JP5280835B2 - Compression type heat pump equipped with latent heat storage device - Google Patents

Compression type heat pump equipped with latent heat storage device Download PDF

Info

Publication number
JP5280835B2
JP5280835B2 JP2008336068A JP2008336068A JP5280835B2 JP 5280835 B2 JP5280835 B2 JP 5280835B2 JP 2008336068 A JP2008336068 A JP 2008336068A JP 2008336068 A JP2008336068 A JP 2008336068A JP 5280835 B2 JP5280835 B2 JP 5280835B2
Authority
JP
Japan
Prior art keywords
heat
temperature
heat storage
refrigerant
latent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008336068A
Other languages
Japanese (ja)
Other versions
JP2010139232A (en
Inventor
義信 山口
了八 島田
Original Assignee
義信 山口
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 義信 山口 filed Critical 義信 山口
Priority to JP2008336068A priority Critical patent/JP5280835B2/en
Publication of JP2010139232A publication Critical patent/JP2010139232A/en
Application granted granted Critical
Publication of JP5280835B2 publication Critical patent/JP5280835B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Heat-Pump Type And Storage Water Heaters (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To reduce a load related to a compression type heat pump, to improve COP, and to add convenience in use in a cold district by using a latent heat storage device applying properties inherent to latent heat storage raw material as a means for miniaturizing a compression type heat pump apparatus, and using characteristics of superiority of potential heat capacity per unit or of carrying out heat absorption/dissipation in a constant temperature as a temperature standard. <P>SOLUTION: The compression type heat pump carries out a heat cycle on the basis of temperature characteristics produced by atmospheric temperature and latent heat storage material. A heat exchanger carrying out heat exchange with a hot fluid passing through the latent heat storage device is provided in a path from the compressor to a condenser, and a control board is provided, indicating temperature control of heat circulation by a detected temperature value. Correspondence to a load is carried out by adjusting a flow rate of the hot fluid of the heat exchanger, or by efficiently recovering atmospheric heat and storing it as heat in the small and large capacity latent heat storage device. COP is improved by 25% or more in comparison to a conventional one by using a cycle reducing work of the compressor. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

産業上の利用分野Industrial application fields

本発明は、一般住宅、集合住宅及び産業施設及び寒冷地等の暖房・給湯を目的に潜熱蓄熱装置を備えた蒸気圧縮式ヒ−トポンプシステムを供給する。  The present invention provides a vapor compression heat pump system equipped with a latent heat storage device for the purpose of heating and hot water supply in general houses, apartment houses, industrial facilities, and cold districts.

本発明の目的は、既存の圧縮式ヒ−トポンプの機能を損なわずに、貯熱に潜熱蓄熱装置を備えた圧縮式ヒ−トポンプの熱伝達回路を有する。特徴として、潜熱蓄熱装置の温度を基軸に熱サイクル機能を一元的に大気熱の温度に順応して、制御と運転を行う。圧縮機(1)で吐出の冷媒と熱交換を経て潜熱蓄熱装置(8)の該装置に蓄熱され、一部は負荷に、又一部は当該熱サイクルの回路に循環する。温度制御の手段として、圧縮機(2)で加熱吐出する冷媒の経路にレシ−バ−(4)の冷媒相分離液と高圧液冷媒を効率よく吸引動作する膨張弁等に二相流エジェクタ(5)や蒸発気化にエバポレ−タ(6)の蒸発温度により冷媒を冷却して、効率的に大気熱を吸熱確保する。すなわち、冷媒及び熱流体が相互の熱環状回路を有して相互の吸放熱の伝達を効果的に実施する。蓄熱装置(8)で蓄熱の残存熱は、低温の大気温度を利用して処理して、一連のサイクルで圧縮機(2)における圧縮の仕事を大幅に減少してCOP効果を相乗的に向上できる。尚、当該システムの温度・加圧・減圧・流量の動力や多方弁(12)調整弁含むを一元的に調整して指示するを備えて、運転機能の効率化により、システムの小型化を可能とする潜熱蓄熱装置を具備した冷凍ガス圧縮式ヒ−トポンプ熱循環システムを提供する。  An object of the present invention is to provide a heat transfer circuit of a compression heat pump that includes a latent heat storage device for heat storage without impairing the function of an existing compression heat pump. As a feature, control and operation are performed by adapting the heat cycle function to the temperature of the atmospheric heat centrally based on the temperature of the latent heat storage device. Heat is exchanged with the refrigerant discharged from the compressor (1) to be stored in the latent heat storage device (8), part of which is circulated in the load and part of the circuit in the thermal cycle. As a means for temperature control, a two-phase flow ejector (such as an expansion valve that efficiently sucks the refrigerant phase separation liquid and high-pressure liquid refrigerant of the receiver (4) into the refrigerant path heated and discharged by the compressor (2) ( 5) Cooling of the refrigerant by the evaporation temperature of the evaporator (6) for evaporation and vaporization ensures efficient heat absorption of atmospheric heat. That is, the refrigerant and the thermal fluid have a mutual thermal ring circuit to effectively carry out mutual absorption and release of heat. The residual heat of the heat storage in the heat storage device (8) is processed using the low-temperature atmospheric temperature, and the work of compression in the compressor (2) is greatly reduced in a series of cycles to synergistically improve the COP effect. it can. In addition, it is possible to reduce the size of the system by improving the efficiency of the operation function, with the integrated adjustment and instruction of the temperature, pressurization, pressure reduction, flow rate of the system and the multi-way valve (12) including the adjustment valve. A refrigerating gas compression type heat pump heat circulation system including the latent heat storage device is provided.

