JP5284842B2 - High strength flat steel wire - Google Patents

High strength flat steel wire Download PDF

Info

Publication number
JP5284842B2
JP5284842B2 JP2009077086A JP2009077086A JP5284842B2 JP 5284842 B2 JP5284842 B2 JP 5284842B2 JP 2009077086 A JP2009077086 A JP 2009077086A JP 2009077086 A JP2009077086 A JP 2009077086A JP 5284842 B2 JP5284842 B2 JP 5284842B2
Authority
JP
Japan
Prior art keywords
less
steel wire
flat steel
strength
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009077086A
Other languages
Japanese (ja)
Other versions
JP2010229468A (en
Inventor
聡 杉丸
浩一 細川
尚志 疋田
浩 大羽
敏之 真鍋
雅嗣 村尾
耕一 村尾
俊也 池端
充則 尾崎
圭一 村上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Namitei Co Ltd
Original Assignee
Nippon Steel Corp
Namitei Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp, Namitei Co Ltd filed Critical Nippon Steel Corp
Priority to JP2009077086A priority Critical patent/JP5284842B2/en
Publication of JP2010229468A publication Critical patent/JP2010229468A/en
Application granted granted Critical
Publication of JP5284842B2 publication Critical patent/JP5284842B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、例えばスナップリングなどに加工される平鋼線や、電力・通信線、パイプ・ホースなどの張力補強に使用される高強度平鋼線に関する。   The present invention relates to a flat steel wire processed into, for example, a snap ring or the like, and a high-strength flat steel wire used for tension reinforcement of power / communication wires, pipes / hoses, and the like.

高強度平鋼線に関しては、下記特許文献1の「高強度異形鋼線の製造方法」に開示されている0.90%以上の炭素を含有する鋼線がある。従来の高強度平鋼線は、長手方向の引張強度は満足するものの、既に加工限界に達しており、曲げ加工などの二次加工に供することが困難であった。特に、厚み方向に垂直な面内での曲げ加工のように延性を必要とされる加工においては外周から割れが入り裂けてしまう問題があった。   Regarding the high-strength flat steel wire, there is a steel wire containing 0.90% or more of carbon disclosed in “Manufacturing method of high-strength deformed steel wire” in Patent Document 1 below. Conventional high-strength flat steel wires satisfy the tensile strength in the longitudinal direction, but have already reached the processing limit and are difficult to be subjected to secondary processing such as bending. In particular, there is a problem that cracks enter from the outer periphery in processing that requires ductility, such as bending in a plane perpendicular to the thickness direction.

特許第3298688号公報Japanese Patent No. 3298688

本発明は、このような従来の事情に鑑みて提案されたものであり、二次加工性に優れた高強度平鋼線を提供することを目的とする。   This invention is proposed in view of such a conventional situation, and it aims at providing the high strength flat steel wire excellent in secondary workability.

本発明者らの検討によると、従来の高強度平鋼線では、加工時に4方向圧延のような端部整形を行うと、局所的な加工不均一が発生し、二次加工時の変形に局所的に耐えられずに破断してしまうことが判明した。特に、Cの含有量が質量分率で0.9%を超えると、セメンタイト分率が高くなるために、局所的な不均一加工部分が破壊の起点になることが判明した。   According to the study by the present inventors, in the conventional high-strength flat steel wire, if end shaping such as four-way rolling is performed at the time of processing, local processing non-uniformity occurs, and deformation at the time of secondary processing occurs. It was found that it could not withstand locally and would break. In particular, it has been found that when the C content exceeds 0.9% in terms of mass fraction, the cementite fraction becomes high, so that a locally non-uniformly processed portion becomes the starting point of fracture.

そこで、本発明においては、断面内不均一変形を回避するため、その形状を幅/厚み比で1以上4以下に制限すること、さらに加工後の断面内硬さのばらつきを抑えることが有効であることを見出した。   Therefore, in the present invention, in order to avoid non-uniform deformation in the cross section, it is effective to limit the shape to a width / thickness ratio of 1 or more and 4 or less, and to further suppress variations in the hardness in the cross section after processing. I found out.

また、Cの含有量を質量分率で0.9%以下に制限することにより、実生産可能な熱処理条件にて均一な微細パーライト組織が形成され、さらに、鋼中のNを固定することにより、時効硬化が抑制され、局所的な不均一変形部分の硬化がさらに進むことが抑制され、局所的な不均一変形部分においても破壊の起点にならないことを見出した。   In addition, by limiting the C content to 0.9% or less by mass fraction, a uniform fine pearlite structure is formed under heat treatment conditions that can be produced, and further, by fixing N in the steel It has been found that age hardening is suppressed, further hardening of the locally non-uniformly deformed portion is suppressed, and the local non-uniformly deformed portion does not serve as a starting point for fracture.

その結果、本発明者らは、厚み方向に垂直な平面内において、幅の1.5倍以上の曲率半径を有する曲げ部を割れなしで折り曲げ形成することが可能となることを見出し、本発明を完成するに至った。   As a result, the present inventors have found that it is possible to bend and form a bent portion having a curvature radius of 1.5 times the width or more without cracking in a plane perpendicular to the thickness direction. It came to complete.

