JP4270216B2 - Supercritical heat pump equipment - Google Patents

Supercritical heat pump equipment Download PDF

Info

Publication number
JP4270216B2
JP4270216B2 JP2006089875A JP2006089875A JP4270216B2 JP 4270216 B2 JP4270216 B2 JP 4270216B2 JP 2006089875 A JP2006089875 A JP 2006089875A JP 2006089875 A JP2006089875 A JP 2006089875A JP 4270216 B2 JP4270216 B2 JP 4270216B2
Authority
JP
Japan
Prior art keywords
refrigerant
heat
heating
hot water
evaporator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006089875A
Other languages
Japanese (ja)
Other versions
JP2006308278A (en
Inventor
靖夫 内川
Original Assignee
靖夫 内川
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 靖夫 内川 filed Critical 靖夫 内川
Priority to JP2006089875A priority Critical patent/JP4270216B2/en
Publication of JP2006308278A publication Critical patent/JP2006308278A/en
Application granted granted Critical
Publication of JP4270216B2 publication Critical patent/JP4270216B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2309/00Gas cycle refrigeration machines
    • F25B2309/06Compression machines, plants or systems characterised by the refrigerant being carbon dioxide
    • F25B2309/061Compression machines, plants or systems characterised by the refrigerant being carbon dioxide with cycle highest pressure above the supercritical pressure

Description

本発明は、冷媒としてCO2などを使用する超臨界型ヒートポンプ装置に関し、詳しくは、冷媒を超臨界圧力まで圧縮する圧縮機と熱媒を加熱する加熱用凝縮器と膨張機構と大気から吸熱する採熱用蒸発器とにわたってその順に冷媒を循環させる冷媒回路を備え、前記加熱用凝縮器に通流させる加熱対象の熱媒を冷却する予冷手段を設けてある超臨界型ヒートポンプ装置に関する。  The present invention relates to a supercritical heat pump apparatus that uses CO 2 or the like as a refrigerant, and more specifically, a compressor that compresses the refrigerant to a supercritical pressure, a heating condenser that heats the heating medium, an expansion mechanism, and a sampling that absorbs heat from the atmosphere. The present invention relates to a supercritical heat pump apparatus that includes a refrigerant circuit that circulates refrigerant in order over a heat evaporator, and that includes precooling means for cooling a heat medium to be heated to be passed through the heating condenser.

この種の超臨界型ヒートポンプ装置は、加熱対象の熱媒を加熱用凝縮器での加熱に先立ち予冷手段により冷却することで、加熱対象の熱媒が高温であるときの超臨界型ヒートポンプ装置特有のモリエル線図上での冷凍サイクルの縦長偏平化(すなわち、膨張過程部分の圧縮過程部分の側への接近)による成績係数の低下の抑止を図ったものであるが、従来、この種の超臨界型ヒートポンプ装置として、1つの冷媒回路に2つの蒸発器を設け、それら2つの蒸発器のうちの1つを大気から吸熱する採熱用蒸発器とし、他の1つの蒸発器を凝縮器に通流させる加熱対象の熱媒を冷却する予冷手段として用いる予冷用蒸発器とするものが提案されている(特許文献1参照)。This type of supercritical heat pump device is unique to supercritical heat pump devices when the heat medium to be heated is at a high temperature by cooling the heat medium to be heated by pre-cooling means prior to heating with the condenser for heating. In this case, the reduction in the coefficient of performance due to the vertical flattening of the refrigeration cycle on the Mollier diagram (that is, the approach of the expansion process part to the compression process part side) has been attempted. As a critical heat pump device, two evaporators are provided in one refrigerant circuit, one of the two evaporators is a heat collecting evaporator that absorbs heat from the atmosphere, and the other evaporator is used as a condenser. There has been proposed a precooling evaporator used as a precooling means for cooling a heating medium to be heated (see Patent Document 1).

特開2004−3825号公報JP 2004-3825 A

しかし、上記のような従来の超臨界型ヒートポンプ装置では、冷凍サイクル中における最低冷媒温度となる採熱用蒸発器での冷媒の蒸発温度が吸熱対象の大気の温度(例えば0℃)によって決まり、また、冷凍サイクル中における最高冷媒温度となる加熱用凝縮器での冷媒の凝縮温度が加熱後の熱媒の目標温度(すなわち、熱媒の加熱という本来の目的からして、予冷手段としての予冷用蒸発器で冷却する前の高温の加熱対象熱媒温度よりさらに高い温度、例えば90℃)によって決まることから、それら最低冷媒温度である採熱用蒸発器での蒸発温度と最高冷媒温度である加熱用凝縮器での凝縮温度との差がかなり大きなもの(例えば100℃を越える温度差)になって、ヒートポンプ機能による移動熱量の割りに圧縮機仕事が大きくなり、また、熱媒を冷却した分だけ余分に加熱する必要があり、結局、成績係数の向上をほとんど期待し得ない問題があった。However, in the conventional supercritical heat pump apparatus as described above , the evaporation temperature of the refrigerant in the heat collecting evaporator, which is the lowest refrigerant temperature in the refrigeration cycle, is determined by the temperature of the air to be absorbed (for example, 0 ° C.) In addition, the refrigerant condensing temperature in the heating condenser, which is the highest refrigerant temperature in the refrigeration cycle, is the target temperature of the heating medium after heating (that is, precooling as a precooling means for the original purpose of heating the heating medium). It is determined by the temperature higher than the temperature of the heating target heating medium before being cooled by the evaporator for heating, for example, 90 ° C., and therefore the evaporation temperature and the maximum refrigerant temperature in the heat collecting evaporator, which are the minimum refrigerant temperatures. The difference from the condensing temperature in the condenser for heating becomes quite large (for example, a temperature difference exceeding 100 ° C ), and the work of the compressor increases for the amount of heat transferred by the heat pump function. Further, it is necessary to heat the heating medium by an amount corresponding to the amount of cooling, and as a result, there is a problem that almost no improvement in the coefficient of performance can be expected.

この実情に鑑み、本発明の主たる課題は、加熱対象の熱媒を加熱用凝縮器での加熱に先立ち冷却する予冷手段を構成するのに合理的な冷却加熱形態を採ることで、この種の超臨界型ヒートポンプ装置の成績係数を向上させる点にある。In view of this situation, the main problem of the present invention is that this kind of cooling and heating mode is adopted to construct a pre-cooling means for cooling the heating medium to be heated prior to heating with the heating condenser. This is to improve the coefficient of performance of the supercritical heat pump device.

〔1〕本発明の第1特徴構成は超臨界型ヒートポンプ装置に係り、その特徴は、
各々圧縮機と、加熱用凝縮器と膨張機構及び採熱用蒸発器の順に冷媒を循環させる独立した2つの冷媒回路を併設し、そのうちの第1冷媒回路において第1膨張機構通過後の冷媒を蒸発させる蒸発器として大気から吸熱する第1採熱用蒸発器を設け、一方、第2冷媒回路において第2膨張機構通過後の冷媒を蒸発させる蒸発器として、加熱対象熱媒を各々の前記加 熱用凝縮器に通流させる前に予冷する予冷用蒸発器を設けた超臨界型ヒートポンプ装置であって、前記ヒートポンプ装置へ導入路から供給される熱媒を最初に第2冷媒回路の前記予冷用蒸発器に導入して予冷し、次に予冷した熱媒を前記第1冷媒回路の第1加熱用凝縮器、前記第2冷媒回略の第2加熱用凝縮器の順に直列に通流させる状態と、前記第1冷媒回路の第1加熱用凝縮器および前記第2冷媒回路の第2加熱用凝縮器に並列に通流させる状態とを個別に実現させるための切換手段を設けてある点にある。
[1] A first characteristic configuration of the present invention relates to a supercritical heat pump apparatus,
Two independent refrigerant circuits that circulate the refrigerant in the order of the compressor, the heating condenser, the expansion mechanism, and the heat collecting evaporator are provided side by side, and the refrigerant after passing through the first expansion mechanism in the first refrigerant circuit. As an evaporator to be evaporated, a first heat collecting evaporator that absorbs heat from the atmosphere is provided, and on the other hand, as an evaporator that evaporates the refrigerant after passing through the second expansion mechanism in the second refrigerant circuit, each heating medium to be heated is added to each of the above heating media. A supercritical heat pump apparatus provided with a precooling evaporator for precooling before passing through a heat condenser, wherein the heat medium supplied from an introduction path to the heat pump apparatus is first precooled in the second refrigerant circuit. The preheated heating medium is introduced into the evaporator for preheating, and then the precooled heating medium is passed in series in the order of the first heating condenser of the first refrigerant circuit and the second heating condenser of the second refrigerant circuit. State and first heating condensation of the first refrigerant circuit And in that the second heating condenser of the second refrigerant circuit is provided with switching means for implementing individually and a state in which flow through in parallel.

