JP5278874B2 - Method for removing sulfur compound from gas and method for producing synthetic fuel - Google Patents

Method for removing sulfur compound from gas and method for producing synthetic fuel Download PDF

Info

Publication number
JP5278874B2
JP5278874B2 JP2008162207A JP2008162207A JP5278874B2 JP 5278874 B2 JP5278874 B2 JP 5278874B2 JP 2008162207 A JP2008162207 A JP 2008162207A JP 2008162207 A JP2008162207 A JP 2008162207A JP 5278874 B2 JP5278874 B2 JP 5278874B2
Authority
JP
Japan
Prior art keywords
removal
sulfur compound
gas
char
carbon material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008162207A
Other languages
Japanese (ja)
Other versions
JP2009185271A (en
Inventor
欣也 坂西
興哲 松永
寿明 花岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008162207A priority Critical patent/JP5278874B2/en
Publication of JP2009185271A publication Critical patent/JP2009185271A/en
Application granted granted Critical
Publication of JP5278874B2 publication Critical patent/JP5278874B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/10Biofuels, e.g. bio-diesel
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E50/00Technologies for the production of fuel of non-fossil origin
    • Y02E50/30Fuel from waste, e.g. synthetic alcohol or diesel

Abstract

<P>PROBLEM TO BE SOLVED: To allow use of a carbonaceous adsorbent at a temperature above 500&deg;C. <P>SOLUTION: The method for removing a sulfur compound includes a step of passing combustible gas, which is formed by gasification of a carbonaceous raw material, through a porous carbon material at a temperature above 500&deg;C to remove a sulfur compound (H<SB>2</SB>S, COS, CS<SB>2</SB>and the like) in the combustible gas. A desirable material for the porous carbon material carries a metal component. Preferably, the porous carbon material is char obtained from wood-based biomass. The ash content of the char is 3-50 mass% for example. The char usually has a total specific surface area of &ge;200 m<SP>2</SP>/g and a mean pore diameter of 2.0-3.5 nm. In the sulfur compound removal step, a gas passage temperature is set to 600-800&deg;C to decompose part or the whole of the sulfur compound into a simple substance S. The simple substance S contained in the sulfur compound removal gas can be removed by an adsorption removal, liquefaction removal, solidification removal and the like. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、硫化水素(H2S)、硫化カルボニル(COS)などの硫黄化合物(硫黄成分)を含有するガスから乾式で硫黄化合物を除去する技術に関するものであり、より好ましくは硫黄化合物の除去中に生成する二硫化炭素(CS2)も硫黄化合物として除去する技術に関し、特に好ましくは硫黄成分の除去中に生成する単体Sも除去する技術に関するものである。 The present invention relates to a technique for removing a sulfur compound from a gas containing a sulfur compound (sulfur component) such as hydrogen sulfide (H 2 S) or carbonyl sulfide (COS), more preferably removal of the sulfur compound. More particularly, the present invention relates to a technique for removing carbon disulfide (CS 2 ) produced therein as a sulfur compound, and particularly, a technique for removing simple S produced during the removal of the sulfur component.

2S、COSなどの硫黄化合物を含有するガスとしては、例えば、炭素質原料(木質系バイオマス、石炭など)のガス化によって生成する可燃性ガス(CO、H2含有ガス)、メタン醗酵などから得られるバイオガスなどが知られている。これらのガスは、そのままガスタービン、蒸気タービン、ガスエンジン、燃料電池などにおいて燃料ガスとして使用できるだけでなく、触媒反応によって合成燃料にすることもできる。例えばフィッシャー・トロプシュ(Fischer-Tropsch)合成によって炭化水素化することによって、プロパン、ブタンなどの液化燃料;ガソリン、軽油などの液体燃料;ワックスなどの固体燃料などとして使用でき、またメタノール合成触媒やジメチルエーテル合成触媒によってメタノール(液体燃料)やジメチルエーテル(液化燃料)などに転換できる。しかし、前記燃料ガスとして使用する場合、硫化水素濃度を極めて低い濃度(例えば、数十ppmから数ppm程度)まで低減することが求められている(特許文献1、2)。また合成燃料化する場合でも、化学触媒(フィッシャー・トロプシュ触媒、メタノール合成触媒、ジメチルエーテル合成触媒など)の活性を低下させる虞があるH2SやCOSを低減することが求められる(特許文献3、非特許文献1)。 Examples of the gas containing sulfur compounds such as H 2 S and COS include combustible gas (CO, H 2 containing gas) generated by gasification of carbonaceous raw materials (woody biomass, coal, etc.), methane fermentation, etc. The biogas obtained from is known. These gases can be used not only as fuel gases in gas turbines, steam turbines, gas engines, fuel cells and the like, but also can be made into synthetic fuels by catalytic reaction. For example, it can be used as a liquefied fuel such as propane and butane; a liquid fuel such as gasoline and light oil; a solid fuel such as wax; and a methanol synthesis catalyst and dimethyl ether. It can be converted into methanol (liquid fuel), dimethyl ether (liquefied fuel), etc. by a synthetic catalyst. However, when used as the fuel gas, it is required to reduce the hydrogen sulfide concentration to a very low concentration (for example, about several tens of ppm to several ppm) (Patent Documents 1 and 2). Further, even in the case of using synthetic fuel, it is required to reduce H 2 S and COS, which may reduce the activity of chemical catalysts (Fischer-Tropsch catalyst, methanol synthesis catalyst, dimethyl ether synthesis catalyst, etc.) (Patent Document 3, Non-patent document 1).

特許文献2には、活性炭又は活性コークス、或いは石炭から得られる活性チャーなどによって乾式でH2Sを除去することが記載されている。しかし、活性炭又は活性コークス、或いは石炭から得られる活性チャーなどを製造するには、それぞれ炭化処理、乾留処理又は石炭ガス化などによって一旦、炭、コークス、又は石炭系チャーを得た後、さらにスチームなどで賦活処理する必要があり、コスト高である。また特許文献2によれば、温度が300℃以上になるとH2Sが離脱するとのことであり、高温での硫黄化合物除去処理ができない。 Patent Document 2 describes that H 2 S is removed by a dry method using activated carbon, activated coke, activated char obtained from coal, or the like. However, in order to produce activated charcoal or activated coke, or activated char obtained from coal, after obtaining charcoal, coke, or coal-based char by carbonization, carbonization, or coal gasification, respectively, steam is further added. It is necessary to carry out an activation process, etc., and the cost is high. According to Patent Document 2, H 2 S is released when the temperature reaches 300 ° C. or higher, and the sulfur compound removal treatment at a high temperature cannot be performed.

特許文献3及び非特許文献1には、活性炭、バイオマスチャー、又は乾留チャー、或いはFeを担持させた活性炭又は乾留チャーによってH2SやCOSを乾式で除去することが記載されている。しかし特許文献3は、温度が500℃より高いと、炭素質除去剤の熱分解などが発生し、硫黄化合物除去能が低下するなどの問題が起こるため、500℃以下(好ましくは300〜450℃)で硫黄化合物を除去している。また非特許文献1でも温度300〜450℃で硫黄化合物を除去している。
特開平9−42612号公報 特開2003−210933号公報 特開2006−143788号公報 特開2006−291036号公報 Sakanishi(坂西)、外7名、「Simultaneous removal of H2S and COS using activated carbons and their supported catalysis (活性炭及びその担持触媒を用いたH2SとCOSの同時除去)」、Catalysis Today(キャタリシス・トゥディ)、2005年、第104号、94〜100頁
Patent Document 3 and Non-Patent Document 1 describe that H 2 S and COS are removed by a dry process using activated carbon, biomass char, or dry distillation char, or activated carbon or dry distillation char supporting Fe. However, in Patent Document 3, if the temperature is higher than 500 ° C., thermal decomposition of the carbonaceous removing agent occurs, and problems such as reduction in the ability to remove sulfur compounds occur. Therefore, the temperature is 500 ° C. or less (preferably 300 to 450 ° C. ) To remove sulfur compounds. In Non-Patent Document 1, the sulfur compound is removed at a temperature of 300 to 450 ° C.
JP-A-9-42612 JP 2003-210933 A JP 2006-143788 A JP 2006-291036 A Sakanishi, 7 others, “Simultaneous removal of H2S and COS using activated carbons and their supported catalysis”, Catalysis Today, 2005 Year 104, 94-100

なお後述するように、本発明の硫黄化合物除去方法は高温で行うことを特徴とするが、この高温での硫黄化合物除去処理中にCS2が生成することが判明した。そこでCS2の除去について記載されている文献を調べると、特許文献4があった。この特許文献4には、ナフサ、灯油、軽油、重質油の熱分解によって得られる炭化水素油からのCS2の除去方法は紹介されているが、ガス化ガス中のCS2の除去方法については報告されていない。CS2は、H2SやCOSに比べて沸点が高く、ガスのサンプリング段階で、配管、ガス採取器、及びガスサンプル保存用テドラパックなどの内壁にCS2が吸着されてしまう為、通常のガスクロマトグラフィーでは検知ができず、その存在が知られていなかった為と思われる。実際、本発明者らの研究によれば、FPD検出器を用いたガスクロ分析装置において配管などを保温しながらオンサイドの連続測定を行うことで初めて、本発明の高温での硫黄化合物除去処理過程でCS2が生成することを確認できた。ガス化等による可燃性ガスからの硫黄化合物の除去(脱硫処理)に当たってはH2SやCOSのみならず、CS2も除去することが望まれる。 As will be described later, the sulfur compound removal method of the present invention is characterized by being performed at a high temperature, but it has been found that CS 2 is produced during the sulfur compound removal treatment at this high temperature. Therefore, when a document describing the removal of CS 2 was examined, there was Patent Document 4. This Patent Document 4 introduces a method for removing CS 2 from hydrocarbon oils obtained by thermal decomposition of naphtha, kerosene, light oil, and heavy oil. About the method for removing CS 2 in gasification gas Has not been reported. CS 2 has a higher boiling point compared to H 2 S and COS, and CS 2 is adsorbed on the inner walls of pipes, gas collectors, and gas sample storage tedra packs at the gas sampling stage. It seems that the existence was not known because it was not detected by chromatography. In fact, according to the study by the present inventors, the sulfur compound removal process at a high temperature of the present invention is performed only by performing on-side continuous measurement while keeping piping and the like in a gas chromatography analyzer using an FPD detector. It was confirmed that CS 2 was produced. In removing sulfur compounds from the combustible gas by gasification (desulfurization treatment), it is desired to remove not only H 2 S and COS but also CS 2 .

温度500℃超のガスを炭素質吸着剤で処理した具体例は、全く存在しない。高温になると吸着成分の離脱が生ずることがその原因として記載されているが、そもそも炭素質吸着剤は、高温では燃焼や熱分解するため、温度500℃超で使用すること自体が非常識であることもその理由の一つである。   There is no specific example in which a gas having a temperature higher than 500 ° C. is treated with a carbonaceous adsorbent. Although it is described as the cause that the adsorbed component is detached at high temperature, the carbonaceous adsorbent is burnt and pyrolyzed at high temperature, so it is insane to use at a temperature above 500 ° C. That is one of the reasons.

