JP5286427B2 - Cavity inspection method for concrete structures - Google Patents

Cavity inspection method for concrete structures Download PDF

Info

Publication number
JP5286427B2
JP5286427B2 JP2012010533A JP2012010533A JP5286427B2 JP 5286427 B2 JP5286427 B2 JP 5286427B2 JP 2012010533 A JP2012010533 A JP 2012010533A JP 2012010533 A JP2012010533 A JP 2012010533A JP 5286427 B2 JP5286427 B2 JP 5286427B2
Authority
JP
Japan
Prior art keywords
pressure
cavity
concrete structure
time
hole
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012010533A
Other languages
Japanese (ja)
Other versions
JP2012127970A (en
Inventor
芳範 松田
和宏 葛目
英俊 松澤
雅司 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Non Destructive Inspection Co Ltd
East Japan Railway Co
Original Assignee
Non Destructive Inspection Co Ltd
East Japan Railway Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Non Destructive Inspection Co Ltd, East Japan Railway Co filed Critical Non Destructive Inspection Co Ltd
Priority to JP2012010533A priority Critical patent/JP5286427B2/en
Publication of JP2012127970A publication Critical patent/JP2012127970A/en
Application granted granted Critical
Publication of JP5286427B2 publication Critical patent/JP5286427B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • On-Site Construction Work That Accompanies The Preparation And Application Of Concrete (AREA)
  • Examining Or Testing Airtightness (AREA)

Description

本発明は、コンクリート構造物の空洞検査方法に関する。さらに詳しくは、PC構造物等のコンクリート構造物に穿孔し、その内部に存在する空洞の有無と程度とを検査するコンクリート構造物の空洞検査方法に関する。   The present invention relates to a cavity inspection method for a concrete structure. More specifically, the present invention relates to a method for inspecting a cavity of a concrete structure, in which a concrete structure such as a PC structure is perforated and the presence / absence and degree of a cavity existing inside the PC structure is inspected.

ところで、PC構造物の空洞の検査方法としては、例えば、1)放射線透過撮影によるもの、2)弾性波を使用したもの、3)複数箇所に孔を穿孔してその間の連通を調べるものが存在していた。第二の方法に属するものとしては、特許文献1のものが知られている。   By the way, as a method for inspecting a cavity of a PC structure, there are, for example, 1) a method using radiographic imaging, 2) a method using elastic waves, and 3) a method of drilling holes at a plurality of locations to check communication between them. Was. The thing of patent document 1 is known as what belongs to a 2nd method.

しかし、第一の方法は、構造物の厚さが透過限界を超えると適用することができない。また、第二の方法は構造物の表層では有効なものの、弾性波が届かない厚みでは適用することが困難である。さらに、第三の方法は複数箇所への穿孔と2カ所間の通気を何度も繰り返さなければならず、煩雑である。
特開平10−54140号
However, the first method cannot be applied when the thickness of the structure exceeds the transmission limit. The second method is effective for the surface layer of the structure, but is difficult to apply at a thickness that does not reach the elastic wave. Furthermore, the third method is complicated because it is necessary to repeatedly perforate a plurality of locations and ventilate between the two locations.
JP 10-54140 A

かかる従来の実情に鑑みて、本発明は、空洞に対し1カ所への穿孔でその空洞の有無と程度とを検査することの可能なコンクリート構造物の空洞検査方法を提供することを目的とする。   In view of such conventional circumstances, an object of the present invention is to provide a method for inspecting a cavity of a concrete structure capable of inspecting the presence / absence and degree of the cavity by perforating the cavity in one place. .

上記目的を達成するため、本発明に係るコンクリート構造物の空洞検査方法の特徴は、コンクリート構造物に穿孔し、この孔から一定の圧力及び流量に調整した気体を前記孔に連通する空洞に流入又は流出(以下、「流入等」という。)させ、圧力変動を時間情報と共に測定し、流入開始後に測定圧力が増大し始めて一定値に集束する前の時間範囲において所定の基準圧力に到達する時間により前記空洞の容量を求めることにある。また、前記測定圧力が一定値に集束した時点での圧力値より前記孔に連通する空洞に連通する漏洩孔の大きさを推定することも可能である。   In order to achieve the above object, the cavity inspection method for a concrete structure according to the present invention is characterized in that a concrete structure is perforated and gas adjusted to a constant pressure and flow rate flows into the cavity communicating with the hole. Alternatively, the time when the pressure fluctuation is measured together with time information after the outflow (hereinafter referred to as “inflow”, etc.) and the measured pressure starts to increase after the start of the inflow and reaches a predetermined reference pressure in a time range before converging to a constant value. Thus, the capacity of the cavity is obtained. It is also possible to estimate the size of the leak hole communicating with the cavity communicating with the hole from the pressure value when the measured pressure is converged to a constant value.

本発明の他の特徴は、コンクリート構造物に穿孔し、この孔から一定の圧力及び流量に調整した気体を前記孔に連通する空洞に流入等させ、圧力変動を時間情報と共に測定し、測定圧力を測定圧力が集束した一定の圧力値で除して測定圧力比に補正し、前記測定圧力比が増大し始めて一定値に集束する前の時間範囲において所定の基準圧力比に到達する時間により前記空洞の容量を求めることにある。   Another feature of the present invention is that a concrete structure is perforated, a gas adjusted to a constant pressure and flow rate is allowed to flow from the hole into a cavity communicating with the hole, pressure fluctuation is measured together with time information, and a measurement pressure is measured. The measured pressure is divided by a constant pressure value converged to correct the measured pressure ratio, and the measured pressure ratio starts to increase and reaches the predetermined reference pressure ratio in the time range before converging to the fixed value. The purpose is to determine the capacity of the cavity.

前記測定圧力が一定値に集束した時点での圧力値より前記空洞に連通する漏洩孔の大きさを推定することができる。
The size of the leak hole communicating with the cavity can be estimated from the pressure value when the measured pressure is converged to a constant value.

なお、上記各特徴は、前記空洞がPC構造物におけるシース管内のグラウト未充填部について実施することができる。なお、上記気体としては空気が用いられる。   In addition, each said characteristic can be implemented about the grout unfilled part in the sheath pipe | tube in the PC structure. Note that air is used as the gas.

上記本発明に係るコンクリート構造物の空洞検査方法の特徴によれば、空洞に対し1カ所への穿孔でその空洞の有無と程度とを検査することが可能となった。   According to the feature of the method for inspecting a cavity of a concrete structure according to the present invention, it is possible to inspect the presence / absence and degree of the cavity by perforating the cavity in one place.

本発明の他の目的、構成及び効果については、以下の発明の実施の形態の項から明らかになるであろう。   Other objects, configurations, and effects of the present invention will become apparent from the following embodiments of the present invention.

次に、適宜添付図面を参照しながら、本発明をさらに詳しく説明する。本実施形態では、コンクリート構造物として、PC橋梁等に用いられるPC構造物100を例にとって説明する。   Next, the present invention will be described in more detail with reference to the accompanying drawings as appropriate. In the present embodiment, a PC structure 100 used for a PC bridge or the like will be described as an example of a concrete structure.

第一の測定方法(検査方法)に用いられる検査装置1は、図1に示すように、順次接続されるコンプレッサー2、レギュレーター3、開閉バルブ4、タンク5、圧力センサ6、第二開閉バルブ8を備え、圧力センサ6の圧力がデジタルオシロスコープ等の記録計7に時間と共に記録される。また、第二開閉バルブ8に連続する連通管20は、穿孔された調査孔130にシール30を介して密閉状態で装着される。   As shown in FIG. 1, an inspection apparatus 1 used for the first measurement method (inspection method) includes a compressor 2, a regulator 3, an on-off valve 4, a tank 5, a pressure sensor 6, and a second on-off valve 8 that are sequentially connected. The pressure of the pressure sensor 6 is recorded over time on a recorder 7 such as a digital oscilloscope. Further, the communication pipe 20 continuing to the second opening / closing valve 8 is mounted in a sealed state on the drilled investigation hole 130 via the seal 30.