また、第1特徴構成の実施においては、前記切換手段により第2冷媒回路の予冷用蒸発器で冷却した熱対象の熱媒を第1冷媒回路の加熱用凝縮器と第2冷媒回路の第2加熱用凝縮器とに対し直列に通流させる直列熱媒通流構成、あるいは並列に通流させる並列熱媒通流構成のいずれかによる運転を実現できるものである。In the implementation of the first characteristic configuration, the heat medium to be heated which is cooled by the precooling evaporator of the second refrigerant circuit by the switching unit is used as the heating condenser of the first refrigerant circuit and the second refrigerant circuit of the second refrigerant circuit. The operation can be realized by either a series heat medium flow structure for flowing in series with the heating condenser or a parallel heat medium flow structure for flowing in parallel.

つまり、この第1特徴構成によれば、前記直列熱媒通流構成の場合、主の冷媒回路(第2冷媒回路とは異なる方の冷媒回路、以下、第1冷媒回路と称することがある)については、第2冷媒回路における予冷手段としての予冷用蒸発器で冷却する前の加熱対象熱媒の温度が高温である場合、先述した従来の超臨界型ヒートポンプ装置と同様、冷凍サイクル中における最低冷媒温度となる第1採熱用蒸発器での冷媒の蒸発温度が吸熱対象の大気の温度によって決まり、また、冷凍サイクル中における最高冷媒温度となる第1加熱用凝縮器での冷媒の凝縮温度が加熱後の熱媒の温度(すなわち、予冷用蒸発器で冷却する前の高温の加熱対象熱媒の温度よりさらに高い温度)によって決まることから、それら最低冷媒温度である採熱用蒸発器での蒸発温度と最高冷媒温度である加熱用凝縮器での凝縮温度との差がかなり大きなものになり、しかも第1冷媒回路で熱媒を冷却した分だけ余分に加熱するとした場合、この第1冷媒回路単体の成績係数は先述した従来の超臨界型ヒートポンプ装置と同等程度のものに止まる。That is, according to the first characteristic configuration, in the case of the serial heat medium flow configuration, the main refrigerant circuit (a refrigerant circuit different from the second refrigerant circuit, hereinafter may be referred to as a first refrigerant circuit). When the temperature of the heat medium to be heated before being cooled by the precooling evaporator as the precooling means in the second refrigerant circuit is high, as in the conventional supercritical heat pump device described above, the lowest in the refrigeration cycle evaporation temperature of the refrigerant in the first Tonetsu evaporator as the refrigerant temperature is determined by the temperature of the atmosphere of the heat absorbing interest, also, the condensation temperature of the refrigerant in the first heating condenser the highest coolant temperature during a refrigeration cycle Is determined by the temperature of the heating medium after heating (that is, a temperature higher than the temperature of the heating target heating medium before being cooled by the precooling evaporator). Steaming The difference between the condensation temperature of a temperature and heating condenser is the maximum coolant temperature becomes quite large, yet if you only extra heat amount that has cooled the heat medium in the first refrigerant circuit, the first refrigerant circuit The coefficient of performance of a single unit is about the same as the conventional supercritical heat pump device described above.

しかし、予冷用蒸発器で冷却した加熱対象熱媒を所定加熱温度より低い温度に部分的に加熱するような前記直列熱媒通流構成の第1冷媒回路においては、先述した従来の超臨界型ヒートポンプ装置より成績係数を高めることができる。However, in the first refrigerant circuit having the serial heating medium flow configuration in which the heating target heating medium cooled by the precooling evaporator is partially heated to a temperature lower than a predetermined heating temperature, the conventional supercritical type described above is used. The coefficient of performance can be increased as compared with the heat pump device.

一方、第2冷媒回路については、予冷用蒸発器で冷却する前の加熱対象熱媒の温度が高温である場合、冷凍サイクル中における最低冷媒温度となる予冷用蒸発器での冷媒の蒸発温度が高温の加熱対象熱媒の温度によって決まることから、冷凍サイクル中における最高冷媒温度となる第2加熱用凝縮器での冷媒の凝縮温度が第1冷媒回路と同様、所定温度までに加熱後の熱媒の温度によって決まるにしても、それら最低冷媒温度である予冷用蒸発器での蒸発温度と最高冷媒温度である第2加熱用凝縮器での凝縮温度との差は、第1冷媒回路や先述した超臨界型ヒートポンプ装置での最低冷媒温度と最高冷媒温度との差よりもかなり小さいものになり、このことから、第2冷媒回路の成績係数は第1冷媒回路や先述した従来の超臨界型ヒートポンプ装置よりも遥かに高いものにすることができる。  On the other hand, for the second refrigerant circuit, when the temperature of the heating medium to be heated before cooling with the precooling evaporator is high, the evaporation temperature of the refrigerant in the precooling evaporator that is the lowest refrigerant temperature in the refrigeration cycle is Since the temperature is determined by the temperature of the high-temperature heating medium, the condensation temperature of the refrigerant in the second heating condenser, which is the highest refrigerant temperature in the refrigeration cycle, is the heat after heating up to a predetermined temperature as in the first refrigerant circuit. Even if it is determined by the temperature of the medium, the difference between the evaporation temperature in the precooling evaporator, which is the minimum refrigerant temperature, and the condensation temperature in the second heating condenser, which is the maximum refrigerant temperature, is the same as that in the first refrigerant circuit. Therefore, the coefficient of performance of the second refrigerant circuit is the same as that of the first refrigerant circuit or the conventional supercritical type described above. Heat pong It can be much higher than the device.

したがって、前記熱媒直列通流構成の場合、第1冷媒回路と第2冷媒回路とを合わせた第1特徴構成による超臨界型ヒートポンプ装置の装置全体としては、先述した従来の超臨界型ヒートポンプ装置よりも成績係数の高いものにすることができる。  Therefore, in the case of the heat medium serial flow configuration, the above-described conventional supercritical heat pump device as a whole of the supercritical heat pump device having the first characteristic configuration combining the first refrigerant circuit and the second refrigerant circuit is used. Can have a higher coefficient of performance.

また、第1特徴構成によれば、前記並列熱媒通流構成の場合、第1冷媒回路の第1加熱用凝縮器と第2冷媒回路の第2加熱用凝縮器とで加熱する前の高温の加熱対象熱媒を予冷手段により冷却することにより、ヒートポンプ機能による移動熱量のうちの圧縮仕事による熱量の割合を少なくすることが出来る。ここでは予冷用蒸発器をもつ第2冷媒回路において熱媒を冷却した分だけ余分に加熱するとした場合、それほどの成績係数の向上は得られないが、加熱対象熱媒温度の冷却効果のみを受ける第1冷媒回路においては成績係数が大きく向上する。なお、その他の種々の基本的な効果(例えば、加熱対象熱媒が高温であることに対するエネルギー消費効率の基本的な向上や、圧縮機の負担の軽減(圧縮比の低減)あるいは装置運転の安定化など)は、当然ながら、先述した従来の超臨界型ヒートポンプ装置と同等に得ることができる。 Further, according to the first characteristic configuration, in the case of the parallel heat medium flow configuration, the high temperature before heating by the first heating condenser of the first refrigerant circuit and the second heating condenser of the second refrigerant circuit. By cooling the heating medium to be heated by the pre-cooling means, it is possible to reduce the ratio of the amount of heat due to compression work out of the amount of heat transferred by the heat pump function. Here, if the heating medium is heated by the amount of cooling in the second refrigerant circuit having the precooling evaporator, the coefficient of performance is not improved so much, but only the cooling effect of the heating medium temperature to be heated is received. The coefficient of performance is greatly improved in the first refrigerant circuit. The other variety of the basic effects (e.g., basic improvement of energy consumption efficiency against heat target heating medium is high, reduction in relief (compression ratio of the compressor load) or an apparatus stable operation Naturally, it can be obtained in the same manner as the conventional supercritical heat pump device described above.

つまり、この第1特徴構成によれば、低外気温時には直列熱媒通流構成とし、通常の外気温時には並列熱媒通流構成とするなど、運転環境に応じて前記各加熱用凝縮器に対しての熱媒通流構成を切り換えることができ、これにより、装置全体の期間平均的な成績係数を高めることができる。That is, according to the first characteristic configuration, the heating condenser is configured in series at a low outside temperature, and in a parallel heating medium configuration in a normal outside temperature. Therefore, it is possible to switch the heat medium flow configuration with respect to the heat medium, thereby increasing the average coefficient of performance of the entire apparatus.

なお、加熱対象熱媒を第1冷媒回路の第1加熱用凝縮器と第2冷媒回路の第2加熱用凝縮器とに対し直列に通流させる場合、第1冷媒回路の第1加熱用凝縮器を上流側に配置する構成とする。Incidentally, in the case of flow through the series with a second heating condenser of the first heating condenser and the second refrigerant circuit of the first refrigerant circuit to heat the target heat medium, the first heating condensation of the first refrigerant circuit The device is arranged on the upstream side.

また、熱媒加熱装置としての超臨界型ヒートポンプ装置と負荷装置との間で熱媒を循環させる設備構成の場合、負荷装置から超臨界型ヒートポンプ装置に戻る熱媒(すなわち、加熱対象熱媒)の温度が負荷装置の運転条件や運転状況によって高温になるといったことがあることから、上記第1特徴構成は超臨界型ヒートポンプ装置と負荷装置との間で熱媒を循環させる場合に特に好適であるが、第1特徴構成の実施において熱媒は、必ずしも超臨界型ヒートポンプ装置(具体的には第1加熱用凝縮器及び第2加熱用凝縮器)と負荷装置との間で循環させる熱媒に限られるものではなく、第1加熱用凝縮器及び第2加熱用凝縮器で加熱した後、再び、それら第1加熱用凝縮器及び第2加熱用凝縮器に戻すことのない一過的な熱媒であってもよい。In addition, in the case of an equipment configuration in which a heat medium is circulated between a supercritical heat pump device serving as a heat medium heating device and a load device, the heat medium returning from the load device to the supercritical heat pump device (that is, a heat medium to be heated) The first characteristic configuration is particularly suitable when a heat medium is circulated between the supercritical heat pump device and the load device. However, in the implementation of the first characteristic configuration, the heat medium is not necessarily a heat medium circulated between the supercritical heat pump device (specifically, the first heating condenser and the second heating condenser) and the load device. the present invention is not limited, after heating in the first heating condenser and the second heat condenser, again, that without a transient back to their first heating condenser and the second heat condenser Heat medium may be used

〔2〕本発明の第2特徴構成は、第1特徴構成の実施の上でより好適な実施形態を特定するものであり、その特徴は、
前記第2冷媒回路において第2膨張機構通過後の冷媒を蒸発させる蒸発器として、前記予冷用蒸発器と大気から吸熱する第2採熱用蒸発器との2つの蒸発器を冷媒回路上で並列に設け、これら2つの蒸発器の流入側冷媒分岐点及び流出側冷媒合流点の両方に設けた切り換え手段により、前記予冷用蒸発器と第2採熱用蒸発器とのうち、冷媒を通流させる蒸発器を択一的に切り換える構成とした点にある。
[2] The second characteristic configuration of the present invention specifies a more preferable embodiment on the implementation of the first characteristic configuration .
As an evaporator for evaporating the refrigerant after passing through the second expansion mechanism in the second refrigerant circuit, two evaporators, the precooling evaporator and the second heat collecting evaporator that absorbs heat from the atmosphere, are arranged in parallel on the refrigerant circuit. The switching means provided at both the inflow-side refrigerant junction and the outflow-side refrigerant confluence of these two evaporators allows the refrigerant to flow out of the precooling evaporator and the second heat collecting evaporator. This is because the evaporator to be switched is selectively switched.

つまり、この第2特徴構成によれば、加熱対象熱媒の温度が高温のときには、前記切換手段により第2冷媒回路において予冷用蒸発器と第2採熱用蒸発器とのうち予冷用蒸発器に冷媒を通流させる予冷選択状態にすることで、加熱対象熱媒を第1冷媒回路の第1加熱用凝縮器及び第2冷媒回路の第2加熱用凝縮器での加熱に先立ち第2冷媒回路の予冷用蒸発器で冷却する運転形態に(すなわち、前述した第1特徴構成において採る運転形態)にすることができ、これにより、前述第1特徴構成による加熱対象熱媒が高温である場合における成績係数を高めることができる。That is, according to the second characterizing feature, when the temperature of the heating target heat medium is hot, the pre-cooling evaporator of the pre-cooling evaporator and a second Tonetsu evaporator in the second refrigerant circuit by said switching means In the precooling selection state in which the refrigerant flows through the second refrigerant prior to the heating of the heat medium to be heated by the first heating condenser of the first refrigerant circuit and the second heating condenser of the second refrigerant circuit. When the operation mode of cooling by the precooling evaporator of the circuit (that is, the operation mode employed in the first characteristic configuration described above) can be adopted, and thereby the heating target heat medium according to the first characteristic configuration is high temperature The coefficient of performance can be increased.

そしてまた、加熱対象熱媒の温度が予冷用蒸発器での冷却を要しない低温のときには、前記切換手段により第2冷媒回路において予冷用蒸発器と第2採熱用蒸発器とのうち第2採熱用蒸発器に冷媒を通流させる採熱選択状態にすることで、第1冷媒回路及び第2冷媒回路において採熱用蒸発器で大気から汲み上げた熱を用いて、各加熱用凝縮器で余分な冷却をしていない熱媒を加熱することができて、前記の予冷選択状態に比べ熱媒に対する実質の加熱負荷を軽減することができ、これにより、加熱対象熱媒の温度に応じ第2冷媒回路を予冷選択状態と採熱選択状態とに択一的に切り換える形態での装置運転において、装置全体としての時間平均的な成績係数を一層向上させることができる。And also, when the temperature of the heating target heat medium is low does not require cooling at pre-cooling evaporator, the second of the pre-cooling evaporator and a second Tonetsu evaporator in the second refrigerant circuit by said switching means By selecting the heat collection selection state in which the refrigerant flows through the heat collecting evaporator , each heat condensing unit uses the heat pumped from the atmosphere by each heat collecting evaporator in the first refrigerant circuit and the second refrigerant circuit . to be able to heat the heat medium that does not have any extra cooling in vessel, wherein the can reduce the substantial heating load on the heat transfer medium than in the pre-cooling a selected state, thereby, the temperature of the heat target thermal medium Accordingly, in the operation of the apparatus in which the second refrigerant circuit is selectively switched between the precooling selection state and the heat collection selection state, the time-average coefficient of performance as the entire apparatus can be further improved.

