06-11 | CO2 Utilization Method and CO2 Utilization System in Exhaust Gas from Cement Manufacturing |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2021246318A1 true WO2021246318A1 (en) | 2021-12-09 |
Family
ID=78831069
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2021/020406 WO2021246318A1 (en) | 2020-06-04 | 2021-05-28 | Method for producing methane from co2 in cement production exhaust gas, and methanation apparatus |
Country Status (1)
Country | Link |
---|---|
WO (1) | WO2021246318A1 (en) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022264745A1 (en) * | 2021-06-18 | 2022-12-22 | 公益財団法人地球環境産業技術研究機構 | Carbon dioxide separation, collection, and utilization system and carbon dioxide separation, collection, and utilization method |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10185170A (en) * | 1996-12-25 | 1998-07-14 | Ebara Corp | Combustion apparatus |
JP2015030653A (en) * | 2013-08-06 | 2015-02-16 | 千代田化工建設株式会社 | Energy utilization system, and energy utilization method |
WO2015055349A1 (en) * | 2013-10-16 | 2015-04-23 | Paul Scherrer Institut | Integrated process/plant for storage of co2 by conversion to synthetic natural gas |
JP2018052746A (en) * | 2016-09-26 | 2018-04-05 | 太平洋セメント株式会社 | Cement firing apparatus and method for cement clinker burning |
JP2019172595A (en) * | 2018-03-27 | 2019-10-10 | 大阪瓦斯株式会社 | Method for methanation of carbon dioxide in combustion exhaust gas and methane production facility |
-
2021
- 2021-05-28 WO PCT/JP2021/020406 patent/WO2021246318A1/en active Application Filing
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH10185170A (en) * | 1996-12-25 | 1998-07-14 | Ebara Corp | Combustion apparatus |
JP2015030653A (en) * | 2013-08-06 | 2015-02-16 | 千代田化工建設株式会社 | Energy utilization system, and energy utilization method |
WO2015055349A1 (en) * | 2013-10-16 | 2015-04-23 | Paul Scherrer Institut | Integrated process/plant for storage of co2 by conversion to synthetic natural gas |
JP2018052746A (en) * | 2016-09-26 | 2018-04-05 | 太平洋セメント株式会社 | Cement firing apparatus and method for cement clinker burning |
JP2019172595A (en) * | 2018-03-27 | 2019-10-10 | 大阪瓦斯株式会社 | Method for methanation of carbon dioxide in combustion exhaust gas and methane production facility |
Non-Patent Citations (1)
Title |
---|
BAIER JENS, SCHNEIDER GABRIEL, HEEL ANDRE: "A Cost Estimation for CO2 Reduction and Reuse by Methanation from Cement Industry Sources in Switzerland", FRONTIERS IN ENERGY RESEARCH, vol. 6, 28 February 2018 (2018-02-28), pages 1 - 9, XP055843333, DOI: 10.3389/fenrg.2018.00005 * |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2022264745A1 (en) * | 2021-06-18 | 2022-12-22 | 公益財団法人地球環境産業技術研究機構 | Carbon dioxide separation, collection, and utilization system and carbon dioxide separation, collection, and utilization method |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4355661B2 (en) | In situ capture of carbon dioxide and sulfur dioxide in a fluidized bed combustor. | |
KR20220005074A (en) | Systems and methods for carbon capture | |
US8496895B2 (en) | Exhaust gas treating apparatus and treating method for carbon dioxide capture process | |
CN109482049B (en) | Dry desulfurization, denitrification and purification integrated process for coke oven flue gas | |
WO2021246317A1 (en) | Method for separating and recovering co2 in cement production exhaust gas, and co2 separation and recovery device | |
JP2019055903A (en) | Firing apparatus of ecological cement | |
KR20230118839A (en) | Cement clinker manufacturing system and cement clinker manufacturing method | |
WO2021246318A1 (en) | Method for producing methane from co2 in cement production exhaust gas, and methanation apparatus | |
CN108970328B (en) | Device and process for treating high-sulfur waste gas in chemical industry and recovering sulfur | |
JP7230884B2 (en) | CO2 Utilization Method and CO2 Utilization System in Exhaust Gas from Cement Manufacturing | |
JP2023016868A (en) | Utilization method of co2 in cement manufacture exhaust gas and co2 utilization system | |
JP2012213744A (en) | Apparatus and method for treating exhaust gas and coal upgrading process facility | |
JP2021191731A (en) | Method for utilizing co2 in cement production exhaust gas, and co2 utilization system | |
EP3019268B1 (en) | Method for ventilation air methane mitigation | |
JP7230885B2 (en) | CO2 Utilization Method and CO2 Utilization System in Exhaust Gas from Cement Manufacturing | |
WO2021246315A1 (en) | Method and system for utilizing co2 in cement production exhaust gas | |
WO2021246314A1 (en) | Method for utilizing co2 in cement production exhaust gas, and co2 utilization system | |
WO2021246319A1 (en) | Cement production method and cement production system | |
JP7215462B2 (en) | CO2 Utilization Method and CO2 Utilization System in Exhaust Gas from Cement Manufacturing | |
JP7374856B2 (en) | Cement manufacturing method and cement manufacturing system | |
JP2022149127A (en) | Manufacturing system of cement clinker and manufacturing method of cement clinker | |
WO2021246316A1 (en) | Method for producing valuable substances from cement production exhaust gas | |
JP3571219B2 (en) | Method for producing halide absorber | |
JP2021191732A (en) | Method of producing valuables from exhaust from cement production | |
JP2022096846A (en) | Cement clinker manufacturing system |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 21817591 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 21817591 Country of ref document: EP Kind code of ref document: A1 |