コンクリート構造物としてのPC(プレストレスコンクリート)構造物100は、コンクリート製の基材110に貫通されたシース管101内にさらにPC鋼材102を貫通させ、このPC鋼材102にテンションを加えた状態で拡大部103を両端に取り付け、基材110にプレストレスを付与している。そして、シース管101内にグラウト111を注入させ、テンションの分散とPC鋼材102の腐食を防止している。このグラウト111の未充填部が空洞120となり、問題となるため、その空洞120の存在と容積を調べることが本発明の目的である。そのため、先の調査孔130を適宜穿孔し、連通管20を装着する。調査孔130は、基材110及びシース管101に適宜穿孔される。また、漏洩孔131はその存在が不明である。   A PC (prestressed concrete) structure 100 as a concrete structure is formed by further passing a PC steel material 102 through a sheath tube 101 penetrated by a concrete base material 110 and applying tension to the PC steel material 102. Enlarged portions 103 are attached to both ends, and prestress is applied to the substrate 110. Then, grout 111 is injected into sheath tube 101 to prevent tension dispersion and corrosion of PC steel material 102. Since the unfilled portion of the grout 111 becomes a cavity 120 and becomes a problem, it is an object of the present invention to examine the existence and volume of the cavity 120. Therefore, the previous inspection hole 130 is appropriately drilled, and the communication pipe 20 is attached. The investigation hole 130 is appropriately drilled in the base material 110 and the sheath tube 101. Further, the existence of the leak hole 131 is unknown.

検査開始に際しては、まず、第二開閉バルブ8を閉じ、開閉バルブ4を開けた状態でコンプレッサー2からレギュレーター3に制御された所定圧力の空気が気体の一例としてタンク5に蓄積される。タンク5は所定の一定容積を有し、所定の一定圧力まで空気が充填される。この状態で開閉バルブ4を閉じることにより、所定圧力・所定容積の圧縮空気が準備される。所定容量を変更したい場合は、適宜タンク5の容量が異なる物を選択するとよい。   At the start of the inspection, first, air with a predetermined pressure controlled by the regulator 3 from the compressor 2 is accumulated in the tank 5 as an example of gas with the second on-off valve 8 closed and the on-off valve 4 opened. The tank 5 has a predetermined constant volume and is filled with air to a predetermined constant pressure. By closing the on-off valve 4 in this state, compressed air having a predetermined pressure and a predetermined volume is prepared. When it is desired to change the predetermined capacity, a tank having a different capacity may be selected as appropriate.

かかる状態で第二開閉バルブ8を開にすると、タンク5内の圧縮空気は一気に調査孔130を通って空洞120に充填される。このときの圧力変動は圧力センサ6により検出され、時間情報と共に記録計7に記録される。   When the second opening / closing valve 8 is opened in such a state, the compressed air in the tank 5 is filled in the cavity 120 through the investigation hole 130 at once. The pressure fluctuation at this time is detected by the pressure sensor 6 and recorded in the recorder 7 together with time information.

図2は、漏洩孔131が存在しない状態において、空洞120の容積を0.15リットル、0.33リットル、0.49リットル、1.28リットル、1.57リットル、3.27リットルと変更し、又は連通管20を大気に解放させた状態での記録計7の記録結果である。なお、本実施形態では、圧力をゲージ圧力として測定している。測定圧力を前記圧縮空気の前記所定圧力で除した圧力比の時間変動として表示している。この結果より、空洞120の容量計測は、前記圧力比の時間変動による判定を急激な圧力比低下の後圧力比が緩和され始めた時間帯における圧力比と空洞の容積との相関値として求められる。   FIG. 2 shows that the volume of the cavity 120 is changed to 0.15 liter, 0.33 liter, 0.49 liter, 1.28 liter, 1.57 liter, and 3.27 liter in the state where the leak hole 131 does not exist. Or a recording result of the recorder 7 in a state where the communication pipe 20 is released to the atmosphere. In the present embodiment, the pressure is measured as a gauge pressure. The measured pressure is displayed as a time variation of the pressure ratio obtained by dividing the compressed air by the predetermined pressure. From this result, the capacity measurement of the cavity 120 is obtained as a correlation value between the pressure ratio and the volume of the cavity in the time zone in which the pressure ratio starts to be relaxed after the pressure ratio is suddenly lowered, as determined by the time variation of the pressure ratio. .