本発明は上記の様な事情に着目してなされたものであって、温度500℃を超えても炭素質吸着剤を使用できるようにする点にある。   The present invention has been made paying attention to the above-described circumstances, and is to enable the use of a carbonaceous adsorbent even when the temperature exceeds 500 ° C.

本発明者らは、前記課題を解決するために鋭意研究を重ねた結果、炭素質原料のガス化で生成する可燃性ガス(CO、H2含有ガス)を温度500℃超の条件で炭素質吸着剤によって脱硫処理(硫黄化合物除去処理)しても、可燃性ガス中の酸素濃度は極めて低く、炭素質吸着剤が燃焼・熱分解しないことを見出し、本発明を完成した。 As a result of intensive studies to solve the above problems, the inventors of the present invention have developed a flammable gas (CO, H 2 -containing gas) generated by gasification of a carbonaceous raw material at a temperature exceeding 500 ° C. The present inventors have found that even if desulfurization treatment (sulfur compound removal treatment) is performed with an adsorbent, the oxygen concentration in the combustible gas is extremely low and the carbonaceous adsorbent does not combust or undergo thermal decomposition.

すなわち、本発明に係る硫黄化合物除去方法は、木質系バイオマスのガス化で生成する可燃性ガスを温度500℃超で多孔質炭素材料に通じ、可燃性ガス中の硫黄化合物(H2S、COS、CS2など)を除去する点(硫黄化合物除去工程)にその要旨を有する。前記多孔質炭素材料は、金属成分を担持したものではない。前記多孔質炭素材料は、好ましくは粒化されており、または木質系バイオマスから得られるチャーである。前記チャーの灰分含有量は、例えば、3〜50質量%である。前記チャーは、通常、その窒素吸着等温線がI型(IUPAC)を示し、また全比表面積が200m2/g以上、平均細孔直径が2.0〜3.5nmである。前記硫黄化合物除去工程では、ガス通過温度を600〜800℃にして、硫黄化合物の一部又は全部を単体Sに分解してもよい。硫黄化合物除去ガスに含まれる単体Sは、吸着除去、液化除去、固化除去などの除去方法によって除去できる。 That is, in the sulfur compound removal method according to the present invention, the combustible gas generated by gasification of the woody biomass is passed through the porous carbon material at a temperature of over 500 ° C., and the sulfur compound (H 2 S, COS in the combustible gas is passed. , CS 2 and the like) (the sulfur compound removing step). The porous carbon material does not carry a metal component. The porous carbon material is preferably granulated or char obtained from woody biomass. The char has an ash content of, for example, 3 to 50% by mass. The char usually has a nitrogen adsorption isotherm of type I (IUPAC), a total specific surface area of 200 m 2 / g or more, and an average pore diameter of 2.0 to 3.5 nm. In the sulfur compound removing step, the gas passage temperature may be set to 600 to 800 ° C., and a part or all of the sulfur compound may be decomposed into the simple substance S. The simple substance S contained in the sulfur compound removal gas can be removed by a removal method such as adsorption removal, liquefaction removal, and solidification removal.

前記硫黄化合物除去方法は以下の燃料製造方法に応用できる。すなわち燃料製造方法では、
木質系バイオマスを空気又は酸素富化空気で部分酸化させてCOとH2を含有するガスに転換するとともに、残留するチャーを回収し(回収工程)、
前記COとH2を含有するガスを、前記回収したチャー、又は回収チャーから得られる粒状硫黄化合物除去剤に温度500℃超で通過させることによってガス中に含まれる硫黄化合物を除去し(硫黄化合物除去工程)、
硫黄化合物を除去したガスをフィッシャー・トロプシュ合成反応によって炭化水素化する(炭化水素化工程)。
The sulfur compound removing method can be applied to the following fuel production method. That is, in the fuel production method,
The woody biomass is partially oxidized with air or oxygen-enriched air and converted to a gas containing CO and H 2 , and the remaining char is recovered (recovery process).
The sulfur compound contained in the gas is removed by passing the gas containing CO and H 2 through the recovered char or the particulate sulfur compound remover obtained from the recovered char at a temperature above 500 ° C. (sulfur compound Removal process),
The gas from which sulfur compounds have been removed is hydrocarbonated by a Fischer-Tropsch synthesis reaction (hydrocarbonization step).

硫黄化合物を除去したガスは、上記フィッシャー・トロプシュ合成反応に供する他、メタノール合成触媒によってメタノールに転換(メタノール転換工程)して液体燃料を製造してもよく、ジメチルエーテル合成触媒によってジメチルエーテルに転換(ジメチルエーテル転換工程)して液化燃料を製造してもよい。   The gas from which the sulfur compound has been removed may be used for the Fischer-Tropsch synthesis reaction, or may be converted to methanol by a methanol synthesis catalyst (methanol conversion step) to produce a liquid fuel, or converted to dimethyl ether by a dimethyl ether synthesis catalyst (dimethyl ether). A liquefied fuel may be produced by a conversion step).

上記燃料製造方法における硫黄化合物除去工程でも、ガス通過温度を600〜800℃にして、硫黄化合物の一部又は全部を単体Sに分解してもよい。この単体Sは、硫黄化合物除去工程の後、かつ炭化水素化工程の前に行われる単体S除去工程によって除去される。単体S除去工程では、硫黄化合物除去ガスに含まれる単体Sを、吸着除去、液化除去、固化除去などの除去方法によって除去する。   Also in the sulfur compound removing step in the fuel production method, the gas passage temperature may be set to 600 to 800 ° C., and a part or all of the sulfur compound may be decomposed into the simple substance S. This simple substance S is removed by the simple substance S removal process performed after the sulfur compound removing process and before the hydrocarbonation process. In the simple substance S removal step, the simple substance S contained in the sulfur compound removal gas is removed by a removal method such as adsorption removal, liquefaction removal, and solidification removal.

前記単体Sの吸着除去、液化除去、又は固化除去は、硫黄化合物除去ガスを多孔質炭素材料に通じることで行ってもよく、
単体Sが付着して多孔質炭素材料の性能が劣化したときには、多孔質炭素材料を加熱して単体Sを多孔質炭素材料から分離し、多孔質炭素材料を再生する再生工程を行ってもよい。
The adsorption removal, liquefaction removal, or solidification removal of the simple substance S may be performed by passing a sulfur compound removal gas through the porous carbon material,
When the performance of the porous carbon material deteriorates due to adhesion of the simple substance S, the porous carbon material may be heated to separate the simple substance S from the porous carbon material, and a regeneration process for regenerating the porous carbon material may be performed. .

本発明によれば、炭素質原料のガス化で生成する可燃性ガス(CO、H2含有ガス)を処理対象にしているため、温度500℃超の条件にしても硫黄化合物除去剤(多孔質炭素材料)が燃焼・熱分解することなくガスを脱硫(硫黄化合物の除去)できる。しかも本発明によれば、細孔構造が制御された多孔質炭素材料、好ましい態様では木質系バイオマスから得られるチャーを用いているため、ガスから乾式で効果的に硫黄化合物を除去できる。なおチャーを用いた場合には、通常は廃棄されているチャーを有効利用できるため、資源保護や環境負荷軽減などの点でも優れている。さらに本発明では、好ましい態様において、温度500℃以下よりも温度500℃超にした方が、かえって硫黄化合物除去特性が向上し、例えば硫黄化合物が破過する時間をむしろ延長することができる。また好ましい態様において、硫黄化合物を除去しつづけた後で、一旦硫黄化合物の破過が生じた後でも、硫黄化合物の除去効率が急速に低下することなく、引き続き高い効率で硫黄化合物を除去し続けることができる。さらに硫黄化合物除去温度を600℃以上にすると、ガス中の硫黄化合物を単体Sまで完全に分解できる。そこで単体Sの除去処理(吸着除去、液化除去、固化除去など)と組み合わせれば、硫黄化合物をより確実に除去可能となる。なお単体Sの除去に多孔質炭素材料を使用し、この多孔質炭素材料が単体Sの除去によって劣化しても、加熱脱着処理などによって多孔質炭素材料から単体Sを分離回収でき、同時に多孔質炭素材料を繰り返し再生して使用できる。 According to the present invention, since the combustible gas (CO, H 2 -containing gas) generated by gasification of the carbonaceous raw material is a processing target, the sulfur compound removing agent (porous) Gas can be desulfurized (removal of sulfur compounds) without burning or pyrolyzing the carbon material. Moreover, according to the present invention, since the porous carbon material having a controlled pore structure, in a preferred embodiment, char obtained from woody biomass is used, the sulfur compound can be effectively removed from the gas in a dry manner. When char is used, normally discarded char can be effectively used, which is excellent in terms of resource protection and environmental load reduction. Further, in the present invention, in a preferred embodiment, when the temperature is higher than 500 ° C. rather than 500 ° C. or lower, the sulfur compound removal characteristics are improved, and for example, the time for the sulfur compound to break through can be rather extended. Further, in a preferred embodiment, after the sulfur compound is continuously removed, the sulfur compound removal efficiency continues to be removed at a high efficiency without a rapid decrease even after the sulfur compound breakthrough occurs once. be able to. Furthermore, when the sulfur compound removal temperature is set to 600 ° C. or higher, the sulfur compound in the gas can be completely decomposed to the simple substance S. Therefore, when combined with the removal process of the simple substance S (adsorption removal, liquefaction removal, solidification removal, etc.), the sulfur compound can be removed more reliably. It should be noted that a porous carbon material is used for the removal of the simple substance S, and even if this porous carbon material deteriorates due to the removal of the simple substance S, the simple substance S can be separated and recovered from the porous carbon material by a heat desorption process or the like. The carbon material can be regenerated and used repeatedly.

また本発明によれば、炭素質原料のガス化によって得られる可燃性ガス(CO、H2含有ガス)を触媒反応に供して合成燃料を製造するに際して、ガス化工程と触媒反応工程の間のガス精製工程(脱硫工程;硫黄化合物除去工程)の上限温度をガス化温度下限値(通常約800℃)近辺まで上げることができるため、ガス化工程で貯えた熱のみを利用して(すなわち外部からの熱供給を受けることなく)、フィッシャー・トロプシュ合成、メタノール合成、ジメチルエーテル合成を適温(約200〜300℃)にコントロールでき、省エネルギー化や低コスト化に貢献できる。 In addition, according to the present invention, when a combustible gas (CO, H 2 containing gas) obtained by gasification of a carbonaceous raw material is subjected to a catalytic reaction to produce a synthetic fuel, the gasification step is performed between the gasification step and the catalytic reaction step. Since the upper limit temperature of the gas purification process (desulfurization process; sulfur compound removal process) can be increased to the lower limit of the gasification temperature (usually about 800 ° C), only the heat stored in the gasification process is used (ie, external Fischer-Tropsch synthesis, methanol synthesis, and dimethyl ether synthesis can be controlled at an appropriate temperature (about 200 to 300 ° C.) without contributing to energy saving and cost reduction.