すなわち、上記課題を解決することを目的とした本発明の要旨は、以下のとおりである。
〔1〕 鋼成分が、質量%で、
C:0.85%以上0.90%以下、
Si:0.80%以上1.00%以下、
Mn:0.60%以上0.90%以下、
P:0.025%以下、
S:0.025%以下
Cu:0.20%以下であり、
残部がFe及び不可避不純物からなり、長手方向に垂直な断面において、矩形状を為すと共に各角部が円弧状を為す平鋼線であって、
厚みが1.5mm以上5.0mm以下、幅が1.5mm以上20mm以下、幅/厚み比が1以上4以下であり、
引張試験における降伏強度又は0.2%耐力が1600MPa以上、破断強度が1900MPa以上、破断伸びが2%以上であり、
厚み方向に垂直な平面内において、幅の1.5倍以上の曲率半径を有する曲げ部を割れなしで折り曲げ形成することが可能であることを特徴とする高強度平鋼線。
〔2〕 長手方向に垂直な断面内の硬度測定が可能な任意の位置において、ビッカース硬度が何れも450以上であり、且つ当該ビッカース硬度の最大値と最小値との差が80以下であることを特徴とする前記〔1〕に記載の高強度平鋼線。
〕 更に、質量%で、
Al:0.005%以上0.10%以下、
Ti:0.003%以上0.05%以下、
B:0.0005%以上0.0040%以下、
N:0.0015%%以上0.0060%以下を含有することを特徴とする前記〔または〔2〕に記載の高強度平鋼線。
〕 更に、質量%で、
Cr:0.1%以上0.5%以下、
V:0.005%以上0.50%以下を含有することを特徴とする前記〔1〕〜〔3〕の何れか一項に記載の高強度平鋼線。
〕 Zn又はNiを含む厚みが10μm以下のめっき層を表面に有することを特徴とする前記〔1〕〜〔〕の何れか一項に記載の高強度平鋼線。
That is, the gist of the present invention aimed at solving the above problems is as follows.
[1] Steel component is mass%,
C: 0.85% or more and 0.90% or less,
Si: 0.80% or more and 1.00% or less,
Mn: 0.60% or more and 0.90% or less,
P: 0.025% or less,
S: 0.025% or less
Cu: 0.20% or less,
The balance is made of Fe and inevitable impurities, and in a cross section perpendicular to the longitudinal direction, a rectangular shape and a flat steel wire in which each corner portion has an arc shape,
The thickness is 1.5 mm or more and 5.0 mm or less, the width is 1.5 mm or more and 20 mm or less, and the width / thickness ratio is 1 or more and 4 or less,
Yield strength or 0.2% yield strength in a tensile test is 1600 MPa or more, breaking strength is 1900 MPa or more, breaking elongation is 2% or more,
A high-strength flat steel wire characterized in that a bent portion having a radius of curvature of 1.5 times the width or more can be bent without cracking in a plane perpendicular to the thickness direction.
[2] The Vickers hardness is 450 or more at any position where the hardness measurement in the cross section perpendicular to the longitudinal direction is possible, and the difference between the maximum value and the minimum value of the Vickers hardness is 80 or less. The high-strength flat steel wire according to [1] above.
[ 3 ] Furthermore, in mass%,
Al: 0.005% or more and 0.10% or less,
Ti: 0.003% to 0.05%,
B: 0.0005% or more and 0.0040% or less,
N: The high-strength flat steel wire according to [ 1 ] or [2] above, containing 0.0015% to 0.0060%.
[ 4 ] Furthermore, in mass%,
Cr: 0.1% to 0.5%,
V: 0.005% or more and 0.50% or less, The high strength flat steel wire according to any one of the above [1] to [3] .
[ 5 ] The high-strength flat steel wire according to any one of [1] to [ 4 ], wherein a plating layer containing Zn or Ni and having a thickness of 10 μm or less is provided on the surface.

以上のように、本発明では、断面内不均一変形を回避するため、その形状を幅/厚み比で1以上4以下に制限すること、加工後の断面内硬さのばらつきを抑えること、並びに、Cの含有量を0.9質量%以下に制限することにより、実生産可能な熱処理条件にて均一な微細パーライト組織が形成され、加えて鋼中のNを固定することにより、時効硬化が抑制され、局所的な不均一変形部分の硬化がさらに進むことが抑制され、従来の高強度平鋼線と比較して高い二次加工性を有する高強度平鋼線を得ることが可能である。したがって、この高強度平鋼線は、厚み方向に垂直な平面内において、幅の1.5倍以上の曲率半径を有する曲げ部を割れなしで折り曲げ形成することが可能である。   As described above, in the present invention, in order to avoid non-uniform deformation in the cross section, the shape is limited to a width / thickness ratio of 1 or more and 4 or less, variation in hardness in the cross section after processing is suppressed, By limiting the C content to 0.9% by mass or less, a uniform fine pearlite structure is formed under heat treatment conditions that can be actually produced. In addition, by fixing N in the steel, age hardening can be achieved. It is possible to suppress the further hardening of the locally unevenly deformed portion, and it is possible to obtain a high-strength flat steel wire having high secondary workability as compared with a conventional high-strength flat steel wire. . Therefore, this high-strength flat steel wire can be formed by bending a bent portion having a radius of curvature of 1.5 times the width or more without cracking in a plane perpendicular to the thickness direction.

図1は、厚み方向に垂直な平面内で曲げ加工を行った平鋼線の例を示す斜視図である。FIG. 1 is a perspective view showing an example of a flat steel wire that is bent in a plane perpendicular to the thickness direction. 図2は、本発明例及び比較例の平鋼線について硬さ分布を測定した結果を示す特性図である。FIG. 2 is a characteristic diagram showing the results of measuring the hardness distribution of the flat steel wires of the present invention and the comparative example.

以下、本発明の実施の形態について、図面を参照して詳細に説明する。
本発明は、例えば図1に示すように、長手方向に垂直な断面において、矩形状を為すと共に各角部が円弧状を為す平鋼線1であって、厚み(T)が1.5mm以上5.0mm以下、幅(W)が1.5mm以上20mm以下、幅/厚み比(W/T)が1以上4以下であり、引張試験における降伏強度又は0.2%耐力が1600MPa以上、破断強度が1900MPa以上、破断伸びが2%以上であり、厚み方向に垂直な平面内において、幅(W)の1.5倍以上の曲率半径(R)を有する曲げ部2を割れなしで折り曲げ形成することが可能であることを特徴とする高強度平鋼線である。なお、本発明では、平鋼線1の長手方向に垂直な断面において、寸法の短い方を「厚み」、長い方を「幅」と称する(以下、同様。)。また、曲げ部2は、幅Wの3倍以上の直径(2R)を有する円筒の外周面に沿って幅方向に曲げ加工を行うことで形成可能である。したがって、曲率半径Rは、曲げ部2の内側に形成される円弧に基づくものとする。
以下、本発明の高強度平鋼線において各条件を規定した理由について説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
The present invention is, for example, as shown in FIG. 1, a flat steel wire 1 having a rectangular shape and a circular arc shape at each corner in a cross section perpendicular to the longitudinal direction, and having a thickness (T) of 1.5 mm or more. 5.0 mm or less, width (W) is 1.5 mm or more and 20 mm or less, width / thickness ratio (W / T) is 1 or more and 4 or less, yield strength or 0.2% proof stress in tensile test is 1600 MPa or more, rupture Bending part 2 having a radius of curvature (R) of 1.5 times the width (W) or more without bending in a plane perpendicular to the thickness direction, having a strength of 1900 MPa or more and a breaking elongation of 2% or more It is a high-strength flat steel wire characterized in that it can be made. In the present invention, in the cross section perpendicular to the longitudinal direction of the flat steel wire 1, the shorter dimension is referred to as “thickness” and the longer dimension is referred to as “width” (the same applies hereinafter). Moreover, the bending part 2 can be formed by bending in the width direction along the outer peripheral surface of a cylinder having a diameter (2R) that is three times or more the width W. Therefore, the curvature radius R is based on an arc formed inside the bent portion 2.
Hereinafter, the reason why each condition is defined in the high-strength flat steel wire of the present invention will be described.

(厚みが1.5mm以上5.0mm以下)
平鋼線の用途として様々な厚みや幅があるが、本発明が対象とする高強度平鋼線は、長手方向に垂直な断面において、矩形状を為すと共に各角部が円弧状を為すものである。また、その製造上、圧延ロールの表面安定性や圧延時の反力から、平鋼線の厚みは5.0mmが上限である。また、厚み方向に垂直な面内での曲げ加工を安定的に行うには、平鋼線の厚みは1.5mm以上必要である。
(Thickness is 1.5mm or more and 5.0mm or less)
There are various thicknesses and widths for the use of flat steel wire, but the high-strength flat steel wire targeted by the present invention has a rectangular shape and an arc shape at each corner in a cross section perpendicular to the longitudinal direction. It is. Moreover, the upper limit of the thickness of a flat steel wire is 5.0 mm from the surface stability and reaction force at the time of rolling on the manufacture. Further, in order to stably perform bending in a plane perpendicular to the thickness direction, the thickness of the flat steel wire needs to be 1.5 mm or more.

( 幅/厚み比が1以上4以下)
(幅が1.5mm以上20mm以下)
本発明者らは、鋭意検討を行った結果、高強度平鋼線の断面内硬さ分布を均一にするためには幅/厚み比が4以下とすることが好ましいことを見出した。平鋼線において、幅が厚みに対して広いほど、圧延による均一性確保が困難となる。一方、幅/厚み比が1となる場合、すなわち厚みと幅が同一の場合が下限となる。これは、幅/厚み比が1未満となる場合は、幅と厚みが表現上入れ替り、結果として同じとなるためである。その結果、幅/厚み比の好ましい数値範囲は1以上4以下となり、上記厚みの好ましい数値範囲から、幅の好ましい数値範囲は1.5mm以上20mm以下となる。
(Width / thickness ratio is 1 or more and 4 or less)
(Width is 1.5mm or more and 20mm or less)
As a result of intensive studies, the present inventors have found that the width / thickness ratio is preferably 4 or less in order to make the hardness distribution in the cross section of the high-strength flat steel wire uniform. In a flat steel wire, as the width is wider with respect to the thickness, it becomes more difficult to ensure uniformity by rolling. On the other hand, the lower limit is when the width / thickness ratio is 1, that is, the thickness and width are the same. This is because when the width / thickness ratio is less than 1, the width and thickness are interchanged in terms of expression, resulting in the same result. As a result, the preferable numerical range of the width / thickness ratio is 1 or more and 4 or less, and the preferable numerical range of the width is 1.5 mm or more and 20 mm or less from the preferable numerical range of the thickness.

(降伏強度又は0.2%耐力が1600MPa以上、破断強度が1900MPa以上、破断伸びが2%以上)
本発明の高強度平鋼線は、1900MPa以上の破断強度を有することを特徴としており、従来の平鋼線において1900MPaで延性を有するものは現時点で確認されていない。また、本発明の高強度平鋼線では、延性を確保するために、破断伸びを2%以上とする。さらに、本発明の高強度平鋼線では、降伏後の延びを確保するために、降伏強度又は0.2%耐力を1600MPa以上とする。
(Yield strength or 0.2% proof stress is 1600 MPa or more, breaking strength is 1900 MPa or more, elongation at break is 2% or more)
The high-strength flat steel wire of the present invention is characterized by having a breaking strength of 1900 MPa or more, and no conventional flat steel wire having ductility at 1900 MPa has been confirmed at present. Moreover, in the high-strength flat steel wire of this invention, in order to ensure ductility, elongation at break shall be 2% or more. Furthermore, in the high-strength flat steel wire of the present invention, the yield strength or 0.2% proof stress is set to 1600 MPa or more in order to ensure elongation after yielding.

(厚み方向に垂直な平面内において、幅の1.5倍以上の曲率半径を有する曲げ部を割れなしで折り曲げ形成すること)
本発明の高強度平鋼線は、厚み方向に垂直な平面内において、幅の1.5倍以上の曲率半径を有する曲げ部を割れなしで折り曲げ形成することが可能であり、引張試験において、降伏強度が1600MPa以上、破断強度が1900MPa以上という高強度にもかかわらず、延性が十分にあり、高い二次加工性が確保されていることが保証された。
(Bending a bent part having a radius of curvature of 1.5 times the width or more in a plane perpendicular to the thickness direction without cracking)
The high-strength flat steel wire of the present invention can be formed by bending a bent portion having a curvature radius of 1.5 times the width or more without cracking in a plane perpendicular to the thickness direction. Despite high strength such as yield strength of 1600 MPa or higher and breaking strength of 1900 MPa or higher, it was ensured that the ductility was sufficient and high secondary workability was ensured.

また、本発明の高強度平鋼線は、長手方向に垂直な断面内の硬度測定が可能な任意の位置において、ビッカース硬度が何れも450以上であり、且つ当該ビッカース硬度の最大値と最小値との差が80以下であることが好ましい。   Further, the high-strength flat steel wire of the present invention has a Vickers hardness of 450 or more at any position where hardness measurement in a cross section perpendicular to the longitudinal direction is possible, and the maximum and minimum values of the Vickers hardness. And the difference is preferably 80 or less.

(ビッカース硬度が450以上、ビッカース硬度の最大値と最小値との差が80以下)
本発明の高強度平鋼線に関して、断面内に局所的に強度が低いところがあると破壊の起点となるため、本発明者らは、断面内の強度を確認するため、断面内のビッカース硬度を測定した。その結果、ビッカース硬度が450未満になると、そこを起点として破断することを見出した。
(Vickers hardness is 450 or more, difference between maximum and minimum values of Vickers hardness is 80 or less)
With respect to the high-strength flat steel wire of the present invention, if there is a place where the strength is locally low in the cross section, it becomes a starting point of fracture. It was measured. As a result, when Vickers hardness became less than 450, it discovered that it fractured | ruptured from that.

また、平鋼線の加工後の断面内には硬さのばらつきがある。したがって、平鋼線の長手方向に垂直な断面内の任意の位置(表層直下の硬度測定可能な位置より中心側)については、全ての位置についてビッカース硬度が450以上であることが好ましい。さらに、ビッカース硬度の最大と最小との差が80を超えると、均一変形しにくくなり平鋼線が裂けるように割れることを見出した。したがって、ビッカース硬度の最大値と最小値との差は80以下とする。   Further, there is a variation in hardness in the cross section after processing the flat steel wire. Therefore, for any position in the cross section perpendicular to the longitudinal direction of the flat steel wire (center side from the position where hardness can be measured directly below the surface layer), it is preferable that the Vickers hardness is 450 or more at all positions. Furthermore, it has been found that when the difference between the maximum and minimum Vickers hardness exceeds 80, uniform deformation is difficult and the flat steel wire is broken. Therefore, the difference between the maximum value and the minimum value of Vickers hardness is 80 or less.

本発明の平鋼線は、加工量が大きいほど強度上昇が大きくなるが、断面内に均一な歪みを与え、曲げ加工可能な延性を確保するために、断面減少率(=100−(加工後の断面積)/(熱処理後の断面積)×100%)を90%以下とすることが好ましい。   The flat steel wire of the present invention increases in strength as the processing amount increases. However, in order to give uniform strain in the cross section and ensure ductility that can be bent, the cross section reduction rate (= 100− (after processing) ) / (Cross-sectional area after heat treatment) × 100%) is preferably 90% or less.

また、本発明の高強度平鋼線は、鋼成分が、質量%で、C:0.85%以上0.90%以下、Si:0.80%以上1.00%以下、Mn:0.60%以上0.90%以下、P:0.025%以下、S:0.025%以下、Cu:0.20%以下であり、残部がFe及び不可避不純物からなることを特徴とする。
以下、本発明の鋼成分を限定した理由について説明する。なお、%の表記は特に断りがない場合は質量%を意味する。
In the high-strength flat steel wire of the present invention, the steel components are mass%, C: 0.85% to 0.90%, Si: 0.80% to 1.00%, Mn: 0.00. 60% or more and 0.90% or less, P: 0.025% or less, S: 0.025% or less, Cu: 0.20% or less, with the balance being Fe and inevitable impurities.
Hereinafter, the reason which limited the steel component of this invention is demonstrated. In addition, the description of% means the mass% unless there is particular notice.

(C:0.85%以上0.90%以下)
Cは、セメンタイト分率を上げ、パーライト鋼の強度を上げる作用がある。ここで、パテンティング条件によってパーライトのラメラ間隔を制御し、加工によって強度を上げることは可能であるが、Cの含有量が質量分率で0.85%を下回ると、加工後に延性を持った状態で到達強度を1900MPa以上にすることは困難である。したがって、本発明では、Cの含有量を0.85%以上とする。また、Cの含有量が0.90%を超えると、局所的な偏析により、加工時に割れが生じるため、その上限を0.90%とした。
(C: 0.85% to 0.90%)
C has the effect of increasing the cementite fraction and increasing the strength of the pearlite steel. Here, it is possible to control the lamella spacing of pearlite according to the patenting conditions and increase the strength by processing. However, when the C content is less than 0.85% in mass fraction, it has ductility after processing. It is difficult to make the ultimate strength 1900 MPa or more in the state. Therefore, in the present invention, the C content is set to 0.85% or more. Further, if the C content exceeds 0.90%, cracks occur during processing due to local segregation, so the upper limit was made 0.90%.

(Si:0.80%以上1.00%以下)
Siは、精錬時の脱酸元素として0.80%以上添加することが好ましい。さらに、Siは、フェライトの固溶強化を行うが、熱処理時の恒温変態のノーズを上げる作用があるため、その上限を1.00%とする。
(Si: 0.80% to 1.00%)
Si is preferably added in an amount of 0.80% or more as a deoxidizing element during refining. Further, Si strengthens the solid solution of ferrite, but has the effect of raising the nose of isothermal transformation during heat treatment, so the upper limit is made 1.00%.

(Mn:0.60%以上0.90%以下)
Mnは、固溶強化元素であり、鋼の靭性を向上させると共に、焼入れ性を向上させる元素であり、靭性を確保するためには、0.60%以上が必要である。一方、Mnが0.90%を超えると、中心部の変態遅れが発生するため、その上限を0.90%とする。
(Mn: 0.60% to 0.90%)
Mn is a solid solution strengthening element and is an element that improves the toughness of the steel and improves the hardenability. In order to ensure the toughness, 0.60% or more is necessary. On the other hand, if Mn exceeds 0.90%, a transformation delay occurs at the center, so the upper limit is made 0.90%.

(P:0.025%以下)
Pは、鋼を脆化させる作用があり、平鋼線加工時に割れを防止するためには、0.025%以下とする必要がある。
(P: 0.025% or less)
P has an effect of embrittlement of steel, and needs to be 0.025% or less in order to prevent cracking during flat steel wire processing.

(S:0.025%以下)
Sは、鋼中の、Mnと結合しMnSを形成する。また、Sは、鋼を精錬−凝固させる過程で中心部に偏析するため、中心部にMnSが集積するが、Sの含有量が0.025%を超えると、平圧加工後に曲げ加工を行なった場合、中心部を起点とした破断が起こる。したがって、Sの含有量は、0.025%以下とする必要がある。
(S: 0.025% or less)
S combines with Mn in steel to form MnS. Further, since S segregates in the central part in the process of refining and solidifying steel, MnS accumulates in the central part. If the S content exceeds 0.025%, bending is performed after flat pressure processing. In such a case, the fracture starts from the center. Therefore, the S content needs to be 0.025% or less.

(Cu:0.20%以下)
Cuは、主にスクラップなどから混入する不純物であり、固溶強化によって鋼を硬化させる作用がある。しかしながら、Cuの含有量が0.20%を越えると、加工性を著しく低下させるため、Cuの含有量は、0.20%以下とする必要がある。
(Cu: 0.20% or less)
Cu is an impurity mainly mixed from scrap or the like, and has an effect of hardening steel by solid solution strengthening. However, if the Cu content exceeds 0.20%, the workability is remarkably lowered, so the Cu content needs to be 0.20% or less.

また、本発明の高強度平鋼線は、上記成分の他に、更に、質量%で、Al:0.005%以上0.10%以下、Ti:0.003%以上0.05%以下、B:0.0005%以上0.0040%以下、N:0.0015%%以上0.0060%以下の何れか1種又は2種以上を含有させてもよい。   In addition to the above components, the high-strength flat steel wire of the present invention is further in mass%, Al: 0.005% to 0.10%, Ti: 0.003% to 0.05%, B: 0.0005% or more and 0.0040% or less, N: 0.0015% or more and 0.0060% or less may be included alone or in combination.

(Al:0.005%以上0.10%以下)
Alは、鋼の精錬時に脱酸材として使用され、さらに鋼中のNと化合物を形成し、Nを固定する作用がある。また、Alは、Nを固定することによって鋼の時効硬化を防止するほかに、Bを同時に添加する場合には、Nを固定することで固溶B増加させる効果がある。しかしながら、Alの添加量が0.005%未満であると、上述したAlによるN固定の効果が十分に得られず、一方、Alの添加量が0.10%を超えると、鋼中の酸素と結合して生成するAlの量が増加し、平圧加工時に割れの起点となる。したがって、Alの含有量は、0.005%以上0.10%以下とすることが好ましい。なお、同様の効果はTiにもあるため、Tiの添加によってAlの添加量を削減することができる。
(Al: 0.005% to 0.10%)
Al is used as a deoxidizing material during refining of steel, and further has a function of forming a compound with N in the steel and fixing N. In addition to preventing age hardening of steel by fixing N, Al has the effect of increasing solute B by fixing N when B is added simultaneously. However, if the added amount of Al is less than 0.005%, the above-described effect of fixing N by Al cannot be sufficiently obtained. On the other hand, if the added amount of Al exceeds 0.10%, oxygen in the steel The amount of Al 2 O 3 produced by combining with the slag increases and becomes a starting point of cracking during flat pressure processing. Accordingly, the Al content is preferably 0.005% or more and 0.10% or less. In addition, since the same effect exists also in Ti, the addition amount of Al can be reduced by addition of Ti.

(Ti:0.003%以上0.05%以下)
Tiは、Alと同様に、鋼の脱酸材として使用されるほかに、鋼中のNと化合物を形成し、Nを固定する作用がある。また、Tiは、Nを固定することによって鋼の時効硬化を防止するほかに、Bを同時に添加する場合には、Nを固定することで固溶Bを増加させる効果がある。しかしながら、Tiの添加量が0.003%未満であると、上述したTiによるN固定の効果が十分に得られず、一方、Tiの添加量が0.05%を超えると、鋼中炭素と結合して生成するTiCが増加し、平圧加工時に割れの起点となる。したがって、Tiの含有量は、0.003%以上0.05%以下とする。
(Ti: 0.003% to 0.05%)
Ti, like Al, is used as a deoxidizing material for steel, and has the effect of forming a compound with N in steel and fixing N. In addition to preventing age hardening of steel by fixing N, Ti has the effect of increasing solid solution B by fixing N when B is added simultaneously. However, if the addition amount of Ti is less than 0.003%, the above-described effect of fixing N by Ti cannot be sufficiently obtained. On the other hand, if the addition amount of Ti exceeds 0.05%, carbon in steel and TiC produced by bonding increases and becomes a starting point of cracking during flat pressure processing. Therefore, the Ti content is set to 0.003% or more and 0.05% or less.

(B:0.0005%以上0.0040%以下)
Bは、オーステナイト中に固溶Bとして存在し、焼入れ性を向上させる効果があるが、0.0005%未満であると、焼入れ性の効果が十分に得られない。一方、Bが0.0040%を超えて存在すると、Fe、Cと化合物を形成し、Fe23(C,B)などの析出物になり加工時の割れの起点となる。したがって、Bの含有量は、0.0005%以上0.0040%以下とする。
(B: 0.0005% or more and 0.0040% or less)
B exists as a solid solution B in austenite and has an effect of improving hardenability, but if it is less than 0.0005%, the effect of hardenability cannot be sufficiently obtained. On the other hand, if B is present in excess of 0.0040%, it forms a compound with Fe and C, becomes a precipitate such as Fe 23 (C, B) 6 and becomes a starting point of cracking during processing. Therefore, the B content is set to 0.0005% or more and 0.0040% or less.

(N:0.0015%%以上0.0060%以下)
Nは、Al、Ti、Bと窒化物を形成し、加熱時にオーステナイト粒径を制御する。しかしながら、Nが0.0015%未満であると、窒化物を十分に形成しないため、粒径抑制効果が十分に得られない。一方、Nが0.0060%を超えると、Al、Ti、Bと結合しない過剰なNが時効硬化を起こし、平鋼線の延性を低下させる。したがって、Nの含有量は、0.0015%%以上0.0060%以下とする。
(N: 0.0015% to 0.0060%)
N forms nitrides with Al, Ti, and B, and controls the austenite grain size during heating. However, when N is less than 0.0015%, nitrides are not sufficiently formed, so that the particle size suppressing effect cannot be sufficiently obtained. On the other hand, if N exceeds 0.0060%, excess N that does not bind to Al, Ti, and B causes age hardening, and decreases the ductility of the flat steel wire. Therefore, the N content is set to be 0.0015% or more and 0.0060% or less.

また、本発明の高強度平鋼線は、上記成分の他に、更に、質量%で、Cr:0.1%以上0.5%以下、V:0.005%以上0.50%以下の何れか1種又は2種を含有させてもよい。   In addition to the above components, the high-strength flat steel wire of the present invention is, in addition to mass%, Cr: 0.1% to 0.5%, V: 0.005% to 0.50%. Any one or two of them may be contained.

(Cr:0.1%以上0.5%以下)
Crは、パーライトのラメラ間隔を小さくすることによって強度を上げる作用があり、伸線加工時の強度上昇を大きくする効果がある。この効果はCrの0.1%以上の添加で得られるが、Crが0.5%を超えると、パーライト変態終了時間が長くなり、生産性が大きく低下するため、その上限を0.5%とする。
(Cr: 0.1% to 0.5%)
Cr has the effect of increasing strength by reducing the lamella spacing of pearlite, and has the effect of increasing the strength increase during wire drawing. This effect can be obtained by adding 0.1% or more of Cr. However, if Cr exceeds 0.5%, the end time of pearlite transformation becomes longer and the productivity is greatly reduced. And

(V:0.005%以上0.50%以下)
Vは、Cと結合し、フェライト中に炭化物を析出する。この析出物によってフェライトを硬化させる作用は、Vの0.005%以上の添加で得られるが、Vが0.50%を超えて存在すると、粗大な炭化物が生成されて加工時の割れの起点になる。したがって、Vの含有量は、0.005%以上0.50%以下とする。
(V: 0.005% to 0.50%)
V combines with C and precipitates carbides in the ferrite. The effect of hardening ferrite by this precipitate can be obtained by adding 0.005% or more of V. However, when V exceeds 0.50%, coarse carbides are generated and the starting point of cracking during processing. become. Therefore, the content of V is set to 0.005% or more and 0.50% or less.

(厚さ10μm以下のZn又はNiめっき層)
また、本発明の高強度平鋼線は、Zn又はNiを含む厚みが10μm以下のめっき層を表面に有する構成であってもよい。本発明では、腐食による水素侵入や環境からの水素侵入などによる遅れ破壊を防ぐ目的で、平鋼線の表面にZn又はNiめっき層を有することは、この平鋼線の腐食を防止するのみならず、遅れ破壊の防止にも大変有効である。一方、めっき層は、厚みが10μmを超えると、平圧後の二次加工において剥離してしまうため、厚みを10μm以下とすることが好ましい。また、防食効果が得られる樹脂等の被覆が施されれば、めっき層と同様の効果を有する。
(Zn or Ni plating layer with a thickness of 10 μm or less)
Further, the high-strength flat steel wire of the present invention may have a surface having a plating layer containing Zn or Ni and having a thickness of 10 μm or less. In the present invention, for the purpose of preventing delayed fracture due to hydrogen intrusion due to corrosion or hydrogen intrusion from the environment, having a Zn or Ni plating layer on the surface of the flat steel wire only prevents corrosion of this flat steel wire. It is also very effective in preventing delayed fracture. On the other hand, when the thickness exceeds 10 μm, the plating layer is peeled off in the secondary processing after the flat pressure, and therefore the thickness is preferably 10 μm or less. Moreover, if coating | coated with resin etc. from which an anti-corrosion effect is acquired is given, it has an effect similar to a plating layer.

以下、実施例により本発明の効果をより明らかなものとする。なお、本発明は、以下の実施例に限定されるものではなく、その要旨を変更しない範囲で適宜変更して実施することができる。   Hereinafter, the effects of the present invention will be made clearer by examples. In addition, this invention is not limited to a following example, In the range which does not change the summary, it can change suitably and can implement.

先ず、表1及び表2に示す種々の化学成分を有する鋼材を用いて、様々な厚み及び幅を有する本発明例(No.1〜16)及び比較例(No.17〜27)の平鋼線を作製した。   First, using the steel materials having various chemical components shown in Tables 1 and 2, the flat steels of the present invention examples (No. 1 to 16) and comparative examples (No. 17 to 27) having various thicknesses and widths. A wire was made.

鋼材は、線材圧延後の熱処理により微細なパーライト組織に調整されている。また、強度を上げるため、丸断面ダイス又は長方形断面ダイスによる伸線加工、若しくは平圧延を単独又は組み合わせることによって、成形加工を行った。   The steel material is adjusted to a fine pearlite structure by heat treatment after wire rod rolling. Moreover, in order to raise intensity | strength, the shaping | molding process was performed by combining the wire drawing process by a round cross-section die or a rectangular cross-section die, or flat rolling individually or in combination.

そして、これら本発明例(No.1〜16)及び比較例(No.17〜27)の平鋼線について、厚み方向に垂直な平面内で曲げ加工を行い、その加工性の評価を行った。   And about the flat steel wire of this invention example (No. 1-16) and comparative example (No. 17-27), it bent in the plane perpendicular | vertical to the thickness direction, and evaluated the workability. .

Figure 0005284842
Figure 0005284842

Figure 0005284842
Figure 0005284842

その結果、表1に示す本発明例(No.1〜16)の平鋼線では、幅の3倍以上の直径を有する円筒の外周面に沿って幅方向に曲げ加工を行うことで、何れも厚み方向に垂直な平面内において、幅の1.5倍以上の曲率半径を有する曲げ部を割れなしで形成することができた。   As a result, in the flat steel wires of the present invention examples (Nos. 1 to 16) shown in Table 1, by bending in the width direction along the outer peripheral surface of the cylinder having a diameter three times or more the width, In the plane perpendicular to the thickness direction, a bent portion having a radius of curvature of 1.5 times the width or more could be formed without cracking.

一方、表2に示す比較例(No.17〜27)の平鋼線では、何れも成形加工時に割れが発生したり、曲げ加工時に割れが発生したりすることによって、良好な結果が得られなかった。   On the other hand, in the flat steel wires of the comparative examples (Nos. 17 to 27) shown in Table 2, good results are obtained by occurrence of cracks during the forming process or cracks during the bending process. There wasn't.

次に、No.5の平鋼線(本発明例)について、長手方向に垂直な断面内における硬度分布を測定した結果を表3に示す。   Next, no. Table 3 shows the results of measuring the hardness distribution in the cross section perpendicular to the longitudinal direction of No. 5 flat steel wire (example of the present invention).

Figure 0005284842
Figure 0005284842

なお、本測定では、ビッカース硬度を荷重1kgで表層直下0.05mm位置から0.5mmピッチで、幅方向に11箇所、厚み方向に5箇所、升目状に計55箇所の点で測定を行った。その結果、表3に示すように、全て箇所でビッカース硬度が450以上を示し、なお且つ、その最大値と最小値との差が80以下(本測定では56)を示した。   In this measurement, the Vickers hardness was measured at 11 points in the width direction, 5 points in the thickness direction, and 55 points in total in a grid shape with a load of 1 kg and a pitch of 0.05 mm from a position just below the surface layer. . As a result, as shown in Table 3, the Vickers hardness was 450 or more at all points, and the difference between the maximum value and the minimum value was 80 or less (56 in this measurement).

また、No.5の平鋼線(本発明例)とNo.22の平鋼線(比較例)について、長手方向に垂直な断面内における硬度分布を幅方向(水平分布)に11箇所、厚み方向(垂直分布)に5箇所の点で測定した結果を図2に示す。   No. No. 5 flat steel wire (example of the present invention) and No. 5 For the 22 flat steel wires (comparative example), the hardness distribution in the cross section perpendicular to the longitudinal direction was measured at 11 points in the width direction (horizontal distribution) and 5 points in the thickness direction (vertical distribution). Shown in

図2に示すように、本発明例の平鋼線は、比較例の平鋼線よりも断面内における硬度のばらつきが抑制されていることがわかる。   As shown in FIG. 2, it can be seen that the flat steel wire of the example of the present invention has less variation in hardness in the cross section than the flat steel wire of the comparative example.

次に、本発明例の平鋼線に亜鉛めっきを種々の厚みで施した。その結果、厚み10μm以下では割れや剥離が発生しなかったが、12μm以上では割れが確認され、16μm以上では剥離が発生した。また、めっき種をニッケルめっきに変えた結果も、ほぼ同様であった。   Next, the flat steel wire of the example of the present invention was galvanized with various thicknesses. As a result, cracking and peeling did not occur when the thickness was 10 μm or less, but cracking was confirmed when the thickness was 12 μm or more, and peeling occurred when the thickness was 16 μm or more. The result of changing the plating type to nickel plating was almost the same.

本発明は、例えばスナップリングなどに加工される平鋼線や、電力・通信線、パイプ・ホースなどの張力補強に使用される高強度平鋼線に幅広く適用することが可能である。   The present invention can be widely applied to, for example, flat steel wires processed into snap rings and the like, and high-strength flat steel wires used for tension reinforcement of power / communication wires, pipes and hoses.

1…平鋼線 W…幅 T…厚み R…曲率半径   1 ... flat steel wire W ... width T ... thickness R ... radius of curvature

Claims (5)

鋼成分が、質量%で、
C:0.85%以上0.90%以下、
Si:0.80%以上1.00%以下、
Mn:0.60%以上0.90%以下、
P:0.025%以下、
S:0.025%以下
Cu:0.20%以下であり、
残部がFe及び不可避不純物からなり、長手方向に垂直な断面において、矩形状を為すと共に各角部が円弧状を為す平鋼線であって、
厚みが1.5mm以上5.0mm以下、幅が1.5mm以上20mm以下、幅/厚み比が1以上4以下であり、
引張試験における降伏強度又は0.2%耐力が1600MPa以上、破断強度が1900MPa以上、破断伸びが2%以上であり、
厚み方向に垂直な平面内において、幅の1.5倍以上の曲率半径を有する曲げ部を割れなしで形成することが可能であることを特徴とする高強度平鋼線。
Steel component is mass%,
C: 0.85% or more and 0.90% or less,
Si: 0.80% or more and 1.00% or less,
Mn: 0.60% or more and 0.90% or less,
P: 0.025% or less,
S: 0.025% or less
Cu: 0.20% or less,
The balance is made of Fe and inevitable impurities, and in a cross section perpendicular to the longitudinal direction, a rectangular shape and a flat steel wire in which each corner portion has an arc shape,
The thickness is 1.5 mm or more and 5.0 mm or less, the width is 1.5 mm or more and 20 mm or less, and the width / thickness ratio is 1 or more and 4 or less,
Yield strength or 0.2% yield strength in a tensile test is 1600 MPa or more, breaking strength is 1900 MPa or more, breaking elongation is 2% or more,
A high-strength flat steel wire characterized in that a bent portion having a radius of curvature of 1.5 times the width or more can be formed without cracking in a plane perpendicular to the thickness direction.
長手方向に垂直な断面内の硬度測定が可能な任意の位置において、ビッカース硬度が何れも450以上であり、且つ当該ビッカース硬度の最大値と最小値との差が80以下であることを特徴とする請求項1に記載の高強度平鋼線。   The Vickers hardness is 450 or more at any position where the hardness measurement in the cross section perpendicular to the longitudinal direction is possible, and the difference between the maximum value and the minimum value of the Vickers hardness is 80 or less. The high-strength flat steel wire according to claim 1. 更に、質量%で、
Al:0.005%以上0.10%以下、
Ti:0.003%以上0.05%以下、
B:0.0005%以上0.0040%以下、
N:0.0015%%以上0.0060%以下の何れか1種又は2種以上を含有することを特徴とする請求項1又は2に記載の高強度平鋼線。
Furthermore, in mass%,
Al: 0.005% or more and 0.10% or less,
Ti: 0.003% to 0.05%,
B: 0.0005% or more and 0.0040% or less,
N: The high-strength flat steel wire according to claim 1 or 2 , containing any one or more of 0.0015% to 0.0060%.
更に、質量%で、
Cr:0.1%以上0.5%以下、
V:0.005%以上0.50%以下の何れか1種又は2種を含有することを特徴とする請求項1〜3の何れか一項に記載の高強度平鋼線。
Furthermore, in mass%,
Cr: 0.1% to 0.5%,
V: The high strength flat steel wire according to any one of claims 1 to 3, comprising any one or two of 0.005% to 0.50%.
Zn又はNiを含む厚さ10μm以下のめっき層を表面に有することを特徴とする請求項1〜の何れか一項に記載の高強度平鋼線。 The high-strength flat steel wire according to any one of claims 1 to 4 , which has a plating layer containing Zn or Ni and having a thickness of 10 µm or less on the surface.
JP2009077086A 2009-03-26 2009-03-26 High strength flat steel wire Active JP5284842B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009077086A JP5284842B2 (en) 2009-03-26 2009-03-26 High strength flat steel wire

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009077086A JP5284842B2 (en) 2009-03-26 2009-03-26 High strength flat steel wire

Publications (2)

Publication Number Publication Date
JP2010229468A JP2010229468A (en) 2010-10-14
JP5284842B2 true JP5284842B2 (en) 2013-09-11

Family

ID=43045552

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009077086A Active JP5284842B2 (en) 2009-03-26 2009-03-26 High strength flat steel wire

Country Status (1)

Country Link
JP (1) JP5284842B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5425744B2 (en) * 2010-10-29 2014-02-26 株式会社神戸製鋼所 High carbon steel wire rod with excellent wire drawing workability
JP6116680B2 (en) * 2013-04-30 2017-04-19 新日鐵住金株式会社 Flat steel wire
JP6205433B2 (en) * 2014-01-09 2017-09-27 新日鐵住金株式会社 Resin-coated high-tensile flat steel wire and method for producing the same
US20190048445A1 (en) * 2016-03-07 2019-02-14 Nippon Steel & Sumitomo Metal Corporation High-strength flat steel wire excellent in hydrogen induced cracking resistance

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63145713A (en) * 1986-12-09 1988-06-17 Nippon Steel Corp Production of high-strength steel wire having excellent hydrogen induced cracking resistance characteristic
JPH05302611A (en) * 1992-04-24 1993-11-16 Kanai Hiroyuki Wire rod for snap ring and manufacture thereof
JP2984889B2 (en) * 1992-07-08 1999-11-29 新日本製鐵株式会社 High carbon steel wire or steel wire excellent in wire drawability and method for producing the same

Also Published As

Publication number Publication date
JP2010229468A (en) 2010-10-14

Similar Documents

Publication Publication Date Title
JP4436419B2 (en) Hot-rolled steel sheet for machine structural steel pipes with excellent fatigue characteristics and bending formability and its manufacturing method
JP5040475B2 (en) Thick-walled hot-rolled steel sheet with excellent workability and excellent strength and toughness after heat treatment and method for producing the same
JP6282577B2 (en) High strength high ductility steel sheet
TW201207125A (en) Ultra high strength cold rolled steel sheet having excellent bendability
CN101910440A (en) Wire rods having superior strength and ductility for drawing and method for manufacturing the same
CN105392909B (en) Narrow strip through cold rolling and the method for preparing the narrow strip through cold rolling for flexible pipe, the particularly form of the flat wire being made up of high strength steel of the flexible pipe of offshore applications or section bar
JPH02263951A (en) Manufacture of high strength high ductility steel wire rod and high strength high ductility extra thin steel wire
JP2017214648A (en) High strength steel sheet and manufacturing method therefor
WO2017208759A1 (en) High-strength steel sheet and method for producing same
WO2015092929A1 (en) Hot-pressed steel sheet member and method for producing same, and steel sheet for hot pressing
WO2016158901A1 (en) High-carbon steel wire material with excellent wire drawability, and steel wire
JP5284842B2 (en) High strength flat steel wire
CN1875122B (en) Stainless steel wire, spring, and method for producing spring
JP2016014168A (en) Wire rod for steel wire and steel wire
JP5692305B2 (en) Thick steel plate with excellent heat input welding characteristics and material homogeneity, and its manufacturing method
KR102455453B1 (en) High-strength steel sheet with excellent ductility and hole expandability
US20190389178A1 (en) Steel material composite with inhomogeneous property distribution
EP2594655A1 (en) Dual-phase structure oil well pipe and method for producing same
KR101887844B1 (en) Parts with a bainitic structure having high strength properties and manufacturing process
JP2000309849A (en) Steel wire rod, steel wire, and their manufacture
JP6684905B2 (en) High-strength cold-rolled steel sheet excellent in shear workability and method for producing the same
JP6348436B2 (en) High strength high ductility steel sheet
JP2014136822A (en) High strength pc steel stranded wire and method for manufacturing the same
JPH06271937A (en) Production of high strength and high toughness hyper-eutectoid steel wire
JPH08296008A (en) Production of high strength galvanized steel wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130205

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130405

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

R150 Certificate of patent or registration of utility model

Ref document number: 5284842

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250