一方、図3は図1における漏洩孔131を有する場合であり、A〜Cと表記する3つの異なる容量の空洞120及び連通管20を接続しない大気解放の状態を含め実験を行った結果を示す。急激な圧力比低下の後圧力比が緩和され始めた時間帯である曲線L1上での圧力比と時間とで定まる点P1〜P3を読み取ることで、漏洩による誤差を概ね除去することが可能であることが伺える。A〜Cの条件は時間の経過と共に圧力比零に漸近し、これにより漏洩孔131の存在が確認される。この第一の方法は非常に短い時間で空洞部の容積を計測できることが利点である。   On the other hand, FIG. 3 shows a case where the leakage hole 131 in FIG. 1 is provided, and shows results of experiments including a state where the cavity 120 having three different capacities denoted as A to C and the open air state where the communication pipe 20 is not connected are included. . By reading the points P1 to P3 determined by the pressure ratio and the time on the curve L1, which is the time zone in which the pressure ratio starts to be relaxed after a sudden pressure ratio drop, it is possible to substantially eliminate errors due to leakage. I can see that there is. The conditions A to C gradually approach a pressure ratio of zero with the passage of time, whereby the presence of the leak hole 131 is confirmed. This first method is advantageous in that the volume of the cavity can be measured in a very short time.

図2,3の場合はいずれもあらかじめ求めた検量線と測定結果とを比較することで空洞部120の容積及び漏洩孔131の存在を確認することができる。ところで、図4は測定圧力比と実際の空洞部の容積(体積)との相関を示すグラフである。このような曲線を呈するため、容積が小さな符号V1の場合は測定圧力比の値に読み取り誤差が含まれても推定する容積の値は大きく異ならない。しかし、符号V2,V3の場合は、測定圧力比の値に比較的小さな読み取り誤差を生じても、これが容積の測定誤差に大きく影響する場合も生じる。このような測定誤差を生じにくい測定方法として、第二の測定方法を以下説明する。なお、以下において上記と同様の部材には同一の符号を附してある。   2 and 3, the volume of the cavity 120 and the presence of the leak hole 131 can be confirmed by comparing the calibration curve obtained in advance with the measurement result. FIG. 4 is a graph showing the correlation between the measured pressure ratio and the actual volume of the cavity. In order to exhibit such a curve, in the case of the sign V1 having a small volume, the estimated volume value does not differ greatly even if the measurement pressure ratio value includes a reading error. However, in the case of the signs V2 and V3, even if a relatively small reading error occurs in the value of the measurement pressure ratio, this may greatly affect the volume measurement error. A second measurement method will be described below as a measurement method that hardly causes such measurement errors. In addition, the same code | symbol is attached | subjected to the member similar to the above below.

第二の測定方法には圧力・流量を一定に調整した気体(空気)が用いられる。そして、この測定方法には、図5に示す検査装置1が用いられる。コンプレッサー2及びレギュレーター3と開閉バルブ4との間に流量調整バルブ11が設けられている。また、圧力センサ6には記録計7が接続される。   In the second measurement method, gas (air) whose pressure and flow rate are adjusted to be constant is used. In this measuring method, the inspection apparatus 1 shown in FIG. 5 is used. A flow rate adjusting valve 11 is provided between the compressor 2 and the regulator 3 and the opening / closing valve 4. A recorder 7 is connected to the pressure sensor 6.

テスト条件は次の表1の通りであり、漏洩孔131については、なし、直径1.1mm1ヶ、直径1.1mm2ヶの場合、空洞部容積については、1.52リットル、2.43リットル、5.46リットル及び9.16リットルの4つの場合を設定し、合計8個の組み合わせで実験を行った。

Figure 0005286427
The test conditions are as shown in Table 1 below. For the leak hole 131, none, 1.1 mm1 diameter, 1.1 mm2 diameter, the cavity volume is 1.52 liters, 2.43 liters, Four cases of 5.46 liters and 9.16 liters were set, and experiments were performed with a total of 8 combinations.
Figure 0005286427

実験に際しては、図1の調査孔130にシール30を介して連通管20を接続し、コンプレッサー2を駆動させ、レギュレーター3で圧力を調整し、流量調整バルブ11で流量を調整し、一定圧力・一定流量の空気を空洞部に送り込んだ。その際の時間に対する圧力の変動を示したのが図6のグラフであり、実験開始当初のZ部の拡大図が図7のグラフである。   In the experiment, the communication pipe 20 is connected to the investigation hole 130 of FIG. 1 via the seal 30, the compressor 2 is driven, the pressure is adjusted with the regulator 3, the flow rate is adjusted with the flow rate adjusting valve 11, and a constant pressure / A constant flow of air was sent into the cavity. The graph of FIG. 6 shows the pressure fluctuation with respect to time at that time, and the enlarged view of the Z portion at the beginning of the experiment is the graph of FIG.

図7のグラフによれば、流入開始後測定圧力が増大し始める低い圧力範囲において、所定の一定圧力(基準圧力Pa、この例では0.03MPa)に達するまでの時間により、空洞部容積がグルーピングされた。したがって、このような低い圧力範囲、例えば、30数秒後以降に最終的に到達する所定圧力の1/3程度の圧力範囲、時間として表現するなら、圧力が増大し始めた直後における測定圧力の時間変動により前記孔に連通する空洞の容量を測定することが可能である旨が判明した。   According to the graph of FIG. 7, the cavity volume is grouped according to the time required to reach a predetermined constant pressure (reference pressure Pa, 0.03 MPa in this example) in a low pressure range where the measured pressure starts to increase after the start of inflow. It was done. Therefore, if expressed as such a low pressure range, for example, a pressure range of about 1/3 of the predetermined pressure finally reached after a few seconds, the time of the measured pressure immediately after the pressure starts to increase. It has been found that the capacity of the cavity communicating with the hole can be measured by the fluctuation.

一方、図6のグラフの方法では、測定圧力がほぼ一定に集束した30数秒後のときの圧力の値から、漏洩孔の大きさ(積算面積)を推定できる旨が判明した。なお、図7にいう「低い圧力範囲」は、漏洩孔による圧力変動の影響が小さな圧力範囲を意味し、この集束した高い圧力範囲とは対極の範囲である。   On the other hand, in the method of the graph of FIG. 6, it has been found that the size (integrated area) of the leak hole can be estimated from the pressure value after 30 seconds after the measured pressure is converged almost uniformly. Note that the “low pressure range” in FIG. 7 means a pressure range in which the influence of pressure fluctuation due to the leakage hole is small, and this concentrated high pressure range is a range of the counter electrode.

ところで、第二の方法における上記手順では、漏洩孔の有無と程度とにより、空洞部の推定容積に誤差が生じる。漏洩孔がある場合は所定の圧力に達しないデータが得られる。そこで、図6の一定となった測定圧力で各測定値を除し、図8のような結果を得る。このように、測定データを所定の圧力になるよう一定となった測定圧力で除する補正を行うことで、空洞部の推定容積の誤差を低減することができる。   By the way, in the above procedure in the second method, an error occurs in the estimated volume of the cavity due to the presence and the degree of leakage holes. When there is a leak hole, data that does not reach the predetermined pressure is obtained. Therefore, each measurement value is divided by the measurement pressure that is constant in FIG. 6 to obtain a result as shown in FIG. As described above, by correcting the measurement data by the measurement pressure that is constant so as to be a predetermined pressure, it is possible to reduce the error in the estimated volume of the cavity.

最後に、本発明のさらに他の実施形態の可能性を列挙する。
上記実施形態では、気体として空気を用いた。しかし、空気以外の気体を用いても構わない。
Finally, the possibilities of yet another embodiment of the present invention are listed.
In the above embodiment, air is used as the gas. However, a gas other than air may be used.

上記実施形態では、気体を連通管より流入させる場合についてのみ説明した。しかし、コンプレッサーの替わりに減圧機を用いて調査孔から気体を吸引しても構わない。このことを確認するために、図9の検査装置1を用いてタンクよりなる空洞部121の容量と圧力との関係を測定した結果を図10に示す。検査装置1は、連通管20に圧力センサを接続し、開閉バルブ4を介して減圧機である減圧タンク15が接続される。空洞部の容積を300,250,222ccとし、減圧タンクをバルブ4の解放により空洞部121に接続して急激に吸引を行うと、図10の如く、それぞれ各容積に対応する圧力は−36.7kPa,−38.4kPa,−41.3kPaとなった。これにより、減圧(吸引)時においても上記第一,第二の測定方法が機能することが推察される。   In the above embodiment, only the case where gas is introduced from the communication pipe has been described. However, gas may be sucked from the investigation hole by using a decompressor instead of the compressor. In order to confirm this, FIG. 10 shows the result of measuring the relationship between the capacity and pressure of the cavity 121 made of a tank using the inspection apparatus 1 of FIG. In the inspection apparatus 1, a pressure sensor is connected to the communication pipe 20, and a decompression tank 15 that is a decompressor is connected via the opening / closing valve 4. When the volume of the cavity is 300, 250, 222 cc, and the vacuum tank is connected to the cavity 121 by releasing the valve 4 and aspiration is performed rapidly, the pressure corresponding to each volume is -36. It became 7 kPa, -38.4 kPa, and -41.3 kPa. Thereby, it is surmised that the first and second measurement methods function even during decompression (suction).

本発明は、PC構造物の空洞部の検査の他、他のコンクリート構造物の空洞部の検査、例えば、ダムや河川のコンクリート構造物における空洞部の検査に用いることが可能である。   INDUSTRIAL APPLICABILITY The present invention can be used for inspection of cavities of other concrete structures, for example, inspection of cavities in concrete structures of dams and rivers, in addition to inspection of cavities of PC structures.

コンクリート構造物の空洞検査方法に用いる検査装置のブロック図及びコンクリート構造物の一例であるPCコンクリート構造物の概略図である。It is the schematic of the block diagram of the test | inspection apparatus used for the cavity test | inspection method of a concrete structure, and the PC concrete structure which is an example of a concrete structure. 第一の測定方法(検査方法)における貫通孔を有しない場合の時間と圧力比との関係を示すグラフである。It is a graph which shows the relationship between time in the case of not having a through-hole in a 1st measuring method (inspection method), and a pressure ratio. 第一の測定方法における貫通孔を有する場合の時間と圧力比との関係を示すグラフである。It is a graph which shows the relationship between time in the case of having a through-hole in a 1st measuring method, and a pressure ratio. 測定圧力比と空洞部の容積との関係を示すグラフである。It is a graph which shows the relationship between a measurement pressure ratio and the volume of a cavity part. 第二の測定方法に用いる検査装置のブロック図である。It is a block diagram of the inspection apparatus used for the 2nd measuring method. 第二の測定方法における時間と圧力との関係を示すグラフである。It is a graph which shows the relationship between time and pressure in the 2nd measuring method. 図6の試験当初部分の拡大図である。It is an enlarged view of the test initial part of FIG. 第二の測定方法における時間と圧力比との関係を示すグラフである。It is a graph which shows the relationship between time and pressure ratio in the 2nd measuring method. 流出(減圧吸引)時に用いる検査装置のブロック図である。It is a block diagram of the inspection device used at the time of outflow (vacuum suction). 図9の装置を用いた場合における容積(容量)と圧力との関係を示すグラフである。10 is a graph showing the relationship between volume (capacity) and pressure when the apparatus of FIG. 9 is used.

1:検査装置、2:コンプレッサー、3:レギュレーター、4:開閉バルブ、5:タンク、6:圧力センサ、7:記録計、8:第二開閉バルブ、11:流量調整バルブ、15:減圧タンク、20:連通管、30:シール、100:コンクリート構造物、101:シース管、102:PC鋼材、103:拡大部、110:基材、111:グラウト、120,121:空洞(部)、130:調査孔、131:漏洩孔   1: inspection device, 2: compressor, 3: regulator, 4: open / close valve, 5: tank, 6: pressure sensor, 7: recorder, 8: second open / close valve, 11: flow adjustment valve, 15: decompression tank, 20: Communication pipe, 30: Seal, 100: Concrete structure, 101: Sheath pipe, 102: PC steel, 103: Expanded part, 110: Base material, 111: Grout, 120, 121: Cavity (part), 130: Survey hole 131: Leakage hole

Claims (5)

コンクリート構造物に穿孔し、この孔から一定の圧力及び流量に調整した気体を前記孔に連通する空洞に流入又は流出(以下、「流入等」という。)させ、
圧力変動を時間情報と共に測定し、
流入開始後に測定圧力が増大し始めて一定値に集束する前の時間範囲において所定の基準圧力に到達する時間により前記空洞の容量を求めるコンクリート構造物の空洞検査方法。
A concrete structure is perforated, and a gas adjusted to a constant pressure and flow rate is made to flow into or out of a cavity communicating with the hole (hereinafter referred to as “inflow”).
Measure pressure fluctuations with time information,
A method for inspecting a cavity of a concrete structure in which the capacity of the cavity is obtained by a time to reach a predetermined reference pressure in a time range before the measured pressure starts to increase and converges to a constant value after the start of inflow.
前記測定圧力が一定値に集束した時点での圧力値より前記空洞に連通する漏洩孔の大きさを推定する請求項1記載のコンクリート構造物の空洞検査方法。 The method for inspecting a cavity of a concrete structure according to claim 1, wherein the size of a leak hole communicating with the cavity is estimated from a pressure value at the time when the measured pressure is converged to a constant value. コンクリート構造物に穿孔し、この孔から一定の圧力及び流量に調整した気体を前記孔に連通する空洞に流入等させ、
圧力変動を時間情報と共に測定し、
測定圧力を測定圧力が集束した一定の圧力値で除して測定圧力比に補正し、
前記測定圧力比が増大し始めて一定値に集束する前の時間範囲において所定の基準圧力比に到達する時間により前記空洞の容量を求めるコンクリート構造物の空洞検査方法。
Perforate the concrete structure, let the gas adjusted to a constant pressure and flow rate flow from this hole into the cavity communicating with the hole, etc.
Measure pressure fluctuations with time information,
Divide the measurement pressure by a constant pressure value that is the focus of the measurement pressure to correct the measurement pressure ratio,
A method for inspecting a cavity of a concrete structure in which the capacity of the cavity is obtained by a time to reach a predetermined reference pressure ratio in a time range before the measured pressure ratio starts to increase and converges to a constant value.
前記測定圧力が一定値に集束した時点での圧力値より前記空洞に連通する漏洩孔の大きさを推定する請求項3記載のコンクリート構造物の空洞検査方法。 4. The method for inspecting a cavity of a concrete structure according to claim 3, wherein the size of a leak hole communicating with the cavity is estimated from a pressure value when the measured pressure is converged to a constant value. 前記空洞がPC構造物におけるシース管内のグラウト未充填部である請求項1〜4のいずれかに記載のコンクリート構造物の空洞検査方法。 The method for inspecting a cavity of a concrete structure according to any one of claims 1 to 4, wherein the cavity is a grout unfilled portion in a sheath tube in a PC structure.
JP2012010533A 2012-01-20 2012-01-20 Cavity inspection method for concrete structures Active JP5286427B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012010533A JP5286427B2 (en) 2012-01-20 2012-01-20 Cavity inspection method for concrete structures

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012010533A JP5286427B2 (en) 2012-01-20 2012-01-20 Cavity inspection method for concrete structures

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007328099A Division JP4959541B2 (en) 2007-12-20 2007-12-20 Cavity inspection method for concrete structures

Publications (2)

Publication Number Publication Date
JP2012127970A JP2012127970A (en) 2012-07-05
JP5286427B2 true JP5286427B2 (en) 2013-09-11

Family

ID=46645122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012010533A Active JP5286427B2 (en) 2012-01-20 2012-01-20 Cavity inspection method for concrete structures

Country Status (1)

Country Link
JP (1) JP5286427B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101876420B1 (en) * 2017-12-26 2018-07-10 컨텍이앤씨 주식회사 System for filling repair grout of psc (pre stressed concrete) bridge, and method for the same
CN109991121B (en) * 2017-12-31 2022-04-12 中国人民解放军63653部队 Test method for testing gas permeability of concrete by using concrete pipe test piece
CN110969364A (en) * 2019-12-11 2020-04-07 上海浦兴路桥建设工程有限公司 Method and system for evaluating grouting quality and effect of prefabricated part
CN112252592A (en) * 2020-10-28 2021-01-22 长沙理工大学 Grouting sleeve device with intelligent detection assembly
CN113431101B (en) * 2021-06-18 2023-06-27 国网新源控股有限公司 Pressure steel pipe contact grouting void detection method and device

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2997863B2 (en) * 1993-06-28 2000-01-11 財団法人日本建築総合試験所 Method and apparatus for measuring the volume of exfoliated parts and cavities of concrete, mortar, etc. in structures and other cavities
JP3805011B2 (en) * 1996-02-14 2006-08-02 松下電器産業株式会社 Piping capacity estimation device and gas leak detection device
JPH1054140A (en) * 1996-08-09 1998-02-24 Hihakai Kensa Kk Filled state inspecting method for grout

Also Published As

Publication number Publication date
JP2012127970A (en) 2012-07-05

Similar Documents

Publication Publication Date Title
JP5286427B2 (en) Cavity inspection method for concrete structures
US10571384B2 (en) Methods and systems for determining gas permeability of a subsurface formation
RU2549216C2 (en) Measurement of parameters related with passage of fluid media in porous material
US20190234859A1 (en) Methods and Systems for Determining Gas Permeability of a Subsurface Formation
CN102353625B (en) Method for measuring overburden porosity with water in permeation fluid mechanics experiment
US10845292B2 (en) Method for correcting low permeability laboratory measurements for leaks
US11371905B2 (en) Methods for detecting leakage in permeability measurement system
CN107036769B (en) It is a kind of for calibrating the system and method for different probe gas vacuum leak leak rates
CN110927035A (en) Method for calculating saturation of irreducible tight sandstone bound water
CN108133086A (en) Water Fractured Gas Wells fracture half-length's inversion method is produced in a kind of stress sensitive reservoir
JP2004012136A (en) Permeability measuring method and permeability measuring instrument for base rock, etc
Zhang et al. A study on effect of seepage direction on permeability stress test
Alsherif et al. Measuring the soil water–retention curve under positive and negative matric suction regimes
Stormont et al. Laboratory measurements of flow through wellbore cement-casing microannuli
JP5486896B2 (en) Permeability confirmation test method and permeability confirmation test device for air permeable filling material
JP4959541B2 (en) Cavity inspection method for concrete structures
JP2010271231A (en) Leak inspection method and leak inspection device
CN108663498B (en) High-temperature depressurization and fracturing shale gas field desorption experimental device and method
Cooper et al. Determining the adventitious leakage of buildings at low pressure. Part 2: pulse technique
JP2008241356A (en) Specimen simulating reduction in thickness of pipe interior, manufacturing method of test specimen and testing method
CN208060345U (en) A kind of measuring device of stickiness soil body osmotic coefficient
CN107703043B (en) System for measuring specific gas leakage rate of film under rated pressure difference
WO2021103372A1 (en) Mobile rapid coal rock permeability measuring instrument
CN112326458A (en) Capsule pressure shearing test method and tester
WO2019209121A1 (en) Method of testing an integrity of a structure separating a chamber from an adjacent environment, and related apparatus

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130603

R150 Certificate of patent or registration of utility model

Ref document number: 5286427

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250