I:多孔質炭素材料
本発明は、多孔質炭素材料を硫黄化合物除去剤として用いたガスの乾式脱硫(脱H2S、脱COS、脱CS2など)技術に関する。多孔質炭素材料は、細孔構造が制御されているため、ガスから乾式で効果的に硫黄化合物を除去できる。
I: porous carbon material present invention, a porous dry desulfurization of gases using a carbon material as a sulfur compound removal agent (de H 2 S, de COS, de CS 2, etc.) technique. Since the porous carbon material has a controlled pore structure, the sulfur compound can be effectively removed from the gas in a dry manner.

多孔質炭素材料としては、活性炭、チャーなどが例示でき、好ましくはチャー、特に木質系バイオマスから得られるチャー(以下、木質系チャーという)である。木質系バイオマスは、セルロースがヘミセルロースやリグニンなどで結合された構造を有している。木質系バイオマス中でセルロース分子は整然と配列し、その間にヘミセルロースやリグニンが充填されている。なお、セルロース分子鎖は、植物中で自己集合し、規則正しく積層してミクロフィブリルを形成しており、このミクロフィブリルはさらに集合して木質繊維となる。木質系バイオマスから得られるチャーでは、規則正しいミクロフィブリル構造に起因する規則正しい細孔構造や分布を有しているためか、活性炭などに比べて比表面積や細孔容積が小さいにも拘わらず、500℃超の処理条件でも効率よく多量の硫黄化合物を除去できる。石炭チャーなどの化石燃料から得られるチャーでは、化石燃料の段階で既にミクロフィブリル構造が崩壊している。   Examples of the porous carbon material include activated carbon, char, etc., preferably char, particularly char obtained from woody biomass (hereinafter referred to as woody char). Woody biomass has a structure in which cellulose is bound with hemicellulose or lignin. Cellulose molecules are arranged in an orderly manner in woody biomass, and hemicellulose and lignin are filled between them. Cellulose molecular chains are self-assembled in plants and are regularly laminated to form microfibrils, and these microfibrils are further aggregated to form wood fibers. The char obtained from woody biomass has a regular pore structure and distribution due to the regular microfibril structure, or 500 ° C despite having a smaller specific surface area and pore volume than activated carbon. A large amount of sulfur compounds can be efficiently removed even under super processing conditions. In char obtained from fossil fuels such as coal char, the microfibril structure has already collapsed at the fossil fuel stage.

木質系バイオマスとしては、樹木から得られる種々の木質原料が使用でき、例えば、木質チップ、木材(間伐材等)などの他、製材工場での残材、樹皮、のこ屑、枝条、梢端、建築廃材、解体材などの廃材も含まれる。   As woody biomass, various woody materials obtained from trees can be used. For example, in addition to wood chips, wood (thinned wood, etc.), remaining wood, saw bark, sawdust, branches, treetops, etc. , Waste materials such as building waste and demolition materials are also included.

木質系チャーは、例えば、木質系バイオマスを空気や酸素富化空気で部分酸化させてガス化(即ち、COとH2を含有するガスに)した後に残存するチャーである。木質系バイオマスのガス化の詳細は後述する。ガス化後に残存するチャーは、灰分の含有量が高いためか、500℃を超える高温での硫黄化合物除去特性をさらに高めることができる。 The wood-based char is, for example, a char that remains after the wood-based biomass is partially oxidized with air or oxygen-enriched air and gasified (that is, into a gas containing CO and H 2 ). Details of gasification of woody biomass will be described later. The char remaining after gasification may further improve the sulfur compound removal characteristics at a high temperature exceeding 500 ° C. because of the high ash content.

木質系チャーの灰分含有量は、例えば、3質量%以上、好ましくは10質量%以上、さらに好ましくは15質量%以上である。含有量の上限は、通常、50質量%以下、例えば40質量%以下、特に30質量%以下である。   The ash content of the wood char is, for example, 3% by mass or more, preferably 10% by mass or more, and more preferably 15% by mass or more. The upper limit of the content is usually 50% by mass or less, for example 40% by mass or less, particularly 30% by mass or less.

多孔質炭素材料(特に木質系チャー)は、そのまま使用してもよいが、粒化することが望ましい。粒化(粒状硫黄化合物除去剤化)することによって多孔質炭素材料(特に木質系チャー)のハンドリング性を高めることができ、また処理ガス(硫黄化合物含有ガス)の通気性を高めることもできる。粒化手法は特に限定されず、適当な結合剤(例えば、水などの留去可能な液体、或いは有機又は無機バインダ)を用いた造粒法(例えば、円盤造粒法など)を採用してもよく、適当な結合剤を用いて細長く押し出した後で適当な長さに切断していく方法(押出し−切断法)を採用してもよく、分級法(例えば、篩い分け法など)を採用してもよい。分級法は手軽に粒化できる点で優れている。造粒法や押出し−切断法は、粉状チャーも捨てることなく利用できる点で優れている。粒化したときの木質系チャー(硫黄化合物除去剤)の粒径分布(振動篩い分け法による)は、例えば、全体の70質量%以上(好ましくは80質量%以上、さらに好ましくは90質量%以上)が、目開き8mmの金網を通過し、目開き2mmの金網の上に残る程度である。   The porous carbon material (especially wood char) may be used as it is, but is preferably granulated. By granulating (particulate sulfur compound removing agent), the handling property of the porous carbon material (especially wood char) can be enhanced, and the breathability of the processing gas (sulfur compound-containing gas) can also be enhanced. The granulation method is not particularly limited, and a granulation method (for example, a disc granulation method) using an appropriate binder (for example, a liquid that can be distilled off such as water, or an organic or inorganic binder) is employed. It is also possible to adopt a method of extruding the material with an appropriate binder and then cutting it to an appropriate length (extrusion-cutting method), or a classification method (for example, sieving method). May be. The classification method is excellent in that it can be easily granulated. The granulation method and the extrusion-cutting method are excellent in that the powdered char can be used without being discarded. The particle size distribution (by vibration sieving method) of the woody char (sulfur compound removing agent) when granulated is, for example, 70% by mass or more (preferably 80% by mass or more, more preferably 90% by mass or more). ) Passes through a wire mesh with an opening of 8 mm and remains on the wire mesh with an opening of 2 mm.

木質系チャーの諸特性は、一般的には、下記(1)〜(3)の通りである。
(1)窒素吸着等温線
木質系チャーの窒素吸着等温線は、一般的には、I型(IUPAC)を示す。I型(IUPAC)に属することは、ミクロ孔が発達した構造であることを意味する。
Various characteristics of the wood char are generally as follows (1) to (3).
(1) Nitrogen adsorption isotherm Generally, the nitrogen adsorption isotherm of the wood char indicates type I (IUPAC). Being belonging to type I (IUPAC) means a structure having developed micropores.

(2)全比表面積(BET法)
木質系チャーの全比表面積は、一般的には、200m2/g以上、好ましくは300m2/g以上、さらに好ましくは400m2/g以上である。全比表面積の上限は、賦活処理によって高めることが可能であるが、賦活処理しない場合は、例えば、800m2/g以下、好ましくは700m2/g以下、さらに好ましくは600m2/g以下程度である。木質系チャーによれば、活性炭に比べて全比表面積が小さくても、より多くの硫黄化合物を除去できる。
(2) Total specific surface area (BET method)
The total specific surface area of the wood-based char is generally 200 m 2 / g or more, preferably 300 m 2 / g or more, more preferably 400 m 2 / g or more. The upper limit of the total specific surface area can be increased by activation treatment, but when not activated, for example, 800 m 2 / g or less, preferably 700 m 2 / g or less, more preferably about 600 m 2 / g or less. is there. According to the wood-based char, more sulfur compounds can be removed even if the total specific surface area is smaller than that of the activated carbon.

なお木質系チャーの全細孔容積は、一般的には、0.2〜0.5cm3/g程度、好ましくは0.25〜0.45cm3/g程度、さらに好ましくは0.30〜0.40cm3/g程度である。木質系チャーによれば、活性炭に比べて全細孔容積が小さくても、より多くの硫黄化合物を除去できる。 The total pore volume of the wood-based char is generally about 0.2 to 0.5 cm 3 / g, preferably about 0.25 to 0.45 cm 3 / g, more preferably 0.30 to 0 It is about 40 cm 3 / g. According to the wood-based char, more sulfur compounds can be removed even if the total pore volume is smaller than that of activated carbon.

(3)細孔直径(BET法)
木質系チャーの平均細孔直径は、一般的には、2.0〜3.5nm程度、好ましくは2.2〜3.3nm程度、さらに好ましくは2.5〜3.0nm程度である。
(3) Pore diameter (BET method)
The average pore diameter of the wooden char is generally about 2.0 to 3.5 nm, preferably about 2.2 to 3.3 nm, and more preferably about 2.5 to 3.0 nm.

前記多孔質炭素材料は、金属成分を含浸・乾燥等の処理によって担持しておくことが可能であるが(参考発明)、請求項に係る発明では金属成分を担持しない参考発明では、金属成分を担持することによって、硫黄化合物の除去能を高めることができる。好ましい金属成分には、周期表2A族元素、遷移金属(特に周期表5A族元素、7A族元素、8族元素)などが挙げられる。特に好ましい金属成分は、Ca、Fe、V、Mnなど(特にCa、Feなど)である。 The porous carbon material can carry a metal component by a treatment such as impregnation and drying (reference invention), but the invention according to the claims does not carry a metal component . In the reference invention, the ability to remove sulfur compounds can be enhanced by supporting the metal component. Preferred metal components include 2A group elements of the periodic table, transition metals (particularly 5A group elements, 7A group elements, and 8 group elements of the periodic table). Particularly preferred metal components are Ca, Fe, V, Mn, etc. (especially Ca, Fe, etc.).

金属成分を含有させた参考発明の多孔質炭素材料は、非酸化性ガス(例えば窒素ガス)中で焼成しておくことが望ましい。焼成しておくことによって、硫黄化合物除去特性をさらに高めることができる。焼成温度は、例えば、温度500℃超、好ましくは550〜650℃程度である。 The porous carbon material of the reference invention containing a metal component is desirably fired in a non-oxidizing gas (for example, nitrogen gas). By baking, the sulfur compound removal characteristics can be further enhanced. The firing temperature is, for example, a temperature exceeding 500 ° C., preferably about 550 to 650 ° C.