図1は、従来の温度成層型貯湯式にCO冷媒ガス又はフロン系冷媒ガスを用いた蒸気圧縮式ヒ−トポンプを示す構成略図である。図に従って熱サイクルを説明する。例えば、設定する大気熱10℃をCOガス冷媒で吸収して圧縮機(2)で100気圧で圧縮すると、COガス冷媒液は130℃の臨界状態で、放熱器(3)で、被加熱流体20℃と熱交換を行い、被加熱流体を90℃に加熱して、温度成層型の貯湯タンクの上部入口から導水して貯湯する。該タンク下層部の低温熱流体を放熱器(3)ての再加熱へ循環させている。圧縮機(2)で加熱される冷熱ガス液はバッチ式圧縮で使い切りで循環する。FIG. 1 is a schematic diagram showing a vapor compression heat pump using CO 2 refrigerant gas or chlorofluorocarbon refrigerant gas in a conventional temperature stratified hot water storage type. A thermal cycle is demonstrated according to a figure. For example, if a 10 ° C. atmospheric heat to set compressed at 100 atm CO 2 gas refrigerant absorbed to the compressor (2), CO 2 gas refrigerant liquid in critical state of 130 ° C., in the radiator (3), the Heat exchange is performed with the heating fluid 20 ° C., the heated fluid is heated to 90 ° C., and water is introduced from the upper inlet of the temperature-stratified hot water storage tank to store hot water. The low-temperature thermal fluid in the lower layer of the tank is circulated for reheating by the radiator (3). The hot and cold gas liquid heated by the compressor (2) is circulated as it is used up by batch compression.

例えは、放熱器(3)で放出したCO冷媒は被加熱流体と熱交換で、高圧状態を維持したまま130℃から50℃の少し冷えた液ガスに降温する。次に膨張弁の解放により、100気圧を30気圧に減圧するとガス液の急激な膨張気化熱により、冷媒の温度50℃は一挙に5℃までに冷却された冷媒ガス液に変化する。その結果、大気熱が30気圧中で10℃の場合、当該冷媒を大気と接触すると10℃の熱を吸収して、暖まった液ガスの状態で圧縮機(2)に導入されて再循環に入る。一方、貯湯槽の下部から取り出された熱流体は熱交換(3)により常温15℃から90℃近くまで昇温し、温度成層型貯湯槽(6)の上部から貯わえられる。For example, the CO 2 refrigerant released from the radiator (3) is heat-exchanged with the heated fluid, and the temperature is lowered to a slightly cooled liquid gas of 130 ° C. to 50 ° C. while maintaining a high pressure state. Next, when the pressure of 100 atm is reduced to 30 atm by releasing the expansion valve, the temperature of the refrigerant 50 ° C. changes to the refrigerant gas liquid cooled to 5 ° C. at once due to the rapid expansion and vaporization heat of the gas liquid. As a result, when the atmospheric heat is 10 ° C. at 30 atm, when the refrigerant comes into contact with the atmosphere, the heat of 10 ° C. is absorbed and introduced into the compressor (2) in a warm liquid gas state for recirculation. enter. On the other hand, the heat fluid taken out from the lower part of the hot water tank is heated from room temperature 15 ° C. to near 90 ° C. by heat exchange (3) and stored from the upper part of the temperature stratified hot water tank (6).

当該熱サイクルは都度一回限の使いきりであるため、この熱サイクルで90℃の給湯を維持するには常時100気圧130℃の超高圧の繰返し連続運転になるため、時として圧縮機の耐久性やタンクの大型化による効率の悪化が問題となっていた。以上の圧縮にかかる動力に夜間電力が利用されている。  Since the heat cycle is only used once each time, in order to maintain hot water supply at 90 ° C. in this heat cycle, it becomes a continuous operation at 100 atm and 130 ° C. and super high pressure at all times. Deterioration of efficiency due to performance and tank size has been a problem. Nighttime power is used for the power required for the above compression.

一般的に住宅で使用されるヒ−トポンプの圧縮機(2)の性能は環境温度により影響を受ける。CO冷媒ガス液の場合、100気圧で圧縮するとCO冷媒ガス液の温度は130℃にまで上昇すると該冷媒は臨界点に達する。加熱された前記CO冷媒ガス液と熱媒流体の熱交換による90℃吐出量は、出口で通常1l/毎分を安全流量の基準として運転している。The performance of the heat pump compressor (2) generally used in homes is affected by the environmental temperature. In the case of the CO 2 refrigerant gas liquid, when the temperature of the CO 2 refrigerant gas liquid rises to 130 ° C. when compressed at 100 atm, the refrigerant reaches a critical point. The 90 ° C. discharge amount due to heat exchange between the heated CO 2 refrigerant gas liquid and the heat transfer fluid is usually operated at the outlet with a safety flow rate of 1 l / min.