図1は超臨界型のヒートポンプ装置を熱源機とする温水設備を示し、1はCO2冷媒の超臨界型ヒートポンプ装置、2A〜2Cは貯湯タンク、3は床暖房パネルやファンコイルユニットなどの温水循環式の暖房装置、4は中継熱交換器、5は温水循環式の融雪装置、6は浴槽(又は温水プール)、7は給湯栓である。  FIG. 1 shows a hot water facility using a supercritical heat pump device as a heat source, 1 is a supercritical heat pump device for CO2 refrigerant, 2A to 2C are hot water storage tanks, and 3 is hot water circulation such as a floor heating panel or a fan coil unit. 4 is a relay heat exchanger, 5 is a hot water circulation type snow melting device, 6 is a bathtub (or hot water pool), and 7 is a hot water tap.

熱源機としてのヒートポンプ装置1は、湯水入口1aから流入する熱媒としての湯水Wを加熱して、その加熱後の高温湯水Wを湯水出口1bから送出する湯水加熱機として機能するものであり、これを用いた本例の温水設備では、ヒートポンプ装置1の湯水出口1bから送出される高温湯水Wの通流状態を上流側及び下流側の2つの三方弁Va,Vbによる流路の切り換えにより次のタンク側通流状態と短絡側通流状態とに択一的に切り換えるようにしてある。  The heat pump device 1 as a heat source device functions as a hot water heater that heats the hot water W as a heat medium flowing in from the hot water inlet 1a and sends out the heated hot water W from the hot water outlet 1b. In the hot water facility of this example using this, the flow state of the high temperature hot water W sent from the hot water outlet 1b of the heat pump device 1 is changed by switching the flow path by the two upstream and downstream three-way valves Va and Vb. The tank side flow state and the short circuit side flow state are selectively switched.

すなわち、タンク側通流状態では、図中一点鎖線の矢印で示す如く、湯水出口1bから送出される高温湯水Wを上流側往路8−貯湯タンク2A〜2Cを直列に介装した貯湯タンク用分岐路9−下流側往路10の順に通過させ、また、短絡側通流状態では、図中実線の矢印で示す如く、湯水出口1bから送出される高温湯水Wを上流側往路8−短絡循環用分岐路11−下流側往路10の順に通過させる。  That is, in the tank-side flow state, as shown by the one-dot chain line arrow in the figure, the hot water supply water fed from the hot water outlet 1b is branched into the hot water storage tank in which the upstream outward passage 8-the hot water storage tanks 2A to 2C are interposed in series. As shown by the solid line arrow in the drawing, the hot water W sent from the hot water outlet 1b is allowed to pass through the upstream outbound path 8—the short circuit circulation branch. Pass in order of the path 11-the downstream outbound path 10.

貯湯タンク用分岐路9には、上記のタンク側通流状態において上流側往路8を通じ送給されるヒートポンプ装置1からの高温湯水Wを第1貯湯タンク2Aの上部に供給し、その第1貯湯タンク2Aへの高温湯水Wの供給に伴い第1貯湯タンク2Aの底部から送出される湯水Wを第2貯湯タンク2Bの上部に供給し、同様に、その第2貯湯タンク2Bへの湯水Wの供給に伴い第2貯湯タンク2Bの底部から送出される湯水Wを第3貯湯タンク2Cの上部に供給し、そして、その第3貯湯タンク2Cへの湯水Wの供給に伴い第3貯湯タンク2Cの底部から送出される湯水Wを下流側往路10へ送出する直列接続形態で、3つの貯湯タンク2A〜2Cを介装してある。The hot water storage tank branch passage 9 is supplied with hot hot water W from the heat pump device 1 fed through the upstream outward passage 8 in the above tank side flow state to the upper portion of the first hot water storage tank 2A. Along with the supply of the high temperature hot water W to the tank 2A, the hot water W sent from the bottom of the first hot water storage tank 2A is supplied to the upper portion of the second hot water storage tank 2B, and similarly, the hot water W to the second hot water storage tank 2B is supplied. hot water W sent from the bottom of the second hot-water tank 2B with the feed supplied to the upper portion of the third hot water tank 2C, and, the third hot water tank 2C with the supply of hot water W of the third water tank 2C Three hot water storage tanks 2 </ b> A to 2 </ b> C are interposed in a serial connection configuration in which hot water W sent from the bottom is sent to the downstream outbound path 10.

すなわち、タンク側通流状態においてヒートポンプ装置1から高温湯水Wを送給することで、その高温湯水Wにより貯湯タンク2A〜2C内の残留低温湯水Wを下流側往路10へ押し出す形態で、高温湯水Wを第1貯湯タンク2Aの側から順次に、かつ、各貯湯タンク2A〜2Cにおいて上部側から貯めていき、その高温湯水Wを各貯湯タンク2A〜2Cにおいて一部温度成層を含む状態で貯留するようにしてある。That is, by supplying the high-temperature hot water W from the heat pump device 1 in the tank-side flow state, the high-temperature hot water W pushes the residual low-temperature hot water W in the hot water storage tanks 2A to 2C to the downstream outward path 10 by the high-temperature hot water W. W is stored sequentially from the first hot water storage tank 2A side and from the upper side in each of the hot water storage tanks 2A to 2C, and the hot hot water W is stored in a state including partial temperature stratification in each of the hot water storage tanks 2A to 2C. I have to do it.

貯湯タンク用分岐路9においては、上流側三方弁Vaと第1貯湯タンク2Aとの間の箇所から給湯路12を分岐して、この給湯路12を給湯栓7に接続してあり、また、第3貯湯タンク2Cと下流側三方弁Vbとの間の箇所には、給水弁13を介装した給水路14を接続してあり、これにより、給湯栓7が開栓されたときには、それに連動する給水弁13の開弁により給水路14から第3貯湯タンク2Cの底部に新鮮水Wcを送給することで、図中破線の矢印で示す如く、その供給新鮮水Wcをもって押し出す形態で貯湯タンク2A〜2Cにおける貯留高温湯水Wを第1貯湯タンク2Aの上部側(すなわち、前記した温度成層のない高温端側)から給湯路12を通じて給湯栓7から出湯させる。なお、この給湯状態においては上流側及び下流側の三方弁Va,Vbは短絡側通流状態にある。In the hot water tank branch 9, a hot water supply path 12 is branched from a location between the upstream three-way valve Va and the first hot water storage tank 2 </ b> A, and the hot water supply path 12 is connected to the hot water tap 7. A water supply path 14 with a water supply valve 13 interposed is connected to a location between the third hot water storage tank 2C and the downstream side three-way valve Vb. By supplying fresh water Wc from the water supply path 14 to the bottom of the third hot water storage tank 2C by opening the water supply valve 13, the hot water storage tank is pushed out with the supplied fresh water Wc as shown by the broken arrow in the figure. The stored high temperature hot water W in 2A to 2C is discharged from the hot water tap 7 through the hot water supply path 12 from the upper side of the first hot water storage tank 2A (that is, the high temperature end side without temperature stratification described above). In this hot water supply state, the upstream and downstream three-way valves Va and Vb are in a short circuit side flow state.

下流側往路10からは温水循環式の暖房装置3と中継熱交換器4との夫々に対する温水供給路15a,16aを並列的に分岐してあり、これら温水供給路15a,16aを通じて下流側往路10から暖房装置3及び中継用熱交換器4に湯水W(温水)を供給するのに伴い、それら暖房装置3及び中継用熱交換器4から温水戻り路15b,16bを通じて戻る湯水W(すなわち、暖房や熱交換で熱消費されて降温した湯水)は、共通返路17を通じてヒートポンプ装置1の湯水入口1aに戻すようにしてある。  From the downstream side outward path 10, the hot water supply paths 15a and 16a for the warm water circulation type heating device 3 and the relay heat exchanger 4 are branched in parallel, and the downstream side outward path 10 passes through these hot water supply paths 15a and 16a. As hot water W (hot water) is supplied from the heating device 3 and the relay heat exchanger 4 to the heating device 3 and the relay heat exchanger 4, the hot water W (that is, heating) returns from the heating device 3 and the relay heat exchanger 4 through the hot water return paths 15b and 16b. Or hot water that has been consumed by heat exchange and cooled down) is returned to the hot water inlet 1 a of the heat pump device 1 through the common return path 17.

つまり、貯湯タンク2A〜2Cに高温湯水Wを貯め込む際(一般に夜間電力時間帯)に使用するタンク側通流状態(一点鎖線の矢印)では、貯湯タンク2A〜2Bを介して暖房装置3及び中継熱交換器4とヒートポンプ装置1との間で熱媒としての湯水Wを循環させ、一方、貯湯タンク2A〜2Cへの高温湯水Wの供給を停止する短絡側通流状態(実線の矢印)では、貯湯タンク2A〜2Cを迂回させる状態で短絡循環用分岐路11を通じて暖房装置3及び中継熱交換器4とヒートポンプ装置1との間で熱媒としての湯水Wを循環させる。That is, when the hot water W is stored in the hot water storage tanks 2A to 2C (generally at night power hours), in the tank-side flow state (arrows with dashed lines), the heating device 3 and the hot water storage tanks 2A to 2B are used. Short circuit side flow state (solid arrow) in which hot water W as a heat medium is circulated between the relay heat exchanger 4 and the heat pump device 1 while the supply of the high temperature hot water W to the hot water storage tanks 2A to 2C is stopped. Then, hot water W as a heat medium is circulated between the heating device 3 and the relay heat exchanger 4 and the heat pump device 1 through the short circuit circulation branch 11 in a state in which the hot water storage tanks 2A to 2C are bypassed.

中継熱交換器4では、下流側往路10から供給される高温湯水Wとの熱交換により間接熱媒としての水W′(すなわち、ヒートポンプ装置1に循環させる湯水Wとは混合させない水)を加熱し、この加熱で生成した温水W′を循環路18a,18bを通じて融雪装置5に循環させるとともに、循環路19a,19bを通じて浴槽6(又は温水プール)に循環させる。すなわち、融雪装置5では中継熱交換器4から供給される温水W′の保有熱をもって積雪を防止し、また、浴槽6(又は温水プール)では中継熱交換器4から供給される温水W′をもって貯留温水W′を適温に維持する。なお、図中Pはポンプである。  In the relay heat exchanger 4, the water W ′ as an indirect heat medium (that is, water that is not mixed with the hot water W circulated in the heat pump device 1) is heated by heat exchange with the high-temperature hot water W supplied from the downstream outward path 10. Then, the hot water W ′ generated by this heating is circulated to the snow melting device 5 through the circulation paths 18a and 18b, and is circulated to the bathtub 6 (or the hot water pool) through the circulation paths 19a and 19b. That is, the snow melting device 5 prevents the snow accumulation by the retained heat of the hot water W ′ supplied from the relay heat exchanger 4, and the hot water W ′ supplied from the relay heat exchanger 4 in the bathtub 6 (or hot water pool). The stored hot water W ′ is maintained at an appropriate temperature. In the figure, P is a pump.

一方、熱源機であるヒートポンプ装置1には、冷媒Rを超臨界圧力まで圧縮する第1圧縮機20と、湯水入口1aから流入する湯水Wを加熱する第1加熱用凝縮器21と、第1膨張機構としての第1膨張弁22と、大気A(一般に外気)から吸熱する第1採熱用蒸発器23とを主要構成装置として、それら第1圧縮機20−第1加熱用凝縮器21−第1膨張弁22−第1採熱用蒸発器23の順に冷媒Rを循環させる第1冷媒回路24を装備してある。On the other hand, the heat pump apparatus 1 which is a heat source machine, a first compressor 20 for compressing the refrigerant R to the supercritical pressure, a first heating condenser 21 to heat the hot water W flowing from the hot water inlet 1a, the first a first expansion valve 22 as an expansion mechanism, the air a (typically ambient air) and the first Tonetsu evaporator 23 absorbs heat from the main constituent devices, they first compressor 20- first heating condenser 21 A first refrigerant circuit 24 for circulating the refrigerant R in the order of the first expansion valve 22 and the first heat collecting evaporator 23 is provided.

また、冷媒R′を超臨界圧力まで圧縮する第2圧縮機25と、湯水入口1aから流入する湯水Wを第1冷媒回路24の第1加熱用凝縮器21とともに加熱する第2加熱用凝縮器26と、第2膨張機構としての第2膨張弁27と、予冷用蒸発器28とを主要構成装置として、第1冷媒回路24とは独立に、それら第2圧縮機25−第2加熱用凝縮器26−第2膨張弁27−予冷用蒸発器28の順に冷媒R′を循環させる第2冷媒回路29を装備してある。The second compressor 25 that compresses the refrigerant R ′ to the supercritical pressure, and the second heating condenser that heats the hot water W flowing from the hot water inlet 1a together with the first heating condenser 21 of the first refrigerant circuit 24. 26, a second expansion valve 27 as a second expansion mechanism, and a precooling evaporator 28 as main constituent devices, and independently of the first refrigerant circuit 24, these second compressor 25-second heating condensation The second refrigerant circuit 29 for circulating the refrigerant R ′ in the order of the vessel 26 -the second expansion valve 27 -the precooling evaporator 28 is provided.

そして、湯水入口1aからヒートポンプ装置1に流入する湯水Wは、導入路30を通じて第1冷媒回路24の第1加熱用凝縮器21と第2冷媒回路29の第2加熱用凝縮器26とに導き、これら第1加熱用凝縮器21及び第2加熱用凝縮器26で加熱した高温湯水Wを導出路31を通じて湯水出口1bから送出するようにしてあり、湯水入口1aからの導入路30には第2冷媒回路29の予冷用蒸発器28を介装してある。Then, the hot water W flowing into the heat pump device 1 from the hot water inlet 1 a is led to the first heating condenser 21 of the first refrigerant circuit 24 and the second heating condenser 26 of the second refrigerant circuit 29 through the introduction path 30. The high-temperature hot water W heated by the first heating condenser 21 and the second heating condenser 26 is sent out from the hot water outlet 1b through the outlet passage 31, and the introduction passage 30 from the hot water inlet 1a is connected to the first passage 30. 2 Precooling evaporator 28 of refrigerant circuit 29 is interposed.

すなわち、導入路30を通じて第1冷媒回路24の第1加熱用凝縮器21と第2冷媒回路29の第2加熱用凝縮器26とに導く加熱対象の湯水Wを、それら第1加熱用凝縮器21及び第2加熱用凝縮器26での加熱に先立ち、予冷手段としての第2冷媒回路29における予冷用蒸発器28で冷却するようにしてある。That is, the hot water W to be heated that is led to the first heating condenser 21 of the first refrigerant circuit 24 and the second heating condenser 26 of the second refrigerant circuit 29 through the introduction path 30 is supplied to the first heating condenser. Prior to heating by the condenser 21 and the second heating condenser 26, cooling is performed by the precooling evaporator 28 in the second refrigerant circuit 29 as precooling means.

第2冷媒回路29には付加装備として、大気A(一般に外気)から吸熱する第2採熱用蒸発器32を予冷用蒸発器28とは並列に装備してあり、また、第2膨張弁27を通過した冷媒R′を予冷用蒸発器28に通流させて予冷用蒸発器28の吸熱作用(すなわち、冷媒蒸発に伴う気化熱奪取)により加熱対象の湯水Wを冷却する予冷選択状態と、第2膨張弁27を通過した冷媒R′を第2採熱用蒸発器32に通流させて第2採熱用蒸発器32の吸熱作用により大気Aから採熱する採熱選択状態との択一的な切り換えを行う切換手段として、各々の蒸発器への冷媒の回りこみによる寝込みを防ぐため、これら2つの蒸発器の流入側冷媒分岐点及び流出側冷媒合流点の両方に2つの冷媒三方弁Vx,Vyを設けてある。As an additional equipment, the second refrigerant circuit 29 is equipped with a second heat collecting evaporator 32 that absorbs heat from the atmosphere A (generally outside air) in parallel with the precooling evaporator 28, and the second expansion valve 27. A pre-cooling selection state in which the refrigerant R ′ that has passed through the pre-cooling evaporator 28 is passed through the pre-cooling evaporator 28 and the hot water W to be heated is cooled by the endothermic action of the pre-cooling evaporator 28 (ie, the removal of vaporization heat accompanying the evaporation of the refrigerant); Selection of a heat collection selection state in which the refrigerant R ′ that has passed through the second expansion valve 27 is passed through the second heat collecting evaporator 32 and heat is collected from the atmosphere A by the endothermic action of the second heat collecting evaporator 32. As a switching means for performing a single switching, in order to prevent stagnation due to the stagnation of refrigerant into each evaporator, two refrigerants three-way at both the inflow side refrigerant branch point and the outflow side refrigerant junction point of these two evaporators Valves Vx and Vy are provided.

そしてまた、第1加熱用凝縮器21及び第2加熱用凝縮器26に対する導入路30及び導出路31の接続部においては、湯水入口1aから導入路30を通じて導く加熱対象の湯水Wを渡り路33の閉路により第1加熱用凝縮器21と第2加熱用凝縮器26とに対し並列に通流させる並列通流状態と、湯水入口1aから導入路30を通じて導く加熱対象の湯水Wを渡り通流路33の開路により第1加熱用凝縮器21と第2加熱用凝縮器26とに対しその順に直列に通流させる直列通流状態との切り換えを行う2つの熱媒三方弁Vc,Vdを設けてある。In addition, in the connection portion of the introduction path 30 and the outlet path 31 with respect to the first heating condenser 21 and the second heating condenser 26, the hot water W to be heated that is guided from the hot water inlet 1 a through the introduction path 30 is a crossover path 33. the closed path between the first heating condenser 21 and the parallel communication flow state to flow through in parallel to the second heating condenser 26, the hot water W over communication flow to be heated which leads through the introduction path 30 from the hot water inlet 1a Two heating medium three-way valves Vc and Vd are provided for switching between a serial flow state in which the first heating condenser 21 and the second heating condenser 26 are passed in series in that order by opening the passage 33. It is.

つまり、この温水設備では、高温湯水Wが貯め込まれた貯湯タンク2A〜2Cを迂回させる状態で短絡循環用分岐路11を通じて暖房装置3及び中継熱交換器4とヒートポンプ装置1との間で湯水Wを循環させる前記の短絡側通流状態で装置を運転する際には、暖房装置3や中継熱交換器4から共通返路17を通じてヒートポンプ装置1に戻る湯水Wが高温になる(すなわち、超臨界型のヒートポンプ装置1から送給する湯水Wが高温(例えば90℃)であることから、暖房装置3や中継熱交換器4での熱消費による降温があるとしても戻り湯水Wは比較的高温(例えば60℃)となる)ことから、図中実線の矢印で示す如く、その戻り湯水Wを第1加熱用凝縮器21及び第2加熱用凝縮器26での加熱に先立ち第2冷媒回路29の予冷用蒸発器28で冷却する前記の予冷選択状態にするとともに、予冷用蒸発器28で冷却した戻り湯水Wを第1加熱用凝縮器21と第2加熱用凝縮器26とに対しその順に直列に通流させて加熱する直列通流状態にし、あるいは同様に冷却した戻り湯水Wを第1加熱用凝縮器21と第2加熱用凝縮器26とに対し並列に通流させて加熱する並列通流状態にして、これにより、第1冷媒回路24及び第2冷媒回路29の夫々での冷凍サイクルの縦長偏平化を防止して圧縮比を低減させヒートポンプ装置1の運転を安定化するとともに、ヒートポンプ装置1の装置全体としての成績係数を極力高く維持する。In other words, in this hot water facility, hot water between the heating device 3 and the relay heat exchanger 4 and the heat pump device 1 through the short circuit circulation branch 11 in a state of bypassing the hot water storage tanks 2A to 2C in which the high temperature hot water W is stored. When the apparatus is operated in the short-circuit side flow state in which W is circulated, the hot water W returning to the heat pump apparatus 1 from the heating apparatus 3 or the relay heat exchanger 4 through the common return path 17 becomes a high temperature (i.e., exceeding Since the hot water W supplied from the critical heat pump device 1 is high temperature (for example, 90 ° C.), the return hot water W is relatively high even if there is a temperature drop due to heat consumption in the heating device 3 or the relay heat exchanger 4. Therefore, as shown by the solid arrows in the figure, the return hot water W is heated to the second refrigerant circuit 29 prior to heating in the first heating condenser 21 and the second heating condenser 26. Steam for pre-cooling While the pre-cooling selection state of cooling in vessel 28, in series in that order with respect to the return hot water W which is cooled in precooler evaporator 28 and the first heating condenser 21 and the second heating condenser 26 Tsuryu In this case, the heated return water W is cooled in the same way, or the cooled back hot water W is passed through the first heating condenser 21 and the second heating condenser 26 in parallel and heated. Te, As a result, the stabilized operation of the heat pump apparatus 1 to reduce the compression ratio to prevent longitudinal flattening of the refrigeration cycle in each of the first refrigerant circuit 24 and the second refrigerant circuit 29, the heat pump device 1 Maintain the coefficient of performance of the entire device as high as possible.

また、貯湯タンク2A〜2Cに高温湯水Wを貯め込む為に貯湯タンク2A〜2Cを介して暖房装置3及び中継熱交換器4とヒートポンプ装置1との間で湯水Wを循環させるタンク側通流状態で装置を運転する際には、貯湯タンク2A〜2Cの残留低温湯水Wが戻り湯水としてヒートポンプ装置1に戻ることから、第2冷媒回路29において予冷用蒸発器28への冷媒R′の通流を断った状態で第2採熱用蒸発器32に冷媒R′を通流させて、その第2採熱用蒸発器32を第1冷媒回路24の第1採熱用蒸発器23とともに大気Aに対して吸熱機能させる採熱選択状態にするとともに、図中一点鎖線の矢印で示す如く、冷却を伴わずに予冷用蒸発器28を通過させた戻り湯水Wを第1加熱用凝縮器21と第2加熱用凝縮器26とに対し並列に通流させて加熱する並列通流状態にし、これにより、実質の加熱負荷を低減させて、貯湯タンク2A〜2Cへの高温湯水Wの貯め込みに要する時間を短くするとともに成績係数をさらに高いものにする。Further, in order to store the hot water W in the hot water storage tanks 2A to 2C , the tank side flow for circulating the hot water W between the heating device 3 and the relay heat exchanger 4 and the heat pump device 1 through the hot water storage tanks 2A to 2C . When the apparatus is operated in the state, the residual low-temperature hot water W in the hot water storage tanks 2A to 2C returns to the heat pump device 1 as returned hot water, so that the refrigerant R 'is passed to the precooling evaporator 28 in the second refrigerant circuit 29. With the flow cut off, the refrigerant R ′ is passed through the second heat collecting evaporator 32, and the second heat collecting evaporator 32 together with the first heat collecting evaporator 23 of the first refrigerant circuit 24 is sent to the atmosphere. The first hot-water condenser 21 is made into a heat collection selection state for causing A to absorb heat, and the return hot water W that has passed through the pre-cooling evaporator 28 without being cooled, as indicated by an alternate long and short dash line in the figure. And the second heating condenser 26 in parallel. It is made into the parallel flow state which is made to flow and it heats, thereby reducing a substantial heating load, shortening the time required for storing hot water W in hot water storage tanks 2A-2C, and making a coefficient of performance higher To do.

なお、場合によっては、図中破線で示す如く、導入路30に第2給水路34を接続するとともに、湯水入口1aからの湯水Wを第1加熱用凝縮器21及び第2加熱用凝縮器26に導いて加熱する循環水加熱状態と、第2給水路34からの供給新鮮水Wcを第1加熱用凝縮器21及び第2加熱用凝縮器26に導いて加熱する新鮮水加熱状態との択一的な切り換えを行う給水用三方弁Veを設けるようにし、これにより、貯湯タンク2A〜2Cに高温湯水Wの貯め置きがない状態では、給湯栓7の開栓に連動して給水弁13の開弁に代え循環水加熱状態から新鮮水加熱状態への切り換えを行うことで、給湯栓7からの高温湯水Wの出湯を可能にするようにしてもよい。なお、この新鮮水加熱状態では、タンク側通流状態の際と同じく、第2冷媒回路29の第2採熱用蒸発器32を大気Aに対して吸熱機能させる採熱選択状態にするとともに、戻り湯水Wを第1加熱用凝縮器21と第2加熱用凝縮器26とに対し並列に通流させて加熱する並列通流状態にする。In some cases, as indicated by a broken line in the figure, the second water supply passage 34 is connected to the introduction passage 30 and the hot water W from the hot water inlet 1a is supplied to the first heating condenser 21 and the second heating condenser 26. A circulating water heating state in which the water is introduced and heated, and a fresh water heating state in which the fresh fresh water Wc supplied from the second water supply channel 34 is led to the first heating condenser 21 and the second heating condenser 26 to be heated. A water supply three-way valve Ve that performs a single switching operation is provided, so that when the hot water storage tanks 2A to 2C do not store hot hot water W, the water supply valve 13 Instead of opening the valve, switching from the circulating water heating state to the fresh water heating state may be performed to enable the hot water W to be discharged from the hot water tap 7. In this fresh water heating state, as in the tank-side flow state, the second heat collecting evaporator 32 of the second refrigerant circuit 29 is brought into a heat collecting selection state for absorbing heat with respect to the atmosphere A, The return hot water W is made to flow in parallel to the first heating condenser 21 and the second heating condenser 26 so as to be heated.

〔別実施形態〕
次に別の実施形態を列記する。
[Another embodiment]
Next, another embodiment will be listed.

第1冷媒回路24の第1加熱用凝縮器21及び第2冷媒回路29の第2加熱用凝縮器26で加熱する熱媒は湯水Wに限られるものではなく、各種用途の湯水以外の熱媒であってもよい。The heat medium heated by the first heating condenser 21 of the first refrigerant circuit 24 and the second heating condenser 26 of the second refrigerant circuit 29 is not limited to the hot water W, but is a heat medium other than hot water for various uses. It may be.

第2冷媒回路29において、予冷用蒸発器28に冷媒R′を通流させて予冷用蒸発器28を加熱対象の熱媒Wに対し冷却作用させる予冷選択状態と、第2採熱用蒸発器32に冷媒R′を通流させて第2採熱用蒸発器32を大気Aに対し吸熱作用させる採熱選択状態との択一的な切り換えを行う切換手段の具体的な構造は、前述の実施形態で示した如き2つの冷媒三方弁Vx,Vyを装備する構造に限られるものではなく、種々の構造変更が可能である。  In the second refrigerant circuit 29, a precooling selection state in which the refrigerant R ′ is passed through the precooling evaporator 28 and the precooling evaporator 28 is cooled with respect to the heating medium W to be heated, and a second heat collecting evaporator. The specific structure of the switching means for selectively switching to the heat collection selection state in which the refrigerant R ′ is caused to flow through 32 and the second heat collecting evaporator 32 absorbs heat with respect to the atmosphere A is described above. It is not restricted to the structure equipped with two refrigerant | coolant three-way valves Vx and Vy as shown in embodiment, A various structure change is possible.

加熱対象の熱媒Wを第1冷媒回路24の第1加熱用凝縮器21と第2冷媒回路29の第2加熱用凝縮器26とに対して直列に通流させる直列通流状態と、並列に通流させる並列通流状態との切り換えを可能にする場合、その切り換えのための具体構造は、前述の実施形態で示した如き2つの熱媒三方弁Vc,Vdを装備する構造に限られるものではなく、種々の構造変更が可能である。A serial flow state in which the heating medium W to be heated is passed in series to the first heating condenser 21 of the first refrigerant circuit 24 and the second heating condenser 26 of the second refrigerant circuit 29, and in parallel. When switching to the parallel flow state to be passed through the air is possible, the specific structure for the switching is limited to a structure equipped with the two heat medium three-way valves Vc and Vd as shown in the above-described embodiment. Various structural changes are possible.

第1冷媒回路24で用いる冷媒R及び第2冷媒回路29で用いる冷媒R′は、CO2に限られるものではなく、超臨界圧力への圧縮及びその圧縮後における膨張と蒸発が可能なものであれば、どのような冷媒であってもよい。  The refrigerant R used in the first refrigerant circuit 24 and the refrigerant R ′ used in the second refrigerant circuit 29 are not limited to CO2, but can be compressed to a supercritical pressure and can be expanded and evaporated after the compression. Any refrigerant may be used.

また、第1冷媒回路24で用いる冷媒Rと第2冷媒回路29で用いる冷媒R′とは、同じ冷媒、あるいは、異なる冷媒のいずれであってもよい。  The refrigerant R used in the first refrigerant circuit 24 and the refrigerant R ′ used in the second refrigerant circuit 29 may be the same refrigerant or different refrigerants.

さらにまた、第1冷媒回路24及び第2冷媒回路29が各々の冷媒の同異にかかわらず別個のヒートポンプ装置であって、2つのヒートポンプ装置の組み合わせから構成されていてもよい。 装置ケースは第1冷媒回路24と第2冷媒回路29とを各別に収容する2つのケース、あるいは、それら冷媒回路24,29を一括に収容する1つのケースのいずれにしてもよい。  Furthermore, the first refrigerant circuit 24 and the second refrigerant circuit 29 are separate heat pump devices regardless of the difference between the respective refrigerants, and may be configured by a combination of two heat pump devices. The device case may be either two cases for separately accommodating the first refrigerant circuit 24 and the second refrigerant circuit 29 or one case for collectively accommodating the refrigerant circuits 24 and 29.

第1冷媒回路24の第1膨張機構22及び第2冷媒回路29の第2膨張機構27は、膨張弁に限られるものではなく、キャピラリーチューブなどであってもよい。The second expansion mechanism 27 of the first expansion mechanism 22 and the second refrigerant circuit 29 of the first refrigerant circuit 24 is not limited to the expansion valve, it may be a capillary tube.

温水設備の設備構成及び超臨界型ヒートポンプ装置の装置構成を示す回路図Circuit diagram showing equipment configuration of hot water equipment and supercritical heat pump equipment

符号の説明Explanation of symbols

R 冷媒
20 第1圧縮機
W 熱媒
21 第1加熱用凝縮器
22 第1膨張機構
A 大気
23 第1採熱用蒸発器
24 冷媒回路(第1冷媒回路)
R′ 冷媒
25 第2圧縮機
26 第2加熱用凝縮器
27 第2膨張機構
28 予冷用蒸発器,予冷手段
29 第2冷媒回路
32 第2採熱用蒸発器
Vx,Vy 切換手段
R refrigerant 20 first compressor W heat medium 21 first heating condenser 22 first expansion mechanism A atmosphere 23 first heat collecting evaporator 24 refrigerant circuit (first refrigerant circuit)
R 'refrigerant 25 second compressor 26 second heating condenser 27 second expansion mechanism 28 precooling evaporator, precooling means 29 second refrigerant circuit 32 second heat collecting evaporator Vx, Vy switching means

Claims (2)

各々圧縮機と、加熱用凝縮器と膨張機構及び採熱用蒸発器の順に冷媒を循環させる独立した2つの冷媒回路を併設し、そのうちの第1冷媒回路において第1膨張機構通過後の冷媒を蒸発させる蒸発器として大気から吸熱する第1採熱用蒸発器を設け、一方、第2冷媒回路において第2膨張機構通過後の冷媒を蒸発させる蒸発器として、加熱対象熱媒を各々の前記加熱用凝縮器に通流させる前に予冷する予冷用蒸発器を設けた超臨界型ヒートポンプ装置であって、前記ヒートポンプ装置へ導入路から供給される熱媒を最初に第2冷媒回路の前記予冷用蒸発器に導入して予冷し、次に予冷した熱媒を前記第1冷媒回路の第1加熱用凝縮器、前記第2冷媒回路の第2加熱用凝縮器の順に直列に通流させる状態と、前記第1冷媒回路の第1加熱用凝縮器および前記第2冷媒回路の第2加熱用凝縮器に並列に通流させる状態とを個別に実現させるための切換手段を設けてある超臨界型ヒートポンプ装置。Two independent refrigerant circuits that circulate the refrigerant in the order of the compressor, the heating condenser, the expansion mechanism, and the heat collecting evaporator are provided side by side, and the refrigerant after passing through the first expansion mechanism in the first refrigerant circuit. A first heat-collecting evaporator that absorbs heat from the atmosphere is provided as an evaporator to be evaporated. On the other hand, each heating medium to be heated is used as an evaporator that evaporates the refrigerant after passing through the second expansion mechanism in the second refrigerant circuit. A supercritical heat pump apparatus provided with a precooling evaporator for precooling before passing through the condenser for heat, wherein the heat medium supplied from the introduction path to the heat pump apparatus is first used for the precooling of the second refrigerant circuit. A state in which the refrigerant is introduced into the evaporator and precooled, and then the precooled heat medium is passed in series in the order of the first heating condenser of the first refrigerant circuit and the second heating condenser of the second refrigerant circuit; , First condensation for heating of the first refrigerant circuit And supercritical heat pump device is provided with switching means for implementing individually and a state in which flow through the parallel with the second heating condenser of the second refrigerant circuit. 前記第2冷媒回路において第2膨張機構通過後の冷媒を蒸発させる蒸発器として、前記予冷用蒸発器と大気から吸熱する第2採熱用蒸発器との2つの蒸発器を冷媒回路上で並列に設け、これら2つの蒸発器の流入側冷媒分岐点及び流出側冷媒合流点の両方に設けた切り換え手段により、前記予冷用蒸発器と第2採熱用蒸発器とのうち、冷媒を通流させる蒸発器を択一的に切り換える構成とした請求項1記載の超臨界型ヒートポンプ装置。As an evaporator for evaporating the refrigerant after passing through the second expansion mechanism in the second refrigerant circuit, two evaporators, the precooling evaporator and the second heat collecting evaporator that absorbs heat from the atmosphere, are arranged in parallel on the refrigerant circuit. The switching means provided at both the inflow-side refrigerant junction and the outflow-side refrigerant confluence of these two evaporators allows the refrigerant to flow out of the precooling evaporator and the second heat collecting evaporator. The supercritical heat pump device according to claim 1, wherein the evaporator to be switched is selectively switched.
JP2006089875A 2005-03-30 2006-03-29 Supercritical heat pump equipment Active JP4270216B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006089875A JP4270216B2 (en) 2005-03-30 2006-03-29 Supercritical heat pump equipment

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2005097367 2005-03-30
JP2006089875A JP4270216B2 (en) 2005-03-30 2006-03-29 Supercritical heat pump equipment

Publications (2)

Publication Number Publication Date
JP2006308278A JP2006308278A (en) 2006-11-09
JP4270216B2 true JP4270216B2 (en) 2009-05-27

Family

ID=37475355

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006089875A Active JP4270216B2 (en) 2005-03-30 2006-03-29 Supercritical heat pump equipment

Country Status (1)

Country Link
JP (1) JP4270216B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8549868B2 (en) 2007-06-22 2013-10-08 Panasonic Corporation Refrigeration cycle apparatus
JP2009281712A (en) * 2008-05-20 2009-12-03 Harumi Iwata Underground water heat source heat pump water heater
JP5280835B2 (en) * 2008-12-15 2013-09-04 義信 山口 Compression type heat pump equipped with latent heat storage device
KR101217877B1 (en) 2010-10-20 2013-01-09 오성범 heating and cooling system and using a subsurface heat source
DE102018222555A1 (en) * 2018-12-20 2020-06-25 Yack S.A.S. Arrangement for heat generation

Also Published As

Publication number Publication date
JP2006308278A (en) 2006-11-09

Similar Documents

Publication Publication Date Title
JP5470374B2 (en) Heat pump heating system
JP2009008383A (en) Co2 refrigeration system having heat pump and multiple modes of operation
JP2004257586A (en) Refrigerator using carbon dioxide as refrigerant
CN104272036B (en) Air regulation hot water supply system
US8850837B2 (en) Heat pump type speed heating apparatus
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
WO2010143373A1 (en) Heat pump system
JP4270216B2 (en) Supercritical heat pump equipment
JP2004218944A (en) Heat pump air conditioning and water heater
JP5904628B2 (en) Refrigeration cycle with refrigerant pipe for defrost operation
JP3126239U (en) Air conditioner
US10208989B2 (en) Absorption refrigeration machine
JP2008134045A (en) Heat pump system
KR20140123384A (en) Two stage heat pump cooling and heating apparatus using air heat source
KR20100037445A (en) Air-conditioning system
JP4337126B2 (en) Supercritical heat pump equipment
KR20090102478A (en) Heat pump system for vehicles
JP2008139004A5 (en)
JP2018192968A (en) Air-conditioning system for vehicle
JP4075633B2 (en) Heat pump water heater
JP2008128587A (en) Heat pump system
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JP3769861B2 (en) Heat transfer device
WO2008053959A1 (en) Supercritical heat pump device
WO2022250020A1 (en) Vehicle heat management system

Legal Events

Date Code Title Description
A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070613

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070703

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070705

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20071018

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071219

A911 Transfer to examiner for re-examination before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20080331

A912 Re-examination (zenchi) completed and case transferred to appeal board

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20080502

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081201

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090216

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120306

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130306

Year of fee payment: 4