また参考発明の金属成分は、例えば、塩、水酸化物、酸化物などの形態で担持することが望ましい。塩、水酸化物は、温度500℃超に加熱したとき酸化物になると推察される。 The metal component of the reference invention is preferably supported in the form of a salt, hydroxide, oxide, or the like. It is inferred that salts and hydroxides become oxides when heated to temperatures above 500 ° C.

参考発明での担持後の金属成分そのものの含有量は、例えば、0.1〜70質量%程度の範囲内で選択できる。特に周期表2A族元素を担持する場合、担持後の金属元素そのものの含有量は、例えば、1〜70質量%、好ましくは10〜60質量%、さらに好ましくは30〜55質量%程度である。また遷移金属(特に周期表8族元素)を担持する場合、金属元素そのものの含有量は、例えば、0.1〜40質量%、好ましくは0.5〜30質量%、さらに好ましくは1〜20質量%程度である。 The content of the metal component itself after supporting in the reference invention can be selected, for example, within a range of about 0.1 to 70% by mass. In particular, when supporting a Group 2A element of the periodic table, the content of the metal element itself after the support is, for example, about 1 to 70% by mass, preferably about 10 to 60% by mass, and more preferably about 30 to 55% by mass. Moreover, when carrying | supporting a transition metal (especially group 8 element of a periodic table), content of a metal element itself is 0.1-40 mass%, for example, Preferably it is 0.5-30 mass%, More preferably, it is 1-20. It is about mass%.

II:硫黄化合物除去(脱硫)
前記多孔質炭素材料は、炭素質原料(木質系バイオマス、石炭など。好ましくは木質系バイオマス)のガス化(部分酸化)で生成する可燃性ガス(CO、H2含有ガス)から高温で硫黄化合物を除去するのに効果的である。炭素質原料のガス化で得られる可燃性ガス中には酸素が殆ど含まれておらず、例えば、500℃超の高温で硫黄化合物除去処理しても、多孔質炭素材料が燃焼・熱分解等することなく、硫黄化合物を除去できる。また金属成分を担持したこと(特に担持後、焼成したこと)(但し、この担持は参考発明に該当する)、木質系チャーを使用した場合の細孔構造や灰分含有量なども高温での硫黄化合物除去特性の向上に貢献し得る。
II: Sulfur compound removal (desulfurization)
The porous carbon material is a sulfur compound at a high temperature from a combustible gas (CO, H 2 containing gas) generated by gasification (partial oxidation) of a carbonaceous raw material (woody biomass, coal, etc., preferably woody biomass). It is effective to remove. Combustible gas obtained by gasification of carbonaceous material contains almost no oxygen. For example, even if sulfur compound removal treatment is performed at a high temperature of over 500 ° C, the porous carbon material is combusted, pyrolyzed, etc. Without removing the sulfur compound. Also, supporting metal components (especially after supporting and firing) (however, this support corresponds to the reference invention) , and pore structure and ash content when using wood-based char are also high-temperature sulfur. It can contribute to the improvement of the compound removal property.

好ましい硫黄化合物除去温度は、500℃超(好ましくは550℃以上)、ガス化温度下限値以下(通常約800℃以下、好ましくは700℃以下)程度である。硫黄化合物除去温度を500℃超にすることで、硫黄化合物除去工程の温度低下を防止でき、熱効率を高めることができる。   The sulfur compound removal temperature is preferably more than 500 ° C. (preferably 550 ° C. or more) and below the lower limit of the gasification temperature (usually about 800 ° C. or less, preferably 700 ° C. or less). By making sulfur compound removal temperature over 500 degreeC, the temperature fall of a sulfur compound removal process can be prevented, and thermal efficiency can be improved.

前記硫黄化合物除去温度は、また600℃以上(特に650℃以上)にしてもよい。硫黄化合物除去温度が600℃以上になると、硫黄化合物の一部又は全部を単体Sにまで分解することができる。なおこの単体Sは、上記硫黄化合物除去とは別の除去工程を設けて、別途、除去してもよい(単体Sの別途の除去の詳細は後述する)。   The sulfur compound removal temperature may be 600 ° C. or higher (particularly 650 ° C. or higher). When the sulfur compound removal temperature is 600 ° C. or higher, part or all of the sulfur compound can be decomposed into the simple substance S. In addition, this single substance S may be removed separately by providing a removal step different from the sulfur compound removal (details of the separate removal of the simple substance S will be described later).

ところで上述の通り、硫黄化合物除去処理では、炭素質原料のガス化で生成する可燃性ガスに元から含まれている硫黄化合物(H2S、COS)を多孔質炭素材料で吸着除去するのみならず、多孔質炭素材料と硫黄との反応(C+2S→CS2)やCOSの分解(2COS→CO2+CS2)によって生成するCS2も多孔質炭素材料で吸着除去し、さらに処理温度によっては硫黄化合物(H2S、COS、CS2など)の一部又は全部を単体Sまで完全に分解する。この硫黄化合物除去処理では、可燃性ガスの製造過程で少量に含まれたO2と多孔質炭素材料が反応してCOを生成することもでき、また水蒸気導入の場合は炭素担体がH2Oと反応してH2とCOを生成する。従って多孔質炭素材料として、可燃性ガスの製造過程で副生したチャーを使用すれば、木質バイオマスのガス化率の向上に寄与できる。 By the way, as described above, in the sulfur compound removal treatment, if the sulfur compound (H 2 S, COS) originally contained in the combustible gas generated by gasification of the carbonaceous raw material is only adsorbed and removed by the porous carbon material. not, porous reaction between the carbon material and the sulfur (C + 2S → CS 2) and CS 2 produced by the decomposition (2COS → CO 2 + CS 2 ) in COS also removed by adsorption in the porous carbon material, depending further treatment temperature sulfur A part or all of a compound (H 2 S, COS, CS 2, etc.) is completely decomposed to a simple substance S. In this sulfur compound removal treatment, a small amount of O 2 contained in the combustible gas production process can react with the porous carbon material to produce CO. In the case of introducing water vapor, the carbon support is H 2 O. To produce H 2 and CO. Therefore, if char produced as a by-product in the process of producing combustible gas is used as the porous carbon material, it can contribute to the improvement of the gasification rate of woody biomass.

除去対象となる硫黄化合物としては、例えば、H2S、COS、CS2などが挙げられる。処理ガス中の硫黄化合物の含有量はそれぞれ、例えば、20〜1000ppm(体積基準)、好ましくは30〜700ppm(体積基準)、さらに好ましくは50〜500ppm(体積基準)である。 Examples of the sulfur compound to be removed include H 2 S, COS, CS 2 and the like. The content of the sulfur compound in the processing gas is, for example, 20 to 1000 ppm (volume basis), preferably 30 to 700 ppm (volume basis), and more preferably 50 to 500 ppm (volume basis).

硫黄化合物除去後のガス中の硫黄化合物の含有量はそれぞれ、例えば、50ppm未満(体積基準)、好ましくは30ppm未満(体積基準)、さらに好ましくは20ppm未満(体積基準)、最も好ましくは10ppm以下(体積基準)(特に5ppm以下(体積基準))である。   The sulfur compound content in the gas after removal of the sulfur compound is, for example, less than 50 ppm (volume basis), preferably less than 30 ppm (volume basis), more preferably less than 20 ppm (volume basis), most preferably 10 ppm or less ( Volume basis) (particularly 5 ppm or less (volume basis)).

ところで炭素質原料として木質系バイオマスを用い、そのガス化工程(部分酸化)で残留するチャーを回収すれば、このチャーを硫黄化合物除去工程の多孔質炭素材料(硫黄化合物除去剤)として使用できる。そのため通常は廃棄されるチャーを一連のプロセス内で再利用でき、資源の有効利用の点で優れている。従って、炭素質原料として木質系バイオマスを用いる場合、ガス化工程は、多孔質炭素材料(硫黄化合物除去剤)の製造工程を兼ねる。ガス化工程におけるガス化炉の運転条件は、例えば、以下の通りである。   If woody biomass is used as the carbonaceous raw material and char remaining in the gasification step (partial oxidation) is recovered, this char can be used as a porous carbon material (sulfur compound removal agent) in the sulfur compound removal step. Therefore, the char that is normally discarded can be reused in a series of processes, which is excellent in terms of effective use of resources. Therefore, when using woody biomass as the carbonaceous raw material, the gasification step also serves as a manufacturing step for the porous carbon material (sulfur compound removing agent). The operating conditions of the gasification furnace in the gasification step are, for example, as follows.

投入炭素質原料:木質系バイオマス
導入ガス:酸素又は酸素富化空気(酸素含有量:21〜30体積%、好ましくは23〜27体積%)
燃焼部温度:約850〜1050℃
還元部温度:約750〜900℃
チャー製造量/投入炭素質原料:0.5〜10質量%、好ましくは1〜5質量%
なお前記導入ガスは、必要に応じて、水蒸気(例えば、0〜20体積%、好ましくは5〜10体積%)を含有していてもよい。
Input carbonaceous raw material: woody biomass Introduced gas: oxygen or oxygen-enriched air (oxygen content: 21-30% by volume, preferably 23-27% by volume)
Combustion section temperature: about 850 to 1050 ° C
Reducer temperature: about 750-900 ° C
Char production / input carbonaceous raw material: 0.5 to 10% by mass, preferably 1 to 5% by mass
In addition, the said introduction gas may contain water vapor | steam (for example, 0-20 volume%, Preferably 5-10 volume%) as needed.

前記回収チャーはそのまま硫黄化合物除去剤として用いてもよく、粒化して粒状硫黄化合物除去剤として用いてもよい。なお粒状硫黄化合物除去剤は、参考発明では金属成分が担持されていてもよい。 The recovered char may be used as it is as a sulfur compound remover, or may be granulated and used as a particulate sulfur compound remover. In the reference invention, the particulate sulfur compound remover may carry a metal component.