しかしながら、大気温度の変化や環境により該装置の仕事に影響を受けていた。例えば圧縮機(2)の許容能力を越える負荷が加わると超高圧による圧縮機の耐久性にダメ−ジを与えていた。CO冷媒ガスは熱伝達に優れる反面、温度限界が低く圧縮上、圧縮機内部の超高圧化が短所でもあり、運転条件により機器に不具合を生じていた。However, it was influenced by the work of the apparatus due to changes in ambient temperature and the environment. For example, if a load exceeding the allowable capacity of the compressor (2) is applied, the durability of the compressor due to ultra high pressure is damaged. While CO 2 refrigerant gas is excellent in heat transfer, it has a low temperature limit and has a disadvantage of high pressure inside the compressor due to compression, resulting in malfunctions in equipment depending on operating conditions.

本件課題として圧縮機(2)にかかる仕事の軽減には、前記圧縮機(2)の能力に許容される範囲での熱サイクルがロスと負荷を削減する手立が課題となっていた。
係る機能を補う手段として、貯湯タンクの大型化と動力に夜間電力を利用する事で消費負荷に拘わるタイムラグを補う方法が一般的に採用されている。該手段で、利便性と機器にかかる負荷による不具合を防止している。しかしながら既存の貯湯方式が温度成層蓄式のピストン押しだしのため、貯湯容量や内外温度差に影響を受ける熱損失や設置スペ−スに課題を抱えていた。貯湯タンクの小型化への技術やCOP効率の観点から次に示す項目の改善が課題となっていた。
In order to reduce the work applied to the compressor (2) as a subject of the present case, the problem is that the thermal cycle within the range allowed by the capacity of the compressor (2) reduces the loss and load.
As a means for compensating for such a function, a method of compensating for a time lag related to the consumption load by using a nighttime electric power for enlargement and power of a hot water storage tank is generally employed. This means prevents inconveniences due to convenience and load on the device. However, the existing hot water storage system has a problem with heat loss and installation space that are affected by the hot water storage capacity and internal / external temperature difference because of the temperature-stratified storage type piston push-out. Improvement of the following items has been an issue from the viewpoint of technology for reducing the size of hot water storage tanks and COP efficiency.

▲1▼温度成層型貯湯式タンクの設置の環境や気温による効率低下の改善。
▲2▼寒冷地の外気温度マイナス10℃に対応可能な技術仕様。
▲3▼高出力高効率化COP3.5からCOP4.5以上にする。
▲4▼圧縮機の加熱能力を4.5Kwから9.0Kwに拡大する。
(1) Improvement of efficiency reduction due to the environment and temperature of the installation of temperature stratified hot water storage tanks.
(2) Technical specifications that can handle an outside air temperature of minus 10 ° C in cold regions.
(3) Increase the output and efficiency from COP3.5 to COP4.5 or higher.
(4) Expand the compressor heating capacity from 4.5 Kw to 9.0 Kw.

尚、既存のヒ−トポンプ及び貯湯タンク等の一般的な対策課題として、蓄断熱強化策や小型ヒ−トポンプ2.3Kw等用貯湯タンクの小型化とヒ−トポンプの高出力高効率化、負荷学習と温水の必要量を制御するシステムの開発、中温水の利用や非貯湯式への移行が要望されていた。  As general countermeasures for existing heat pumps and hot water storage tanks, measures for enhancing heat storage and insulation, downsizing of hot water storage tanks for small heat pumps, 2.3 Kw, etc., high output and high efficiency of heat pumps, load The development of a system that controls learning and the required amount of hot water, the use of medium-temperature water, and the transition to a non-hot water storage type were desired.

発明が解決しょうとする課題Problems to be solved by the invention

本発明は、潜熱蓄熱材が保有する性状と特徴が設定温度デルタT=10℃の場合、水の約6倍の密度を利用して、既存の圧縮式ヒ−トポンプに採用の各機能機器の取替を必要とせずに一部の部分変更で、該機能の効率を向上させるものである。手段において、設備システム特に蓄熱装置の小型化により省スペ−ス、省エネルギ−とヒ−トポンプの仕事の効率化とシステムロスを軽減して、該機器の耐久性を維持する高効率なヒ−トポンプ熱サイクルシステムを提供する。  In the present invention, when the properties and characteristics of the latent heat storage material are set temperature delta T = 10 ° C., the density of about 6 times the water is used, and each functional device employed in the existing compression heat pump is used. The efficiency of the function is improved by a partial change without requiring replacement. In the means, a high-efficiency heat that maintains the durability of the equipment by reducing the space, energy-saving and heat pump work efficiency and system loss by downsizing the equipment system, particularly the heat storage device. Provide a toppump thermal cycle system.

発明が解決するための手段Means for Solving the Invention

特許請求項1に記載の発明は効率的な熱サイクル運動を行うポイントとして、圧縮機(2)に係る熱負荷と圧縮ロスの軽減に、大気熱確保に潜熱蓄熱固有の温度の熱環状を基軸に連動した制御システムにより、圧縮機(2)から吐出する高圧液冷媒を冷媒放熱器(3)に流通させて熱源の冷媒熱と被加熱流体との熱交換で、システムに係る負荷を回避する。冷媒及び被加熱流体個々の熱環状と熱伝達により、当該システムを効果的に運転できる。CO冷媒ガス液は潜熱蓄熱材の定常温度を利用する事で、蓄熱装置(8)から放熱器(3)に環状する該熱流体の温度を安定的な低温に降温維持して、圧縮機及び放熱器等に係る運転負荷を削減する。そのためには蓄熱で余る残熱の処理が処理手段が必要であった。The invention according to claim 1 is based on a thermal ring having a temperature unique to latent heat storage for securing atmospheric heat to reduce heat load and compression loss related to the compressor (2) as a point for efficient thermal cycle motion. The high pressure liquid refrigerant discharged from the compressor (2) is circulated through the refrigerant radiator (3) by the control system linked to the refrigerant, and heat exchange between the heat of the refrigerant of the heat source and the fluid to be heated is avoided. . The system can be effectively operated by the thermal ring and heat transfer of the refrigerant and the fluid to be heated. The CO 2 refrigerant gas liquid uses the steady temperature of the latent heat storage material to maintain the temperature of the thermal fluid ringed from the heat storage device (8) to the radiator (3) at a stable low temperature, and the compressor And reduce the operation load related to radiators. For this purpose, a processing means is required for the treatment of the remaining heat due to heat storage.

熱流体に担持の余熱処理の手段として、前記熱流体は大気熱(7)により冷却された冷媒と熱交換器(1)を介して、前記余熱をフィ−トバック処理した後に放熱熱交換器(3)での熱再吸収に循環する順路を設定している。また本経路の設定により、昇温した冷媒を圧縮機(2)に流入させることで、圧縮の仕事を減少する。圧縮機から吐出した高圧冷媒液は放熱機(3)で放熱による熱交換を経て膨張弁(5)と蒸発器(6)での減圧により、低温の大気熱の吸収を行う。この一連の温度制御を所定の値で維持管理で、圧縮機に係る熱サイクルを軽減してCOP効率を向上するヒ−トポンプを供給することにある。  As a means for the heat treatment carried on the heat fluid, the heat fluid is subjected to a heat-radiating heat exchanger (1) after the heat is fed back through the refrigerant cooled by the atmospheric heat (7) and the heat exchanger (1). The route that circulates in the heat reabsorption in 3) is set. Moreover, the work of compression is reduced by allowing the heated refrigerant to flow into the compressor (2) by setting this route. The high-pressure refrigerant liquid discharged from the compressor absorbs low-temperature atmospheric heat by heat exchange by heat radiation in the radiator (3) and decompression in the expansion valve (5) and the evaporator (6). This series of temperature control is maintained and maintained at a predetermined value, and a heat pump that reduces the thermal cycle of the compressor and improves COP efficiency is supplied.

該サイクルを効果的に発揮させる手段として、潜熱蓄熱装置と同温度を基軸に、本装置に大気熱の吸収確保を前提に相対的基準で環状する熱サイクルを構成している。実態として、圧縮〜高温〜減圧〜低温〜吸収〜圧縮に至る冷媒と熱流体の環状プロセスを一元的に温度・加圧・減圧・流量を循環指示で熱サイクルのロスを低減して運転効率を向上できる。  As means for effectively exhibiting the cycle, a thermal cycle that is annular on a relative basis is assumed on the premise that atmospheric heat absorption is ensured with the same temperature as that of the latent heat storage device as a basic axis. As a matter of fact, the cyclic process of refrigerant and thermal fluid ranging from compression to high temperature to reduced pressure to low temperature to absorption to compression is unified to reduce operating cycle efficiency by reducing the temperature cycle by instructing temperature, pressurization, decompression, and flow rate. It can be improved.

大気熱吸収(7)から蓄熱(8)及び消費熱負荷(12)に至るシステムプログムミングデ−タに基づいて、センサ−の検出値に従って、一元的に冷凍サイクルを制御設定できる指示調節盤(図示しない)を有する。一元的制御とは前記設定に従って、電気的駆動によりDCモ−タ−及び電動ポンプの稼働や圧縮から、冷媒及び熱流体の流量調整の熱サイクルを自動的に操作により、CO冷媒カスを採用の既存ヒ−トポンプの圧縮機における圧縮仕事は100気圧/圧縮温度130℃の能力と熱伝達力を保有している。特許請求項1及び2記載の発明、当該機器の熱サイクルに酢酸ナトリウム水和物系を潜熱蓄熱装置に使用の場合、既存の規定温度を約20%削減し、単位保有熱量で約6倍に改良し、これを制御するプログラムで構成する。Based on system programming data ranging from atmospheric heat absorption (7) to heat storage (8) and heat consumption load (12), an instruction control panel that can centrally control and set the refrigeration cycle according to the detection value of the sensor ( (Not shown). In accordance with the above settings, the centralized control adopts the CO 2 refrigerant residue by automatically operating the heat cycle for adjusting the flow rate of refrigerant and thermal fluid from the operation and compression of the DC motor and electric pump by electric drive. The existing heat pump compressor has a compression work of 100 atm / compression temperature of 130 ° C. and a heat transfer force. When the sodium acetate hydrate system is used in the latent heat storage device for the heat cycle of the device according to claims 1 and 2, the existing specified temperature is reduced by about 20%, and the unit heat quantity is about 6 times It consists of a program that improves and controls this.

圧縮機から吐出する冷媒温度条件は該潜熱蓄熱材の相変化に必要な温度を供給できればよく、従来の貯湯式に採用の高温度は不要になり、従って圧縮にかかる高圧も低減できる。本発明は潜熱蓄熱材を融解するに必要な温度供給と大気熱の吸収確保を前提に設定、熱流体の環状温度を潜熱融解温度を上限とし、高圧液冷媒の熱源上限温度とを外気温度に連動させるプログラムで構成する。また、摂取する環境基準温度は変化する大気温度に順応した熱サイクルを前提に100気圧以下での仕事を設定し、運転上、過剰な圧縮仕事を回避する。よって、圧縮機の超高圧化に伴う機械の機械的、物理的リスクや過剰加熱等による熱サイクルでシステムに係る過剰な負荷を削減して、圧縮機(2)の耐久性と恒常的な仕事効率の向上を可能にする。本発明は、このような背景に鑑み、標記の課題を解決するものである。  The temperature condition of the refrigerant discharged from the compressor is not limited as long as the temperature necessary for the phase change of the latent heat storage material can be supplied, and the high temperature employed in the conventional hot water storage system is unnecessary, and therefore the high pressure applied to the compression can be reduced. The present invention is set on the premise that the temperature supply necessary for melting the latent heat storage material and the absorption of atmospheric heat are ensured. Consists of programs to be linked. In addition, the environmental reference temperature to be ingested is set to work under 100 atm on the premise of a heat cycle adapted to the changing atmospheric temperature, and avoids excessive compression work in operation. Therefore, the mechanical and physical risks of the machine accompanying the ultra high pressure of the compressor, the excessive load on the system is reduced by the thermal cycle due to overheating, etc., the durability of the compressor (2) and the constant work Enables increased efficiency. In view of such a background, the present invention solves the problem described above.

すなわち、本発明は省スペ−ス、省エネルギ−と利便性の追求過程で、COガス冷媒の優れた熱伝達性と潜熱蓄熱材の定常温度の吸収/放熱を担持して、循環し、プログラムされた設定温度域で大気温度から吸熱して、大気熱を確保できる。標記サイクルでCOP効率能の向上と負荷機能に対応するヒ−トポンプの熱サイクルである。That is, the present invention is a process of pursuing space saving, energy saving and convenience, carrying the excellent heat transfer performance of the CO 2 gas refrigerant and the steady temperature absorption / radiation of the latent heat storage material, circulating, Atmospheric heat can be secured by absorbing heat from the ambient temperature within the programmed temperature range. The heat cycle of the heat pump corresponding to the improvement of the COP efficiency and the load function in the title cycle.

実施形態Embodiment

本発明の実施形態につき添付の図面に基づいて詳細に説明する。図1は比較図であり、図2は本発明の実施形態における潜熱蓄熱装置を応用した冷凍サイクルヒ−トポンプの全体構成を示す簡略図、熱循環の概要状態を示す。  Embodiments of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a comparison diagram, and FIG. 2 is a simplified diagram showing the overall configuration of a refrigeration cycle heat pump to which a latent heat storage device according to an embodiment of the present invention is applied, and shows a schematic state of thermal circulation.

本実施形態の熱サイクルは電動式である。DCインバタ−モ−タ−の駆動を圧縮機(2)に伝達して、自在に圧縮比を超高圧の範囲まで可変可能な駆動により稼働される熱サイクルヒ−トポンプで、暖房や給湯に使用される。図2に示す圧縮機(2)は熱源であり、その形式は問わない。  The thermal cycle of this embodiment is electric. It is a heat cycle heat pump that is driven by a drive that transmits the drive of the DC inverter motor to the compressor (2) and can freely change the compression ratio to a range of ultra-high pressure. It is used for heating and hot water supply. The The compressor (2) shown in FIG. 2 is a heat source, and the form is not ask | required.

圧縮で高圧高温で吐出されたCOガス冷媒を許容の温度範囲で、凝縮機(3)で熱交換、膨張弁、蒸発機で減圧効果により、大気熱の冷熱を回収して圧縮機(2)に到る前記冷媒の環状プロセスAに係る熱源である。The CO 2 gas refrigerant discharged at high pressure and high temperature by compression is subjected to heat exchange by the condenser (3), the decompression effect by the expansion valve and the evaporator, and the cold heat of the atmospheric air is recovered by the decompression effect. The heat source according to the annular process A of the refrigerant.

圧縮で高圧高温で吐出する冷媒ガスを凝縮機(3)で熱交換により被加熱熱媒体が潜熱蓄熱材の融解に必要な伝達温度を吸収し、潜熱蓄熱装置(8)で放熱蓄熱する。蓄熱途上で発生する残存の余熱を担持した熱流体の熱処理は外気を吸収して冷却した冷媒(7)と熱交換(1)で熱処理の後、更に、温度調整(11)の出口温度で熱流体の温度を低温度に整えて、放熱機(3)で潜熱蓄熱装置(8)の熱伝達に有効な温度に加熱する。潜熱蓄熱装置に蓄熱放熱して循環に到る前記熱交換機の環状プロセスBである。  The refrigerant gas discharged at high pressure and high temperature by compression is subjected to heat exchange in the condenser (3), so that the heat medium to be heated absorbs the transfer temperature necessary for melting the latent heat storage material, and radiates and stores heat by the latent heat storage device (8). The heat treatment of the thermal fluid carrying the remaining residual heat generated during the heat storage is performed at the outlet temperature of the temperature adjustment (11) after the heat treatment by heat exchange (1) with the refrigerant (7) that has absorbed and cooled the outside air. The temperature of the fluid is adjusted to a low temperature and heated to a temperature effective for heat transfer of the latent heat storage device (8) by the radiator (3). It is the annular process B of the heat exchanger that stores and radiates heat to the latent heat storage device and reaches the circulation.

環状プロセス1の熱サイクルでは熱交換(1)で熱吸収した液化ガス冷媒は圧縮機(2)に導入されて、電動制御プログラミングにより設定に順じた圧縮により冷媒を所定の温度に加熱する。  In the thermal cycle of the annular process 1, the liquefied gas refrigerant absorbed by heat exchange (1) is introduced into the compressor (2), and the refrigerant is heated to a predetermined temperature by compression according to the setting by electric control programming.

圧縮加熱の冷媒は凝縮器(3)で所定の高圧液を維持した状態で、低温の熱流体への熱伝達の放熱により自らの温度を約70%降温し、膨張弁のエジェクタ−(5)で高圧液を昇圧拡散して、エバポレ−タ(6)に導入するCOガス冷媒は減圧差に比例した蒸発気化熱により降温される。各弁の制御手段としての電気制御装置の信号(図示しない)により電気的に制御される構成てある。The compression heating refrigerant is maintained at a predetermined high-pressure liquid in the condenser (3), and its temperature is lowered by about 70% by heat radiation of heat transfer to the low-temperature heat fluid, and the expansion valve ejector (5) The CO 2 gas refrigerant introduced into the evaporator (6) by pressure-diffusion of the high-pressure liquid is lowered by heat of vaporization of vaporization proportional to the pressure difference. It is configured to be electrically controlled by a signal (not shown) of an electric control device as a control means for each valve.

減圧により低温度に降下した冷媒は同気圧の大気温度を吸収(7)して、熱交換機(1)で、熱媒体の放熱を吸熱して、圧縮機(2)に吸入されて、圧縮へ再び冷媒路を循環する。  The refrigerant that has fallen to a low temperature due to the reduced pressure absorbs the atmospheric temperature at the same atmospheric pressure (7), absorbs the heat released from the heat medium in the heat exchanger (1), and is sucked into the compressor (2) to be compressed. Circulate the refrigerant path again.

冷凍サイクルに圧縮機(2)から放熱器(3)で熱交換、気液分離回路(4)をつなぐ、膨張弁の二相流エジェクタ(5)の回路と昇圧吸引効果により、冷媒液を吸上げて、圧縮機(2)の効率低下を防止する。高い吸入圧力は、蒸発器(6)で低い蒸発温度を作り、目的の大気熱の吸収(7)を確保する。一連の冷媒の熱サイクルで高圧/高温から低圧/低温に至る熱循環を効率的実施する。  The refrigerant is absorbed by the circuit of the two-phase flow ejector (5) of the expansion valve and the pressure increase suction effect that connects the heat exchange by the radiator (3) from the compressor (2) to the refrigeration cycle and the gas-liquid separation circuit (4). To prevent a reduction in efficiency of the compressor (2). The high suction pressure creates a low evaporation temperature in the evaporator (6) and ensures the desired atmospheric heat absorption (7). Efficient heat circulation from high pressure / high temperature to low pressure / low temperature through a series of refrigerant thermal cycles.

残熱担持の熱流体はの熱交換器(1)にフィ−ドバックにより除熱し、低温調整器(11)を経路して、定温度に調整、放熱器(3)で加熱されて、潜熱蓄熱材を融解する温度を吸収、蓄熱装置(8)に至る。  The residual heat-carrying thermal fluid removes heat to the heat exchanger (1) by feedback, passes through the low-temperature regulator (11), adjusts to a constant temperature, and is heated by the radiator (3) to store latent heat. Absorbs the temperature at which the material is melted and reaches the heat storage device (8).

然るに、前記熱流体は放熱器(3)で高温冷媒と熱流体を熱交換させて受取る熱(温度)を制御プログラムにより、事前に圧縮機(2)の出口温度で連動する圧縮圧力及び加熱温度を調整する。  However, the heat fluid is exchanged with the outlet temperature of the compressor (2) in advance by the control program by the heat (temperature) received by exchanging heat between the high-temperature refrigerant and the heat fluid at the radiator (3). Adjust.

本実施形態では環状プロセスA及び環状プロセスBの熱サイクルの投入口から排出口に至る熱サイクルの温度・加圧・減圧・流動の指示調整に連動し、図示しない電子制御操作パネルにより起動する。潜熱蓄熱装置の温度活用と外気温度を基軸に制御プログラム設定により圧縮機をコントロ−ルする。  In this embodiment, the control is started by an electronic control operation panel (not shown) in conjunction with temperature, pressurization, decompression, and flow instruction adjustment of the heat cycle from the inlet to the outlet of the thermal process A and annular process B. The compressor is controlled by setting the control program based on the temperature utilization of the latent heat storage device and the outside air temperature.

尚、(T1)から(T10)の記号で示す箇所に計測センサ−を設置して温度・加圧・減圧・流量・指示調整器の設定により一元的操作する。(図示しない)  Note that a measurement sensor is installed at a location indicated by the symbols (T1) to (T10), and is centrally operated by setting the temperature, pressurization, decompression, flow rate, and indicator adjuster. (Not shown)

発明の効果Effect of the invention

以上のように、本発明は当該機器システムの熱サイクルの安定化と効率向上に潜熱蓄熱材の定常温度55℃±5℃と大気温度を基盤とした熱環状を特徴としている。潜熱蓄熱槽を経由した熱媒体はまず、図2に示す熱交換(1)に循環に始まり、一定温度の提供を環状的に循環する。COガス冷媒による冷凍ガスサイクルにおいて圧縮機、放熱熱換機、電子膨張弁、蒸発機、潜熱蓄熱装置の運転を一定の条件下で導いた数値に基づき、温度・加圧・減圧・流量を指示調整により,50〜65℃の負荷対応機能と外気温度に対応した設定プログラムにより、熱サイクルを効率よく最適な連続稼働運転に寄与する。この機能によってCOP効率を向上できる。蓄熱装置もヒ−トポンプ起動時の熱供給サポ−トするに最小の容量があればよく、大掛かりな装置や貯湯タンクを必要としない。必要に応じた蓄熱のサポ−トで何時でも給湯機能を発揮するので利便性の高い商品として供給できる。As described above, the present invention is characterized by a thermal ring based on the steady temperature 55 ° C. ± 5 ° C. of the latent heat storage material and the atmospheric temperature in order to stabilize and improve the efficiency of the thermal cycle of the equipment system. The heat medium passing through the latent heat storage tank first circulates in the heat exchange (1) shown in FIG. In the refrigeration gas cycle using CO 2 gas refrigerant, the temperature, pressurization, decompression, and flow rate are calculated based on the numerical values derived from the operation of the compressor, heat dissipation heat exchanger, electronic expansion valve, evaporator, and latent heat storage device under certain conditions. By adjusting the instructions, the load handling function of 50 to 65 ° C. and the setting program corresponding to the outside air temperature contribute to efficient and optimum continuous operation. This function can improve COP efficiency. The heat storage device need only have a minimum capacity to support heat supply when the heat pump is started, and does not require a large-scale device or a hot water storage tank. The hot water supply function can be demonstrated at any time with heat storage support as needed, so it can be supplied as a highly convenient product.

従来のヒ−トポンプの全体構成を示す略図である。  1 is a schematic diagram showing the overall configuration of a conventional heat pump. 本発明の熱サイクルの実施例を示す構成図である。  It is a block diagram which shows the Example of the thermal cycle of this invention.

符号の説明Explanation of symbols

(I)潜熱を応用したヒ−トポンプ熱サイクルヒ−トポンプ
1 熱交換器(熱流体→冷媒)
2 コンプレッサ(冷媒圧縮)
3 凝縮放熱器(冷媒→熱流体)
4 レシ−バ−(気液分離器)
5 膨張弁(冷媒混合と拡散)
6 蒸発器(蒸発熱→冷媒冷却)
7 大気熱吸収器(大気熱吸収→冷媒)
8 潜熱蓄熱装置/貯湯タンク(熱の貯蔵)
9 水道水(原水)
10 余熱処理前温度(熱流体)
11 温度調整留置装置(熱流体)
12 電磁多方弁(熱流体)
(II)温度・加圧・減圧・流量・指示調整器 (センサ−場所)
P1.圧力センサ−(DCモ−タ−)
T1/大気温度.T2/圧縮導管出口.T3/多方弁.T4/潜熱蓄熱装置入口
T5/潜熱蓄熱装置.T6/高圧導管.T7/エジェクタ、T8/蒸発低温冷媒
T9/温度調整部、P/ポンプ、T10/調整弁
(I) Heat pump heat cycle heat pump applying latent heat 1 Heat exchanger (thermal fluid → refrigerant)
2 Compressor (refrigerant compression)
3 Condenser radiator (refrigerant → thermal fluid)
4 receiver (gas-liquid separator)
5 Expansion valve (refrigerant mixing and diffusion)
6 Evaporator (Evaporation heat → Refrigerant cooling)
7 Atmospheric heat absorber (Atmospheric heat absorption → Refrigerant)
8 Latent heat storage device / hot water storage tank (heat storage)
9 Tap water (raw water)
10 Pre-heat treatment temperature (thermal fluid)
11 Temperature control indwelling device (thermal fluid)
12 Electromagnetic multi-way valve (thermal fluid)
(II) Temperature / Pressure / Decompression / Flow rate / Indicator (Sensor location)
P1. Pressure sensor (DC motor)
T1 / Atmospheric temperature. T2 / compression conduit outlet. T3 / multi-way valve. T4 / latent heat storage device inlet T5 / latent heat storage device. T6 / high pressure conduit. T7 / Ejector, T8 / Evaporating low-temperature refrigerant T9 / Temperature adjusting unit, P / Pump, T10 / Regulating valve

Claims (2)

圧縮器(2)で冷媒体を高圧に加熱して、凝縮/放熱器(3)で凝縮熱の放熱過程で、気液に分離する前記冷媒体をレシーバー(4)を介し、膨張弁(5)に送致して、減圧で発生する気化熱をエバポレータ(6)と大気熱吸収器(7)及び熱交換器(1の過程で吸熱する該冷媒体の循環に備わる装置と、定常温度で吸放熱を行う潜熱蓄熱材を有する蓄熱槽(8で発生の潜熱余熱を担持する被加熱流体が、循環過程で前記熱交換器1)と低温温調器(11)で冷却され、前記凝縮/放熱器(3)で熱を回収し、蓄熱槽(8で放熱する該被加熱流体の熱還流に備わる装置で、冷媒体と被加熱流体の熱互換を行う潜熱蓄熱槽を具備装着して成るヒートポンプの冷熱循環装置 The refrigerant body is heated to a high pressure by the compressor (2), and the refrigerant body separated into gas and liquid in the process of heat release of the condensation heat by the condenser / heat radiator (3) is passed through the receiver (4) through the expansion valve (5). And a device for circulating the refrigerant that absorbs the heat of vaporization generated by the decompression in the process of the evaporator (6), the atmospheric heat absorber (7) and the heat exchanger (1 ) , A heated fluid carrying latent heat residual heat generated in a heat storage tank (8 ) having a latent heat storage material that absorbs and dissipates heat is cooled by the heat exchanger ( 1) and the low temperature controller (11) in a circulation process, It is a device equipped with heat recovery of the heated fluid that recovers heat with the condenser / heat radiator (3) and dissipates heat in the heat storage tank (8 ) , and is equipped with a latent heat storage tank that performs heat compatibility between the refrigerant and the heated fluid. A heat circulation device for heat pumps . 潜熱蓄熱槽(8)が内蔵する潜熱蓄熱組成物はその融点が55℃から80℃の融点範囲で作用する系の組成物で、酢酸系水和物や水酸化ストロンチウムやnパラフィンやステアリン酸及びバルミチン酸系を該潜熱蓄熱槽に用い特許請求項1記載ヒートポンプの冷熱循環装置 In the latent heat storage composition latent heat storage tank (8) built composition of the system to which the melting point is applied at a melting range of 80 ° C. from 55 ° C., acetate-based hydrate and hydroxide-based strontium and n paraffin and stearic acid and palmitic acid based cold circulation system of the heat pump of claims 1, wherein the Ru used for the latent heat storage tank and.
JP2008336068A 2008-12-15 2008-12-15 Compression type heat pump equipped with latent heat storage device Expired - Fee Related JP5280835B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008336068A JP5280835B2 (en) 2008-12-15 2008-12-15 Compression type heat pump equipped with latent heat storage device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008336068A JP5280835B2 (en) 2008-12-15 2008-12-15 Compression type heat pump equipped with latent heat storage device

Publications (2)

Publication Number Publication Date
JP2010139232A JP2010139232A (en) 2010-06-24
JP5280835B2 true JP5280835B2 (en) 2013-09-04

Family

ID=42349506

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008336068A Expired - Fee Related JP5280835B2 (en) 2008-12-15 2008-12-15 Compression type heat pump equipped with latent heat storage device

Country Status (1)

Country Link
JP (1) JP5280835B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013160399A (en) * 2012-02-01 2013-08-19 Kawasaki Thermal Engineering Co Ltd Control operation method of absorption refrigerating machine
JP6111066B2 (en) * 2012-12-28 2017-04-05 サンデンホールディングス株式会社 vending machine
CN114483240B (en) * 2022-02-15 2023-12-19 中国科学院工程热物理研究所 Energy storage power generation system utilizing industrial waste heat

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002195665A (en) * 2000-12-27 2002-07-10 Yukio Kajino Method and system for thermal amplification
JP2002318039A (en) * 2001-04-20 2002-10-31 Hitachi Ltd Air conditioner
JP4270216B2 (en) * 2005-03-30 2009-05-27 靖夫 内川 Supercritical heat pump equipment
JP2008020125A (en) * 2006-07-13 2008-01-31 Matsushita Electric Ind Co Ltd Refrigerating cycle device and heat storage device using the same

Also Published As

Publication number Publication date
JP2010139232A (en) 2010-06-24

Similar Documents

Publication Publication Date Title
CN105216584B (en) The electric automobile heat recovery heat pump type integrated thermal management system of flashed cold-patch gas
US10101043B2 (en) HVAC system and method of operation
CN106051981A (en) Refrigerating method based on double-temperature drive and double cold sources
CN106839481A (en) A kind of cooling unit with auxiliary cold source
CN103307683A (en) Hot pipe and air conditioner all-in-one machine
US11193698B1 (en) Waste heat re-cycle cooling system
CN102759159B (en) A kind of heat pipe hot pump composite system
JP2013181713A (en) Exhaust heat recovery system and method of operating the same
JP5280835B2 (en) Compression type heat pump equipped with latent heat storage device
JP2013104624A (en) Refrigeration cycle apparatus and hot water producing apparatus
CN106322606A (en) Constant-temperature heating and constant-humidity humidifying device
CN205048788U (en) Air source heat pump unit is used in high -efficient crude oil heating
CN201463403U (en) Thermostatic industrial chiller
CN201226628Y (en) Non-condensation system in low temperature environment
CN116885331A (en) Energy storage battery temperature control system and energy storage battery cabinet
JP2006017377A (en) Heat pump water heater
CN214581910U (en) Water-cooling heat dissipation control system for air conditioner and heat pump all-in-one machine
CN107763779A (en) A kind of multi-freezing pipe air conditioning devaporizer
JP2009198019A (en) Heat pump type hot water supply device
CN210717915U (en) Industrial air cooler
CN203432135U (en) Combined cooling, heating and power integral system
JP4882478B2 (en) Regenerative water heater
CN101586892B (en) Synchronous refrigerating-heating machine set with cold-hot source complement
JP6455752B2 (en) Refrigeration system
CN110081579A (en) A kind of air conditioner afterheat recycling system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110823

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20110823

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20120307

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120720

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120807

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130514

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R150 Certificate of patent or registration of utility model

Ref document number: 5280835

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313114

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S201 Request for registration of exclusive licence

Free format text: JAPANESE INTERMEDIATE CODE: R314201

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees