JP5282894B2 - Barrel polishing method - Google Patents

Barrel polishing method Download PDF

Info

Publication number
JP5282894B2
JP5282894B2 JP2009048835A JP2009048835A JP5282894B2 JP 5282894 B2 JP5282894 B2 JP 5282894B2 JP 2009048835 A JP2009048835 A JP 2009048835A JP 2009048835 A JP2009048835 A JP 2009048835A JP 5282894 B2 JP5282894 B2 JP 5282894B2
Authority
JP
Japan
Prior art keywords
polishing
workpiece
tank
barrel
water
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009048835A
Other languages
Japanese (ja)
Other versions
JP2010201548A (en
Inventor
昌知 渡辺
直幸 荻原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sintokogio Ltd
Original Assignee
Sintokogio Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sintokogio Ltd filed Critical Sintokogio Ltd
Priority to JP2009048835A priority Critical patent/JP5282894B2/en
Publication of JP2010201548A publication Critical patent/JP2010201548A/en
Application granted granted Critical
Publication of JP5282894B2 publication Critical patent/JP5282894B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To realize a barrel polishing method which shortens a polishing time and polishes the surface of a workpiece to a super-smooth surface state. <P>SOLUTION: The barrel polishing method comprises: a roughly polishing step S1 of providing, as a barrel polishing apparatus, a fluidized barrel polishing apparatus including a polishing tank 1 constructed so that the interior thereof can be washed, introducing spherical media having a smooth surface, abrasive grains which are ground with the progress of polishing, a compound, and water into the polishing tank 1, and polishing a workpiece; a washing step S2 of, after the roughly polishing step S1, supplying water into the polishing tank 1 to remove, by washing, the abrasive grains, the compound, and powder produced by abrasion of the workpiece and media remaining within the polishing tank 1, discharging the abrasive grains, the compound, and powder produced by abrasion of the workpiece and media to the outside of the polishing tank 1, and allowing the washed workpiece and media to stay within the polishing tank 1; and a smoothly polishing step S5 of, after the washing step S2, introducing fresh compound and water into the polishing tank 1 and polishing the workpiece. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、流動バレル研磨装置により金属材料のワークを超平滑研磨するバレル研磨方法に関する。 The present invention relates to a barrel polishing method for ultra-smooth polishing a workpiece made of a metal material using a fluidized barrel polishing apparatus.

バレル研磨装置には、被加工物(以下「ワーク」という)と研磨材(以下「メディア」という)を研磨槽(=容器)に投入して相互に擦れあう研磨作用(=研磨力)を生み出す研磨機構が異なる機種が4機種あって、1)遠心バレル研磨装置、2)流動バレル研磨装置、3)振動バレル研磨装置、4)回転バレル研磨装置の順にワークに与える研磨力が大きい。 In the barrel polishing apparatus, a workpiece (hereinafter referred to as “work”) and an abrasive (hereinafter referred to as “media”) are put into a polishing tank (= container) to create a polishing action (= polishing power) that rubs against each other. There are four models with different polishing mechanisms, and 1) centrifugal barrel polishing apparatus, 2) fluid barrel polishing apparatus, 3) vibration barrel polishing apparatus, and 4) rotating barrel polishing apparatus, in this order, the polishing force applied to the workpiece is large.

前記の各バレル研磨装置における研磨力と研磨されたワークの表面粗さの関係は、研磨力が大である加工条件ではワークの表面粗さが荒れて小さくならず、表面粗さを小さくするには、研磨力を小さくする必要があり、研磨時間が長くなるという相反する関係にある。 The relationship between the polishing force and the surface roughness of the polished workpiece in each of the barrel polishing apparatuses described above is that the surface roughness of the workpiece does not become rough under the processing conditions where the polishing power is large, and the surface roughness is reduced. However, it is necessary to reduce the polishing force, and there is a conflicting relationship that the polishing time becomes long.

また、前記の各バレル研磨装置による研磨加工時間は、ワークの種類や加工目的、使用するメディア等によって異なるが、バリ取りやエッジ部のR付け加工、あるいは面の平滑加工などの通常研磨加工においては、1)遠心バレル研磨装置で1時間以内、2)流動バレル研磨装置で1.5時間以内、3)振動バレル研磨装置で2時間以内、4)回転バレル研磨装置では数時間を要して研磨が行われている。 Further, the polishing time by each barrel polishing device described above varies depending on the type of workpiece, the purpose of processing, the media to be used, etc., but in normal polishing processing such as deburring, R-end processing of the edge portion, or surface smoothing processing. 1) within 1 hour with centrifugal barrel polisher, 2) within 1.5 hours with fluid barrel polisher, 3) within 2 hours with vibratory barrel polisher, 4) several hours with rotating barrel polisher Polishing is taking place.

従来、ワークの表面粗さを重要視しその表面粗さを、算術平均粗さ:Ra0.05μm以下(≒十点平均粗さ:Rz0.3μm以下)に研磨する超平滑研磨加工に要する加工時間は、ワークの種類により異なるが前記通常研磨加工の4〜5倍を要する場合がある。しかしながら、近年、バレル研磨装置を用いて、前記平滑研磨加工の表面粗さ:Ra0.05μm以下(≒Rz0.3μm以下)をさら小さくした超平滑研磨加工の要求が高まっている。なお、前記「超平滑研磨加工」とは、ワークの表面粗さを、Ra0.02μm以下(≒Rz0.15μm以下)に研磨する加工を云う。 Conventionally, processing time required for ultra-smooth polishing processing in which the surface roughness of a workpiece is regarded as important and the surface roughness is polished to an arithmetic average roughness: Ra 0.05 μm or less (≈10-point average roughness: Rz 0.3 μm or less). May vary depending on the type of workpiece, but may require 4 to 5 times the normal polishing. However, in recent years, there has been a growing demand for ultra-smooth polishing using a barrel polishing apparatus in which the surface roughness of the smooth polishing is Ra 0.05 μm or less (≈Rz 0.3 μm or less). The “ultra-smooth polishing process” refers to a process of polishing the surface roughness of the workpiece to Ra 0.02 μm or less (≈Rz 0.15 μm or less).

本願発明に係るバレル研磨装置を用いて平滑研磨加工をした先行技術に特許文献1が開示されている。特許文献1では、高炭素軸受鋼からなるワークの平滑研磨加工を、振動バレル研磨装置によりメディアに非球形研磨石と砥粒にアルミナを用いて4時間研磨加工し、水洗後にメディアのみで2時間研磨して表面粗さ(=十点平均粗さ)Rz0.37μmが得られた例が示されている。当該先行技術に係る研磨加工時間は、従来22時間要していたものに対し前記のように合計6時間に短縮したものである。 Patent Document 1 is disclosed in the prior art in which smooth polishing is performed using a barrel polishing apparatus according to the present invention. In Patent Document 1, smooth polishing of a workpiece made of high carbon bearing steel is polished for 4 hours by using a non-spherical polishing stone and alumina for abrasives with a vibrating barrel polishing apparatus, and after washing with water only for 2 hours. An example is shown in which the surface roughness (= 10-point average roughness) Rz 0.37 μm is obtained by polishing. The polishing time according to the prior art is shortened to a total of 6 hours as described above, compared to the conventional 22 hours.

特許第3791837号公報Japanese Patent No. 3791837

上述の従来技術では、平滑研磨加工の研磨工程時間を6時間に短縮して作業改善はされたが、前記のように、近年、さらに前記研磨工程時間を短縮する要求があり、また、アルミナ系の砥粒と、粘土、陶土等の結合剤でそれを焼成したセラミックメディアを用いて行う一般的なバレル研磨では、例えば、円柱形状のワークを加工する場合、メディアとコンパウンド、水を使用した通常の加工条件では、表面粗さをRa0.02μm(≒Rz0.15μm)程度に平滑研磨するのが限界であって、前記のように、バレル研磨装置を用いて超平滑研磨加工をする要求に対応することができなかった。 In the above-described prior art, the polishing process time of the smooth polishing process was shortened to 6 hours, and the work was improved. However, as described above, in recent years, there is a demand for further reducing the polishing process time. In general barrel polishing using abrasive media and ceramic media fired with a binder such as clay or porcelain, for example, when processing cylindrical workpieces, media, compound and water are usually used In the above processing conditions, it is the limit to smooth polishing to a surface roughness of Ra 0.02 μm (≈Rz 0.15 μm), and as described above, it corresponds to the demand for ultra-smooth polishing using a barrel polishing apparatus. I couldn't.

本発明は、従来の研磨加工時間をさらに短くするとともに、前記の超平滑研磨加工を容易にすることができるバレル研磨方法を実現することを目的とするものである。 An object of the present invention is to realize a barrel polishing method capable of further shortening the conventional polishing time and facilitating the ultra-smooth polishing.

この発明は、上記目的を達成するため、請求項1に記載の発明では、バレル研磨装置に、底部に水平に回転する回転盤が設けられるとともに内部が洗浄可能に構成された研磨槽を備え、該研磨槽に少なくともワークとメディアと水とを投入して前記回転盤の回転により旋回流動させて混合されたマスを形成してワークを研磨する流動バレル研磨装置を用い、表面が平滑な球形のメディアと研磨の進行に伴い粉砕される砥粒Aとコンパウンドと水とを前記研磨槽に投入してワークを研磨する粗研磨工程と、該粗研磨工程後に前記研磨槽内に給水し研磨槽内に残った研磨使用済みの砥粒Aとコンパウンドと水、及びワークとメディアと砥粒Aの磨耗粉を前記研磨槽外に洗浄排出して洗浄されたワーク及びメディアを前記研磨槽内に残留させる洗浄工程と、前記洗浄工程後に前記研磨槽内に新たにコンパウンドと水とを投入してワークを研磨する平滑研磨工程と、を備えた技術的手段を用いる。 In order to achieve the above object, according to the first aspect of the present invention, in the barrel polishing apparatus, the barrel polishing apparatus includes a polishing tank that is provided with a rotating plate that rotates horizontally at the bottom and is configured to be washable inside. Using a fluid barrel polishing device that forms at least a work, media, and water into the polishing tank and is swirled and fluidized by rotation of the rotating disk to form a mixed mass and polish the work. A rough polishing step in which abrasive grains A, a compound, and water, which are pulverized as the media progresses, are put into the polishing tank and the workpiece is polished, and water is supplied into the polishing tank after the rough polishing process. The used abrasive grains A, compound, water, and the abrasive powder of the work, media, and abrasive grains A are washed out and discharged to the outside of the polishing tank, and the cleaned work and media remain in the polishing tank. Washing Degree and, using the technical means and a smoothing polishing step of polishing a workpiece by newly introducing compound and water in the polishing vessel after the cleaning process.

請求項1に記載の発明によれば、研磨装置に、研磨メカニズムが研磨槽の底部に水平回転する回転盤により前記研磨槽に投入されたワークとメディアを流動させて、メディアあるいは砥粒がワークに与える研磨作用(=研磨力)が遠心バレル研磨装置に次いで大である流動バレル研磨装置を採用し、粗研磨工程で使用する砥粒には、バレル研磨において通常使用されているアルミナや炭化珪素などの砥粒に比べ柔らかく、研磨の進行に伴い粉砕される砥粒Aを採用して、研磨時間を要せずワークの表面粗さを小さくすることができるようになっている。洗浄工程では、研磨装置に流動バレル研磨装置を採用したから、回転盤を回転させて研磨槽内にワークとメディアが流動されて形成されるマスに洗浄水を給水すれば、その洗浄水はマス中を通過して研磨槽内に残った研磨使用済みの砥粒A、コンパウンド、水、及びワーク、メディア、砥粒Aの磨耗粉を、研磨槽と回転盤の摺接隙間より研磨槽外へ容易に洗浄排出することができる。洗浄されたワークとメディアは、次の平滑研磨工程における表面粗さを向上させるための阻害要因が前記のように排除できて研磨槽内に残留させることができるので平滑研磨の前処理として好適である。平滑研磨工程では、表面が硬質で平滑な球形のメディアの表面がワークの研磨表面を押圧しながら擦れ合って研磨するから、前工程の粗研磨工程で研磨されたワークの表面に研磨痕を無くして更に平滑な表面に研磨する「超平滑研磨」を短時間で実現することができる。なお、最終研磨の前記平滑研磨工程を経たワークは、流動バレル研磨装置の研磨槽が反転されて、研磨使用済みのメディア、コンパウンド、水と共に研磨槽外へ排出され、研磨槽外で洗浄水および防錆剤を噴霧する洗浄工程を経てワークとメディアの磨耗粉およびコンパウンド、水を洗い流した後、ワーク、メディアを選別機にてメディアを除去して最終製品であるワークを回収するものである。 According to the first aspect of the present invention, the work or media put in the polishing tank is caused to flow by the rotating device whose polishing mechanism rotates horizontally at the bottom of the polishing tank. Adopts a fluidized barrel polishing apparatus whose polishing action (= polishing power) is the second largest after the centrifugal barrel polishing apparatus, and the abrasive grains used in the rough polishing process include alumina and silicon carbide that are usually used in barrel polishing. Adopting abrasive grains A that are softer than abrasive grains and that are pulverized as the polishing progresses, the surface roughness of the workpiece can be reduced without requiring polishing time. In the cleaning process, a fluidized barrel polishing apparatus is used as the polishing apparatus. Therefore, if cleaning water is supplied to a mass formed by rotating a rotating disk and flowing a work and a medium in the polishing tank, the cleaning water is supplied to the mass. The used abrasive grains A, compound, water, and workpieces, media, and abrasive grains A that have passed through the inside of the polishing tank are removed from the polishing tank through the sliding contact gap between the polishing tank and the rotating disk. Easily washed and discharged. The cleaned workpiece and media are suitable as a pretreatment for smooth polishing because the obstructive factors for improving the surface roughness in the next smooth polishing step can be eliminated as described above and can remain in the polishing tank. is there. In the smooth polishing process, the surface of the spherical media with a hard and smooth surface rubs against each other while pressing the polishing surface of the workpiece, so that polishing marks are removed from the surface of the workpiece polished in the previous rough polishing step. In addition, “super smooth polishing” for polishing to a smoother surface can be realized in a short time. The workpiece that has undergone the smooth polishing step of the final polishing is inverted in the polishing tank of the fluid barrel polishing apparatus, and discharged to the outside of the polishing tank together with the used media, compound, and water. After the washing process of spraying a rust preventive, the work and media wear powder, compound and water are washed away, and then the work and media are removed by a sorter to recover the work, which is the final product.

請求項2に記載の発明では、請求項1に記載のバレル研磨方法において、前記砥粒Aは、珪石、パーミス、シラス、パーライト、白土、石灰岩、の粉末の少なくとも1つからなる技術的手段を用いる。 According to a second aspect of the present invention, in the barrel polishing method according to the first aspect, the abrasive grain A is a technical means comprising at least one of powders of silica, permis, shirasu, pearlite, white clay, and limestone. Use.

請求項2に記載の発明のように、珪石、パーミス、シラス、パーライト、白土、石灰岩、の粉末は、バレル研磨の砥粒として通常使用されているアルミナや炭化珪素などに比べて軟質で、研磨の進行に伴い粉砕され易くなるため、ワークの表面の研磨痕も細かく表面粗さも小さくなるため、平滑研磨工程の前工程である粗研磨工程用の砥粒Aとして好適に用いることができる。 As in the invention according to claim 2, the powder of silica, permis, shirasu, pearlite, white clay, limestone is softer and more polished than alumina or silicon carbide that is usually used as abrasive grains for barrel polishing. Since it becomes easy to grind | pulverize with progress of this, since the grinding | polishing trace of the surface of a workpiece | work is fine and surface roughness becomes small, it can be used suitably as the abrasive grain A for rough | crude grinding | polishing processes which is a pre-process of a smooth grinding | polishing process.

請求項3に記載の発明では、請求項1または請求項2に記載のバレル研磨方法に使用する前記砥粒Aは、平均粒径が15μm〜3μmである技術的手段を用いる。 In invention of Claim 3, the said abrasive grain A used for the barrel polishing method of Claim 1 or Claim 2 uses the technical means whose average particle diameter is 15 micrometers-3 micrometers.

前記粗研磨工程は、平滑研磨の下地処理をする工程であって、当該粗研磨工程に使用する砥粒Aの粒子径は、大きすぎると研磨痕が大きくなり小さすぎると研磨力が低下して加工時間がながくなるから、前記請求項3に記載の発明のように、平均粒径が15μm以下であり3μm以上の砥粒を用いると好適である。 The rough polishing step is a step of performing a ground treatment for smooth polishing, and if the particle size of the abrasive grains A used in the rough polishing step is too large, the polishing mark becomes large, and if it is too small, the polishing power decreases. Since the processing time is shortened, it is preferable to use abrasive grains having an average particle diameter of 15 μm or less and 3 μm or more as in the invention of claim 3.

請求項4に記載の発明では、請求項1ないし請求項3のいずれか1つに記載のバレル研磨方法において、前記メディアは、粒径が2〜6mmの焼成または焼結メディアである技術的手段を用いる。 According to a fourth aspect of the present invention, in the barrel polishing method according to any one of the first to third aspects, the medium is a baked or sintered medium having a particle diameter of 2 to 6 mm. Is used.

請求項4に記載の発明のように、請求項1ないし請求項3のいずれか1つに記載のメディアとしては平滑研磨用に使用されるものであるから材質を硬質の焼成または焼結メディアとし、その研磨中に研磨痕を形成してはならないから形状を球形にし、その粒径を2〜6mmにした硬質の焼成または焼結メディアにすることにより平滑研磨用として好適に用いることができる。粒径は2mm未満では、研磨力が小さくなるため研磨時間が長くなり、粒径が6mmを超えると、ワークの表面に研磨痕が形成され易く、表面粗さを極めて小さくすることが困難となる。 Since the medium according to any one of claims 1 to 3 is used for smooth polishing as in the invention according to claim 4, the material is a hard fired or sintered medium. Since a polishing mark should not be formed during the polishing, it can be suitably used for smooth polishing by making the shape spherical and making it a hard fired or sintered medium having a particle size of 2 to 6 mm. If the particle size is less than 2 mm, the polishing force becomes small and the polishing time becomes long. If the particle size exceeds 6 mm, polishing marks are likely to be formed on the surface of the workpiece, and it becomes difficult to make the surface roughness extremely small. .

請求項5に記載の発明では、請求項1ないし請求項4のいずれか1つに記載のバレル研磨方法において、前記洗浄工程と前記平滑研磨工程との間に、前記粗研磨工程で用いた砥粒Aよりも軟質かつ粒径が小さく、研磨の進行に伴い粉砕される砥粒Bと、コンパウンドと、水と、を前記研磨槽内に新たに投入してワークを研磨する第2粗研磨工程と、該第2粗研磨工程終了後に、研磨槽内に洗浄水を新たに給水して該研磨槽内に残った研磨使用済みの砥粒B、コンパウンド、水、及びワーク、メディア、砥粒Bの磨耗粉を研磨槽外に洗浄排出して洗浄されたワーク及びメディアを前記研磨槽内に残留させる第2洗浄工程と、を備えた技術的手段を用いる。 According to a fifth aspect of the present invention, in the barrel polishing method according to any one of the first to fourth aspects, the abrasive used in the rough polishing step between the cleaning step and the smooth polishing step. A second rough polishing step in which the abrasive B, which is softer than the particles A and has a smaller particle size, and which is pulverized as the polishing proceeds, a compound, and water are newly introduced into the polishing tank to polish the workpiece. Then, after the second rough polishing step is completed, cleaning water is newly supplied into the polishing tank, and used polishing abrasive grains B, compound, water, and workpieces, media, and abrasive grains B remaining in the polishing tank. And a second cleaning step of cleaning and discharging the wear powder out of the polishing tank and leaving the cleaned work and media in the polishing tank.

請求項5に記載の発明のように、前記洗浄工程と平滑研磨工程との間に、前記粗研磨工程で用いた砥粒Aよりも軟質かつ粒径が小さく研磨の進行に伴い粉砕される砥粒Bとコンパウンドと水とを前記研磨槽内に新たに投入してワークを研磨する第2粗研磨工程と、第2粗研磨工程後に研磨槽内に給水して研磨槽内に残った砥粒B及びコンパウンドとワーク及びメディアの磨耗粉を研磨槽外に洗浄排出して洗浄されたワーク及びメディアを研磨槽内に残留させる第2洗浄工程を実施することができる。第2粗研磨工程では、研磨の進行に伴い粉砕され粗研磨工程で用いた砥粒Aよりも軟かく粒径の小さな砥粒Bを用いるためワークの表面を粗研磨工程よりも更に表面粗さが小さい平滑な面とすることができる。第2洗浄工程では、前記洗浄工程と同様の効果を奏し、次の平滑研磨工程における表面粗さを向上させるための阻害要因となる第2粗研磨工程で研磨使用済みの砥粒B、コンパウンド、水、及びワーク、メディア、砥粒Bの磨耗粉を研磨槽と回転盤の摺接隙間より研磨槽外へ容易に洗浄排出することができ、洗浄されたワークとメディアを研磨槽内に残留させることができるから、次の、表面粗さをさらに向上させる平滑研磨工程を実施することができる。 As in the invention according to claim 5, between the cleaning step and the smooth polishing step, the abrasive is softer and smaller in particle size than the abrasive grain A used in the rough polishing step and pulverized as the polishing proceeds. A second rough polishing step in which grains B, compound, and water are newly added into the polishing tank to polish the workpiece, and abrasive grains remaining in the polishing tank by supplying water to the polishing tank after the second rough polishing process. A second cleaning step can be performed in which the abrasive powder of B, compound, work and media is washed and discharged out of the polishing tank and the cleaned work and media remain in the polishing tank. In the second rough polishing step, since the abrasive grains B that are pulverized with the progress of polishing and are softer than the abrasive grains A used in the rough polishing step are used, the surface of the workpiece is further roughened than the rough polishing step. Can be a smooth surface. In the second cleaning step, the same effects as in the cleaning step described above, the abrasive grains B used in polishing in the second rough polishing step, which becomes an impediment for improving the surface roughness in the next smooth polishing step, compound, Water, workpieces, media, and abrasive powder B can be easily washed out of the polishing tank through the sliding contact gap between the polishing tank and the rotating disk, and the cleaned work and media remain in the polishing tank. Therefore, the next smooth polishing step for further improving the surface roughness can be performed.

請求項6に記載の発明では、請求項1ないし請求項5のいずれか1つに記載のバレル研磨方法において、前記粗研磨工程もしくは第2粗研磨工程において前記研磨槽に添加する水の量は、前記ワーク及びメディアに対して6〜30%とし、前記平滑研磨工程において前記研磨槽に添加する水の量は、前記ワーク及びメディアに対して60%〜100%とした技術的手段を用いる。 According to a sixth aspect of the present invention, in the barrel polishing method according to any one of the first to fifth aspects, the amount of water added to the polishing tank in the rough polishing step or the second rough polishing step is The technical means is 6 to 30% with respect to the workpiece and the medium, and the amount of water added to the polishing tank in the smooth polishing step is 60% to 100% with respect to the workpiece and the medium.

請求項6に記載の発明のように、粗研磨工程もしくは第2粗研磨工程において研磨槽に添加する水の量は、ワーク及びメディアに対して6〜30%が好ましい。水の量が6%未満では、研磨中にマスの粘稠性が増大して研磨槽内の温度が上昇し、研磨槽の構成部材が膨張して回転盤と固定槽との間の摺接隙間が閉塞し回転盤の回転が止まるなどの障害が発生するおそれがある。また、水の量が30%を超えると、粗研磨工程に使用する砥粒Aもしくは第2粗研磨工程に使用する砥粒Bの水に対する混合割合が低下することとなるから、前記砥粒Aもしくは砥粒Bのワークに与える研磨作用(=研磨力)が低下する傾向となる。平滑研磨工程における水の量は、メディアによる研磨力がワークの表面粗さを向上可能な程度に抑制する緩衝作用を持たせるために粗研磨工程よりも多い60%〜100%にすることが好ましい。ここで、「ワーク及びメディアに対する水の量」は、ワーク及びメディアを研磨槽に投入したときの見かけの体積に対する水の体積である。 As in the invention described in claim 6, the amount of water added to the polishing tank in the rough polishing step or the second rough polishing step is preferably 6 to 30% with respect to the workpiece and the medium. If the amount of water is less than 6%, the viscosity of the mass increases during polishing, the temperature in the polishing tank rises, the constituent members of the polishing tank expand, and the sliding contact between the rotating disk and the fixed tank occurs. There is a possibility that troubles such as the clogging of the gap and the rotation of the rotating disk stop occur. Moreover, since the mixing ratio with respect to the water of the abrasive grain A used for a rough | crude grinding | polishing process or the abrasive grain B used for a 2nd rough | crude grinding | polishing process will fall when the quantity of water exceeds 30%, the said abrasive grain A Alternatively, the polishing action (= polishing power) given to the workpiece of the abrasive grains B tends to decrease. The amount of water in the smooth polishing step is preferably 60% to 100%, which is larger than that in the rough polishing step, in order to have a buffering action that suppresses the polishing force by the media to such an extent that the surface roughness of the workpiece can be improved. . Here, the “amount of water relative to the workpiece and the medium” is the volume of water relative to the apparent volume when the workpiece and the medium are put into the polishing tank.

請求項7に記載の発明では、請求項5または請求項6に記載のバレル研磨方法において、前記砥粒Bの材質が、セリウム、クロム、鉄の酸化物の少なくとも1つからなる技術的手段を用いる。 According to a seventh aspect of the present invention, in the barrel polishing method according to the fifth or sixth aspect, the technical means wherein the abrasive grain B is made of at least one of cerium, chromium, and iron oxides. Use.

請求項7に記載の発明のように、セリウム、クロム、鉄の酸化物は、前記粗研磨工程での砥粒Aに使用する珪石、パーミス、シラス、パーライト、白土、石灰岩、などの粉末に比べてさらに軟質であるから、ワークの表面に研磨痕が付き難く研磨ができ、前記粗研磨工程を終了したワークの表面粗さをさらに平滑にする砥粒Bとして好適に用いることができる。 As in the invention described in claim 7, oxides of cerium, chromium, and iron are compared with powders of silica, permis, shirasu, pearlite, white clay, limestone, etc. used for the abrasive grains A in the rough polishing step. Since it is softer, the surface of the workpiece can be polished with less polishing marks, and can be suitably used as the abrasive grain B for further smoothing the surface roughness of the workpiece after the rough polishing step.

請求項8に記載の発明では、請求項5ないし請求項7のいずれか1つに記載の流動バレル研磨方法において、前記砥粒Bの平均粒径が5μm〜1μmであることを技術的手段に用いる。 According to an eighth aspect of the present invention, in the fluid barrel polishing method according to any one of the fifth to seventh aspects, the technical means is that the average particle diameter of the abrasive grains B is 5 μm to 1 μm. Use.

前記第2粗研磨工程は、請求項5ないし請求項7のいずれか1つに記載の流動バレル研磨方法の平滑研磨工程において、ワークの表面粗さをさらに小さくした超平滑面に研磨するための下地処理をする工程であって、当該第2粗研磨工程で使用する砥粒Bの平均粒径は、前記請求項5の粗研磨工程に使用する砥粒Aの粒子径より小さくする必要があってその平均粒径を5μm以下とし、小さすぎると研磨力が低下するからその平均粒径を1μm以上の砥粒を用いると好適である。 In the smooth polishing step of the fluid barrel polishing method according to any one of claims 5 to 7, the second rough polishing step is for polishing to an ultra-smooth surface in which the surface roughness of the workpiece is further reduced. It is a step for performing a ground treatment, and the average particle size of the abrasive grains B used in the second rough polishing step needs to be smaller than the particle size of the abrasive particles A used in the rough polishing step of claim 5. If the average particle size is 5 μm or less, and if the average particle size is too small, the polishing power decreases. Therefore, it is preferable to use abrasive grains having an average particle size of 1 μm or more.

請求項9に記載の発明では、請求項1ないし請求項8のいずれか1つに記載のバレル研磨方法において、前記流動バレル研磨装置は、前記回転盤の回転中心上部に固定または回転可能に軸支された円筒形状の内筒を備えている技術的手段を用いる。 According to a ninth aspect of the present invention, in the barrel polishing method according to any one of the first to eighth aspects, the fluid barrel polishing apparatus has a shaft that is fixed or rotatable at an upper rotation center of the rotating disk. Technical means comprising a supported cylindrical inner cylinder are used.

従来の流動バレル研磨装置における回転盤の回転による研磨槽内に投入されたワーク、メディア、砥粒の流動方向は、底部の回転盤より固定槽の側壁に沿って上昇して頂点に達した後、回転盤の回転中心方向に方向転換して下降して旋回流動し、マスが形成される。該マスの形状は、前記回転盤の回転中心上部が凹形状となって空洞域が形成される。前記マスの空洞域は、流動するワーク、メディア、砥粒が相互に擦れ合う押圧力が開放されて研磨力が低下する。請求項9に記載の発明の流動バレル研磨装置は、回転盤の回転中心上部に設けた円筒形状の内筒が、前記マスの空洞部を塞ぎ研磨力の低下を防止することができるから、研磨効率を向上させることができる。 After the flow direction of the workpiece, media, and abrasive grains put into the polishing tank by the rotation of the rotating disk in the conventional fluid barrel polishing apparatus rises from the bottom rotating disk along the side wall of the fixed tank, and reaches the top Then, the direction is changed in the direction of the center of rotation of the rotating disk, descends and swirls to form a mass. With respect to the shape of the mass, the upper part of the center of rotation of the rotating disk is concave to form a hollow area. In the hollow area of the mass, the pressing force with which the flowing work, media, and abrasive grains rub against each other is released, and the polishing power is reduced. In the fluid barrel polishing apparatus according to the ninth aspect of the present invention, the cylindrical inner cylinder provided at the upper center of the rotation center of the rotating disk can block the cavity of the mass and prevent the polishing force from being lowered. Efficiency can be improved.

請求項10に記載の発明では、請求項1ないし請求項9のいずれか1つに記載のバレル研磨方法により、前記ワークが、金属材料からなる円柱形状のワークであって、該ワークの表面を研磨して表面粗さをRa0.02μm以下にした技術的手段を用いる。 According to a tenth aspect of the present invention, in the barrel polishing method according to any one of the first to ninth aspects, the workpiece is a cylindrical workpiece made of a metal material, and the surface of the workpiece is A technical means having been polished to a surface roughness of Ra 0.02 μm or less is used.

請求項10に記載の発明のように、本発明のバレル研磨方法は、金属材料からなる円柱形状のワークの表面粗さをRa0.02μm以下にした超平滑研磨加工を施したワークを得ることができるものであり、表面粗さをさらに小さくする場合、あるいはワークの材質、物性値等が異なって研磨条件を変更する必要がある場合は、洗浄工程と平滑研磨工程との間に必要に応じて第2粗研磨工程と第2洗浄工程を設けて超平滑研磨加工を施した金属材料からなる円柱形状のワークを得ることができる。 As in the invention described in claim 10, the barrel polishing method of the present invention can obtain a workpiece subjected to ultra-smooth polishing in which the surface roughness of a cylindrical workpiece made of a metal material is Ra 0.02 μm or less. If it is possible to further reduce the surface roughness, or if it is necessary to change the polishing conditions due to different workpiece materials, physical properties, etc., as necessary between the cleaning step and the smooth polishing step A cylindrical workpiece made of a metal material that has been subjected to ultra-smooth polishing by providing the second rough polishing step and the second cleaning step can be obtained.

本発明に用いる流動バレル研磨装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the fluid barrel grinding | polishing apparatus used for this invention. 本発明に用いる流動バレル研磨装置の構成を示す説明図である。It is explanatory drawing which shows the structure of the fluid barrel grinding | polishing apparatus used for this invention. 流動バレル研磨方法の工程を示す説明図である。It is explanatory drawing which shows the process of the fluid barrel grinding | polishing method. 流動バレル研磨方法の工程の変更例を示す説明図である。It is explanatory drawing which shows the example of a change of the process of the fluid barrel grinding | polishing method. メディア形状の違いによるワークに付与できる到達可能な表面粗さとその研磨時間の関係を示す説明図である。It is explanatory drawing which shows the relationship of the surface roughness which can be provided to the workpiece | work by the difference in media shape, and its grinding | polishing time.

本発明の流動バレル研磨方法について、図を参照して説明する。 The fluid barrel polishing method of the present invention will be described with reference to the drawings.

図1は、本発明に用いる流動バレル研磨装置の構成を示す説明図であって、ワークの研磨を行う研磨槽1が円筒形状に形成された固定槽2と、この固定槽2の下端開口内周部に摺接隙間3を形成して水平回転する皿盤状の回転盤4とを備えている。回転盤4と固定槽2の底板5との間には、摺接隙間3と回転盤4の回転中心部に形成した孔8が連通する通路6が形成されており、通路6には開閉弁付きの排水管7が接続されている。 FIG. 1 is an explanatory diagram showing the configuration of a fluid barrel polishing apparatus used in the present invention, in which a polishing tank 1 for polishing a workpiece is formed in a cylindrical shape, and a lower end opening of the fixed tank 2 is shown. It has a platen-like rotating disk 4 that rotates horizontally by forming a sliding contact gap 3 around the periphery. A passage 6 is formed between the turntable 4 and the bottom plate 5 of the fixed tank 2 so that a sliding contact gap 3 communicates with a hole 8 formed in the center of rotation of the turntable 4. The attached drain pipe 7 is connected.

図2は、上述の図1に示した流動バレル研磨装置の回転盤4の回転中心上部に、固定または回転可能に軸支する内筒9を設けて研磨するようにし、上述の流動バレル研磨装置の研磨効率をさらに向上させた研磨装置として、本発明者らがPCT/JP2005/002233にて出願した発明に係る流動バレル研磨装置である。 FIG. 2 shows an example of the above-described fluid barrel polishing apparatus in which the inner cylinder 9 that is supported in a fixed or rotatable manner is provided on the rotation center of the rotating disk 4 of the fluid barrel polishing apparatus shown in FIG. As a polishing apparatus that further improves the polishing efficiency, a fluid barrel polishing apparatus according to the invention filed by the present inventors in PCT / JP2005 / 002233 is provided.

図3は、粗研磨工程と洗浄工程と平滑研磨工程から構成され、その研磨工程が2工程からなる流動バレル研磨方法の工程説明図であって、以下にその研磨加工の工程を詳細に説明する。 FIG. 3 is a process explanatory diagram of a fluid barrel polishing method comprising a rough polishing process, a cleaning process, and a smooth polishing process, and the polishing process is composed of two processes. The polishing process will be described in detail below. .

粗研磨工程S1では、流動バレル研磨装置の研磨槽1内に、ワークと、メディアと、研磨の進行に伴い粉砕される砥粒Aと、研磨助剤であるコンパウンド及び水とを投入する。回転盤4を回転させると前記研磨槽1内に投入されたワーク、メディア、砥粒A、コンパウンド、水は、底部の回転盤4より固定槽2の側壁に沿って上昇して頂点に達した後、回転盤4の回転中心方向に方向転換して下降し研磨槽1内を旋回流動してマスMが形成されてワークが研磨される。 In the rough polishing step S1, a workpiece, a medium, abrasive grains A that are pulverized as the polishing proceeds, and a compound and water as a polishing aid are put into the polishing tank 1 of the fluid barrel polishing apparatus. When the turntable 4 is rotated, the work, media, abrasive grains A, compound, and water charged in the polishing tank 1 rise from the bottom turntable 4 along the side wall of the fixed tank 2 and reach the top. Thereafter, the direction is changed in the direction of the center of rotation of the rotating disk 4 and descends and flows in the polishing tank 1 to form a mass M and the workpiece is polished.

メディアの選定における当該メディアがワークに付与できる到達可能な表面粗さと研磨時間の関係については、図5に示すようにメディアの形状により決定される。本発明に使用するメディアは、硬質で、表面が平滑の焼成または焼結メディアとし、その形状は、球形とした例えばアルミナボールを採用する必要がある。これは、図5から明らかのように、メディアの形状が、三角形、円柱、非球形などであると、球形と比較して研磨力が大きいから、研磨加工初期段階において研磨加工時間を短くして表面粗さを小さくすることはできるが、研磨加工終了段階において得られる到達可能な表面粗さは前記球形よりも大きくなるからである。また、メディアの粒子径は、2〜6mmが好ましい。粒子径が2mm未満では、研磨力が小さくなって研磨時間が長くなり、6mmを超えると研磨力が大きくなって表面粗さを小さくすることが困難となるからである。 The relationship between the reachable surface roughness that can be imparted to the workpiece and the polishing time in the media selection is determined by the shape of the media as shown in FIG. The media used in the present invention is hard and has a smooth surface, or a sintered or sintered media. The shape of the media must be spherical, for example, alumina balls. As apparent from FIG. 5, when the media shape is triangular, cylindrical, non-spherical, etc., the polishing power is larger than that of the spherical shape, so the polishing time is shortened in the initial stage of the polishing process. Although the surface roughness can be reduced, the reachable surface roughness obtained at the end of the polishing process is larger than the spherical shape. The media particle size is preferably 2 to 6 mm. This is because if the particle diameter is less than 2 mm, the polishing force becomes small and the polishing time becomes long, and if it exceeds 6 mm, the polishing force becomes large and it becomes difficult to reduce the surface roughness.

粗研磨工程S1に使用する砥粒Aは、バレル研磨の砥粒として通常使用されているアルミナや炭化珪素などに比べて軟質で、研磨の進行に伴い粉砕される珪石、パーミス、シラス、パーライト、白土、石灰岩、の粉末から選択して用いる。これらの砥粒Aは、適度な硬さ(モース硬度6〜4)を有しており、研磨初期には前記硬さに比例した研磨力を有するが、研磨の進行に伴い研磨槽内で粉砕されて研磨力が低下するため、研磨時間の経過につれて表面粗さを小さくすることができる。砥粒Aは、前記のように適度な研磨力を有するからワークの表面を超平滑に研磨するための下地処理を的確に施すことができる。ここで、砥粒Aの平均粒径は15μm〜3μmが好ましい。 The abrasive grain A used in the rough polishing step S1 is softer than alumina or silicon carbide normally used as the abrasive grain for barrel polishing, and silica, permis, shirasu, pearlite, which are pulverized as the polishing progresses. Select from powder of white clay or limestone. These abrasive grains A have an appropriate hardness (Mohs hardness 6-4) and have a polishing power proportional to the hardness at the initial stage of polishing, but are pulverized in the polishing tank as the polishing progresses. Since the polishing power is reduced, the surface roughness can be reduced as the polishing time elapses. Since the abrasive grain A has an appropriate polishing force as described above, it is possible to accurately perform the base treatment for polishing the surface of the workpiece in an ultra-smooth manner. Here, the average particle diameter of the abrasive grains A is preferably 15 μm to 3 μm.

粗研磨工程S1に用いるコンパウンドは、珪石粉、無機塩を含み界面活性剤を主成分とするものを用いる。 As the compound used in the rough polishing step S1, a compound containing silica powder and an inorganic salt and containing a surfactant as a main component is used.

また、粗研磨工程S1において添加する水の量は、ワーク及びメディアの容積(100%)に対し6〜30%が好ましい。 Further, the amount of water added in the rough polishing step S1 is preferably 6 to 30% with respect to the volume (100%) of the workpiece and the medium.

水を添加して研磨を行う湿式流動バレル研磨では、通常ワーク及びメディアの容積(100%)に対して70〜100容積%となるように水を添加して研磨するのが一般的であるが、本発明のように砥粒を投入して研磨する場合、前記のように水の量を多く添加して研磨を行うと、研磨のために投入した砥粒の水に対する混合割合が低下することとなるから、前記砥粒がワークとメディアの間に介在し押圧されて互いに擦れ合う作用(=研磨力)が低下する。また、同時に添加するコンパウンドの濃度が低下し研磨助剤としての効果も低下するから、その効果を得るためには添加量を多くする必要がある。従って、本発明では、砥粒を使用するために水の量を少なくする必要があり、ワーク及びメディアの容積(100%)に対して6〜30%が好適である。しかし、前記水の量が6%未満では、研磨中にマスの粘稠性が増大して研磨槽内の温度が上昇して研磨槽1の構成部材が膨張し、回転盤4と固定槽2との間の摺接隙間3が閉塞して回転盤4の回転が停止するなどの障害が発生する。また、水の量が30%を超えると、前記のように添加された砥粒がワークと擦れ合う作用が低下して充分な研磨力が得られない。 In wet fluid barrel polishing in which water is added for polishing, it is common to polish by adding water so that the volume is usually 70 to 100% by volume with respect to the volume (100%) of the workpiece and media. In addition, when polishing is performed by adding abrasive grains as in the present invention, if the polishing is performed by adding a large amount of water as described above, the mixing ratio of the abrasive grains input for polishing to water decreases. Therefore, the action (= polishing power) that the abrasive grains are interposed between the workpiece and the media and pressed and rubbed against each other is reduced. Further, since the concentration of the compound added at the same time is lowered and the effect as a polishing aid is also lowered, it is necessary to increase the amount of addition in order to obtain the effect. Therefore, in the present invention, it is necessary to reduce the amount of water in order to use the abrasive grains, and 6 to 30% is preferable with respect to the volume (100%) of the workpiece and the medium. However, if the amount of water is less than 6%, the viscosity of the mass increases during polishing, the temperature in the polishing tank rises, the constituent members of the polishing tank 1 expand, and the turntable 4 and fixed tank 2 expand. And the sliding contact gap 3 is closed and the rotation of the turntable 4 is stopped. On the other hand, if the amount of water exceeds 30%, the action of the abrasive grains added as described above rubbing against the workpiece is reduced, and sufficient polishing power cannot be obtained.

前記のように、本発明の粗研磨工程S1では、バレル研磨において通常使用されているアルミナや炭化珪素などに比べ柔らかく、研磨の進行に伴い粉砕される砥粒Aを用い添加する水の量を少くすることにより研磨時間を短縮することができ、ワークの表面粗さを小さくすることができる。 As described above, in the rough polishing step S1 of the present invention, the amount of water to be added using the abrasive grains A that are softer than alumina and silicon carbide that are usually used in barrel polishing and pulverized as the polishing progresses. By reducing the number, the polishing time can be shortened, and the surface roughness of the workpiece can be reduced.

次に行う洗浄工程S2では、前記研磨槽1内に投入されたワーク、メディア、砥粒A、コンパウンド、水が、回転盤4の回転により旋回流動してマスMを形成し、粗研磨工程S1を終えた研磨槽1内のマスMに洗浄用水を連続的に給水してマスMを洗浄する。マスM中の研磨使用済みの砥粒A、コンパウンド、水、及びワークとメディアと砥粒Aの磨耗粉は、洗浄用水と共に、摺接隙間3、孔8、通路6を経て排水管7より流動バレル研磨装置の系外へ排出され、洗浄されたワーク及びメディアが研磨槽1内に残留する。 In the next cleaning step S2, the work, media, abrasive grains A, compound, and water charged in the polishing tank 1 are swirled and flowed by the rotation of the rotating disk 4 to form a mass M, and the rough polishing step S1. The cleaning water is continuously supplied to the mass M in the polishing tank 1 after finishing the cleaning to clean the mass M. Polished used abrasive grains A, compound, water, and abrasive powder of the workpiece, media, and abrasive grains A in the mass M flow from the drain pipe 7 through the sliding contact gap 3, the hole 8, and the passage 6 together with the cleaning water. The work and media that have been discharged out of the system of the barrel polishing apparatus and cleaned remain in the polishing tank 1.

本発明に用いる研磨装置を前記構成の流動バレル研磨装置にしたから、洗浄工程S2では、前記のように洗浄されたワーク及びメディアのみを研磨槽1内に残留させ、研磨使用済みの砥粒A、コンパウンド、水、及びワークとメディアと砥粒Aの磨耗粉の洗浄排出を短時間で容易に洗い流すことができる。これにより、続く平滑研磨工程S5において、ワークの表面粗さを向上させるための阻害要因が排除されたワークとメディアを研磨槽1内に残留させることができ、次の平滑研磨工程S5に入る準備が完了する。 Since the polishing apparatus used in the present invention is the fluidized barrel polishing apparatus having the above-described configuration, in the cleaning step S2, only the workpiece and the medium cleaned as described above are left in the polishing tank 1, and the abrasive grains A used for polishing are used. The cleaning and discharging of the compound, water, and the wear powder of the workpiece, the medium, and the abrasive grains A can be easily washed out in a short time. As a result, in the subsequent smooth polishing step S5, the work and media from which the obstruction factors for improving the surface roughness of the work are eliminated can be left in the polishing tank 1, and preparation for entering the next smooth polishing step S5 is performed. Is completed.

続く平滑研磨工程S5では、洗浄されたワークとメディアが残っている研磨槽1内に新たにコンパウンドと水を投入して、回転盤4の回転によりワーク、メディア、コンパウンド、水を旋回流動させて、前記粗研磨工程S1で粗研磨されたワークの表面を超平滑に研磨する。メディアは、前記粗研磨工程S1で使用され洗浄された硬質で球形状のもので、前記ワーク、メディア、コンパウンド、水の旋回流動により、メディアがワークへ作用する押圧力(=研磨力)によって研磨が行われる。また、前記の平滑研磨工程S5における水の投入量は、メディアが水を介在させてワークへ作用する前記研磨力によりワークの表面粗さを小さくし向上させ、且つ研磨時間をいたずらに必要としない程度に前記研磨力を抑制する緩衝作用を持たせる量にする必要があって、前記粗研磨工程S1よりも多くする必要がある。例えば、ワーク及びメディアの容積(100%)に対して60%〜100%にすることが好ましい。 In the subsequent smooth polishing step S5, the compound and water are newly added into the polishing tank 1 where the cleaned work and media remain, and the work, media, compound and water are swirled and flowed by the rotation of the rotating disk 4. The surface of the workpiece roughly polished in the rough polishing step S1 is polished ultra-smoothly. The medium is a hard, spherical shape that has been used and cleaned in the rough polishing step S1, and is polished by a pressing force (= polishing force) on which the medium acts on the workpiece by the swirling flow of the workpiece, the medium, the compound, and the water. Is done. In addition, the amount of water input in the smooth polishing step S5 is such that the surface roughness of the workpiece is reduced and improved by the polishing force acting on the workpiece with the media intervening water, and the polishing time is not required to be mischievous. The amount needs to have a buffering action that suppresses the polishing force to a certain extent, and needs to be larger than the rough polishing step S1. For example, it is preferably 60% to 100% with respect to the volume (100%) of the workpiece and the medium.

平滑研磨工程S5で使用するコンパウンドは、ワーク、研磨条件などに応じ、適宜選択することができる。粗研磨工程S1で使用したコンパウンドを用いることもできるが、潤滑性の高い光沢仕上げ用のコンパウンドを用いることが好ましい。 The compound used in the smooth polishing step S5 can be appropriately selected according to the workpiece, polishing conditions, and the like. Although the compound used in the rough polishing step S1 can be used, it is preferable to use a compound for glossy finishing with high lubricity.

図4は、本発明の工程が粗研磨工程、洗浄工程、第2粗研磨工程、第2洗浄工程、平滑研磨工程とからなり、研磨工程が3工程からなる変更例を示す工程説明図であって、以下に変更点について説明する。 FIG. 4 is a process explanatory diagram showing a modified example in which the process of the present invention includes a rough polishing process, a cleaning process, a second rough polishing process, a second cleaning process, and a smooth polishing process, and the polishing process includes three processes. The changes will be described below.

本発明の変更例として、粗研磨工程S1及び洗浄工程S2は、平滑研磨工程S5前に繰り返して実施することもできる。ここで、図4に示すように、2回目の粗研磨工程を第2粗研磨工程S3、続く洗浄工程を第2洗浄工程S4という。第2粗研磨工程S3では、研磨の進行に伴い粉砕され、粗研磨工程S1で用いた砥粒Aよりも軟かく粒子径の小さな砥粒Bを用いる。例えば、粗研磨工程S1で使用する砥粒Aの平均粒子径が7μmの珪石粉を用いる場合には、第2粗研磨工程S2で使用する砥粒Bの平均粒子径が2μm以下の酸化セリウムを用いることができる。これにより、ワークの表面粗さを粗研磨工程S1よりも更に表面粗さが小さい平滑な面とすることができるため、後工程の平滑研磨工程S5において、更に表面粗さが小さくすることができる。例えばRa0.01μm(≒Rz0.06μm)といった極めて平滑な表面が要求される場合に、好適に用いることができる。また、第2洗浄工程S4は、第2粗研磨工程S3の洗浄工程であり、前記粗研磨工程S1の洗浄工程S2と同様の作用効果を目的として設けられる工程である。 As a modification of the present invention, the rough polishing step S1 and the cleaning step S2 can be repeated before the smooth polishing step S5. Here, as shown in FIG. 4, the second rough polishing step is referred to as a second rough polishing step S3, and the subsequent cleaning step is referred to as a second cleaning step S4. In the second rough polishing step S3, abrasive grains B that are pulverized as the polishing proceeds and are softer than the abrasive grains A used in the rough polishing step S1 are used. For example, when using silica powder having an average particle diameter of 7 μm for the abrasive grains A used in the coarse polishing step S1, cerium oxide having an average particle diameter of 2 μm or less for the abrasive grains B used in the second rough polishing process S2 is used. Can be used. Thereby, since the surface roughness of the workpiece can be a smooth surface having a smaller surface roughness than the rough polishing step S1, the surface roughness can be further reduced in the subsequent smooth polishing step S5. . For example, when a very smooth surface such as Ra 0.01 μm (≈Rz 0.06 μm) is required, it can be suitably used. The second cleaning step S4 is a cleaning step of the second rough polishing step S3, and is a step provided for the same effect as the cleaning step S2 of the rough polishing step S1.

本発明を具体的にするために実施した例として、研磨工程が2工程からなる実施例1とその変更例である研磨工程が3工程からなる実施例2、および比較例を以下に説明し、本発明の実施例1、実施例2に使用したメディア、砥粒、コンパウンドの仕様、及び水の添加量について、次の表1に示す。   As an example carried out in order to make the present invention concrete, Example 1 in which the polishing step consists of two steps, Example 2 in which the polishing step, which is a modification thereof, consists of three steps, and a comparative example will be described below. Table 1 below shows the media, abrasive grains, compound specifications, and the amount of water used in Examples 1 and 2 of the present invention.

Figure 0005282894
Figure 0005282894

本実施例1では、ワークはステンレス鋼(SUS420J2)からなるφ3mm、長さ80mmの円柱部材を用いた。研磨前のワークの表面粗さは、Ra0.053μm(≒Rz0.38μm)であった。流動バレル研磨装置としては、研磨槽容量が40Lの図2に示す流動バレル研磨装置(新東ブレーター社製、型式:EVFX−1)を使用した。この流動バレル研磨装置は、後述の実施例2で使用した流動バレル研磨装置の回転盤の回転中心上部に、回転可能に円筒形状の内筒を軸支して備え、研磨力が大きくなるように構成されている。 In Example 1, a cylindrical member made of stainless steel (SUS420J2) and having a diameter of 3 mm and a length of 80 mm was used. The surface roughness of the workpiece before polishing was Ra 0.053 μm (≈Rz 0.38 μm). As a fluid barrel polishing device, a fluid barrel polishing device (manufactured by Shinto Blator, model: EVFX-1) shown in FIG. 2 having a polishing tank capacity of 40 L was used. This fluid barrel polishing apparatus is provided with a cylindrical inner cylinder rotatably supported on the rotation center of the rotating disk of the fluid barrel polishing apparatus used in Example 2 to be described later, so that the polishing force is increased. It is configured.

粗研磨工程S1で使用したメディアは、粒子径4mmの球状アルミナ質焼結メディア(新東ブレーター社製:V−4)、砥粒Aは、平均粒子径7μmの珪石粉、コンパウンドは、珪石粉、無機塩、界面活性剤が含まれた粉末コンパウンド(新東ブレーター社製:GPP)を使用し、ワークとメディアの比率は重量比率で1対5とし、合計で15Lとした。研磨槽1に、砥粒Aを30g、コンパウンドを200g、水を1.5L投入し、90分間の研磨を行った。ここで、ワーク及びメディアの容積(100%)に対する水の割合は13容積%である。 The media used in the rough polishing step S1 are spherical alumina sintered media (Shinto Blator: V-4) having a particle diameter of 4 mm, abrasive grains A are silica powder having an average particle diameter of 7 μm, and the compound is silica powder. , A powder compound containing inorganic salt and surfactant (manufactured by Shinto Brater Co., Ltd .: GPP) was used, and the weight ratio of the workpiece to the media was 1: 5, for a total of 15 L. The polishing tank 1 was charged with 30 g of abrasive grains A, 200 g of compound, and 1.5 L of water, and polished for 90 minutes. Here, the ratio of water to the volume (100%) of the work and the medium is 13% by volume.

次の洗浄工程S2において、研磨槽1内のワーク、メディア、砥粒A、コンパウンド、水を旋回流動させながら洗浄用水を給水して、砥粒A、コンパウンド、水、研磨屑を研磨槽1外に洗浄排出し、洗浄されたワーク及びメディアを残留させた。この段階で、ワークの表面粗さはRa0.022μm(≒Rz0.15μm)であって、洗浄工程S2で要した時間は約4分間であった。 In the next cleaning step S2, cleaning water is supplied while the workpiece, media, abrasive grain A, compound, and water in the polishing tank 1 are swirled and flowed to remove the abrasive grain A, compound, water, and polishing debris from the polishing tank 1. Then, the cleaned work and media remained. At this stage, the surface roughness of the workpiece was Ra 0.022 μm (≈Rz 0.15 μm), and the time required for the cleaning step S2 was about 4 minutes.

続く平滑研磨工程S5において、洗浄され研磨槽1内に残された前記ワーク及びメディアに、光沢研磨用液体コンパウンド(新東ブレーター社製:GLB)を40mL、水を10L添加して、15分間の研磨を行った。ここで、ワーク及びメディアに対する水の割合は約67%である。この工程を経たワークの表面粗さはRa0.014μm(≒Rz0.089μm)であって、超平滑面に研磨することができた。 In the subsequent smooth polishing step S5, 40 mL of gloss polishing liquid compound (GLB) and 10 L of water are added to the workpiece and media that have been cleaned and left in the polishing tank 1 for 15 minutes. Polishing was performed. Here, the ratio of water to the workpiece and the media is about 67%. The surface roughness of the workpiece after this step was Ra 0.014 μm (≈Rz 0.089 μm), and could be polished to an ultra-smooth surface.

上述のように、第2粗研磨工程S3及び第2洗浄工程S4を実施しない研磨工程が2工程の研磨方法であっても研磨装置に図2に示す研磨力が大きくなるように開発した流動バレル研磨装置を使用して研磨力を増大させることができるので、洗浄工程時間を含めた研磨加工時間が、2時間以内という短時間でワークの表面を超平滑面に研磨することができた。 As described above, the fluid barrel developed so that the polishing force shown in FIG. 2 is increased in the polishing apparatus even if the polishing process in which the second rough polishing process S3 and the second cleaning process S4 are not performed is a two-step polishing method. Since the polishing power can be increased by using the polishing apparatus, the surface of the workpiece can be polished to an ultra-smooth surface in a short time of 2 hours or less including the cleaning process time.

本実施例2では、ワークは高炭素クロム鋼(SUJ2)からなるφ1.6mm、長さ14mmの円柱部材を用いた。研磨前のワークの表面粗さは、Ra0.10μm(≒Rz0.60μm)であった。研磨装置の流動バレル研磨装置としては、研磨槽容量が40Lの図1に示す流動バレル研磨装置(新東ブレーター社製:EVF−04)を使用した。 In Example 2, a cylindrical member having a diameter of 1.6 mm and a length of 14 mm made of high carbon chromium steel (SUJ2) was used as the workpiece. The surface roughness of the workpiece before polishing was Ra 0.10 μm (≈Rz 0.60 μm). As the fluid barrel polishing apparatus of the polishing apparatus, a fluid barrel polishing apparatus (manufactured by Shinto Blator: EVF-04) shown in FIG. 1 having a polishing tank capacity of 40 L was used.

粗研磨工程S1に使用したメディアは、粒子径4mmの球状アルミナ質焼結メディア(新東ブレーター社製:V−4)、砥粒Aは、平均粒子径7μmの珪石粉、コンパウンドは、珪石粉、無機塩、界面活性剤が含まれた粉末コンパウンド(新東ブレーター社製:GPP)を使用し、ワークとメディアの比率は重量比率で1対5とし、合計で15Lとした。研磨槽1に、砥粒を30g、コンパウンドを200g、水を1.5L添加し、90分間の研磨を行った。水の添加割合は、ワーク及びメディアの容積(100%)に対して13容積%である。 The media used in the rough polishing step S1 were spherical alumina sintered media (Shinto Blator: V-4) having a particle diameter of 4 mm, abrasive grains A were silica powder having an average particle diameter of 7 μm, and the compound was silica powder. , A powder compound containing inorganic salt and surfactant (manufactured by Shinto Brater Co., Ltd .: GPP) was used, and the weight ratio of the workpiece to the media was 1: 5, for a total of 15 L. In the polishing tank 1, 30 g of abrasive grains, 200 g of compound, and 1.5 L of water were added, and polishing was performed for 90 minutes. The addition ratio of water is 13% by volume with respect to the volume of the workpiece and the medium (100%).

次の洗浄工程S2において、研磨槽1内のワーク、メディア、砥粒A、コンパウンド、水を旋回流動させながら洗浄用水を給水して、砥粒A、コンパウンド、水、研磨屑を研磨槽1外に洗浄排出し、洗浄されたワーク及びメディアを残留させた。この段階で、ワークの表面粗さはRa0.015μm(≒Rz0.11μm)であって、洗浄工程S2で要した時間は約4分間であった。 In the next cleaning step S2, cleaning water is supplied while the workpiece, media, abrasive grain A, compound, and water in the polishing tank 1 are swirled and flowed to remove the abrasive grain A, compound, water, and polishing debris from the polishing tank 1. Then, the cleaned work and media remained. At this stage, the surface roughness of the workpiece was Ra 0.015 μm (≈Rz 0.11 μm), and the time required for the cleaning step S2 was about 4 minutes.

続く第2粗研磨工程S3では、研磨槽1内に残留しているワーク及びメディアに、砥粒Bとして平均粒子径2μmの酸化セリウムを30g、コンパウンドを40mL、水を1.5L添加して、30分間の研磨を行った。第2粗研磨工程S3で使用するコンパウンドには、光沢研磨用液体コンパウンド(新東ブレーター社製:GLB)を使用した。水の添加割合は、ワーク及びメディアの容積(100%)に対して13容積%である。 In the subsequent second rough polishing step S3, 30 g of cerium oxide having an average particle size of 2 μm as abrasive grains B, 40 mL of compound, and 1.5 L of water are added to the work and media remaining in the polishing tank 1. Polishing for 30 minutes was performed. As the compound used in the second rough polishing step S3, a gloss polishing liquid compound (manufactured by Shinto Blator: GLB) was used. The addition ratio of water is 13% by volume with respect to the volume of the workpiece and the medium (100%).

次の第2洗浄工程S4においては、前記洗浄工程S2と同様に洗浄を行い、洗浄されたワーク及びメディアを残留させた。この段階でのワークの表面粗さはRa0.012μm(≒Rz0.072μm)であり、前記洗浄工程S2を終了した段階よりも平滑な表面が得られた。また、第2洗浄工程S4で要した時間は約4分間であった。 In the next second cleaning step S4, cleaning was performed in the same manner as in the cleaning step S2, and the cleaned work and media remained. The surface roughness of the workpiece at this stage was Ra 0.012 μm (≈Rz 0.072 μm), and a smoother surface was obtained than when the cleaning step S2 was completed. The time required for the second cleaning step S4 was about 4 minutes.

続く平滑研磨工程S5では、第2粗研磨工程S3で用いたコンパウンドと同じ光沢研磨用液体コンパウンド(新東ブレーター社製:GLB)を40mL、水を10L添加して、30分間の研磨を行った。水の添加割合は、ワーク及びメディアの容積(100%)に対して67容積%である。また、この平滑研磨工程S5を終えたワークの表面粗さはRa0.009μm(≒Rz0.06μm)であった。 In the subsequent smooth polishing step S5, 40 mL of the same gloss polishing liquid compound as used in the second rough polishing step S3 (manufactured by Shinto Blator: GLB) and 10 L of water were added, and polishing was performed for 30 minutes. . The addition ratio of water is 67% by volume with respect to the volume of the workpiece and the medium (100%). Further, the surface roughness of the workpiece after the smooth polishing step S5 was Ra 0.009 μm (≈Rz 0.06 μm).

本発明は、研磨工程を3工程にし、その洗浄工程時間を含めた研磨加工時間が3時間以内という短時間でワークの表面粗さをRa0.01μm以下の超平滑に研磨することができた。 In the present invention, the polishing step is made into three steps, and the surface roughness of the workpiece can be polished ultra-smoothly with Ra of 0.01 μm or less in a short time of 3 hours or less including the cleaning step time.

比較例として、実施例1において使用したメディアを平均粒子径6mmの不定形メディアに変更し、その粗研磨工程S1では、コンパウンドを光沢研磨用液体コンパウンド(新東ブレーター社製:GLB)に変更して40mL添加し、水を10L添加して研磨を行い、平滑研磨工程S5では、メディア以外は同じ条件で研磨を行った。その結果、粗研磨工程S1後のワークの表面粗さはRa0.028μm(≒Rz0.185μm)、平滑研磨工程S5後のワークの表面粗さはRa0.022μm(≒Rz0.132μm)であり、ワークの表面を超平滑面に研磨することができなかった。これにより、本発明で使用するメディアの形状は、不定形ではなく、表面が平滑な球形のメディアであることが必要であることが確認された。 As a comparative example, the medium used in Example 1 was changed to an irregular medium having an average particle diameter of 6 mm, and in the rough polishing step S1, the compound was changed to a gloss polishing liquid compound (manufactured by Shinto Blator: GLB). In the smooth polishing step S5, polishing was performed under the same conditions except for the media. As a result, the surface roughness of the workpiece after the rough polishing step S1 is Ra 0.028 μm (≈Rz 0.185 μm), and the surface roughness of the workpiece after the smooth polishing step S5 is Ra 0.022 μm (≈Rz 0.132 μm). This surface could not be polished to an ultra-smooth surface. Thereby, it was confirmed that the shape of the media used in the present invention is not an indeterminate shape, but a spherical media having a smooth surface.

[最良の実施形態の効果]
(1)本発明の流動バレル研磨方法によれば、粗研磨工程S1では、バレル研磨の砥粒として通常使用されているアルミナや炭化珪素などに比べて軟質で、研磨の進行に伴い粉砕される適度な硬さ(=分子構造)を有する粉末を砥粒に用いて研磨を行うため、研磨初期には前記硬さに比例した研磨力を有するが、研磨の進行に伴い研磨槽内で粉砕されて研磨力が低下して表面粗さを小さくすることができるから、研磨時間を要せずワークの表面を超平滑研磨するための下地処理を的確に行なうことができる。次の洗浄工程S2では、粗研磨を終えて研磨槽内に残った、平滑研磨において表面粗さを向上させるための阻害要因となる砥粒A、コンパウンド、水、及びワークとメディアと砥粒Aの磨耗粉を研磨槽外へ容易に洗浄排出することができると同時に、洗浄されたワークとメディアを研磨槽内に残留することができるから、手間を要せず次の平滑研磨工程S5を開始することができる。続く平滑研磨工程S5では、前記粗研磨工程S1で使用され洗浄された硬質で球形状のメディア表面がワークへ作用する押圧力(=研磨力)によってのみ研磨が行われるためその研磨力は小さなもので、粗研磨工程S1において研磨されたワークの表面よりも更に平滑な表面を得ることができる。これにより、短時間でワークの表面を超平滑面に研磨することができる。
[Effect of Best Embodiment]
(1) According to the fluid barrel polishing method of the present invention, in the rough polishing step S1, it is softer than alumina, silicon carbide, etc., which are usually used as abrasive grains for barrel polishing, and is pulverized as the polishing proceeds. Since polishing is performed using powder having an appropriate hardness (= molecular structure) as abrasive grains, it has a polishing power proportional to the hardness at the initial stage of polishing, but is pulverized in a polishing tank as the polishing proceeds. Accordingly, the polishing force can be reduced and the surface roughness can be reduced, so that it is possible to accurately perform the base treatment for ultra-smooth polishing the surface of the work without requiring a polishing time. In the next cleaning step S2, abrasive grains A, compounds, water, and workpieces, media, and abrasive grains A that remain in the polishing tank after the rough polishing and become obstacles to improve the surface roughness in smooth polishing. Can be easily cleaned and discharged out of the polishing tank, and at the same time, the cleaned work and media can remain in the polishing tank. can do. In the subsequent smooth polishing step S5, the polishing is performed only by the pressing force (= polishing force) applied to the workpiece by the hard, spherical media surface used in the rough polishing step S1, and thus the polishing force is small. Thus, a smoother surface than the surface of the workpiece polished in the rough polishing step S1 can be obtained. Thereby, the surface of a workpiece | work can be grind | polished to an ultra-smooth surface in a short time.

(2)前記粗研磨工程S1の砥粒Aに用いる珪石、パーミス、シラス、パーライト、白土、石灰岩、の粉末は、前記バレル研磨の砥粒として通常使用されているアルミナや炭化珪素などに比べて軟質で、研磨の進行に伴い粉砕される適度な硬さ(=分子構造)を有するから、粗研磨工程S1に用いる砥粒Aとして好適に用いることができる。また、砥粒Aの平均粒子径を15μm〜3μmにしたから、ワークの表面を超平滑面に研磨するための下地処理として表面粗さを荒らさずに粗研磨を施すことができる。 (2) The powder of silica, permis, shirasu, pearlite, white clay, limestone used for the abrasive grain A in the rough polishing step S1 is compared to alumina, silicon carbide, etc., which are usually used as the abrasive grains for barrel polishing. Since it is soft and has an appropriate hardness (= molecular structure) that is pulverized with the progress of polishing, it can be suitably used as the abrasive grain A used in the rough polishing step S1. Moreover, since the average particle diameter of the abrasive grains A is set to 15 μm to 3 μm, rough polishing can be performed without roughening the surface roughness as a ground treatment for polishing the surface of the workpiece to an ultra-smooth surface.

(3)本発明に使用するメディアは、形状が球形で粒子径が2〜6mmの硬質な焼成または焼結材からなるボールメディアを採用し、研磨装置にメディアとワークを旋回流動させて該メディアの表面をワークの研磨面に押圧力(=研磨力)を与えて研磨するようにした流動バレル研磨装置を採用したことにより、研磨後のメディアとワークを容易に洗浄ができ粗研磨工程S1から平滑研磨工程S5までの各研磨工程を通して交換することなく研磨に使用できるから、ワークの表面粗さを小さくすることができ、作業効率も良いものである。 (3) The media used in the present invention employs a ball media made of a hard fired or sintered material having a spherical shape and a particle diameter of 2 to 6 mm, and the media and workpiece are swirled and flowed in a polishing apparatus. By adopting a fluid barrel polishing apparatus that applies a pressing force (= polishing force) to the polishing surface of the workpiece to polish the surface of the workpiece, the polished media and workpiece can be easily cleaned, and the rough polishing step S1 is started. Since it can be used for polishing without replacement through each polishing step up to the smooth polishing step S5, the surface roughness of the workpiece can be reduced, and the work efficiency is also good.

(4)また、本発明の変更例として、洗浄工程S2と平滑研磨工程S5との間に、前記粗研磨工程S1で用いた砥粒Aよりも軟質かつ粒径が小さく研磨の進行に伴い粉砕される砥粒Bとコンパウンドと水とを前記研磨槽内に新たに投入し、ワークを研磨する第2粗研磨工程S3と、該第2粗研磨工程S3後に、研磨槽1内に給水して前記洗浄工程S2と同様の効果を奏し、次の平滑研磨工程S5における表面粗さを向上させるための阻害要因となる第2粗研磨工程S3で研磨使用済みの砥粒B、コンパウンド、水、及びワーク、メディア、砥粒Bの磨耗粉を研磨槽と回転盤の摺接隙間より研磨槽外へ容易に洗浄排出し、洗浄されたワークとメディアを研磨槽内に残留させる第2洗浄工程S4と、を実施することができるようにしてあるから、ワークの材質変更、あるいは表面粗さを更に小さくする要求がある場合に対応できるものである。 (4) Further, as a modification of the present invention, between the cleaning step S2 and the smooth polishing step S5, the abrasive grains A are softer and smaller in particle size than the coarse polishing step S1, and pulverized as the polishing proceeds. The abrasive grain B, compound and water to be added are newly introduced into the polishing tank, and after the second rough polishing process S3 for polishing the workpiece, water is supplied into the polishing tank 1 after the second rough polishing process S3. Abrasive grains B, compound, water used for polishing in the second rough polishing step S3, which has the same effect as the cleaning step S2, and becomes an impediment for improving the surface roughness in the next smooth polishing step S5, and A second cleaning step S4 in which the wear powder of the workpiece, media, and abrasive grains B is easily washed and discharged out of the polishing vessel through the sliding contact gap between the polishing vessel and the rotating disk, and the washed workpiece and media remain in the polishing vessel; , So that you can carry out Material changes over click, or those that can handle when there is surface roughness is further reduced demand.

(5)各研磨工程において研磨槽1内にワークとメディア(容積=100%)に対して添加する水の量(容積%)について、粗研磨工程S1もしくは第2粗研磨工程S3おいて、6%未満では、研磨中にマスの粘稠性が増大して研磨槽内の温度が上昇して研磨槽1の構成部材が膨張して回転盤4と固定槽2との間の摺接隙間3が閉塞し回転盤4の回転が止まるなどの障害が発生するおそれがある。前記の添加する水の量が30%を超えると、メディアおよび砥粒の水に対する混合割合が低下することとなって、前記メディアあるいは砥粒がワークに与える研磨作用(=研磨力)が低下するからその添加量を6〜30%として前記問題点を解決して的確な粗研磨ができるものである。また、平滑研磨工程S5において、60%以上にすることにより、メディアとワークの間に水が介在してワークへ作用する押圧力(=研磨力)が抑制されてワークの表面粗さを小さくすることができるものであり、100%以下にすることにより、前記メディアがワークへ作用する押圧力(=研磨力)を適度に維持すると同時にコンパウンドの濃度の低下を抑制して無駄な添加を防止するようにしたものである。 (5) The amount (volume%) of water added to the work and medium (volume = 100%) in the polishing tank 1 in each polishing process is 6 in the rough polishing process S1 or the second rough polishing process S3. If it is less than%, the viscosity of the mass increases during polishing, the temperature in the polishing tank rises, the constituent members of the polishing tank 1 expand, and the sliding contact gap 3 between the rotating disk 4 and the fixed tank 2 increases. May be obstructed and the rotation of the turntable 4 may stop. If the amount of water added exceeds 30%, the mixing ratio of the media and abrasive grains to the water will decrease, and the polishing action (= polishing power) given to the workpiece by the media or abrasive grains will decrease. Therefore, the addition amount is set to 6 to 30% to solve the above-mentioned problems and perform accurate rough polishing. Further, in the smooth polishing step S5, by setting it to 60% or more, water is interposed between the medium and the workpiece, and the pressing force (= polishing force) acting on the workpiece is suppressed, thereby reducing the surface roughness of the workpiece. By making it 100% or less, the pressing force (= abrasive force) on which the medium acts on the workpiece is appropriately maintained, and at the same time, the decrease in the concentration of the compound is suppressed to prevent unnecessary addition. It is what I did.

(6)前記第2粗研磨工程S3の砥粒Bに用いるセリウム、クロム、鉄の酸化物は、前記粗研磨工程S1の砥粒Aで使用する珪石、パーミス、シラス、パーライト、白土、石灰岩、などの粉末に比べてさらに軟質であるから、ワークの表面に研磨痕が付き難く研磨ができ、粗研磨工程S1を終了したワークの表面粗さをさらに平滑にすることができる。また、砥粒Bの平均粒子径を5μm〜1μmにしたから、ワークの表面を超平滑面に研磨するための下地処理を施すことができる。 (6) The oxides of cerium, chromium, and iron used in the abrasive grain B in the second coarse polishing step S3 are silica, permis, shirasu, pearlite, white clay, limestone used in the abrasive grain A in the coarse polishing step S1, Therefore, the surface of the workpiece can be polished with less marks, and the surface roughness of the workpiece after the rough polishing step S1 can be further smoothed. Moreover, since the average particle diameter of the abrasive grains B is set to 5 μm to 1 μm, it is possible to perform a ground treatment for polishing the surface of the work to an ultra-smooth surface.

(7)従来の流動バレル研磨装置の回転盤4の回転中心上部に固定または回転可能に軸支された円筒形状の内筒9を備えた流動バレル研磨装置を用いれば、メディア、砥粒がワークに与える押圧力(=研磨力)を大きくすることができるので、ワークの材質、物性値等が異なって大きな研磨力が必要になる場合、あるいは研磨効率を向上させる必要がある場合、に対応が容易である。 (7) If a fluid barrel polishing apparatus having a cylindrical inner cylinder 9 that is fixedly or rotatably supported at the upper rotation center of a rotating disk 4 of a conventional fluid barrel polishing apparatus is used, media and abrasive grains can be used as workpieces. The pressing force (= polishing power) applied to the workpiece can be increased, so it can be used when workpieces with different materials, physical properties, etc. require large polishing power, or when polishing efficiency needs to be improved. Easy.

(8)以上の説明で明らかのように、本発明の流動バレル研磨方法は、金属材料からなる円柱形状のワークの表面粗さをRa0.02μm以下にした超平滑研磨加工が容易にできるものである。 (8) As apparent from the above description, the fluid barrel polishing method of the present invention can easily perform ultra-smooth polishing with a surface roughness of a cylindrical workpiece made of a metal material of Ra 0.02 μm or less. is there.

1 研磨槽
2 固定槽
3 摺接隙間
4 回転盤
5 底板
6 通路
7 排水管
8 孔
9 内筒
M マス
DESCRIPTION OF SYMBOLS 1 Polishing tank 2 Fixed tank 3 Sliding contact gap 4 Turntable 5 Bottom plate 6 Passage 7 Drain pipe 8 Hole 9 Inner cylinder M

Claims (10)

バレル研磨装置に、底部に水平に回転する回転盤が設けられるとともに内部が洗浄可能に構成された研磨槽を備え、該研磨槽に少なくともワークとメディアと水とを投入して前記回転盤の回転により旋回流動させて混合されたマスを形成してワークを研磨する流動バレル研磨装置を用い、表面が平滑な球形のメディアと研磨の進行に伴い粉砕される砥粒Aとコンパウンドと水とを前記研磨槽に投入してワークを研磨する粗研磨工程と、該粗研磨工程後に前記研磨槽内に給水し研磨槽内に残った研磨使用済みの砥粒Aとコンパウンドと水、及びワークとメディアと砥粒Aの磨耗粉を前記研磨槽外に洗浄排出して洗浄されたワーク及びメディアを前記研磨槽内に残留させる洗浄工程と、前記洗浄工程後に前記研磨槽内に新たにコンパウンドと水とを投入してワークを研磨する平滑研磨工程と、を備えたことを特徴とするバレル研磨方法。 A barrel polishing apparatus is provided with a polishing tank that is provided with a rotating table that rotates horizontally at the bottom and is configured to be washable inside. At least a work, a medium, and water are put into the polishing tank, and the rotating table rotates. Using a fluid barrel polishing apparatus that forms a mixed mass by swirling and polishing, and polishing a workpiece, the spherical media having a smooth surface, the abrasive grains A that are pulverized as the polishing progresses, the compound, and water A rough polishing step for polishing a workpiece by putting it into a polishing tank, and a polishing used abrasive grain A, a compound, water, and a workpiece and a medium which are supplied to the polishing tank and remain in the polishing tank after the rough polishing step. A cleaning step of cleaning and discharging the abrasive powder of the abrasive grains A to the outside of the polishing tank and leaving the cleaned work and media in the polishing tank; a new compound and water in the polishing tank after the cleaning process; Barrel polishing method characterized by comprising a smoothing polishing step of polishing a workpiece by introducing. 前記砥粒Aは、珪石、パーミス、シラス、パーライト、白土、石灰岩、の粉末の少なくとも1つからなることを特徴とする請求項1に記載のバレル研磨方法。 2. The barrel polishing method according to claim 1, wherein the abrasive grain A is made of at least one of powders of silica, permis, shirasu, pearlite, clay, and limestone. 前記砥粒Aは、平均粒径が15μm〜3μmであることを特徴とする請求項1または請求項2に記載のバレル研磨方法。 3. The barrel polishing method according to claim 1, wherein the abrasive grains A have an average particle diameter of 15 μm to 3 μm. 前記メディアは、粒径が2〜6mmの焼成または焼結メディアであることを特徴とする請求項1ないし請求項3のいずれか1つに記載のバレル研磨方法。 The barrel polishing method according to any one of claims 1 to 3, wherein the medium is a fired or sintered medium having a particle diameter of 2 to 6 mm. 前記洗浄工程と前記平滑研磨工程との間に、前記粗研磨工程で用いた砥粒Aよりも軟質かつ粒径の小さく、研磨の進行に伴い粉砕される砥粒Bと、コンパウンドと、水と、を前記研磨槽内に新たに投入してワークを研磨する第2粗研磨工程と、前記第2粗研磨工程後に、前記研磨槽内に給水して、前記研磨槽内に残った砥粒B及びコンパウンドと、前記ワーク及びメディアの磨耗粉を前記研磨槽外に洗浄排出して洗浄されたワーク及びメディアを前記研磨槽内に残留させる第2洗浄工程と、を備えたことを特徴とする請求項1ないし請求項4のいずれか1つに記載のバレル研磨方法。 Between the washing step and the smooth polishing step, abrasive grains B that are softer and have a smaller particle diameter than the abrasive grains A used in the rough polishing step and are pulverized as the polishing proceeds, a compound, and water , A second rough polishing step in which the workpiece is polished by newly charging the polishing bath, and after the second rough polishing step, water is supplied into the polishing bath and the abrasive grains B remaining in the polishing bath are left. And a compound, and a second cleaning step of cleaning and discharging the wear powder of the work and media out of the polishing tank and leaving the cleaned work and media in the polishing tank. The barrel polishing method according to any one of claims 1 to 4. 前記粗研磨工程もしくは第2粗研磨工程において前記研磨槽に添加する水の量は、前記ワーク及びメディアに対して6〜30%であり、前記平滑研磨工程において前記研磨槽に添加する水の量は、前記ワーク及びメディアに対して60%〜100%であることを特徴とする請求項1ないし請求項5のいずれか1つに記載のバレル研磨方法。 The amount of water added to the polishing tank in the rough polishing step or the second rough polishing step is 6 to 30% with respect to the workpiece and the medium, and the amount of water added to the polishing tank in the smooth polishing step. The barrel polishing method according to any one of claims 1 to 5, wherein the ratio is 60% to 100% with respect to the workpiece and the medium. 前記砥粒Bは、セリウム、クロム、鉄の酸化物の少なくとも1つからなることを特徴とする請求項5または請求項6に記載のバレル研磨方法。 The barrel polishing method according to claim 5 or 6, wherein the abrasive grain B is made of at least one of cerium, chromium, and iron oxides. 前記砥粒Bは、平均粒径が5μm〜1μmであることを特徴とする請求項5ないし請求項7のいずれか1つに記載のバレル研磨方法。 8. The barrel polishing method according to claim 5, wherein the abrasive grains B have an average particle diameter of 5 μm to 1 μm. 前記流動バレル研磨装置は、前記回転盤の回転中心上部に固定または回転可能に軸支された円筒形状の内筒を備えていることを特徴とする請求項1ないし請求項8のいずれか1つに記載のバレル研磨方法。 9. The fluidized barrel polishing apparatus includes a cylindrical inner cylinder that is rotatably or pivotally supported at an upper center of a rotation center of the rotating disk. A barrel polishing method according to claim 1. 前記ワークが、金属材料からなる円柱形状のワークであって、該ワークの表面を研磨して表面粗さをRa0.02μm以下にしたことを特徴とする請求項1ないし請求項9のいずれか1つに記載のバレル研磨方法。 10. The work according to claim 1, wherein the work is a cylindrical work made of a metal material, and the surface of the work is polished to have a surface roughness of Ra 0.02 [mu] m or less. Barrel polishing method as described in one.
JP2009048835A 2009-03-03 2009-03-03 Barrel polishing method Active JP5282894B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009048835A JP5282894B2 (en) 2009-03-03 2009-03-03 Barrel polishing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009048835A JP5282894B2 (en) 2009-03-03 2009-03-03 Barrel polishing method

Publications (2)

Publication Number Publication Date
JP2010201548A JP2010201548A (en) 2010-09-16
JP5282894B2 true JP5282894B2 (en) 2013-09-04

Family

ID=42963559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009048835A Active JP5282894B2 (en) 2009-03-03 2009-03-03 Barrel polishing method

Country Status (1)

Country Link
JP (1) JP5282894B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107378747A (en) * 2017-07-11 2017-11-24 天津华海清科机电科技有限公司 CMP process for MEMS

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5354384B2 (en) * 2010-01-20 2013-11-27 新東工業株式会社 Smooth polishing method for hard metal material
JP6934653B2 (en) * 2016-03-11 2021-09-15 株式会社チップトン Surface treatment method for metal parts
JP2020081916A (en) * 2018-11-16 2020-06-04 新東工業株式会社 Washing method
CN110142684B (en) * 2019-07-04 2023-12-26 中国工程物理研究院激光聚变研究中心 Hollow microsphere surface polishing device and method
CN114918815A (en) * 2022-06-07 2022-08-19 中国航发航空科技股份有限公司 Method for accelerating superfinishing of surface medium of blade shot blasting

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0524443Y2 (en) * 1986-11-04 1993-06-22
JPH02212068A (en) * 1989-02-08 1990-08-23 Shima Kenma Kizai Kk Polishing method and colored compound for polishing
JPH0457882A (en) * 1990-06-27 1992-02-25 Showa Denko Kk Medium for barrel finishing
JP3791837B2 (en) * 2001-10-01 2006-06-28 株式会社チップトン Vibration barrel polishing method
JP5029941B2 (en) * 2006-11-30 2012-09-19 新東工業株式会社 Barrel polishing method
JP5223249B2 (en) * 2007-06-29 2013-06-26 新東工業株式会社 Barrel polishing apparatus and barrel polishing method

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107378747A (en) * 2017-07-11 2017-11-24 天津华海清科机电科技有限公司 CMP process for MEMS
CN107378747B (en) * 2017-07-11 2019-04-02 天津华海清科机电科技有限公司 CMP process for MEMS device

Also Published As

Publication number Publication date
JP2010201548A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
JP5282894B2 (en) Barrel polishing method
CN106479371A (en) A kind of high precision composite polishing liquid and preparation method thereof
JP5223249B2 (en) Barrel polishing apparatus and barrel polishing method
EP2915628B1 (en) Method and system for vibratory finishing of composite laminate parts
JP5354384B2 (en) Smooth polishing method for hard metal material
CN106334995A (en) The grinding process of mirror plate
US4307544A (en) Finishing machine with abrasive lined chamber and method of finishing
JPWO2007052409A1 (en) Crushed sand production equipment
CN106978091A (en) Efficient hardening oxidation zircon ceramic polishing fluid and preparation method thereof
TWI449596B (en) Flow barrel type grinding device and grinding method
CN108081038B (en) The polishing method of small ceramic
JP5029941B2 (en) Barrel polishing method
CN105729297B (en) Polishing integration ice pellets type concretion abrasive polishing pad and preparation method thereof
TWI670140B (en) Dry barrel grinding method and medium manufacturing method
JP4483277B2 (en) Polishing method for workpiece having notch
JPH02502894A (en) Ceramic material and method for producing the same
JP3263818B2 (en) Dry barrel polishing method and dry media for rough to medium finishing
JPH0679613A (en) Dry type barrel polishing method and dry type medium composition
JP2018187734A (en) Barrel-polishing polishing body, barrel polishing method, and manufacturing method for this polishing body
Nanda et al. Effect of mechanical tumbling parameters on surface roughness and edge radius of medical grade cobalt chromium alloy
CN109968131A (en) A kind of method that powder metallurgical gear removes flash removed
JPH10156701A (en) Dry type barrel polishing method
JP2003103451A (en) Vibration barrel polishing method
CN117506564A (en) Surface polishing treatment method for copper contact finger and copper tungsten part of optical communication base
CN113043153A (en) Grinding and polishing method for casting

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111108

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130501

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130514

R150 Certificate of patent or registration of utility model

Ref document number: 5282894

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250