III:単体Sの除去(第2除去処理)
単体Sを上記硫黄化合物除去工程とは別に除去する場合、上記硫黄化合物除去処理を第1除去処理と称し、この単体Sの除去を第2除去処理と称する。第2除去処理には、吸着除去、液化除去、及び固化除去などを単独で又は適宜組み合わせて実施すればよい。好ましい第2除去処理は、第1除去処理後の単体Sを含むガスを、必要に応じて冷却した後、多孔質炭素材料に通じる処理方法である。この方法によって、単体Sが、ガスのまま、又は液化しつつ、或いは固化しつつ、多孔質炭素材料に付着(特に吸着)されることで、単体Sを除去できる。
第2除去処理の温度は、例えば、第1除去処理よりも低い温度であり、通常、単体Sの沸点(445℃)以下又は融点(α型:113℃、β型:120℃、γ型:107℃)以下の範囲から選択できる。好ましい第2除去処理の温度は、約250〜450℃である。
第2除去処理に多孔質炭素材料を使用し、この多孔質炭素材料に単体Sが付着(吸着)することで多孔質炭素材料の性能が劣化したときには、多孔質炭素材料を加熱(例えば、窒素などの不活性気流中、単体Sの沸点以上に加熱)して単体Sを多孔質炭素材料から分離し、多孔質炭素材料を再生してもよい。また加熱分離した単体Sは、適宜、回収(例えば、冷却トラップによる回収など)してもよい。
第2除去処理で使用する多孔質炭素材料は、チャーであってもよいが、活性炭も極めて好適に使用できる。第2除去処理での多孔質炭素材料は、再生して繰り返し使用できるので、材料費用が製造コストに与える影響は少ない。むしろ活性炭はチャーより充填強度に優れているので、ハンドリングの面からみると第2除去処理に適している。
III: Removal of simple substance S (second removal process)
When removing the single substance S separately from the sulfur compound removal step, the sulfur compound removal process is referred to as a first removal process, and the removal of the single substance S is referred to as a second removal process. The second removal treatment may be performed by adsorption removal, liquefaction removal, solidification removal, or the like alone or in combination as appropriate. A preferable second removal treatment is a treatment method in which the gas containing the simple substance S after the first removal treatment is cooled as necessary, and then communicated with the porous carbon material. By this method, the simple substance S can be removed by adhering (particularly adsorbing) the simple substance S to the porous carbon material as it is in the gas state or while it is liquefied or solidified.
The temperature of the second removal treatment is, for example, a temperature lower than that of the first removal treatment, and is usually lower than the boiling point (445 ° C.) of the simple substance S or the melting point (α type: 113 ° C., β type: 120 ° C., γ type: 107 ° C.) The following range can be selected. A preferable temperature for the second removal treatment is about 250 to 450 ° C.
When a porous carbon material is used for the second removal treatment and the performance of the porous carbon material deteriorates due to adhesion (adsorption) of the simple substance S to the porous carbon material, the porous carbon material is heated (for example, nitrogen The porous carbon material may be regenerated by separating the simple substance S from the porous carbon material by heating to a boiling point or higher of the simple substance S in an inert air flow. Further, the heat-separated simple substance S may be appropriately recovered (for example, recovery by a cooling trap).
The porous carbon material used in the second removal treatment may be char, but activated carbon can also be used very suitably. Since the porous carbon material in the second removal treatment can be regenerated and reused, the material cost has little influence on the manufacturing cost. Rather, activated carbon has a better packing strength than char, and is suitable for the second removal treatment from the viewpoint of handling.

IV:利用分野
上記のようにして硫黄化合物を除去した可燃性ガスは、触媒反応によって合成燃料(液化燃料、液体燃料、固体燃料など)にすることができる。例えばフィッシャー・トロプシュ(Fischer-Tropsch)合成によって炭化水素化することによって、プロパン、ブタンなどの液化燃料;ガソリン、軽油などの液体燃料;ワックスなどの固体燃料などの合成燃料にすることができる。またメタノール合成触媒やジメチルエーテル合成触媒によってメタノール(液体燃料)やジメチルエーテル(液化燃料)などに転換できる。
IV: Field of Use The combustible gas from which the sulfur compound has been removed as described above can be made into a synthetic fuel (liquefied fuel, liquid fuel, solid fuel, etc.) by catalytic reaction. For example, by hydrocarbonation by Fischer-Tropsch synthesis, liquefied fuel such as propane and butane; liquid fuel such as gasoline and light oil; and synthetic fuel such as solid fuel such as wax. Further, it can be converted into methanol (liquid fuel), dimethyl ether (liquefied fuel) or the like by a methanol synthesis catalyst or a dimethyl ether synthesis catalyst.

フィッシャー・トロプシュ触媒としては、公知のものが使用でき、例えば、Co触媒、Fe触媒、Ru触媒、Rh触媒、Mo触媒、Th触媒などが挙げられる。
メタノール合成触媒は、例えば、Cu−Zn触媒、Pd触媒などである。
ジメチルエーテル合成触媒には、例えば、Cu−Zn触媒、あるいはPd触媒へ脱水触媒であるγ−Al23やZrO2を添加や物理混合した触媒などが含まれる。
As the Fischer-Tropsch catalyst, known catalysts can be used, and examples thereof include a Co catalyst, an Fe catalyst, a Ru catalyst, a Rh catalyst, a Mo catalyst, and a Th catalyst.
Examples of the methanol synthesis catalyst include a Cu—Zn catalyst and a Pd catalyst.
Examples of the dimethyl ether synthesis catalyst include a Cu-Zn catalyst or a catalyst obtained by adding or physically mixing γ-Al 2 O 3 or ZrO 2 as a dehydration catalyst to a Pd catalyst.

以下、実施例を挙げて本発明をより具体的に説明するが、本発明はもとより下記実施例によって制限を受けるものではなく、前・後記の趣旨に適合し得る範囲で適当に変更を加えて実施することも勿論可能であり、それらはいずれも本発明の技術的範囲に包含される。   EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples. However, the present invention is not limited by the following examples, but may be appropriately modified within a range that can meet the purpose described above and below. Of course, it is possible to implement them, and they are all included in the technical scope of the present invention.

I:粒状木質系チャー(硫黄化合物除去剤)の製造
実施例1(無担持木質系チャーの製法)
独立行政法人産業技術総合研究所バイオマス研究センターにおいて、BTL(Biomass to liquids)ベンチプラント(固定床ダウンドラフト型ガス化炉)を用い、下記仕様の木質系バイオマス(ガス化原料)を投入し、下記条件で6時間に亘って連続的にガス化した。
I: Production of granular wood-based char (sulfur compound remover) Example 1 (Production method of unsupported wood-based char)
In the National Institute of Advanced Industrial Science and Technology (AIST) Biomass Research Center, BTL (Biomass to liquids) bench plant (fixed-bed downdraft gasification furnace) was used, and woody biomass (gasification raw material) with the following specifications was introduced. The gasification continued for 6 hours under the conditions.

(i)ガス化原料
材料名:ユーカリチップ
形状:30mm×30mm×30mm
元素分析値(無水無灰基準):C 51.0質量%、H 6.0質量%、N 0.2質量%、S 0.015質量%、O 42.8質量%[diff.]
工業分析値:水分 10.5質量%、揮発分 73.1質量%、固定炭素 15.8質量%、灰分 0.6質量%
(ii)ガス化条件
ユーカリチップ投入速度:9kg/h
導入ガス:酸素富化空気(酸素濃度25体積%)
導入ガス流量:9.4Nm3/h
ガス化炉内燃焼部温度:900〜1000℃
ガス化炉内還元部温度:800〜850℃
(I) Gasification raw material Material name: Eucalyptus chip Shape: 30 mm x 30 mm x 30 mm
Elemental analysis value (anhydrous ashless basis): C 51.0 mass%, H 6.0 mass%, N 0.2 mass%, S 0.015 mass%, O 42.8 mass% [diff. ]
Industrial analysis values: moisture 10.5% by mass, volatiles 73.1% by mass, fixed carbon 15.8% by mass, ash 0.6% by mass
(Ii) Gasification conditions Eucalyptus chip input speed: 9 kg / h
Introduced gas: oxygen-enriched air (oxygen concentration 25% by volume)
Introduction gas flow rate: 9.4 Nm 3 / h
Combustion section temperature in gasifier: 900-1000 ° C
Gasification furnace internal temperature: 800-850 ° C

ガス化炉下部に設置されているチャー抜き出し口から約2時間間隔でチャーを取り出した。6時間分のチャー(合計1.8kg)を均一に混合した後、篩分けして目開き2〜4mmの間の粒状物(つまり目開き4mmの篩を通過し、目開き2mmの篩の上に載ったチャー)を硫黄化合物除去剤として回収した(以下、「Char」と称する場合がある)。   The char was taken out at intervals of about 2 hours from the char outlet at the bottom of the gasification furnace. After 6 hours of char (1.8 kg in total) is uniformly mixed, the mixture is sieved to a granular material having an opening of 2 to 4 mm (that is, passing through a sieve with an opening of 4 mm and above a sieve with an opening of 2 mm). Was collected as a sulfur compound remover (hereinafter sometimes referred to as “Char”).

得られた粒状木質系チャー(硫黄化合物除去剤)の灰分含量及び細孔特性を以下のようにして調べた。また比較のため、市販の活性炭A(直径3〜4mm、長さ2〜10mmの円柱状造粒品。以下「AC−A」と称する場合がある)の細孔特性も調べた。   The ash content and pore characteristics of the obtained granular wood char (sulfur compound remover) were examined as follows. For comparison, the pore characteristics of commercially available activated carbon A (a cylindrical granulated product having a diameter of 3 to 4 mm and a length of 2 to 10 mm, which may be referred to as “AC-A” hereinafter) were also examined.

(1)灰分含量
測定試料(1〜2g)を空気雰囲気下、温度550℃で重量変化がなくなるまで処理し、処理前後の重量変化から灰分含量を求めた。粒状木質系チャー(Char)の灰分含量は4.7質量%(乾燥質量基準)であり、AC−Aの灰分含量は8.7質量%(乾燥質量基準)であった。
(2)窒素吸着等温線
測定試料(0.1〜0.2g)を温度120℃で6時間真空乾燥し、さらに一夜、室温で真空乾燥した後、正確に秤量した。日本ベル社製の自動ガス/蒸気吸着量測定装置(BELSORP18)を用い、吸着ガスを窒素にして定容法により温度77Kの吸脱着の自動測定を行ない、測定試料の窒素吸着等温線を求めた。
結果を図1に示す。この図1から明らかなように、粒状木質系チャー(Char)及びAC−AはいずれもI型(IUPAC)の窒素吸着等温線を示しており、ミクロ孔が発達した構造である。
(1) Ash content A measurement sample (1-2 g) was treated in an air atmosphere at a temperature of 550 ° C. until there was no weight change, and the ash content was determined from the weight change before and after the treatment. The ash content of the granular wood-based char (Char) was 4.7% by mass (based on dry mass), and the ash content of AC-A was 8.7% by mass (based on dry mass).
(2) Nitrogen adsorption isotherm A measurement sample (0.1 to 0.2 g) was vacuum-dried at a temperature of 120 ° C. for 6 hours, and further vacuum-dried overnight at room temperature, and then accurately weighed. Using an automatic gas / vapor adsorption measuring device (BELSORP18) manufactured by Nippon Bell Co., Ltd., adsorption and desorption at a temperature of 77K was automatically measured by a constant volume method using nitrogen as the adsorption gas, and a nitrogen adsorption isotherm of the measurement sample was obtained. .
The results are shown in FIG. As is apparent from FIG. 1, both the granular wood char and the AC-A show a type I (IUPAC) nitrogen adsorption isotherm, which is a structure with developed micropores.

(3)全比表面積(S)
前記窒素吸着等温線のデータをもとに、前記BELSORP18が内蔵するBELSORP解析ソフトウェア(BET法)を用いて得られたBET−Plot曲線から、相対圧(p/p0)約0.05〜0.15、C値100〜200の範囲内で近似直線を求め、自動計算により全比表面積(S)を算出した。なおC値とは吸着熱を示し、炭素の窒素吸着ではC値が100〜200を示す場合、妥当な比表面積が得られる。全比表面積(S)の算出結果を表1に示す。
(3) Total specific surface area (S)
Based on the data of the nitrogen adsorption isotherm, a relative pressure (p / p 0 ) of about 0.05 to 0 based on a BET-Plot curve obtained by using BELSORP analysis software (BET method) built in the BELSORP18. .15, an approximate straight line was determined within a range of C values of 100 to 200, and the total specific surface area (S) was calculated by automatic calculation. The C value indicates the heat of adsorption. When the C value is 100 to 200 in the case of carbon nitrogen adsorption, an appropriate specific surface area is obtained. Table 1 shows the calculation results of the total specific surface area (S).

(4)全細孔容積(V)
前記BELSORP18が内蔵するBELSORP解析ソフトウェア(BET法)を用い、窒素吸着等温線データから全細孔容積(V)を求めた。粒状木質系チャー(Char)の場合は相対圧(p/p0)0.96のときの窒素吸着量から全細孔容積(V)を求め、AC−Aの場合は相対圧(p/p0)0.90のときの窒素吸着量から全細孔容積(V)を求めた。結果を表1に示す。
(4) Total pore volume (V)
Using the BELSORP analysis software (BET method) incorporated in the BELSORP 18, the total pore volume (V) was determined from the nitrogen adsorption isotherm data. In the case of granular wood char (Char), the total pore volume (V) is obtained from the amount of nitrogen adsorbed when the relative pressure (p / p 0 ) is 0.96. In the case of AC-A, the relative pressure (p / p 0 ) The total pore volume (V) was determined from the nitrogen adsorption amount at 0.90. The results are shown in Table 1.

(5)平均細孔直径(D)
上記で求めた全細孔容積(V)と全比表面積(S)に基づき、細孔構造が円筒型であると仮定したときの関係式(D=4000V/S)から平均細孔直径(D)を算出した。結果を表1に示す。
(5) Average pore diameter (D)
Based on the total pore volume (V) and the total specific surface area (S) determined above, the average pore diameter (D) from the relational expression (D = 4000 V / S) when the pore structure is assumed to be cylindrical. ) Was calculated. The results are shown in Table 1.

表1より明らかなように、粒状木質系チャー(Char)はAC−Aに比べて、全比表面積(S)と全細孔容積(V)が小さく、平均細孔直径(D)が大きい。   As is clear from Table 1, the granular wood-based char (Char) has a smaller total specific surface area (S) and total pore volume (V) and a larger average pore diameter (D) than AC-A.

(6)細孔分布(ミクロ孔分布、メソ孔分布)
細孔形状をスリット型に仮定した場合のミクロ孔(細孔直径0〜2.0nmの細孔)の分布をMP法(BELSORP解析ソフトウェア)によって求めた。また細孔形状をシリンダー状に仮定した場合のメソ孔(細孔直径2〜50nm(細孔半径1〜25nm)の細孔)の分布をDH法(BELSORP解析ソフトウェア)によって求めた。ミクロ孔分布を図2に示し、メソ孔分布を図3に示す。
図2、図3より明らかなように、粒状木質系チャー(Char)と活性炭は、細孔分布が異なる。全体的に前者の方が後者に比べてメソ孔が多く含まれている。
(6) Pore distribution (micropore distribution, mesopore distribution)
The distribution of micropores (pores having a pore diameter of 0 to 2.0 nm) when the pore shape is assumed to be a slit type was determined by the MP method (BELSORP analysis software). In addition, the distribution of mesopores (pores having a pore diameter of 2 to 50 nm (pore radius 1 to 25 nm)) when the pore shape is assumed to be a cylinder shape was determined by the DH method (BELSORP analysis software). The micropore distribution is shown in FIG. 2, and the mesopore distribution is shown in FIG.
As apparent from FIGS. 2 and 3, the granular wood char and the activated carbon have different pore distributions. Overall, the former contains more mesopores than the latter.

参考例2(Fe担持木質系チャーの製造)
前記実施例1と同様にして作製した目開き2〜4mmの間の粒状木質系チャー(Char)20gをナス型フラスコ(500ml)に入れた。Fe(NO33・9H2O(硝酸第二鉄九水和物)28.85g(Fe含量:4.0g)を82.7gの水に溶かして調製した15.5質量%のFe(NO33水溶液(Fe3+イオン濃度:3.6質量%)を前記ナス型フラスコに注入した。ナス型フラスコをロータリーエバポレーターに接続し、ナス型フラスコを回転させながら真空引きと大気開放操作を30分間の間に3回繰り返した。次いで、ナス型フラスコを温度60℃のオイルバスにつけながら回転させ、試料表面とフラスコ内壁に水気がなくなるまで真空乾燥することによってFeを含浸させた。含浸処理後のチャーを取り出し、105℃のオーブンで2時間乾燥し、さらに管状焼成炉に移して窒素気流中600℃で2時間焼成処理した後、室温まで冷却することによってFe担持木質系チャー(以下、「Fe/Char」と称する場合がある)を製造した。
Reference Example 2 (Production of Fe-supported wood-based char)
20 g of granular wood char with a mesh opening of 2 to 4 mm produced in the same manner as in Example 1 was placed in an eggplant-shaped flask (500 ml). 15.5% by mass of Fe (NO 3 ) 3 · 9H 2 O (ferric nitrate nonahydrate) prepared by dissolving 28.85 g (Fe content: 4.0 g) in 82.7 g of water A NO 3 ) 3 aqueous solution (Fe 3+ ion concentration: 3.6% by mass) was poured into the eggplant type flask. The eggplant-shaped flask was connected to a rotary evaporator, and while the eggplant-shaped flask was rotated, evacuation and air release operations were repeated three times during 30 minutes. Next, the eggplant-shaped flask was rotated while being attached to an oil bath at a temperature of 60 ° C., and vacuum drying was performed until the sample surface and the inner wall of the flask were free of moisture, thereby impregnating Fe. After the impregnation treatment, the char was taken out, dried in an oven at 105 ° C. for 2 hours, further transferred to a tubular firing furnace and fired at 600 ° C. for 2 hours in a nitrogen stream, and then cooled to room temperature to cool the Fe-supported wood-based char ( Hereinafter, it may be referred to as “Fe / Char”).

参考例3
内径10mm、加熱部長さ300mmの石英反応管に参考例2で得られたFe担持木質系チャー(Fe/Char)1.00gを充填した。この石英反応管を600℃の電気炉にセットし、石英反応管内にH2SとCOSを含むN2ガス(H2S濃度:100ppm(体積基準)、COS濃度:100ppm(体積基準))をマスフローコントローラーで制御しながら流速100ml/minで通過させた。通過後のガス中のH2S濃度、COS濃度は、ガスクロマトグラフィー(6890 Series Gas Chromatograph、Agilent Technologies社製、サンプルループ:5ml、カラム:HP PLOT/Qキャピラリーカラム30m、スプリット比14.4:1、オーブン温度120℃、キャリアガス:He、流速3.6ml/min、検出器:FPD、250℃)を用いたオンサイドの連続測定をすることによって求めた。石英反応管出口とガスクロマトグラフィー入口を直結する配管は、温度60℃になるようにリボンヒーターで保温した。また、石英反応管内で生成するCS2のガス中濃度についても同様にして測定した。なお硫黄化合物除去実験における破過時間は、H2S、COS、及びCS2の濃度がそれぞれ1ppm(体積基準;第1レベル)又は50ppm(体積基準;第2レベル)に到達するまでかかった時間で定義した。
Reference example 3
A quartz reaction tube having an inner diameter of 10 mm and a heating part length of 300 mm was filled with 1.00 g of Fe-supported wood-based char (Fe / Char) obtained in Reference Example 2. This quartz reaction tube is set in an electric furnace at 600 ° C., and N 2 gas containing H 2 S and COS (H 2 S concentration: 100 ppm (volume basis), COS concentration: 100 ppm (volume basis)) in the quartz reaction tube is a mass flow controller. While controlling at a flow rate of 100 ml / min. The H 2 S concentration and COS concentration in the gas after passing were measured by gas chromatography (6890 Series Gas Chromatograph, Agilent Technologies, sample loop: 5 ml, column: HP PLOT / Q capillary column 30 m, split ratio 14.4: 1 And an oven temperature of 120 ° C., a carrier gas: He, a flow rate of 3.6 ml / min, a detector: FPD, 250 ° C.). The piping directly connecting the quartz reaction tube outlet and the gas chromatography inlet was kept warm with a ribbon heater so that the temperature was 60 ° C. Further, the gas concentration of CS 2 produced in the quartz reaction tube was measured in the same manner. The breakthrough time in the sulfur compound removal experiment was the time taken until the concentrations of H 2 S, COS, and CS 2 reached 1 ppm (volume basis; first level) or 50 ppm (volume basis; second level), respectively. Defined in

参考例4
木質系チャーに代えて活性炭(AC−A)20gを使用する以外は参考例2と同様にして、活性炭にFeを担持した(Fe/AC−A)。内径10mm、加熱部長さ300mmの石英反応管にこのFe担持活性炭(Fe/AC−A)1.00gを充填し、参考例3と同様にして、硫黄化合物(H2S、COS及びCS2)の破過時間を調べた。
Reference example 4
Fe was supported on activated carbon (Fe / AC-A) in the same manner as in Reference Example 2 except that 20 g of activated carbon (AC-A) was used instead of wood char. A quartz reaction tube having an inner diameter of 10 mm and a heating part length of 300 mm was charged with 1.00 g of this Fe-supported activated carbon (Fe / AC-A), and in the same manner as in Reference Example 3, sulfur compounds (H 2 S, COS and CS 2 ) Investigate the breakthrough time.

参考例5
石英反応管をセットする電気炉の温度を800℃にする以外は、参考例3と同様にした。
実施例6
Fe担持チャーに代えて、実施例1で得られたChar(無担持チャー)を使用する以外は、参考例3と同様にした。
比較例1
石英反応管をセットする電気炉の温度を400℃にする以外は、参考例3と同様にした。
比較例2
石英反応管をセットする電気炉の温度を400℃にする以外は、参考例4と同様にした

参考例3〜5、実施例6及び比較例1〜2の結果を表2及び図4〜図5に示す。
Reference Example 5
The same procedure as in Reference Example 3 was performed except that the temperature of the electric furnace in which the quartz reaction tube was set was 800 ° C.
Example 6
The same procedure as in Reference Example 3 was performed except that Char (non-supported char) obtained in Example 1 was used instead of the Fe-supported char.
Comparative Example 1
The same procedure as in Reference Example 3 was performed except that the temperature of the electric furnace in which the quartz reaction tube was set was set to 400 ° C.
Comparative Example 2
Reference Example 4 was performed except that the temperature of the electric furnace in which the quartz reaction tube was set was set to 400 ° C.
The results of Reference Examples 3 to 5, Example 6, and Comparative Examples 1 and 2 are shown in Table 2 and FIGS.

比較例1〜2より明らかなように温度400℃では、多孔質炭素材料の種類を問わず、硫黄化合物が破過した後は硫黄化合物除去特性が急速に劣化する。これに対して、参考例3〜4の600℃では、それぞれの多孔質炭素材料の破過時間を延長できるだけでなく、硫黄化合物濃度が1ppm以上になって第1レベル基準で破過が生じた後でも、硫黄化合物除去特性が急速に劣化することなく、硫黄化合物を除去し続けることができる。さらに温度を上げて800℃で処理すると(参考例5)、144時間経過するまでH2S、COS及びCS2のいずれも全く検出されず(検出限界:0.005ppm)、非常に優れた硫黄化合物除去効果を示した。 As is clear from Comparative Examples 1 and 2, at a temperature of 400 ° C., the sulfur compound removal characteristics rapidly deteriorate after the sulfur compound breaks through regardless of the type of the porous carbon material. On the other hand, at 600 ° C. in Reference Examples 3 to 4, not only the breakthrough time of each porous carbon material could be extended but also the breakthrough occurred on the first level basis when the sulfur compound concentration became 1 ppm or more. Even afterwards, the sulfur compound can be continuously removed without rapidly deteriorating the sulfur compound removal characteristics. When the temperature is further increased and treated at 800 ° C. ( Reference Example 5), none of H 2 S, COS, and CS 2 is detected until 144 hours have passed (detection limit: 0.005 ppm), and very excellent sulfur. The compound removal effect was shown.

ところで硫黄化合物除去温度が600℃以上の例(参考例、実施例)では、いずれの多孔質炭素材料を用いても処理時間の経過につれて、石英反応管出口付近の内壁に白い物質が析出し、堆積していった。この白い物質は、元素分析により単体Sであることが確認された。この結果から、600℃以上の処理では、全ての硫黄化合物が多孔質炭素材料と接触分解して、単体Sまで分解することがわかる。また、前記参考例5の800℃処理では、この単体Sへの分解反応が略完全に行なわれていると推定できる。 By the way, in the example ( reference example, Example) in which the sulfur compound removal temperature is 600 ° C. or more, a white substance is deposited on the inner wall near the exit of the quartz reaction tube as the treatment time elapses regardless of which porous carbon material is used. It started to accumulate. This white substance was confirmed to be simple substance S by elemental analysis. From this result, it can be seen that in the treatment at 600 ° C. or higher, all the sulfur compounds are decomposed by contact with the porous carbon material and decomposed to the simple substance S. In addition, it can be estimated that the decomposition reaction into the simple substance S is almost completely performed in the 800 ° C. treatment in Reference Example 5.

また、実施例6から、Feを担持しない場合においてもCharにはかなりの硫黄化合物除去効果があり、温度を上げることによって、更なる硫黄化合物除去効果が期待できる。無担持チャーを用いた場合には、チャーへの金属担持工程が省かれ、プロセス全体のコストダウンに有利になる。   Further, from Example 6, even when Fe is not supported, Char has a considerable sulfur compound removing effect, and a further sulfur compound removing effect can be expected by raising the temperature. When the unsupported char is used, the metal supporting step on the char is omitted, which is advantageous for reducing the cost of the entire process.

本発明の硫黄化合物除去技術は、炭素質原料から得られる可燃性ガスからの硫黄化合物除去に有利に利用でき、特に前記可燃性ガスを経由した合成燃料の製造にも有利に利用できる。   The sulfur compound removal technology of the present invention can be advantageously used for removing sulfur compounds from a combustible gas obtained from a carbonaceous raw material, and can also be advantageously used for producing a synthetic fuel via the combustible gas.

図1は粒状木質系チャー(Char)及び活性炭(AC−A)についての窒素吸着等温線を示す。FIG. 1 shows nitrogen adsorption isotherms for granular wood char (Char) and activated carbon (AC-A). 図2は粒状木質系チャー(Char)及び活性炭(AC−A)についてのミクロ孔領域における細孔分布を示す。FIG. 2 shows the pore distribution in the micropore region for granular wood char (Char) and activated carbon (AC-A). 図3は粒状木質系チャー(Char)及び活性炭(AC−A)についてのメソ孔領域における細孔分布を示す。FIG. 3 shows the pore distribution in the mesopore region for granular wood char (Char) and activated carbon (AC-A). 図4は参考例3〜5及び比較例1〜2の硫黄化合物除去実験における経過時間とH2Sの反応管出口濃度との関係を示すグラフである。FIG. 4 is a graph showing the relationship between the elapsed time and the H 2 S reaction tube outlet concentration in the sulfur compound removal experiments of Reference Examples 3 to 5 and Comparative Examples 1 and 2 . 図5は参考例3〜5及び比較例1〜2の硫黄化合物除去実験における経過時間とCOSの反応管出口濃度との関係を示すグラフである。FIG. 5 is a graph showing the relationship between the elapsed time and the COS reaction tube outlet concentration in the sulfur compound removal experiments of Reference Examples 3 to 5 and Comparative Examples 1 and 2.

Claims (16)

木質系バイオマスのガス化で生成する可燃性ガスを、温度500℃超で多孔質炭素材料である金属成分が担持されていない平均細孔直径が2.0〜3.5nmの木質系バイオマスから得られるチャーに通じ、可燃性ガス中の硫黄化合物を除去する硫黄化合物除去工程を有することを特徴とする硫黄化合物除去方法。   Combustible gas generated by gasification of woody biomass is obtained from woody biomass with an average pore diameter of 2.0 to 3.5 nm that is not supported by a metal component that is a porous carbon material at a temperature of over 500 ° C. The sulfur compound removal method characterized by having the sulfur compound removal process which removes the sulfur compound in combustible gas through the char which is carried out. 前記多孔質炭素材料は、粒化されたものである請求項1に記載の硫黄化合物除去方法。   The sulfur compound removing method according to claim 1, wherein the porous carbon material is granulated. 前記チャーの灰分含有量が3〜50質量%である請求項1又は2に記載の硫黄化合物除去方法。   The sulfur compound removing method according to claim 1 or 2, wherein the char has an ash content of 3 to 50 mass%. 前記チャーは、その窒素吸着等温線がI型(IUPAC)を示すものである請求項1〜3のいずれかに記載の硫黄化合物除去方法。   The sulfur compound removing method according to any one of claims 1 to 3, wherein the char has a nitrogen adsorption isotherm of type I (IUPAC). 前記チャーは、全比表面積が200m2/g以上である請求項1〜4のいずれかに記載の硫黄化合物除去方法。 The sulfur compound removing method according to claim 1, wherein the char has a total specific surface area of 200 m 2 / g or more. 前記硫黄化合物がH2S、COS、及びCS2から選択される少なくとも一種である請求項1〜5のいずれかに記載の硫黄化合物除去方法。 The sulfur compound removing method according to claim 1, wherein the sulfur compound is at least one selected from H 2 S, COS, and CS 2 . 請求項1〜6のいずれかにおいて、硫黄化合物除去工程のガス通過温度を600〜800℃にして、硫黄化合物の一部又は全部を単体Sに分解する方法であって、
硫黄化合物除去ガスに含まれる単体Sを、さらに吸着除去、液化除去、及び固化除去のいずれか一種以上の除去方法によって除去する硫黄化合物除去方法。
In any one of Claims 1-6, the gas passage temperature of a sulfur compound removal process shall be 600-800 degreeC, and it is the method of decomposing | disassembling a part or all of a sulfur compound into the single-piece | unit S,
The sulfur compound removal method which removes the single substance S contained in sulfur compound removal gas further by any one or more removal methods of adsorption removal, liquefaction removal, and solidification removal.
木質系バイオマスを空気又は酸素富化空気で部分酸化させてCOとH2を含有するガスに転換するとともに、残留するチャーを回収する回収工程、
前記COとH2を含有するガスを、前記回収したチャーであって平均細孔直径が2.0〜3.5nmの金属成分を担持していないもの、又は回収チャーから得られる粒状硫黄化合物除去剤であって平均細孔直径が2.0〜3.5nmの金属成分を担持していないものに温度500℃超で通過させることによってガス中に含まれる硫黄化合物を除去する硫黄化合物除去工程、及び
硫黄化合物を除去したガスをフィッシャー・トロプシュ合成反応によって炭化水素化する炭化水素化工程から構成されることを特徴とする合成燃料製造方法。
A recovery step of partially oxidizing the woody biomass with air or oxygen-enriched air to convert it into a gas containing CO and H 2 and recovering the remaining char;
The gas containing CO and H 2 is the recovered char and does not carry a metal component having an average pore diameter of 2.0 to 3.5 nm , or removal of particulate sulfur compounds obtained from the recovered char A sulfur compound removing step of removing sulfur compounds contained in the gas by passing the composition at a temperature above 500 ° C. through an agent that does not carry a metal component having an average pore diameter of 2.0 to 3.5 nm, And a method for producing a synthetic fuel, comprising a hydrocarbonation step in which a gas from which sulfur compounds have been removed is hydrocarbonated by a Fischer-Tropsch synthesis reaction.
前記硫黄化合物除去工程のガス通過温度を600〜800℃にして、硫黄化合物の一部又は全部を単体Sに分解し、
硫黄化合物除去工程の後、かつ炭化水素化工程の前に、硫黄化合物除去ガスに含まれる単体Sを、さらに吸着除去、液化除去、及び固化除去のいずれか一種以上の除去方法によって除去する単体S除去工程を行うことを特徴とする請求項8に記載の合成燃料製造方法。
The gas passage temperature of the sulfur compound removal step is set to 600 to 800 ° C., and part or all of the sulfur compound is decomposed into the simple substance S,
After the sulfur compound removal step and before the hydrocarbonation step, the simple substance S contained in the sulfur compound removal gas is further removed by one or more removal methods of adsorption removal, liquefaction removal, and solidification removal. The synthetic fuel manufacturing method according to claim 8, wherein a removing step is performed.
前記単体Sの吸着除去、液化除去、又は固化除去は、硫黄化合物除去ガスを多孔質炭素材料に通じることで行うこととし、
単体Sが付着して多孔質炭素材料の性能が劣化したときには、多孔質炭素材料を加熱して単体Sを多孔質炭素材料から分離し、多孔質炭素材料を再生する再生工程を行う請求項9に記載の合成燃料製造方法。
The adsorption removal, liquefaction removal, or solidification removal of the simple substance S is performed by passing a sulfur compound removal gas through the porous carbon material,
10. The regeneration step of regenerating the porous carbon material by heating the porous carbon material to separate the single S from the porous carbon material when the simple substance S adheres and the performance of the porous carbon material deteriorates. The synthetic fuel manufacturing method as described in 2. above.
木質系バイオマスを空気又は酸素富化空気で部分酸化させてCOとH2を含有するガスに転換するとともに、残留するチャーを回収する回収工程、
前記COとH2を含有するガスを、前記回収したチャーであって平均細孔直径が2.0〜3.5nmの金属成分を担持していないもの、又は回収チャーから得られる粒状硫黄化合物除去剤であって平均細孔直径が2.0〜3.5nmの金属成分を担持していないものに温度500℃超で通過させることによってガス中に含まれる硫黄化合物を除去する硫黄化合物除去工程、及び
硫黄化合物を除去したガスをメタノール合成触媒によってメタノールに転換するメタノール転換工程から構成されることを特徴とする液体燃料の製造方法。
A recovery step of partially oxidizing the woody biomass with air or oxygen-enriched air to convert it into a gas containing CO and H 2 and recovering the remaining char;
The gas containing CO and H 2 is the recovered char and does not carry a metal component having an average pore diameter of 2.0 to 3.5 nm , or removal of particulate sulfur compounds obtained from the recovered char A sulfur compound removing step of removing sulfur compounds contained in the gas by passing the composition at a temperature above 500 ° C. through an agent that does not carry a metal component having an average pore diameter of 2.0 to 3.5 nm, And a method for producing a liquid fuel, comprising a methanol conversion step of converting a gas from which sulfur compounds have been removed to methanol using a methanol synthesis catalyst.
前記硫黄化合物除去工程のガス通過温度を600〜800℃にして、硫黄化合物の一部又は全部を単体Sに分解し、
硫黄化合物除去工程の後、かつ炭化水素化工程の前に、硫黄化合物除去ガスに含まれる単体Sを、さらに吸着除去、液化除去、及び固化除去のいずれか一種以上の除去方法によって除去する単体S除去工程を行うことを特徴とする請求項11に記載の液体燃料の製造方法。
The gas passage temperature of the sulfur compound removal step is set to 600 to 800 ° C., and part or all of the sulfur compound is decomposed into the simple substance S,
After the sulfur compound removal step and before the hydrocarbonation step, the simple substance S contained in the sulfur compound removal gas is further removed by one or more removal methods of adsorption removal, liquefaction removal, and solidification removal. The method for producing a liquid fuel according to claim 11, wherein a removing step is performed.
前記単体Sの吸着除去、液化除去、又は固化除去は、硫黄化合物除去ガスを多孔質炭素材料に通じることで行うこととし、
単体Sが付着して多孔質炭素材料の性能が劣化したときには、多孔質炭素材料を加熱して単体Sを多孔質炭素材料から分離し、多孔質炭素材料を再生する再生工程を行う請求項12に記載の液体燃料の製造方法。
The adsorption removal, liquefaction removal, or solidification removal of the simple substance S is performed by passing a sulfur compound removal gas through the porous carbon material,
13. When the single substance S adheres and the performance of the porous carbon material deteriorates, a regeneration step is performed in which the porous carbon material is heated to separate the single substance S from the porous carbon material and regenerate the porous carbon material. A method for producing a liquid fuel as described in 1. above.
木質系バイオマスを空気又は酸素富化空気で部分酸化させてCOとH2を含有するガスに転換するとともに、残留するチャーを回収する回収工程、
前記COとH2を含有するガスを、前記回収したチャーであって平均細孔直径が2.0〜3.5nmの金属成分を担持していないもの、又は回収チャーから得られる粒状硫黄化合物除去剤であって平均細孔直径が2.0〜3.5nmの金属成分を担持していないものに温度500℃超で通過させることによってガス中に含まれる硫黄化合物を除去する硫黄化合物除去工程、及び
硫黄化合物を除去したガスをジメチルエーテル合成触媒によってジメチルエーテルに転換するジメチルエーテル転換工程から構成されることを特徴とする液化燃料の製造方法。
A recovery step of partially oxidizing the woody biomass with air or oxygen-enriched air to convert it into a gas containing CO and H 2 and recovering the remaining char;
The gas containing CO and H 2 is the recovered char and does not carry a metal component having an average pore diameter of 2.0 to 3.5 nm , or removal of particulate sulfur compounds obtained from the recovered char A sulfur compound removing step of removing sulfur compounds contained in the gas by passing the composition at a temperature above 500 ° C. through an agent that does not carry a metal component having an average pore diameter of 2.0 to 3.5 nm, And a method for producing a liquefied fuel comprising a dimethyl ether conversion step of converting a gas from which sulfur compounds have been removed to dimethyl ether using a dimethyl ether synthesis catalyst.
前記硫黄化合物除去工程のガス通過温度を600〜800℃にして、硫黄化合物の一部又は全部を単体Sに分解し、
硫黄化合物除去工程の後、かつ炭化水素化工程の前に、硫黄化合物除去ガスに含まれる単体Sを、さらに吸着除去、液化除去、及び固化除去のいずれか一種以上の除去方法によって除去する単体S除去工程を行うことを特徴とする請求項14に記載の液化燃料の製造方法。
The gas passage temperature of the sulfur compound removal step is set to 600 to 800 ° C., and part or all of the sulfur compound is decomposed into the simple substance S,
After the sulfur compound removal step and before the hydrocarbonation step, the simple substance S contained in the sulfur compound removal gas is further removed by one or more removal methods of adsorption removal, liquefaction removal, and solidification removal. The method for producing a liquefied fuel according to claim 14, wherein a removing step is performed.
前記単体Sの吸着除去、液化除去、又は固化除去は、硫黄化合物除去ガスを多孔質炭素材料に通じることで行うこととし、
単体Sが付着して多孔質炭素材料の性能が劣化したときには、多孔質炭素材料を加熱して単体Sを多孔質炭素材料から分離し、多孔質炭素材料を再生する再生工程を行う請求項15に記載の液化燃料の製造方法。
The adsorption removal, liquefaction removal, or solidification removal of the simple substance S is performed by passing a sulfur compound removal gas through the porous carbon material,
16. When the simple substance S adheres and the performance of the porous carbon material deteriorates, the porous carbon material is heated to separate the simple substance S from the porous carbon material, and a regeneration step for regenerating the porous carbon material is performed. The manufacturing method of the liquefied fuel as described in 2.
JP2008162207A 2008-01-11 2008-06-20 Method for removing sulfur compound from gas and method for producing synthetic fuel Expired - Fee Related JP5278874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008162207A JP5278874B2 (en) 2008-01-11 2008-06-20 Method for removing sulfur compound from gas and method for producing synthetic fuel

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2008004762 2008-01-11
JP2008004762 2008-01-11
JP2008162207A JP5278874B2 (en) 2008-01-11 2008-06-20 Method for removing sulfur compound from gas and method for producing synthetic fuel

Publications (2)

Publication Number Publication Date
JP2009185271A JP2009185271A (en) 2009-08-20
JP5278874B2 true JP5278874B2 (en) 2013-09-04

Family

ID=41068824

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008162207A Expired - Fee Related JP5278874B2 (en) 2008-01-11 2008-06-20 Method for removing sulfur compound from gas and method for producing synthetic fuel

Country Status (1)

Country Link
JP (1) JP5278874B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8624069B2 (en) * 2008-08-08 2014-01-07 Afognak Native Corporation Conversion of biomass feedstocks into hydrocarbon liquid transportation fuels
WO2016186167A1 (en) * 2015-05-20 2016-11-24 国立大学法人北海道大学 Production method for biomass hydrolysis catalyst
EP3241818A1 (en) * 2016-05-05 2017-11-08 AC Innovations Ltd Formulation
JPWO2019151461A1 (en) * 2018-02-05 2021-02-12 三菱瓦斯化学株式会社 Biomass gasification power generation system and power generation method

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2915210A1 (en) * 1979-04-14 1980-10-16 Davy International Ag METHOD FOR PRODUCING HYDROGEN AND SULFUR FROM SULFUR HYDROGEN
JP4561481B2 (en) * 2005-05-31 2010-10-13 Jfeエンジニアリング株式会社 Gas purification equipment

Also Published As

Publication number Publication date
JP2009185271A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
Shao et al. Enhance SO2 adsorption performance of biochar modified by CO2 activation and amine impregnation
Nor et al. Synthesis of activated carbon from lignocellulosic biomass and its applications in air pollution control—a review
Rashidi et al. Potential of palm kernel shell as activated carbon precursors through single stage activation technique for carbon dioxide adsorption
Liu et al. Effective removal of hydrogen sulfide using 4A molecular sieve zeolite synthesized from attapulgite
Rios et al. Reduction of tar generated during biomass gasification: A review
Hidayu et al. Preparation and characterization of impregnated activated carbon from palm kernel shell and coconut shell for CO2 capture
De et al. Mercury removal by bio-char based modified activated carbons
Jiménez et al. CO2 capture in different carbon materials
Cha et al. The low-temperature SCR of NO over rice straw and sewage sludge derived char
Chun et al. Pyrolysis gasification of dried sewage sludge in a combined screw and rotary kiln gasifier
Yan et al. Kinetics and mechanisms of H2S adsorption by alkaline activated carbon
Song et al. Surface characterization studies of walnut-shell biochar catalysts for simultaneously removing of organic sulfur from yellow phosphorus tail gas
Ngo et al. Hydrogen production enhancement using hot gas cleaning system combined with prepared Ni-based catalyst in biomass gasification
JP2007229548A (en) Reforming catalyst acted in biomass pyrolysis gasification process, its manufacturing method and modification process using the reforming catalyst, biomass pyrolytic gasifying device, and method for regenerating catalyst
JP5032101B2 (en) Tar gasification catalyst for reforming and gasifying pyrolytic tar of carbonaceous raw material, tar gasification method, method for using tar gasification gas, and method for regenerating tar gasification catalyst
Yu et al. Sulfur removal property of activated-char-supported Fe–Mo sorbents for integrated cleaning of hot coal gases
KR102532439B1 (en) Method for inactivating activated carbon in a biogas refinery plant
Li et al. Catalytic reduction of NO using iron oxide impregnated biomass and lignite char for flue gas treatment
Zhong et al. Synthesis of activated carbon from coal pitch for mercury removal in coal-fired power plants
JP5278874B2 (en) Method for removing sulfur compound from gas and method for producing synthetic fuel
Singh et al. An integrated two-step process of reforming and adsorption using biochar for enhanced tar removal in syngas cleaning
Zhang et al. Ammoniated and activated microporous biochar for enhancement of SO2 adsorption
Wang et al. Copper supported on activated carbon from hydrochar of pomelo peel for efficient H2S removal at room temperature: Role of copper valance, humidity and oxygen
JP6077021B2 (en) Method for producing sulfurized copper sorbent
Quan et al. In situ adsorption of CO2 to enhance biomass gasification for hydrogen production using Ca/Ni based composites

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100224

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121204

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130219

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130321

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130430

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees