JP5284681B2 - Heat dissipation member, method for manufacturing heat dissipation member, and semiconductor device - Google Patents

Heat dissipation member, method for manufacturing heat dissipation member, and semiconductor device Download PDF

Info

Publication number
JP5284681B2
JP5284681B2 JP2008121518A JP2008121518A JP5284681B2 JP 5284681 B2 JP5284681 B2 JP 5284681B2 JP 2008121518 A JP2008121518 A JP 2008121518A JP 2008121518 A JP2008121518 A JP 2008121518A JP 5284681 B2 JP5284681 B2 JP 5284681B2
Authority
JP
Japan
Prior art keywords
metal
layer
composite member
aluminum
bonding layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008121518A
Other languages
Japanese (ja)
Other versions
JP2008311632A (en
Inventor
功 岩山
美里 草刈
義幸 高木
太一郎 西川
由弘 中井
利哉 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALMT Corp
Sumitomo Electric Industries Ltd
Original Assignee
ALMT Corp
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ALMT Corp, Sumitomo Electric Industries Ltd filed Critical ALMT Corp
Priority to JP2008121518A priority Critical patent/JP5284681B2/en
Publication of JP2008311632A publication Critical patent/JP2008311632A/en
Application granted granted Critical
Publication of JP5284681B2 publication Critical patent/JP5284681B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、半導体デバイスのヒートスプレッダーなどに利用される放熱部材、及び放熱部材の製造方法に関するものである。特に、放熱部材を生産性よく製造することができる放熱部材の製造方法に関するものである。   The present invention relates to a heat radiating member used for a heat spreader of a semiconductor device, and a method for manufacturing the heat radiating member. In particular, the present invention relates to a method of manufacturing a heat dissipation member that can manufacture the heat dissipation member with high productivity.

従来より、半導体デバイスでは、半導体素子などから発生する熱を効率よく外部に放出するためにヒートスプレッダーと呼ばれる放熱部材が利用されている。ヒートスプレッダーは、熱伝導性に優れることに加えて、上記素子などと熱膨張係数が近いことが望まれる。このような要求に対応したヒートスプレッダーとして、セラミックス粒子と金属(マトリクス)とを複合した複合材料からなるものが提案されている。複合材料は、Al-SiCといったアルミニウム系複合材料が知られており(特許文献1,2参照)、その製造方法として、金属溶湯とセラミックス粒子とを混合した混合溶湯を鋳造する溶製法(鋳造法)が提案されている(特許文献2参照)。   2. Description of the Related Art Conventionally, in a semiconductor device, a heat radiating member called a heat spreader has been used to efficiently release heat generated from a semiconductor element or the like to the outside. In addition to being excellent in thermal conductivity, the heat spreader is desired to have a thermal expansion coefficient close to that of the above elements. As a heat spreader corresponding to such a demand, a heat spreader made of a composite material in which ceramic particles and a metal (matrix) are combined has been proposed. As the composite material, an aluminum-based composite material such as Al-SiC is known (see Patent Documents 1 and 2). As a manufacturing method thereof, a melting method (casting method) in which a mixed molten metal mixed with a molten metal and ceramic particles is cast. ) Has been proposed (see Patent Document 2).

ヒートスプレッダーには、通常、絶縁材を介して半導体素子が装着される。この絶縁材をヒートスプレッダーに接合し易くするために、ヒートスプレッダーの表面にニッケルめっきを施すことが行われている。ところが、上記複合材料からなるヒートスプレッダーは、セラミックス粒子を含有することから表面が粗く、めっきが付着し難い。そこで、めっきが付着し易いように、複合材料からなる基材の表面に、複合材料の金属マトリクスと同種の金属板を接合することが提案されている(特許文献1参照)。基材と金属板との接合は、鋳ぐるみと呼ばれる方法で行う。具体的には、鋳型に金属板を配置した後、この鋳型にセラミックスを充填し、金属マトリクスの溶湯を注湯して凝固することで複合材料からなる基材を形成すると共に、基材と金属板とを接合する。   A semiconductor element is usually attached to the heat spreader via an insulating material. In order to make it easy to join this insulating material to the heat spreader, nickel plating is performed on the surface of the heat spreader. However, since the heat spreader made of the composite material contains ceramic particles, the surface is rough and plating is difficult to adhere. In view of this, it has been proposed that a metal plate of the same type as the metal matrix of the composite material is bonded to the surface of the base material made of the composite material so that the plating easily adheres (see Patent Document 1). The base material and the metal plate are joined by a method called casting. Specifically, after placing a metal plate on a mold, the mold is filled with ceramics, a molten metal matrix is poured and solidified to form a base material made of a composite material, and the base material and metal Join the board.

特開2002-235126号公報JP 2002-235126 A 特開2006-108317号公報JP 2006-108317 A

しかし、従来の鋳ぐるみでは、放熱部材の生産性に劣る。
従来、金属板と複合材料からなる基材とを鋳ぐるみにより接合する場合、鋳型を650℃程度に加熱した状態で使用することがある。この場合、鋳型の加熱時間が長くなり、放熱部材の生産性が低下する。また、加熱状態の維持や管理も手間である。更に、鋳型を高温にするためのエネルギーが多量に必要である、加熱状態を維持するために大掛かりな保温設備が必要である、鋳型の熱劣化が著しいため頻繁に交換が必要である、といったことから生産コストも高くなり易い。
However, the conventional cast is inferior in productivity of the heat dissipation member.
Conventionally, when a metal plate and a base material made of a composite material are joined by casting, the mold may be used while being heated to about 650 ° C. In this case, the heating time of the mold becomes long, and the productivity of the heat radiating member decreases. Also, the maintenance and management of the heating state is troublesome. In addition, a large amount of energy is required to raise the mold temperature, a large thermal insulation facility is required to maintain the heating state, and frequent replacement is necessary due to significant thermal deterioration of the mold. Therefore, the production cost tends to be high.

そこで、本発明の目的の一つは、放熱部材を生産性よく製造することができる放熱部材の製造方法を提供することにある。また、本発明の他の目的は、上記製造方法により製造された放熱部材を提供することにある。   Then, one of the objectives of this invention is providing the manufacturing method of the heat radiating member which can manufacture a heat radiating member with high productivity. Another object of the present invention is to provide a heat dissipation member manufactured by the above manufacturing method.

金属マトリクス中にセラミックス粒子が分散された複合部材と、金属板とを一体に具える放熱部材を生産性よく製造するには、鋳型の温度を低くすることが効果的である。そこで、本発明者らは、鋳型の温度を低くして、複合部材と金属板とを一体にすることを検討した。しかし、鋳型の温度を低くすると、複合部材と金属板とを全く接合できず、一体物が得られなかった。   In order to manufacture a heat radiating member integrally including a composite member in which ceramic particles are dispersed in a metal matrix and a metal plate with high productivity, it is effective to lower the temperature of the mold. Therefore, the present inventors have studied that the temperature of the mold is lowered and the composite member and the metal plate are integrated. However, when the temperature of the mold was lowered, the composite member and the metal plate could not be joined at all, and an integral product could not be obtained.

本発明者らは更に検討した結果、鋳型の温度をできるだけ高くせずに、複合部材と金属板とを一体にするには、金属板に接着剤として機能する層を設けることが好ましいとの知見を得て、本発明を完成するに至った。   As a result of further study, the inventors have found that it is preferable to provide a layer that functions as an adhesive on the metal plate in order to integrate the composite member and the metal plate without increasing the temperature of the mold as much as possible. As a result, the present invention has been completed.

本発明放熱部材の製造方法は、金属マトリクス中にセラミックス粒子が分散された複合部材の表面の少なくとも一部に金属板を接合して金属層を形成し、複合部材と金属層とを具える放熱部材を製造する方法であり、以下の工程を具える。
1. 金属板の一面に接合層を形成する工程。接合層は、前記金属板を構成する金属よりも液相線温度が低い低融点金属で形成する。
2. 溶融した金属マトリクスにセラミックス粒子を混合した混合溶湯を準備する工程。
3. 上記接合層を有する金属板を鋳型に配置する工程。金属板は、接合層が溶湯に接することができるように鋳型に配置する。
4. 上記金属板を配置した鋳型に上記混合溶湯を注湯し、混合溶湯を凝固させて複合部材を形成すると共に、混合溶湯により接合層を溶融して複合部材と金属板とを接合する工程。
The manufacturing method of the heat radiating member of the present invention includes a metal plate bonded to at least a part of the surface of a composite member in which ceramic particles are dispersed in a metal matrix to form a metal layer, and the heat dissipation comprising the composite member and the metal layer. A method for manufacturing a member, comprising the following steps.
1. A process of forming a bonding layer on one surface of a metal plate. The bonding layer is formed of a low melting point metal having a liquidus temperature lower than that of the metal constituting the metal plate.
2. A step of preparing a molten metal in which ceramic particles are mixed in a molten metal matrix.
3. A step of placing the metal plate having the bonding layer on a mold. The metal plate is placed in the mold so that the bonding layer can contact the molten metal.
4. A step of pouring the mixed molten metal into the mold on which the metal plate is arranged, solidifying the mixed molten metal to form a composite member, and melting the bonding layer with the mixed molten metal to join the composite member and the metal plate .

金属板を構成する金属よりも液相線温度(純金属では融点に相当)が低い低融点金属で接合層を形成し、この接合層が混合溶湯に接触するように金属板を鋳型に配置し、この状態で混合溶湯を注湯すると、接合層は、混合溶湯が接触して溶湯の熱によって、金属板よりも先に溶融する。従って、溶融した接合層は、混合溶湯と十分になじむことができる。この状態で鋳型を冷却すると、混合溶湯が凝固して複合部材となると共に、溶融した接合層を利用して、複合部材と金属板(金属層)とを接合することができる。このように金属板に特定の接合層を設けておくことで、複合部材と金属板との接合を十分に行えることから、本発明製造方法は、鋳型の温度を低くできる。そのため、本発明製造方法は、複合部材と金属層とを具える放熱部材の生産性を向上することができる。   A bonding layer is formed of a low melting point metal having a lower liquidus temperature (corresponding to the melting point for pure metal) than the metal constituting the metal plate, and the metal plate is placed on the mold so that the bonding layer contacts the mixed molten metal. When the mixed molten metal is poured in this state, the bonding layer is melted before the metal plate by the molten metal in contact with the molten metal. Accordingly, the molten bonding layer can be sufficiently blended with the mixed molten metal. When the mold is cooled in this state, the mixed molten metal is solidified to form a composite member, and the composite member and the metal plate (metal layer) can be bonded using the molten bonding layer. Thus, by providing a specific joining layer on the metal plate, the composite member and the metal plate can be sufficiently joined, so that the manufacturing method of the present invention can lower the temperature of the mold. Therefore, the manufacturing method of this invention can improve the productivity of the heat radiating member provided with a composite member and a metal layer.

<金属マトリクス>
本発明製造方法は、溶製法により複合部材を形成する。即ち、本発明製造方法は、複合部材のうち主として金属マトリクスを構成する金属の溶湯に、複合部材中に分散させるセラミックス粒子を混合して混合溶湯を作製し、この混合溶湯を鋳型に注湯した後、冷却して凝固させることで、複合部材を形成する。複合部材は、放熱部材の本体を形成することから、熱伝導性に優れると共に、半導体素子などの搭載部品と熱膨張係数ができるだけ近いことが望まれる。このような要求を満たすために、上記金属マトリクスを構成する金属は、純アルミニウム(以下、単にアルミニウムと呼ぶ)、アルミニウム合金、純マグネシウム(以下、単にマグネシウムと呼ぶ)、及びマグネシウム合金から選択される一種が好ましい。
<Metal matrix>
In the production method of the present invention, a composite member is formed by a melting method. That is, according to the manufacturing method of the present invention, a mixed molten metal is prepared by mixing ceramic particles dispersed in a composite member with a molten metal mainly constituting a metal matrix of the composite member, and pouring the mixed molten metal into a mold. Thereafter, the composite member is formed by cooling and solidifying. Since the composite member forms the main body of the heat radiating member, it is desired that the composite member is excellent in thermal conductivity and has a thermal expansion coefficient as close as possible to a mounted component such as a semiconductor element. In order to satisfy such requirements, the metal constituting the metal matrix is selected from pure aluminum (hereinafter simply referred to as aluminum), aluminum alloy, pure magnesium (hereinafter simply referred to as magnesium), and magnesium alloy. One type is preferred.

アルミニウムやアルミニウム合金は、マグネシウムよりも取り扱い易く、上記熱特性に優れることに加えて(熱膨張係数α:23(×10-6/K),熱伝導率κ:237(W/m・K))、軽量であることから、軽量が望まれる車載用半導体デバイスの放熱部材の形成材料に好適である。アルミニウムは、99.9質量%以上がAlであり、残部が不純物からなるものが挙げられる。アルミニウム合金は、例えば、以下が挙げられる。
1.質量%でSiを5〜40%,Niを1〜20%,Mgを0.01〜5%含有し、残部がAl及び不純物。例えば、Al-20%Si-9%Ni-0.6%Mg(質量%)が挙げられる。
2.質量%で、Siを2〜20%,Mgを0.01〜5%,Tiを0.01〜5%含有し、残部がAl及び不純物。例えば、Al-9%Si-0.6%Mg-0.15%Ti(質量%)が挙げられる。
3.質量%で、Siを10〜30%,Cuを0.5〜10%,Mgを0.01〜5%,Feを0.01〜5%含有し、残部がAl及び不純物。例えば、Al-15%Si-4.2%Cu-0.6%Mg-0.3%Fe(質量%)が挙げられる。
4.質量%で、Siを0超〜0.6%,Feを0超〜0.7%,Cuを0.05〜0.20%,Mnを1.0〜1.5%,Znを0超〜0.1%含有し、残部がAl及び不純物。
例えば、Al-0.6%Si-0.7%Fe-0.1%Cu-1.0%Mn-0.10%Zn(質量%)が挙げられる。このようなアルミニウム合金として、JIS合金番号3003相当のアルミニウム合金が挙げられる。
5.質量%で、Siを9.0〜10.5%,Feを0超〜0.8%,Cuを0超〜0.25%,Mnを0超〜0.10%,Mgを1.0〜2.0%,Znを0超〜0.20%含有し、残部がAl及び不純物。
例えば、Al-10%Si-0.8%Fe-0.25%Cu-0.10%Mn-1.5%Mg-0.20%Zn(質量%)が挙げられる。このようなアルミニウム合金として、JIS合金番号4004相当のアルミニウム合金が挙げられる。
Aluminum and aluminum alloys are easier to handle than magnesium and have excellent thermal characteristics (coefficient of thermal expansion α: 23 (× 10 -6 / K), thermal conductivity κ: 237 (W / m ・ K) ) Since it is lightweight, it is suitable as a material for forming a heat dissipation member of an in-vehicle semiconductor device that is desired to be lightweight. As for aluminum, 99.9 mass% or more is Al, and the remainder consists of impurities. Examples of the aluminum alloy include the following.
1. Containing 5 to 40% Si, 1 to 20% Ni, and 0.01 to 5% Mg, with the balance being Al and impurities. For example, Al-20% Si-9% Ni-0.6% Mg (mass%) can be mentioned.
2. By mass%, Si contains 2 to 20%, Mg contains 0.01 to 5%, Ti contains 0.01 to 5%, and the balance is Al and impurities. For example, Al-9% Si-0.6% Mg-0.15% Ti (mass%) can be mentioned.
3. By mass%, Si contains 10-30%, Cu 0.5-10%, Mg 0.01-5%, Fe 0.01-5%, the balance being Al and impurities. For example, Al-15% Si-4.2% Cu-0.6% Mg-0.3% Fe (mass%) can be mentioned.
4. By mass%, Si contains more than 0 to 0.6%, Fe more than 0 to 0.7%, Cu 0.05 to 0.20%, Mn 1.0 to 1.5%, Zn more than 0 to 0.1%, the balance being Al and impurities.
For example, Al-0.6% Si-0.7% Fe-0.1% Cu-1.0% Mn-0.10% Zn (mass%) can be mentioned. Examples of such an aluminum alloy include an aluminum alloy corresponding to JIS alloy number 3003.
5. By mass%, Si is 9.0 to 10.5%, Fe is more than 0 to 0.8%, Cu is more than 0 to 0.25%, Mn is more than 0 to 0.10%, Mg is 1.0 to 2.0%, Zn is more than 0 to 0.20 % Content with the balance being Al and impurities.
For example, Al-10% Si-0.8% Fe-0.25% Cu-0.10% Mn-1.5% Mg-0.20% Zn (mass%) can be mentioned. Examples of such an aluminum alloy include an aluminum alloy corresponding to JIS alloy number 4004.

マグネシウムやマグネシウム合金は、アルミニウムよりも更に軽量である点で好ましい。但し、マグネシウムは、酸素と結合し易いため、溶湯の作製時などで取り扱いに注意する必要がある。また、マグネシウムは、α:27(×10-6/K),κ:156(W/m・K)であることから、取り扱いや熱特性を考慮すると、アルミニウムやアルミニウム合金が金属マトリクスに好適である。マグネシウム合金は、例えば、Siを含有するもの、具体的には、Mg-0.5〜10質量%Siが挙げられる。 Magnesium and magnesium alloys are preferable in that they are lighter than aluminum. However, since magnesium is easily combined with oxygen, it is necessary to handle it with care when preparing a molten metal. In addition, magnesium is α: 27 (× 10 -6 / K) and κ: 156 (W / m ・ K), so in consideration of handling and thermal characteristics, aluminum and aluminum alloys are suitable for the metal matrix. is there. Examples of the magnesium alloy include those containing Si, specifically, Mg-0.5 to 10% by mass Si.

<セラミックス粒子>
上記金属マトリクスにセラミックス粒子を分散させて、金属マトリクスのみの場合よりも熱膨張係数を小さくする。セラミックス粒子は、金属マトリクスよりも熱膨張係数が小さいものが利用でき、特に、炭化珪素(SiC)からなる粒子は、熱膨張係数が小さく、熱伝導性にも優れるため好ましい。その他のセラミックス粒子は、酸化アルミニウム(Al2O3)、窒化珪素(Si3N4)、硼化チタン(TiB2)、酸化珪素(SiO2)、酸化ベリリウム(BeO)、窒化アルミニウム(AlN)が挙げられる。これらセラミックス粒子は、いずれか1種でもよいし、2種以上を組み合わせてもよい。
<Ceramic particles>
Ceramic particles are dispersed in the metal matrix so that the thermal expansion coefficient is made smaller than in the case of using only the metal matrix. Ceramic particles having a smaller thermal expansion coefficient than that of the metal matrix can be used. In particular, particles made of silicon carbide (SiC) are preferable because they have a small thermal expansion coefficient and excellent thermal conductivity. Other ceramic particles include aluminum oxide (Al 2 O 3 ), silicon nitride (Si 3 N 4 ), titanium boride (TiB 2 ), silicon oxide (SiO 2 ), beryllium oxide (BeO), aluminum nitride (AlN) Is mentioned. Any one of these ceramic particles may be used, or two or more thereof may be combined.

複合部材中のセラミックス粒子の含有量は、複合部材を100体積%とするとき、体積%で10%以上55%以下が好ましく、25%以上45%以下がより好ましい。含有量が10体積%未満では、複合部材の熱膨張係数の低減かつ熱伝導率の向上という双方の効果を十分に得ることが難しく、55体積%超では、混合溶湯の粘度が上昇して撹拌しにくくなり、複合部材にボイドが生じたり、十分に撹拌できないためにセラミックス粒子が金属マトリクスに不均一に分散される恐れがある。ボイドの存在やセラミックス粒子の偏在は、複合部材の熱特性の劣化を招く。また、セラミックス粒子が偏在すると、複合部材が反るなどの変形が生じ易い。複合部材中のセラミックス粒子の含有量は、例えば、複合部材の断面を光学顕微鏡で観察し(倍率:25〜200倍)、この観察像を市販の画像解析処理装置で画像処理して、この断面に存在する全ての粒子の合計面積を求め、この合計面積を体積割合に換算することで求められる。後述する晶析出物の含有量も同様にして求められる。   The content of the ceramic particles in the composite member is preferably 10% or more and 55% or less, and more preferably 25% or more and 45% or less in volume%, when the composite member is 100% by volume. If the content is less than 10% by volume, it is difficult to sufficiently obtain both effects of reducing the thermal expansion coefficient and improving the thermal conductivity of the composite member. If the content exceeds 55% by volume, the viscosity of the mixed molten metal is increased and stirred. There is a risk that voids are generated in the composite member and the ceramic particles are not uniformly dispersed in the metal matrix because the composite member cannot be sufficiently stirred. The presence of voids and uneven distribution of ceramic particles cause deterioration of the thermal characteristics of the composite member. Further, when the ceramic particles are unevenly distributed, deformation such as warping of the composite member is likely to occur. The content of the ceramic particles in the composite member is obtained by, for example, observing a cross section of the composite member with an optical microscope (magnification: 25 to 200 times), and image-processing this observation image with a commercially available image analysis processing device. Is obtained by calculating the total area of all particles present in the sample and converting the total area into a volume ratio. The content of crystal precipitates to be described later is obtained in the same manner.

金属マトリクスの溶湯に添加するセラミックス粒子の平均粒径は、10μm以上100μm以下が好ましく、15μm以上60μm以下がより好ましい。10μm未満と小さ過ぎても、100μm超と大き過ぎても、金属マトリクスに均一的に分散させにくい。なお、複合部材中のセラミックス粒子の平均粒径は、金属マトリクスの溶湯に添加するセラミックス粒子の平均粒径とほぼ同等である。複合部材中のセラミックス粒子の平均粒径は、例えば、断面を光学顕微鏡観察し(倍率:25〜200倍)、この観察像を画像処理して、断面に存在する粒子の直径を測定し、その平均をとることで求められる。後述する晶析出物の粒径も同様にして求められる。   The average particle size of the ceramic particles added to the molten metal matrix is preferably 10 μm or more and 100 μm or less, and more preferably 15 μm or more and 60 μm or less. Even if it is too small (less than 10 μm) or too large (more than 100 μm), it is difficult to uniformly disperse it in the metal matrix. The average particle size of the ceramic particles in the composite member is substantially equal to the average particle size of the ceramic particles added to the molten metal matrix. The average particle size of the ceramic particles in the composite member is obtained by, for example, observing the cross section with an optical microscope (magnification: 25 to 200 times), image-processing this observation image, and measuring the diameter of the particles present in the cross section. It is calculated by taking an average. The particle size of the crystal precipitate described later is obtained in the same manner.

<混合溶湯>
複合部材中の含有量が所望の量となるようにセラミックス粒子の量を調整して、溶融した金属マトリクス(以下、金属溶湯と呼ぶ)にセラミックス粒子を添加して撹拌し、混合溶湯を作製する。金属溶湯を完全に液相状態として撹拌してもよいが、半溶融状態で撹拌を行うと、短時間で均一的にセラミックス粒子を溶湯中に分散できる。撹拌は、大気圧雰囲気で行ってもよいが、真空雰囲気で行うと、ボイドが生じ難く、良好な表面性状の複合部材が得られる。撹拌は、撹拌羽根などを利用して、溶湯中にセラミックス粒子が均一的に分散されるように十分に行うことが好ましい。
<Mixed molten metal>
The amount of ceramic particles is adjusted so that the content in the composite member becomes a desired amount, and the ceramic particles are added to a molten metal matrix (hereinafter referred to as a molten metal) and stirred to produce a mixed molten metal. . The molten metal may be stirred in a completely liquid state, but if stirred in a semi-molten state, the ceramic particles can be uniformly dispersed in the molten metal in a short time. Stirring may be performed in an atmospheric pressure atmosphere. However, if the stirring is performed in a vacuum atmosphere, voids are unlikely to occur, and a composite member having good surface properties can be obtained. Stirring is preferably sufficiently performed using a stirring blade or the like so that the ceramic particles are uniformly dispersed in the molten metal.

<鋳型>
上記混合溶湯は、接合層(後述)が溶融可能な温度に調整して、鋳型に注湯する。鋳型は、複合部材の形状に応じて適宜選択する。複合部材は、直方体状が代表的な形状である。直方体の少なくとも一面側にフィン部を有する複合部材としてもよい。フィン部を具えた複合部材は、放熱性をより高められる。フィン部は、複数の薄い板状片が間隔をあけて並列された形状が代表的である。その他、複数の棒状片が間隔をあけて、例えば縦横に並列された形状のフィン部とすると、表面積がより増加するため、放熱効率を高められると考えられる。フィン部を具えた複合部材は、所望の形状のフィン部形成箇所を有する鋳型を利用することで形成できる。
<Mold>
The mixed molten metal is adjusted to a temperature at which a bonding layer (described later) can be melted and poured into a mold. The mold is appropriately selected according to the shape of the composite member. The composite member is typically a rectangular parallelepiped. It is good also as a composite member which has a fin part in the at least one surface side of a rectangular parallelepiped. The composite member provided with the fin portion can further improve heat dissipation. The fin portion typically has a shape in which a plurality of thin plate-like pieces are arranged in parallel at intervals. In addition, when the plurality of rod-like pieces are spaced apart, for example, fin portions having a shape arranged in parallel in the vertical and horizontal directions, the surface area is further increased, and thus it is considered that the heat radiation efficiency can be improved. The composite member provided with the fin portion can be formed by using a mold having a fin portion forming portion of a desired shape.

<金属板>
上記鋳型には、金属板を配置して、複合部材の表面の少なくとも一部に金属板(金属層)が接合された放熱部材を作製する。金属板は、混合溶湯を鋳型に注湯している際に溶解せずに形状を保持する必要があるため、比較的液相線温度が高い金属からなるものが利用できる。かつ、金属板は、放熱部材の一部を構成することから熱伝導性に優れる金属が利用できる。例えば、アルミニウム、マグネシウム、銅、ニッケル、銀、金、及びこれらの合金から選択される1種が挙げられる。特に、金属板を構成する金属は、複合部材の金属マトリクスを構成する金属と同じ、或いは主成分が同じであると、熱特性が同程度になるため好ましい。例えば、金属マトリクスをアルミニウム又はアルミニウム合金とする場合、金属板もアルミニウム又はアルミニウム合金(添加元素が金属マトリクスと異なるものでも良い)とすることが好ましい。
<Metal plate>
A metal plate is disposed on the mold, and a heat radiating member in which a metal plate (metal layer) is bonded to at least a part of the surface of the composite member is produced. Since the metal plate needs to maintain its shape without being melted when pouring the molten mixture into the mold, a metal plate made of a metal having a relatively high liquidus temperature can be used. And since the metal plate comprises a part of heat radiating member, the metal which is excellent in heat conductivity can be utilized. Examples thereof include one selected from aluminum, magnesium, copper, nickel, silver, gold, and alloys thereof. In particular, it is preferable that the metal constituting the metal plate is the same as the metal constituting the metal matrix of the composite member or the same main component because the thermal characteristics are comparable. For example, when the metal matrix is aluminum or an aluminum alloy, it is preferable that the metal plate is also aluminum or an aluminum alloy (the additive element may be different from that of the metal matrix).

金属板は、複合部材の表面の少なくとも一部に接合されて金属層を形成する。例えば、複合部材の一面に金属板を接合したり、複合部材の一面とこの一面の対向面とのそれぞれに金属板を接合してもよい。金属板の接合数は、適宜選択するとよい。フィン部を有する複合部材とする場合、金属板は、フィン部を設ける側以外の面に接合する。金属板の大きさは、複合部材において金属板を接合する箇所の大きさに応じて調整する。また、金属板の厚さは適宜選択することができる。本発明製造方法では、鋳型の温度を低くすることができるため、従来の鋳ぐるみに用いられていた金属板よりも薄い金属板を利用することができる。例えば、厚さが100〜3000μm程度の金属板を用いることができる。   The metal plate is bonded to at least a part of the surface of the composite member to form a metal layer. For example, a metal plate may be bonded to one surface of the composite member, or a metal plate may be bonded to each of the one surface of the composite member and the opposite surface of the one surface. The number of metal plates to be joined may be appropriately selected. When it is set as the composite member which has a fin part, a metal plate is joined to surfaces other than the side which provides a fin part. The magnitude | size of a metal plate is adjusted according to the magnitude | size of the location which joins a metal plate in a composite member. Moreover, the thickness of a metal plate can be selected suitably. In the manufacturing method of the present invention, since the temperature of the mold can be lowered, a metal plate thinner than the metal plate used in the conventional cast-in can be used. For example, a metal plate having a thickness of about 100 to 3000 μm can be used.

<接合層>
上記金属板において混合溶湯と接する側の面に、接合層を設ける。接合層の形成材料は、金属板よりも液相線温度が低く、混合溶湯を鋳型に注湯したとき、混合溶湯に接触して十分に溶融する金属が望まれるため、金属板の液相線温度との差が10℃以上、特に50℃以上であるものが好ましい。但し、上記液相線温度の差が大き過ぎると、注湯時に接合層の形成材料が速やかに溶解して、注湯時の圧力(混合溶湯の流れる勢い)により撹拌・散乱されて、接合層として機能することが困難となると考えられる。したがって、上記液相線温度の差は、300℃以内、特に250℃以内、更に100℃以内が好ましい。
<Junction layer>
A joining layer is provided on the surface of the metal plate that is in contact with the mixed molten metal. Since the liquid phase temperature is lower than that of the metal plate, and the molten metal is desired to be melted in contact with the molten metal when the molten metal is poured into the mold, the bonding layer is formed from the liquidus of the metal plate. Those having a temperature difference of 10 ° C. or more, particularly 50 ° C. or more are preferred. However, if the liquidus temperature difference is too large, the forming material of the bonding layer is rapidly dissolved during pouring, and is stirred and scattered by the pressure during pouring (the flowing force of the mixed molten metal). It will be difficult to function as. Therefore, the difference in liquidus temperature is preferably within 300 ° C, particularly within 250 ° C, and more preferably within 100 ° C.

接合層の構成金属は、単一金属でも合金でもよい。特に、金属板及び金属マトリクスの少なくとも一方となじみ易い金属で接合層を形成すると、金属板と接合層との接合性や金属マトリクスと接合層との接合性を高められる。例えば、金属板(金属マトリクス)及び接合層のいずれか一方を合金で形成する場合、他方をその合金の主成分で形成する。具体的には、金属板をアルミニウム(液相線温度:約660℃)で構成する場合、接合層は、アルミニウムを主成分とするアルミニウム合金で、液相線温度がアルミニウムより低いもの、例えば、アルミニウムシリコン(Al-Si合金;Siを11〜13質量%含有し、残部がAl及び不純物、液相線温度:580℃程度)やアルミニウム亜鉛(Al-Zn合金;Znを70〜99質量%含有し、残部Al及び不純物、液相線温度:380℃程度)、JIS合金番号4004相当合金(液相線温度:590℃程度)で形成する。ZnやSiは、Alよりも熱伝導率が低い。しかし、Al-Si合金やAl-Zn合金は、二相合金であり、ZnやSiがAlにほとんど固溶しないため、ZnやSiの添加による熱伝導率の低下度合いが小さい。従って、接合層を形成していたAl-Si合金やAl-Zn合金が複合部材と金属層との境界近傍に残存しても、熱特性の劣化を低減できると考えられる。   The constituent metal of the bonding layer may be a single metal or an alloy. In particular, when the bonding layer is formed of a metal that is easily compatible with at least one of the metal plate and the metal matrix, the bonding property between the metal plate and the bonding layer and the bonding property between the metal matrix and the bonding layer can be improved. For example, when one of the metal plate (metal matrix) and the bonding layer is formed from an alloy, the other is formed from the main component of the alloy. Specifically, when the metal plate is composed of aluminum (liquidus temperature: about 660 ° C.), the bonding layer is an aluminum alloy mainly composed of aluminum, whose liquidus temperature is lower than aluminum, for example, Aluminum silicon (Al-Si alloy; containing 11-13% by mass of Si, the balance being Al and impurities, liquidus temperature: about 580 ° C) and aluminum zinc (Al-Zn alloy; containing 70-99% by mass of Zn) And the balance Al and impurities, liquidus temperature: about 380 ° C.) and an alloy equivalent to JIS alloy No. 4004 (liquidus temperature: about 590 ° C.). Zn and Si have lower thermal conductivity than Al. However, Al—Si alloys and Al—Zn alloys are two-phase alloys, and since Zn and Si hardly dissolve in Al, the degree of decrease in thermal conductivity due to the addition of Zn or Si is small. Therefore, even if the Al—Si alloy or Al—Zn alloy forming the bonding layer remains in the vicinity of the boundary between the composite member and the metal layer, it is considered that the deterioration of the thermal characteristics can be reduced.

接合層の形成方法は、溶射、圧延、ブレージングシートの利用、冷間圧接、溶融めっきなどが挙げられる。   Examples of the method for forming the bonding layer include thermal spraying, rolling, use of a brazing sheet, cold welding, and hot dipping.

特に、溶射は、量産性に優れると共に、くさび効果により接合層と金属板との接合性を高められて好ましい。溶射による接合層の厚さは、10〜200μmが好ましく、30〜150μmがより好ましい。10μm未満では、接着剤として十分に機能できず、200μm以下で接着剤として十分に機能するため、200μmを超えて設けなくてもよいと考える。   In particular, thermal spraying is preferable because it is excellent in mass productivity and can improve the bondability between the bonding layer and the metal plate due to the wedge effect. The thickness of the bonding layer by thermal spraying is preferably 10 to 200 μm, and more preferably 30 to 150 μm. If it is less than 10 μm, it cannot function sufficiently as an adhesive, and if it is 200 μm or less, it functions sufficiently as an adhesive.

圧延により接合層を形成する場合、接合層と金属板との接合強度が高くて好ましい。金属板の表面は、空気に曝されると、空気中の酸素により酸化される。従って、接合層の形成を空気中で行うと、酸化膜を具える金属板の上に接合層が形成されることになる。これに対して、金属板と接合層用板とを圧延する際、金属板の表面の酸化膜が圧延により割れることで、酸化されていない新生面(酸化膜で覆われていない面)が露出し、この新生面と接合層用板とが接合されることで、金属板と接合層との接合性に優れると考えられる。また、圧延により接合層を形成する場合、溶射で形成する場合と比較して、接合層の厚さを均一的に形成し易い。接合層の厚さの均一性が高いことから、接合層と複合部材とが均一的に接合されることで、金属層(金属板)と複合部材との接合性にも優れると考えられる。圧延により金属板に接合層を形成する場合、上記低融点金属からなる接合層用板を予め形成しておく。接合層の厚さは、10μm以上が好ましく、50μm以上がより好ましく、上限は特に設けないが200μm以下で接着剤として十分に機能すると思われる。従って、接合層用板は、圧延後の厚さが50〜200μm程度となるような薄板が利用できる。接合層と金属板とが圧延で一体にされた一体物は、金属板が芯材、接合層がロウ材であるブレージングシートに相当する。   When forming a joining layer by rolling, the joining strength of a joining layer and a metal plate is high, and it is preferable. When the surface of the metal plate is exposed to air, it is oxidized by oxygen in the air. Therefore, when the bonding layer is formed in the air, the bonding layer is formed on the metal plate including the oxide film. In contrast, when rolling the metal plate and the bonding layer plate, the oxide film on the surface of the metal plate is cracked by rolling to expose a new surface that is not oxidized (the surface that is not covered with the oxide film). It is considered that this new surface and the bonding layer plate are bonded to each other so that the bonding property between the metal plate and the bonding layer is excellent. Moreover, when forming a joining layer by rolling, compared with the case where it forms by thermal spraying, it is easy to form the thickness of a joining layer uniformly. Since the uniformity of the thickness of the bonding layer is high, it is considered that the bonding property between the metal layer (metal plate) and the composite member is excellent by uniformly bonding the bonding layer and the composite member. When the bonding layer is formed on the metal plate by rolling, the bonding layer plate made of the low melting point metal is formed in advance. The thickness of the bonding layer is preferably 10 μm or more, more preferably 50 μm or more, and although there is no particular upper limit, it seems to function sufficiently as an adhesive at 200 μm or less. Accordingly, the bonding layer plate can be a thin plate having a thickness after rolling of about 50 to 200 μm. An integrated product in which the joining layer and the metal plate are integrated by rolling corresponds to a brazing sheet in which the metal plate is a core material and the joining layer is a brazing material.

或いは、ブレージングシート(芯材の片面又は両面にロウ材がクラッドされたもの)そのものを接合層に用いてもよい。ロウ材を溶融して金属板に接合することで、接合層を簡単に形成できる。シートの厚さは、薄過ぎるとシートが溶けるため、1μm以上が好ましく、上限は特に設けないが200μm以下で接着剤として十分に機能すると思われる。   Alternatively, a brazing sheet (a brazing material clad on one or both sides of the core material) itself may be used for the bonding layer. By melting the brazing material and bonding it to the metal plate, the bonding layer can be easily formed. The thickness of the sheet is preferably 1 μm or more because the sheet melts if it is too thin, and although there is no particular upper limit, it is considered that the sheet functions sufficiently as an adhesive at 200 μm or less.

<混合溶湯の注湯>
金属板に接合層を設けたら、接合層を設けた側が混合溶湯に接触できるように金属板を鋳型に配置し、この状態で混合溶湯を注湯する。本発明製造方法は、金属板に接合層を設けたことで混合溶湯により接合層が溶融するため、鋳型の温度を室温以上650℃未満、特に550℃未満、更には300℃未満といった比較的低温としても、金属板と複合部材とを十分に接合できる。また、溶製法は、後述するように複合部材中に晶析出物を存在させることができることからセラミックス粒子を過剰に添加させなくてもよい。そのため、溶製法は、混合溶湯が流動性に優れることから、比較的低温の鋳型にも混合溶湯を十分に充填できる。従って、本発明製造方法は、従来の鋳ぐるみのように650℃程度に加熱した状態で鋳型を使用することがなく、鋳型の加熱時間を短縮することができ、放熱部材の生産性の向上を図ることができる。また、本発明製造方法は、高温加熱のためのエネルギーの低減、高温加熱による鋳型の損傷の低減も図ることができる。
<Mixed molten metal pouring>
When the bonding layer is provided on the metal plate, the metal plate is placed on the mold so that the side on which the bonding layer is provided can contact the mixed molten metal, and the molten metal is poured in this state. In the manufacturing method of the present invention, since the joining layer is melted by the molten metal by providing the joining layer on the metal plate, the temperature of the mold is a room temperature or more and less than 650 ° C., particularly less than 550 ° C., and even less than 300 ° C. However, the metal plate and the composite member can be sufficiently joined. In addition, since the melting method can cause crystal precipitates to exist in the composite member as described later, it is not necessary to add excessive ceramic particles. Therefore, in the melting method, since the mixed molten metal is excellent in fluidity, a relatively low temperature mold can be sufficiently filled with the mixed molten metal. Therefore, the manufacturing method of the present invention does not use a mold in a state of being heated to about 650 ° C. like a conventional casting, can shorten the heating time of the mold, and improves the productivity of the heat radiating member. Can be planned. The production method of the present invention can also reduce energy for high-temperature heating and reduce damage to the mold due to high-temperature heating.

鋳型を加熱して鋳型温度を高くするほど、混合溶湯が鋳型の隅々に行き渡り易くなり、充填性を高められる反面、上述のように鋳型が損傷し易くなる。従って、鋳型の熱劣化の抑制を考慮すると、鋳型温度は、80℃以上550℃未満が好ましく、80℃以上300℃未満がより好ましい。更に、鋳型温度は、接合層を構成する金属の液相線温度未満が好ましい。この場合、接合層は、鋳型の熱により実質的に溶けず、混合溶湯に接することで溶け始めるため、接合層として機能し易い。   As the mold is heated to raise the mold temperature, the mixed molten metal becomes easier to spread to every corner of the mold, and the filling property is improved, but the mold is easily damaged as described above. Therefore, in consideration of suppression of thermal deterioration of the mold, the mold temperature is preferably 80 ° C. or higher and lower than 550 ° C., more preferably 80 ° C. or higher and lower than 300 ° C. Furthermore, the mold temperature is preferably less than the liquidus temperature of the metal constituting the bonding layer. In this case, the bonding layer does not substantially melt due to the heat of the mold, and starts to melt by being in contact with the mixed molten metal, and thus easily functions as a bonding layer.

また、混合溶湯を加圧状態で鋳型に注湯する(加圧注入する)と、鋳型が比較的低温でも、混合溶湯が鋳型の隅々に行き渡り易くなり、充填性を高められる。例えば、溶湯注入直後の射出シリンダに加わる圧力が400〜800kg/cm2程度、好ましくは、500〜600kg/cm2程度となるように注入する。もちろん、上記範囲内において鋳型の加熱と加圧注入との双方を行ってもよい。このように鋳型を550℃未満の範囲で加熱したり、混合溶湯を加圧注入することで、直方体状といった簡単な形状だけでなく、フィン付きといった複雑な形状の複合部材でも、高精度に成形することができる。混合溶湯の注湯は、大気中で行ってもよいが、真空中で行うと、複合部材にボイドが形成されにくい。 In addition, when the molten metal is poured into the mold in a pressurized state (pressure injection), even if the mold is at a relatively low temperature, the mixed molten metal easily spreads to every corner of the mold and the filling property is improved. For example, the injection is performed so that the pressure applied to the injection cylinder immediately after pouring the molten metal is about 400 to 800 kg / cm 2 , preferably about 500 to 600 kg / cm 2 . Of course, both the heating of the mold and the pressure injection may be performed within the above range. By heating the mold in the range of less than 550 ° C and injecting the molten metal under pressure in this way, not only simple shapes such as a rectangular parallelepiped shape, but also complex shapes such as fins can be molded with high accuracy. can do. Pouring of the molten mixture may be performed in the air, but if performed in a vacuum, voids are not easily formed in the composite member.

<複合部材の形成及び金属板と複合部材との接合>
鋳型に混合溶湯を注湯すると、接合層は、混合溶湯の熱により溶融して、混合溶湯の構成元素と、金属板の構成元素とが接合層に拡散する。同時に混合溶湯は、鋳型や金属板などに接触することで冷却されて凝固していき、複合部材が形成されていく。また、鋳型に混合溶湯を充填したら鋳型を冷却して、混合溶湯を完全に凝固させて複合部材を完成させる。この溶融・拡散と凝固とにより、金属板と複合部材とが接合され、複合部材の表面の一部に金属層を有する放熱部材が形成される。
<Formation of composite member and joining of metal plate and composite member>
When the mixed molten metal is poured into the mold, the bonding layer is melted by the heat of the mixed molten metal, and the constituent elements of the mixed molten metal and the constituent elements of the metal plate are diffused into the bonding layer. At the same time, the mixed molten metal is cooled and solidified by coming into contact with a mold or a metal plate to form a composite member. Also, after the molten metal is filled into the mold, the mold is cooled, and the mixed molten metal is completely solidified to complete the composite member. By this melting / diffusion and solidification, the metal plate and the composite member are joined together to form a heat dissipation member having a metal layer on a part of the surface of the composite member.

<晶析出物>
本発明製造方法は、溶製法とすることで、得られた複合部材中に晶析出物を存在させることができる。この晶析出物は、セラミックス粒子と同様に複合部材の熱膨張係数を小さくする機能を果たす。そのため、本発明製造方法は、セラミックス粒子を過剰に添加しなくても、複合部材の熱膨張係数を小さくできる。また、晶析出物は、溶湯中の元素から生じ、混合溶湯中では、液相として存在する。そのため、本発明製造方法は、セラミックス粒子を大量に添加した場合と比較して、混合溶湯の粘度の上昇を抑制でき、溶湯の撹拌を容易にかつ十分に行えて、製造性がよい。加えて、本発明製造方法は、ボイドの発生やセラミックス粒子の偏在などが生じ難く、高品質の複合部材を具える放熱部材を製造できる。
<Crystal precipitate>
In the production method of the present invention, crystal precipitates can be present in the obtained composite member by using a melting method. This crystal precipitate fulfills the function of reducing the thermal expansion coefficient of the composite member in the same manner as the ceramic particles. Therefore, the manufacturing method of the present invention can reduce the thermal expansion coefficient of the composite member without adding excessive ceramic particles. Crystal precipitates are generated from elements in the molten metal and exist as a liquid phase in the mixed molten metal. Therefore, compared with the case where a large amount of ceramic particles are added, the production method of the present invention can suppress an increase in the viscosity of the mixed molten metal, can easily and sufficiently stir the molten metal, and has good manufacturability. In addition, the manufacturing method of the present invention is unlikely to generate voids or uneven distribution of ceramic particles, and can manufacture a heat dissipation member having a high-quality composite member.

晶析出物は、小さい方が好ましく、最大粒径が500μm以下、特に200μm以下が好ましい。晶析出物の粒径は、例えば、金属マトリクスの添加元素の添加量や種類を調整したり、混合溶湯の冷却速度を調整することで制御することができる。特に、晶析出物の成長を抑制するために混合溶湯を急冷することが好ましい。冷却速度は、5℃/sec以上、特に、10℃/sec以上が好ましい。冷却速度の調整は、例えば、複合部材の大きさ(厚さなど)や冷却方法を調整することで行える。冷却方法は、上記冷却速度を満たせば、空冷でも水冷などの強制冷却でもよい。このような急冷を行うことで、晶析出物を微細にすると共に、複合部材中に晶析出物を均一的に分散させることができる。   The crystal precipitate is preferably smaller, and the maximum particle size is preferably 500 μm or less, particularly preferably 200 μm or less. The particle size of the crystal precipitate can be controlled, for example, by adjusting the addition amount or type of the additive element of the metal matrix, or by adjusting the cooling rate of the mixed molten metal. In particular, it is preferable to quench the mixed molten metal in order to suppress the growth of crystal precipitates. The cooling rate is preferably 5 ° C./sec or more, particularly preferably 10 ° C./sec or more. The cooling rate can be adjusted, for example, by adjusting the size (thickness and the like) of the composite member and the cooling method. The cooling method may be forced cooling such as air cooling or water cooling as long as the cooling rate is satisfied. By performing such rapid cooling, the crystal precipitates can be made fine and the crystal precipitates can be uniformly dispersed in the composite member.

晶析出物の含有量は、複合部材を100体積%とするとき、体積%で20%以上60%以下、特に、15%以上45%以下が好ましい。晶析出物の含有量は、例えば、添加元素の添加量を調整することで調整することができる。   The content of the crystal precipitates is preferably 20% or more and 60% or less, and particularly preferably 15% or more and 45% or less in volume% when the composite member is 100% by volume. The content of the crystal precipitate can be adjusted, for example, by adjusting the addition amount of the additive element.

<放熱部材>
本発明製造方法により得られた放熱部材は、金属マトリクス中にセラミックス粒子が分散された複合部材と、この複合部材の表面の少なくとも一部に設けられた金属層とを具え、複合部材と金属層との間の少なくとも一部に中間層を有する。金属層は、上記金属板により形成される層である。中間層は、基本的には、金属板に形成した接合層が溶融してなる接合層に基づく層であり、接合層と同じ組成からなる領域、即ち、金属層を構成する金属よりも液相線温度が低い材料(金属)からなる低融点領域を有する。但し、金属板に形成した接合層は、溶融時に、金属板からの元素や金属マトリクスからの元素が拡散することで組成が変化する。つまり、放熱部材において金属層と複合部材との間には、接合層の組成と異なる領域(金属中の原子拡散領域)を有し得る。そこで、本発明放熱部材は、接合層と同じ組成を有する低融点領域と拡散領域とを含む中間層を具えることを許容する。究極的には、中間層は、拡散領域のみからなることが好ましい。つまり、中間層は、1.上記接合層と同じ組成を有する部分、つまり、拡散領域が無い、或いは拡散領域が非常に薄く存在を確認できない部分、2.上記1.と拡散領域とからなる部分、3.拡散領域からなる部分の少なくとも一つから構成される。中間層の組成は、例えば、EPMA分析により測定することができる。
<Heat dissipation member>
A heat dissipation member obtained by the manufacturing method of the present invention comprises a composite member in which ceramic particles are dispersed in a metal matrix, and a metal layer provided on at least a part of the surface of the composite member. And an intermediate layer at least in part. The metal layer is a layer formed by the metal plate. The intermediate layer is basically a layer based on a bonding layer formed by melting the bonding layer formed on the metal plate, and is an area having the same composition as the bonding layer, that is, a liquid phase than the metal constituting the metal layer. It has a low melting point region made of a material (metal) having a low line temperature. However, the composition of the bonding layer formed on the metal plate changes due to the diffusion of elements from the metal plate and elements from the metal matrix during melting. That is, in the heat dissipation member, a region (atom diffusion region in the metal) different from the composition of the bonding layer may be provided between the metal layer and the composite member. Therefore, the heat radiating member of the present invention is allowed to include an intermediate layer including a low melting point region and a diffusion region having the same composition as the bonding layer. Ultimately, the intermediate layer is preferably composed only of a diffusion region. That is, the intermediate layer is 1. a portion having the same composition as the bonding layer, that is, a portion having no diffusion region or a diffusion region that is very thin and cannot be confirmed, 2. a portion comprising the above 1. and the diffusion region 3. It is composed of at least one part composed of diffusion regions. The composition of the intermediate layer can be measured, for example, by EPMA analysis.

本発明放熱部材を半導体デバイスなどのヒートスプレッダーに利用する際、金属層の表面にニッケル、銀、金といった金属めっきを施すことが好ましい。或いは、本発明放熱部材は、金属層の表面に上記金属めっきを施したものとしてもよい。   When the heat radiating member of the present invention is used for a heat spreader such as a semiconductor device, it is preferable to perform metal plating such as nickel, silver, and gold on the surface of the metal layer. Alternatively, the heat dissipating member of the present invention may have the metal layer subjected to the above metal plating.

本発明製造方法は、複合部材の表面の少なくとも一部に金属層を具える本発明放熱部材を生産性よく製造することができる。   The production method of the present invention can produce the heat radiation member of the present invention having a metal layer on at least a part of the surface of the composite member with high productivity.

(実施例1)
アルミニウム合金からなるマトリクス中に炭化珪素粒子が分散された複合部材の一面にアルミニウム層を具える放熱部材を以下の手順で作製し、得られた放熱部材について、複合部材とアルミニウム層との接合状態を調べた。
(Example 1)
A heat radiating member having an aluminum layer on one surface of a composite member in which silicon carbide particles are dispersed in a matrix made of an aluminum alloy is manufactured by the following procedure, and the obtained heat radiating member is bonded to the composite member and the aluminum layer. I investigated.

JIS合金番号1050のアルミニウムからなるアルミニウム板(幅:180mm,長さ:90mm,厚さ:1mm)を用意し、一面にAl-12質量%Siの組成のアルミニウム合金(アルミニウムシリコン、液相線温度:約580℃)を溶射して、アルミニウムシリコンからなる接合層(厚さ:100μm)を形成した。接合層を形成した後、幅:180mm、長さ:90mm、厚さ:3mmの直方体状の複合部材が形成可能な鋳型を用意し、200℃に予熱した鋳型の内壁面の一面に上記接合層を形成したアルミニウム板を配置した。アルミニウム板は、接合層を形成していない面を鋳型の内壁面に接させ、接合層が鋳型の内側を向くように配置した。   Prepare an aluminum plate (width: 180 mm, length: 90 mm, thickness: 1 mm) made of JIS alloy number 1050 aluminum, and an aluminum alloy (aluminum silicon, liquidus temperature) with an Al-12 mass% Si composition on one side : About 580 ° C.) to form a bonding layer (thickness: 100 μm) made of aluminum silicon. After forming the bonding layer, prepare a mold that can form a rectangular parallelepiped composite member with width: 180 mm, length: 90 mm, thickness: 3 mm, and the above bonding layer on one side of the inner wall of the mold preheated to 200 ° C An aluminum plate formed with was arranged. The aluminum plate was disposed so that the surface on which the bonding layer was not formed was in contact with the inner wall surface of the mold, and the bonding layer was directed to the inside of the mold.

一方、アルミニウムインゴット(Al:99.0質量%以上、残部:不可避的不純物)を大気中において電気炉で溶解し、更に、添加元素を添加して、Al-20%Si-9%Ni-0.6%Mg(質量%)の組成のアルミニウム合金の溶湯を作製した。るつぼと撹拌羽根とを有し、真空引きが可能な複合炉に、上記溶湯を移槽した後、溶湯表面に形成された酸化膜を除去し、炉内を真空引きした。この状態で撹拌羽根を回転して溶湯を撹拌し、溶湯の撹拌が安定したことを確認した後、平均粒径50μmの炭化珪素粒子を添加して更に撹拌し、アルミニウム合金と炭化珪素との混合溶湯を作製した。炭化珪素粒子は、複合部材を100体積%とするとき、39体積%となるように溶湯に添加した。 On the other hand, an aluminum ingot (Al: 99.0% by mass or more, balance: inevitable impurities) is melted in an electric furnace in the atmosphere, and additional elements are added to make Al-20% Si-9% Ni-0.6% Mg. A molten aluminum alloy having a composition of (% by mass) was prepared. After the molten metal was transferred to a compound furnace having a crucible and a stirring blade and capable of being evacuated, the oxide film formed on the surface of the molten metal was removed, and the inside of the furnace was evacuated. Stirring the melt by rotating the stirring blade at this state, after the stirring of the molten metal and it was confirmed that stable, further stirred by adding silicon carbide particles of flat Hitoshitsubu diameter 50 [mu] m, the aluminum alloy and silicon carbide A mixed molten metal was prepared. The silicon carbide particles were added to the molten metal so as to be 39% by volume when the composite member was 100% by volume.

上記アルミニウム板を配置した鋳型に上記混合溶湯(680〜720℃)を加圧注湯した。この注湯は、鋳型を200℃に保持した状態で行った。溶湯注入圧力は、600kg/cm2とした。鋳型の温度が200℃と低めであったが、混合溶湯は、鋳型の隅々まで十分に充填することができた。混合溶湯が鋳型に充填されたことを確認してから、鋳型を冷却し、混合溶湯を凝固して複合部材を形成すると共に、複合部材とアルミニウム板とを接合させた。冷却は、空冷とし、冷却速度は、10℃/秒とした。 The mixed molten metal (680 to 720 ° C.) was pressurized and poured into a mold on which the aluminum plate was placed. This pouring was performed with the mold held at 200 ° C. The molten metal injection pressure was 600 kg / cm 2 . Although the temperature of the mold was as low as 200 ° C., the mixed molten metal was able to be fully filled to every corner of the mold. After confirming that the mixed molten metal was filled in the mold, the mold was cooled, the mixed molten metal was solidified to form a composite member, and the composite member and the aluminum plate were joined. The cooling was air cooling, and the cooling rate was 10 ° C./second.

なお、フィン部を有する複合部材を形成可能な鋳型を用意し、この鋳型に上記アルミニウム板を配置した後、上記混合溶湯を同様の条件で加圧注湯したところ、混合溶湯は、鋳型の隅々まで十分に充填できた。充填後、同様の条件で鋳型を冷却し、混合溶湯を凝固することで、フィン部を有する複合部材とアルミニウム板との一体物が得られた。   In addition, after preparing a mold capable of forming a composite member having a fin portion, and placing the aluminum plate on the mold, the mixed molten metal was pressurized and poured under the same conditions. It was able to be filled enough. After filling, the mold was cooled under the same conditions, and the mixed molten metal was solidified to obtain an integrated body of a composite member having fin portions and an aluminum plate.

図1は、得られた放熱部材の断面の顕微鏡写真(100倍)である。図1において下方側の灰色の領域に黒い粒子(炭化珪素粒子)が分散している領域が複合部材、上方側の白い領域がアルミニウム層、複合部材とアルミニウム層との間の白がかった領域、及び上記黒い粒子がない灰色の領域が中間層である。図1に示すように、得られた放熱部材は、複合部材とアルミニウム層とが中間層を介して隙間無く接合していることが分かる。複合部材とアルミニウム層との境界は、不明瞭であり、中間層は、接合層に基づくと考えられる領域(図1において白がかった領域)と、接合層に複合部材の金属マトリクスを構成する元素やアルミニウム板からの元素が拡散したと考えられる領域(図1において黒い粒子がない灰色の領域)とから構成されている。このような拡散領域が存在することから、接合層を十分に溶融して、複合部材とアルミニウム板とを強固に接合することができたと考えられる。   FIG. 1 is a micrograph (100 ×) of a cross section of the obtained heat radiating member. In FIG. 1, the region where black particles (silicon carbide particles) are dispersed in the gray region on the lower side is a composite member, the white region on the upper side is an aluminum layer, the whited region between the composite member and the aluminum layer, And the gray area | region without the said black particle | grain is an intermediate | middle layer. As shown in FIG. 1, in the obtained heat dissipation member, it can be seen that the composite member and the aluminum layer are joined to each other with no gap through the intermediate layer. The boundary between the composite member and the aluminum layer is unclear, and the intermediate layer is an element that is considered to be based on the bonding layer (the whited area in FIG. 1) and the elements constituting the metal matrix of the composite member in the bonding layer And a region where elements from an aluminum plate are considered to have diffused (a gray region without black particles in FIG. 1). Since such a diffusion region exists, it is considered that the bonding layer was sufficiently melted to firmly bond the composite member and the aluminum plate.

また、図1から、この複合部材は、金属マトリクス中に炭化珪素粒子が均一的に分散していること、ボイドがほとんど存在しないことが分かる。従って、この放熱部材は、熱特性のばらつきが小さく、高品質であると考えられる。   Further, it can be seen from FIG. 1 that in this composite member, silicon carbide particles are uniformly dispersed in the metal matrix, and there are almost no voids. Therefore, this heat radiating member is considered to be high quality with little variation in thermal characteristics.

更に、得られた複合部材について、晶析出物の有無、大きさ、及び含有量を調べたところ、晶析出物が均一的に分散して存在しており、最大粒径(μm)は500μm、含有量(体積%)は、複合部材の体積を100体積%とするとき、40体積%であった。晶析出物の最大粒径は、断面の任意の10視野について全晶析出物の粒径を測定し(顕微鏡写真(100倍)を利用)、その中で最大の粒径とした。晶析出物の含有量は、上記10視野の平均面積率を求め、この面積率を体積率と等価とした。また、この複合部材の熱膨張係数は、9.8×10-6/K、熱伝導率は、185W/m・Kであった。従って、この放熱部材は、半導体デバイスのヒートスプレッダーに好適に利用することができる。 Further, when the presence or absence, size, and content of crystal precipitates were examined for the obtained composite member, the crystal precipitates were uniformly dispersed and the maximum particle size (μm) was 500 μm, The content (% by volume) was 40% by volume when the volume of the composite member was 100% by volume. The maximum particle size of crystal precipitates was determined by measuring the particle size of all crystal precipitates for any 10 fields of view of the cross section (using a micrograph (100 times)). For the content of crystal precipitates, the average area ratio of the 10 fields of view was determined, and this area ratio was equivalent to the volume ratio. The composite member had a thermal expansion coefficient of 9.8 × 10 −6 / K and a thermal conductivity of 185 W / m · K. Therefore, this heat radiating member can be suitably used for a heat spreader of a semiconductor device.

(実施例2)
接合層の組成を上記実施例1と異ならせた放熱部材を作製し、得られた放熱部材について、複合部材とアルミニウム層との接合状態を調べた。
(Example 2)
A heat radiating member having a different composition of the bonding layer from that of Example 1 was prepared, and the obtained heat radiating member was examined for a bonding state between the composite member and the aluminum layer.

実施例2の放熱部材は、接合層の組成を変えた以外は、実施例1と同様にして作製した。即ち、実施例1と同じアルミニウム板を用意し、一面にAl-85質量%Znの組成のアルミニウム合金(アルミニウム亜鉛、固相線温度:約380℃、液相線温度:約390℃)を溶射して、アルミニウム亜鉛からなる接合層(厚さ:100μm)を形成した。200℃に予熱した鋳型にこのアルミニウム板を配置し、この鋳型に、実施例1と同様にして用意した混合溶湯を加圧注湯した。混合溶湯を鋳型に充填した後、実施例1と同様の条件で鋳型を冷却し、実施例2の放熱部材を得た。   The heat radiating member of Example 2 was produced in the same manner as in Example 1 except that the composition of the bonding layer was changed. That is, the same aluminum plate as in Example 1 was prepared, and an aluminum alloy having an Al-85 mass% Zn composition (aluminum zinc, solidus temperature: about 380 ° C, liquidus temperature: about 390 ° C) was sprayed on one side. Thus, a bonding layer (thickness: 100 μm) made of aluminum zinc was formed. The aluminum plate was placed in a mold preheated to 200 ° C., and a molten mixture prepared in the same manner as in Example 1 was pressurized and poured into the mold. After filling the molten metal into the mold, the mold was cooled under the same conditions as in Example 1 to obtain the heat radiating member of Example 2.

図2は、得られた放熱部材の断面の顕微鏡写真(100倍)である。図2において下方側の濃い灰色の領域に黒い粒子(炭化珪素粒子)が分散している領域が複合部材、上方側の白い領域がアルミニウム層、複合部材とアルミニウム層との間の薄い灰色の領域が中間層であり、複合部材とアルミニウム層との間に存在する黒い領域は、空隙である。図2に示すように、得られた放熱部材は、複合部材とアルミニウム層とが中間層を介してほぼ隙間無く接合していることが分かる。図2において中間層は、接合層に基づくと考えられる材料から構成されている。複合部材とアルミニウム層との境界近傍を調べたところ、中間層に複合部材の金属マトリクスを構成する元素やアルミニウム板からの元素が拡散したと考えられる領域が確認された。複合部材とアルミニウム層との間にこのような拡散領域が存在することから、接合層が十分に溶融されて、複合部材とアルミニウム板とを強固に接合することができたと考えられる。   FIG. 2 is a micrograph (100 ×) of a cross section of the obtained heat radiating member. In FIG. 2, the area where black particles (silicon carbide particles) are dispersed in the dark gray area on the lower side is the composite member, the white area on the upper side is the aluminum layer, and the light gray area between the composite member and the aluminum layer Is an intermediate layer, and the black region existing between the composite member and the aluminum layer is a void. As shown in FIG. 2, it can be seen that in the obtained heat dissipation member, the composite member and the aluminum layer are joined with almost no gap through the intermediate layer. In FIG. 2, the intermediate layer is made of a material considered to be based on the bonding layer. When the vicinity of the boundary between the composite member and the aluminum layer was examined, it was confirmed that the elements constituting the metal matrix of the composite member or the elements from the aluminum plate were diffused in the intermediate layer. Since such a diffusion region exists between the composite member and the aluminum layer, it is considered that the joining layer was sufficiently melted to firmly join the composite member and the aluminum plate.

また、この複合部材も実施例1と同様に金属マトリクス中に炭化珪素粒子が均一的に分散しており、ボイドがほとんど存在しなかった。更に、この複合部材も実施例1と同様に微細な晶析出物が均一的に分散していた。   Further, in this composite member, as in Example 1, the silicon carbide particles were uniformly dispersed in the metal matrix, and there were almost no voids. Further, in this composite member, fine crystal precipitates were uniformly dispersed as in Example 1.

(比較例)
接合層を形成していないアルミニウム板を用いて上記実施例1と同様にして放熱部材を作製し、得られた放熱部材について、複合部材とアルミニウム板との接合状態を調べた。
(Comparative example)
A heat radiating member was produced in the same manner as in Example 1 above using an aluminum plate on which no bonding layer was formed, and the obtained heat radiating member was examined for the bonding state between the composite member and the aluminum plate.

比較例の放熱部材は、接合層を形成していないアルミニウム板を用いた以外のことは、実施例1と同様にして作製した。即ち、実施例1と同じアルミニウム板を用意し、このアルミニウム板をそのまま200℃に予熱した鋳型に配置し、この鋳型に、実施例1と同様にして用意した混合溶湯を加圧注湯し、充填後、実施例1と同様の条件で鋳型を冷却し、比較例の放熱部材を得た。   The heat radiating member of the comparative example was produced in the same manner as in Example 1 except that an aluminum plate having no bonding layer was used. That is, the same aluminum plate as in Example 1 was prepared, this aluminum plate was placed in a mold preheated to 200 ° C., and the molten mixture prepared in the same manner as Example 1 was pressurized and poured into the mold. Thereafter, the mold was cooled under the same conditions as in Example 1 to obtain a heat radiating member of Comparative Example.

図4は、得られた放熱部材の断面の顕微鏡写真(100倍)である。図4において下方側の灰色の領域に黒い粒子(炭化珪素粒子)が分散している領域が複合部材、上方側の白い領域がアルミニウム板、複合部材とアルミニウム板との間の黒い領域は、隙間である。図4に示すように、得られた放熱部材は、複合部材とアルミニウム板との間に隙間があり、両者が全く接合していないことが分かる。   FIG. 4 is a micrograph (100 ×) of a cross section of the obtained heat radiating member. In FIG. 4, the region where black particles (silicon carbide particles) are dispersed in the gray region on the lower side is the composite member, the white region on the upper side is the aluminum plate, and the black region between the composite member and the aluminum plate is the gap It is. As shown in FIG. 4, the obtained heat dissipating member has a gap between the composite member and the aluminum plate, and it can be seen that they are not joined at all.

(実施例3)
接合層の形成方法を上記実施例1と異ならせた放熱部材を作製し、得られた放熱部材について、複合部材とアルミニウム合金層との接合状態を調べた。
(Example 3)
A heat radiating member having a different bonding layer formation method from that of Example 1 was prepared, and the obtained heat radiating member was examined for a bonding state between the composite member and the aluminum alloy layer.

この実施例3は、アルミニウム合金板の表面に接合層を圧延により形成した。具体的には、JIS合金番号3003相当合金(固相線温度:645℃、液相線温度:655℃、組成:Al-0.6%Si-0.7%Fe-0.1%Cu-1.0%Mn-0.10%Zn)からなるアルミニウム合金板と、JIS合金番号4004相当合金(固相線温度:560℃、液相線温度590℃、組成:Al-10%Si-0.8%Fe-0.25%Cu-0.10%Mn-1.5%Mg-0.20%Zn)からなる接合層用板を用意した。用意したアルミニウム合金板と接合層用板とを圧延して、アルミニウム合金板に接合層用板をクラッドして、厚さ1mmのアルミニウム合金板に対して、厚さ100μmの接合層を有するブレージングシートを作製した。   In Example 3, a bonding layer was formed on the surface of an aluminum alloy plate by rolling. Specifically, JIS alloy number 3003 equivalent alloy (solidus temperature: 645 ° C, liquidus temperature: 655 ° C, composition: Al-0.6% Si-0.7% Fe-0.1% Cu-1.0% Mn-0.10% Zn alloy alloy plate and JIS alloy No. 4004 equivalent alloy (solidus temperature: 560 ° C, liquidus temperature 590 ° C, composition: Al-10% Si-0.8% Fe-0.25% Cu-0.10% Mn -1.5% Mg-0.20% Zn). The prepared aluminum alloy plate and the bonding layer plate are rolled, and the aluminum alloy plate is clad with the bonding layer plate, and the brazing sheet has a bonding layer with a thickness of 100 μm with respect to the aluminum alloy plate with a thickness of 1 mm. Was made.

200℃に予熱した鋳型(実施例1と同様の鋳型)に作製したブレージングシートを配置し、この鋳型に、実施例1と同様にして用意した混合溶湯を加圧注湯した。混合溶湯を鋳型に充填した後、実施例1と同様の条件で鋳型を冷却して、複合部材の表面にアルミニウム合金層を具える実施例3の放熱部材を得た。   The brazing sheet produced was placed in a mold preheated to 200 ° C. (the same mold as in Example 1), and the molten mixture prepared in the same manner as in Example 1 was poured under pressure into this mold. After filling the molten metal into the mold, the mold was cooled under the same conditions as in Example 1 to obtain a heat radiating member of Example 3 having an aluminum alloy layer on the surface of the composite member.

図3は、得られた放熱部材の断面の顕微鏡写真(100倍)である。図3において下方側の濃い灰色の領域に黒い粒子(炭化珪素粒子)が分散している領域が複合部材、上方側の白い領域がアルミニウム合金層、複合部材とアルミニウム合金層との間の薄い灰色の領域に細かい黒い粒子(晶析出物)が分散している領域が中間層である。図3に示すように、得られた放熱部材は、複合部材とアルミニウム合金層とが中間層を介して隙間無く接合していることが分かる。また、中間層は、均一的な厚さであることが分かる。中間層の組成を調べたところ、中間層は、接合層に基づくと考えられる材料から構成されていた。複合部材とアルミニウム合金層との間を調べたところ、接合層に複合部材の金属マトリクスを構成する元素やアルミニウム合金板からの元素が拡散したと考えられる領域が確認された。複合部材とアルミニウム合金層との間にこのような拡散領域が存在することから、接合層が十分に溶融されて、複合部材とアルミニウム合金板とを強固に接合することができたと考えられる。
FIG. 3 is a micrograph (100 ×) of a cross section of the obtained heat radiating member. In FIG. 3, the region where black particles (silicon carbide particles) are dispersed in the dark gray region on the lower side is the composite member, the white region on the upper side is the aluminum alloy layer, and the light gray between the composite member and the aluminum alloy layer A region where fine black particles (crystal precipitates) are dispersed in the region is an intermediate layer. As shown in FIG. 3, in the obtained heat dissipation member, it can be seen that the composite member and the aluminum alloy layer are joined to each other with no gap through the intermediate layer. It can also be seen that the intermediate layer has a uniform thickness. When the composition of the intermediate layer was examined, the intermediate layer was composed of a material considered to be based on the bonding layer. When the space between the composite member and the aluminum alloy layer was examined, a region in which the elements constituting the metal matrix of the composite member and the elements from the aluminum alloy plate were considered to be diffused in the bonding layer was confirmed. Since such a diffusion region exists between the composite member and the aluminum alloy layer, it is considered that the joining layer was sufficiently melted to firmly join the composite member and the aluminum alloy plate.

接合層を溶射により作製した実施例1の放熱部材と、接合層を圧延により形成した実施例3の放熱部材とにおいて、複合部材の表面に具える金属層の剥離試験を実施した。剥離試験は、以下のように行った。作製した180mm×90mmの放熱部材を10mm×10mmのサイズに切り出して小片とし、これら複数の小片を試験片とする。小片は、放熱部材において、複合部材と金属層(アルミニウム又はアルミニウム合金からなる層)とが十分に接合している部分から切り出した。複合部材及び金属層のそれぞれに樹脂系接着剤を塗布し、治具で挟持するように試験片を治具に接着して、複合部材と金属層とを剥離するために治具に引っ張り応力を加える。そして、複合部材と金属層とが剥離した時点の応力を接合力と定義する。実施例1,3のそれぞれに対して、10個の試験片について接合力を測定した。また、各実施例1,3のそれぞれに対して10個の接合力の標準偏差を用いて、接合力のばらつきを評価した。   A peeling test of a metal layer provided on the surface of the composite member was performed on the heat dissipating member of Example 1 in which the joining layer was produced by thermal spraying and the heat dissipating member in Example 3 in which the joining layer was formed by rolling. The peel test was performed as follows. The produced heat radiation member of 180 mm × 90 mm is cut into a size of 10 mm × 10 mm to form small pieces, and these plural pieces are used as test pieces. The small piece was cut out from the portion of the heat dissipation member where the composite member and the metal layer (layer made of aluminum or aluminum alloy) were sufficiently joined. A resin adhesive is applied to each of the composite member and the metal layer, the test piece is bonded to the jig so as to be sandwiched by the jig, and a tensile stress is applied to the jig to separate the composite member and the metal layer. Add. And the stress at the time of a composite member and a metal layer peeling is defined as joining force. For each of Examples 1 and 3, bonding strength was measured for 10 test pieces. In addition, the variation in bonding force was evaluated using the standard deviation of ten bonding forces for each of Examples 1 and 3.

剥離試験の結果、実施例1,3のいずれも、2kg/mm2以上という十分な接合力を有した。特に、接合層を圧延により形成した実施例3は、接合力が約5kg/mm2であり、溶射により作製した実施例1(約3kg/mm2)よりも接合力が高かった。この理由は、アルミニウム合金板の表面において酸化されていない新生面に接合層がクラッドされたためであると考えられる。これに対して、溶射により接合層を形成した実施例1は、酸化膜を有した状態のアルミニウム板に接合層を形成したことで、実施例3よりも接合力が低くなったと考えられる。また、実施例3は、接合力のばらつきも少なかった。この理由は、接合層の厚みが均一的であったためであると考えられる。 As a result of the peel test, each of Examples 1 and 3 had a sufficient bonding force of 2 kg / mm 2 or more. In particular, Example 3 in which the joining layer was formed by rolling had a joining force of about 5 kg / mm 2 , which was higher than Example 1 (about 3 kg / mm 2 ) produced by thermal spraying. The reason for this is considered that the bonding layer was clad on the new surface that was not oxidized on the surface of the aluminum alloy plate. On the other hand, in Example 1 in which the bonding layer was formed by thermal spraying, it was considered that the bonding force was lower than that in Example 3 because the bonding layer was formed on the aluminum plate having the oxide film. Further, in Example 3, there was little variation in bonding force. This reason is considered to be because the thickness of the bonding layer was uniform.

上述した実施形態は、本発明の要旨を逸脱することなく、適宜変更することが可能であり、上述した構成に限定されるものではない。例えば、金属マトリクスを構成する金属として、アルミニウムや、マグネシウム、マグネシウム合金を利用することができる。また、例えば、複合部材において、セラミックス粒子の含有量をより少なくしたり、晶析出物の量を多くすることができる。更に、セラミックス粒子の大きさを変更することができる。   The above-described embodiment can be appropriately changed without departing from the gist of the present invention, and is not limited to the above-described configuration. For example, aluminum, magnesium, or a magnesium alloy can be used as the metal constituting the metal matrix. Further, for example, in the composite member, the content of ceramic particles can be reduced, and the amount of crystal precipitates can be increased. Furthermore, the size of the ceramic particles can be changed.

本発明放熱部材は、車載用のパワーデバイスといった種々の半導体デバイスのヒートスプレッダーに好適に利用することができる。また、本発明放熱部材の製造方法は、上記本発明放熱部材の製造に好適に利用することができる。   The heat radiating member of the present invention can be suitably used for heat spreaders of various semiconductor devices such as in-vehicle power devices. Moreover, the manufacturing method of this invention heat radiating member can be utilized suitably for manufacture of the said this invention heat radiating member.

実施例1において、複合部材と金属層との境界近傍の断面を示す顕微鏡写真である。In Example 1, it is a microscope picture which shows the cross section of the boundary vicinity of a composite member and a metal layer. 実施例2において、複合部材と金属層との境界近傍の断面を示す顕微鏡写真である。In Example 2, it is a microscope picture which shows the cross section of the boundary vicinity of a composite member and a metal layer. 実施例3において、複合部材と金属層との境界近傍の断面を示す顕微鏡写真である。In Example 3, it is a microscope picture which shows the cross section of the boundary vicinity of a composite member and a metal layer. 比較例において、複合部材と金属板との境界近傍の断面を示す顕微鏡写真である。In a comparative example, it is a microscope picture which shows the section near the boundary of a composite member and a metal plate.

Claims (9)

金属マトリクス中にセラミックス粒子が分散された複合部材と、この複合部材の表面の少なくとも一部に設けられた金属層とを具える放熱部材であって、
前記金属マトリクスは、アルミニウム又はアルミニウム合金からなり、
前記セラミックス粒子は、炭化珪素からなる粒子を含み、
前記金属層は、アルミニウム又はアルミニウム合金からなり、
前記複合部材と前記金属層との間の少なくとも一部に中間層を有しており、
前記中間層は、前記金属層を構成する金属よりも液相線温度が低い材料からなる低融点領域を具えることを特徴とする放熱部材。
A heat dissipation member comprising a composite member in which ceramic particles are dispersed in a metal matrix, and a metal layer provided on at least a part of the surface of the composite member,
The metal matrix is made of aluminum or an aluminum alloy,
The ceramic particles include particles made of silicon carbide,
The metal layer is made of aluminum or an aluminum alloy,
The has an intermediate layer on at least a portion between the composite member the metal layer,
The heat dissipation member, wherein the intermediate layer includes a low melting point region made of a material having a liquidus temperature lower than that of the metal constituting the metal layer.
前記金属層は、アルミニウムからなり、
前記低融点領域は、アルミニウムシリコン、又はアルミニウム亜鉛からなることを特徴とする請求項1に記載の放熱部材。
The metal layer is made of aluminum,
2. The heat dissipation member according to claim 1 , wherein the low melting point region is made of aluminum silicon or aluminum zinc.
前記複合部材は、前記金属層が設けられていない側にフィン部を具えることを特徴とする請求項1又は2に記載の放熱部材。 Said composite member is heat radiating member according to claim 1 or 2, characterized in that it comprises a fin on the side where the metal layer is not provided. 金属マトリクス中にセラミックス粒子が分散された複合部材の表面の少なくとも一部に金属板を接合して金属層を形成し、前記複合部材と前記金属層とを具える放熱部材を製造する放熱部材の製造方法であって、
金属板の一面に、この金属板を構成する金属よりも液相線温度が低い低融点金属からなる接合層を形成する工程と、
溶融した金属マトリクスにセラミックス粒子を混合した混合溶湯を準備する工程と、
前記接合層を有する金属板を、前記接合層が前記混合溶湯に接することができるように鋳型に配置する工程と、
前記金属板を配置した鋳型に前記混合溶湯を注湯し、前記混合溶湯を凝固させて複合部材を形成すると共に、前記混合溶湯により前記接合層を溶融して前記複合部材と前記金属板とを接合する工程とを具えることを特徴とする放熱部材の製造方法。
The metal plate is bonded to form a metal layer on at least a portion of the surface of the composite member ceramic particles dispersed in a metal matrix, the heat radiating member to produce a heat radiation member comprising the composite member and the metal layer A manufacturing method comprising:
Forming a bonding layer made of a low melting point metal having a lower liquidus temperature than the metal constituting the metal plate on one surface of the metal plate;
Preparing a molten metal in which ceramic particles are mixed in a molten metal matrix;
Placing in a mold a metal plate having the bonding layer, so that the bonding layer can be in contact with the mixed melt,
Pouring the mixed melt into a mold arranged with the metal plate, to form a composite member by solidifying the mixed melt, and the composite member and the metal plate by melting the bonding layer by the mixed melt The manufacturing method of the heat radiating member characterized by including the process to join.
前記接合層は、溶射により形成することを特徴とする請求項4に記載の放熱部材の製造方法。 5. The method for manufacturing a heat radiating member according to claim 4 , wherein the bonding layer is formed by thermal spraying. 前記接合層の形成は、前記低融点金属からなる接合層用板を用意し、この接合層用板と前記金属板とを圧延することで行うことを特徴とする請求項4に記載の放熱部材の製造方法。 Formation of the bonding layer, the heat radiating member according to claim 4, wherein the prepared bonding layer plate made of a low-melting metal, and carrying out by rolling with the metal plate and the bonding layer plate Manufacturing method. 前記混合溶湯の注湯は、前記鋳型を80℃以上550℃未満に加熱した状態で行うことを特徴とする請求項4〜6のいずれか1項に記載の放熱部材の製造方法。 The method for manufacturing a heat radiating member according to any one of claims 4 to 6 , wherein the pouring of the mixed molten metal is performed in a state where the mold is heated to 80 ° C or higher and lower than 550 ° C. 前記混合溶湯は、加圧状態で前記鋳型に注湯することを特徴とする請求項4〜7のいずれか1項に記載の放熱部材の製造方法。 The mixing melt method of manufacturing a heat dissipating member according to any one of claims 4-7, characterized in that the alloy melt in the mold under pressure. 請求項1〜3のいずれか1項に記載の放熱部材と、半導体素子とを具えることを特徴とする半導体デバイス A semiconductor device comprising the heat dissipating member according to claim 1 and a semiconductor element .
JP2008121518A 2007-05-16 2008-05-07 Heat dissipation member, method for manufacturing heat dissipation member, and semiconductor device Expired - Fee Related JP5284681B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008121518A JP5284681B2 (en) 2007-05-16 2008-05-07 Heat dissipation member, method for manufacturing heat dissipation member, and semiconductor device

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007130960 2007-05-16
JP2007130960 2007-05-16
JP2008121518A JP5284681B2 (en) 2007-05-16 2008-05-07 Heat dissipation member, method for manufacturing heat dissipation member, and semiconductor device

Publications (2)

Publication Number Publication Date
JP2008311632A JP2008311632A (en) 2008-12-25
JP5284681B2 true JP5284681B2 (en) 2013-09-11

Family

ID=40238923

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008121518A Expired - Fee Related JP5284681B2 (en) 2007-05-16 2008-05-07 Heat dissipation member, method for manufacturing heat dissipation member, and semiconductor device

Country Status (1)

Country Link
JP (1) JP5284681B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5353825B2 (en) * 2010-06-09 2013-11-27 株式会社デンソー Semiconductor module

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1187581A (en) * 1997-09-01 1999-03-30 Toyota Central Res & Dev Lab Inc Metal base composite material component and manufacture thereof
JP2002066724A (en) * 2000-08-25 2002-03-05 Toyota Industries Corp Compound material and manufacturing method thereof
JP4154861B2 (en) * 2001-02-06 2008-09-24 株式会社豊田自動織機 Manufacturing method of composite material
JP2002368168A (en) * 2001-06-13 2002-12-20 Hitachi Ltd Composite member for semiconductor device, insulation- type semiconductor device or non-insulation type semiconductor device using the same
JP3737072B2 (en) * 2002-07-18 2006-01-18 電気化学工業株式会社 Aluminum-silicon carbide composite and method for producing the same
JP4456972B2 (en) * 2004-10-04 2010-04-28 住友電気工業株式会社 Heat dissipation member for mounting semiconductor elements

Also Published As

Publication number Publication date
JP2008311632A (en) 2008-12-25

Similar Documents

Publication Publication Date Title
US10485112B2 (en) Ceramic circuit substrate and method for producing ceramic circuit substrate
WO2010038483A1 (en) Composite member
JP5915198B2 (en) Surface brazing method of aluminum alloy member and copper alloy member
JP5739873B2 (en) Magnesium-based composite member, heat dissipation member, and semiconductor device
JP5464301B2 (en) Method for manufacturing composite material for heat dissipation substrate
JP2012197496A (en) Composite member
US20210269697A1 (en) Metal-silicon carbide-based composite material, and method for producing metal-silicon carbide-based composite material
JP4720981B2 (en) Magnesium matrix composite
Niu et al. Effects of germanium additions on microstructures and properties of Al–Si filler metals for brazing aluminum
JP2014001439A (en) Composite member, method for manufacturing composite member and semiconductor device
JP5536409B2 (en) Composite member, heat dissipation member, semiconductor device, and method of manufacturing composite member
JP5030633B2 (en) Cr-Cu alloy plate, semiconductor heat dissipation plate, and semiconductor heat dissipation component
JP5284681B2 (en) Heat dissipation member, method for manufacturing heat dissipation member, and semiconductor device
CN102029480B (en) Preparation method of Al-Si-Ti ternary active solder for aluminum-based composite material
JP6176854B2 (en) Composite material with active metal brazing material layer
JP4138844B2 (en) Cr-Cu alloy, manufacturing method thereof, heat sink for semiconductor, and heat dissipation component for semiconductor
JP7196193B2 (en) Heat dissipation material
JP2012164708A (en) Manufacturing method for substrate for power module, and substrate for power module
JP5568788B2 (en) Metal-ceramic composite plate
JP2010126791A (en) Heat dissipation material, heat dissipation plate for semiconductor and heat dissipation component for semiconductor using the same, and method for producing heat dissipation material
JP5668507B2 (en) Power module substrate manufacturing method and power module substrate
JP2008066379A (en) Composite material
JP7240283B2 (en) Heat dissipation member and method for manufacturing heat dissipation member
JP3173350B2 (en) Alloy brazing material
KR20230136110A (en) Aluminum-ceramic bonded substrate and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120328

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130116

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130530

R150 Certificate of patent or registration of utility model

Ref document number: 5284681

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees