JP5278812B2 - Magnetic gear and manufacturing method thereof - Google Patents

Magnetic gear and manufacturing method thereof Download PDF

Info

Publication number
JP5278812B2
JP5278812B2 JP2009071651A JP2009071651A JP5278812B2 JP 5278812 B2 JP5278812 B2 JP 5278812B2 JP 2009071651 A JP2009071651 A JP 2009071651A JP 2009071651 A JP2009071651 A JP 2009071651A JP 5278812 B2 JP5278812 B2 JP 5278812B2
Authority
JP
Japan
Prior art keywords
ferromagnetic
magnetic
ring
weak magnetic
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009071651A
Other languages
Japanese (ja)
Other versions
JP2010223340A (en
Inventor
正裕 三田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Metals Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2009071651A priority Critical patent/JP5278812B2/en
Publication of JP2010223340A publication Critical patent/JP2010223340A/en
Application granted granted Critical
Publication of JP5278812B2 publication Critical patent/JP5278812B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Dynamo-Electric Clutches, Dynamo-Electric Brakes (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a magnetic gear excellent in productivity, and to provide a magnetic gear. <P>SOLUTION: The magnetic gear includes a ring-like thin plate wherein feeble magnetic parts 10a and ferromagnetic parts 19b' are continued to each other in the circumferential direction. The ferromagnetic part 10b has a projection part 10b' projecting toward the only inner peripheral side, and the feeble magnetic part 10a is made of a metal structure mainly composed of austenite, which is non-melting and obtained by heating it for transformation, and both the ferromagnetic parts are arranged with a constant interval in the circumferential direction. The ferromagnetic part 10b is structured so that when one of an outer peripheral side end and an inner peripheral side end takes a part as an in-flow end of a magnetic flux, the other end takes a part as an outflow end for the magnetic flux. <P>COPYRIGHT: (C)2011,JPO&amp;INPIT

Description

本発明は、磁気式の増速ギア又は減速ギアに用いられる磁気歯車、及び磁気歯車の製造方法に関するものである。   The present invention relates to a magnetic gear used for a magnetic speed-up gear or speed reduction gear, and a method for manufacturing the magnetic gear.

地球温暖化防止のために風力発電が注目されている。風力発電機は風車羽の回転数が商用周波数のそれと異なり、直接は電力系統に接続できない。又、風車に接続されている発電機の回転数を上げることにより発電機の小型軽量化を図る等の目的で風車と発電機の間に機械式の増速ギアを挿入することが多い。   Wind power generation is attracting attention to prevent global warming. Wind turbine generators cannot be directly connected to the power grid because the rotational speed of wind turbine blades is different from that of commercial frequencies. Also, a mechanical speed increasing gear is often inserted between the windmill and the generator for the purpose of reducing the size and weight of the generator by increasing the number of revolutions of the generator connected to the windmill.

商用の風力発電機は発電機本体が地上数十メートルの位置に設置してあり、増速ギアを保守するには多大な労力が必要となる。又、この増速ギアは風車による大きなトルクを伝達する必要があるため、磨耗等の問題が発生しやすい。又、機械式の増速ギアが回転することにより騒音の発生が懸念されており、風力発電機立地の制約の一つともなっている。これらの問題点をふまえ、非接触式の歯車の利用が検討されている。   Commercial wind power generators are installed at a position of several tens of meters above the ground, and a large amount of labor is required to maintain the speed increasing gear. Further, since the speed increasing gear needs to transmit a large torque by the windmill, problems such as wear are likely to occur. In addition, there is a concern about the generation of noise due to the rotation of the mechanical speed increasing gear, which is one of the constraints on the location of the wind power generator. Based on these problems, the use of non-contact gears has been studied.

上記の機械式増速ギアの非接触化の一つのタイプとして磁気式のギアが提案されている。以下、磁気歯車と呼ぶ。磁気歯車には、例えば英国シェフィールド大学(Sheffield Univ. Prof.Howe)が研究開発を進めているタイプがある(非特許文献1参照)。   A magnetic gear has been proposed as a non-contact type of the mechanical speed increasing gear. Hereinafter, it is called a magnetic gear. For example, there is a type of magnetic gear that is being researched and developed by Sheffield University, Prof. Howe, UK (see Non-Patent Document 1).

図10に非特許文献1の磁気歯車の模式的な断面図を示す。この形式の磁気歯車は、アウターローター及びインナーローターに相当する磁極ピッチの異なる磁極列111,112が対向して設けられており、対向する磁極列の間にステーターに相当する強磁性部材列110が配置されている。強磁性部材列110のピッチは、対向する磁極列111,112のいずれのピッチとも異なる。強磁性部材列110を仮に中間ヨークと呼ぶ。この中間ヨークを固定し、一方の磁極列を中間ヨークに対して移動或いは回転させることにより、他方の磁極列が異なる速度或いは回転数で移動或いは回転するものである。この構成での磁気歯車は回転歯車においては磁極列同士を同心円状に配置することも、軸方向に隔てられて配置することも可能である。又、磁極列同士を直線状に配置して、いわゆるリニア駆動歯車としても配置可能である。   FIG. 10 is a schematic cross-sectional view of the magnetic gear of Non-Patent Document 1. In this type of magnetic gear, magnetic pole rows 111 and 112 having different magnetic pole pitches corresponding to an outer rotor and an inner rotor are provided facing each other, and a ferromagnetic member row 110 corresponding to a stator is provided between the opposed magnetic pole rows. Has been placed. The pitch of the ferromagnetic member rows 110 is different from the pitch of the opposing magnetic pole rows 111 and 112. The ferromagnetic member row 110 is temporarily called an intermediate yoke. By fixing the intermediate yoke and moving or rotating one magnetic pole row with respect to the intermediate yoke, the other magnetic pole row moves or rotates at a different speed or rotational speed. In the rotary gear, the magnetic gear in this configuration can be arranged such that the magnetic pole rows are concentrically arranged or separated in the axial direction. Also, the magnetic pole rows can be arranged linearly so as to be arranged as a so-called linear drive gear.

なお、中間ヨークを固定した場合を上述したが、中間ヨークを回転させることによって双方の磁極列の相対回転或いは移動速度を制御することも可能である。又、一方の磁極列を固定することで、他方の磁極列と中間ヨークとを回転体或いは移動体として用いることも可能である。   Although the case where the intermediate yoke is fixed has been described above, it is also possible to control the relative rotation or moving speed of both magnetic pole rows by rotating the intermediate yoke. Further, by fixing one magnetic pole row, the other magnetic pole row and the intermediate yoke can be used as a rotating body or a moving body.

他の磁気歯車の形式として、例えば大阪大学(平田教授)が研究開発を進めているタイプがある(非特許文献2参照)。図11にその概要を示す。この形式は、同一ピッチの歯車状の2つのヨークの間に永久磁石を挟みこんだ形式の回転子(仮に歯車回転子と呼ぶ。)と、円の両端を切断した形のヨークの間に永久磁石を挟みこんだ形式の回転子(仮にカム状回転子と呼ぶ。)が同心状に設置されており、双方の回転子の間に強磁性部材の列(仮に中間ヨークと呼ぶ。)が前記歯車回転子とは異なるピッチで配置されている。この磁気歯車では、カム状回転子が一回転すると中間ヨークのピッチと歯車回転子のピッチによって計算される回転数で歯車回転子が回転する。   As another type of magnetic gear, for example, there is a type in which Osaka University (Prof. Hirata) is researching and developing (see Non-Patent Document 2). The outline is shown in FIG. This type is permanent between a rotor of a type in which a permanent magnet is sandwiched between two gear-shaped yokes of the same pitch (temporarily called a gear rotor) and a yoke of a shape in which both ends of a circle are cut. A rotor of a type sandwiching a magnet (temporarily called a cam-like rotor) is installed concentrically, and a row of ferromagnetic members (temporarily called an intermediate yoke) is placed between the two rotors. The pitch is different from that of the gear rotor. In this magnetic gear, when the cam-like rotor makes one rotation, the gear rotor rotates at a rotation speed calculated by the pitch of the intermediate yoke and the pitch of the gear rotor.

これらの磁気歯車はいずれも非接触式であり、風力発電機における機械式歯車の問題点を解決されるものと期待している。又、応用分野は風力発電機に限らず一般の可動機器における非接触式回転数変換機構として広く適用することが考えられる。   These magnetic gears are all non-contact types, and are expected to solve the problems of mechanical gears in wind power generators. Further, the application field is not limited to a wind power generator, and it can be widely applied as a non-contact type rotational speed conversion mechanism in a general movable device.

特許文献1には、複合磁性材を局部的に弱磁性化してモータに用いることが開示されているが、磁気歯車は開示されていない。   Patent Document 1 discloses that a composite magnetic material is locally weakened and used in a motor, but does not disclose a magnetic gear.

特開2004−281737号公報JP 2004-281737 A

K.Atallah、「Design,analysys and realisation of a high−performance magnetic gear」、IEE Proc.−Electr.Power Appl.、Vol.151,No.2,March 2004、p.135−143。K. Atallah, “Design, analysis and realization of a high-performance magnetic gear”, IEEE Proc. -Electr. Power Appl. Vol. 151, no. 2, March 2004, p. 135-143. 村松雅理、「新構造磁気伝達減速機構の提案」、電気学会 リニアドライブ研究会資料、LD−08−64、2008年10月31日発表、p.73−78。Masato Muramatsu, “Proposal of New Structure Magnetic Transmission Reduction Mechanism”, IEEJ Linear Drive Study Group, LD-08-64, published on October 31, 2008, p. 73-78.

これらの中間ヨークは、非磁性体を介して、複数個の柱状の強磁性体を配列してなり、円筒状の部材として構成される。又、磁気歯車は、大きな交番磁束が印加されると、中間ヨーク内部で渦電流が発生するため、薄板材の積層体として形成されることが望ましい。   These intermediate yokes are formed as a cylindrical member by arranging a plurality of columnar ferromagnetic bodies via a non-magnetic body. The magnetic gear is preferably formed as a laminate of thin plate materials because an eddy current is generated inside the intermediate yoke when a large alternating magnetic flux is applied.

非特許文献1には、次のような製造工程が示唆されていると考えられる。すなわち、薄い珪素鋼板を加工することにより、図12に示すように、強磁性の凸部310bと前記凸部を繋ぐ細い強磁性の細幅部310aとで構成される強磁性リング310’を得る。ついで、前記凸部310bの中央には貫通孔を形成しておく。同じ形状の強磁性リングを複数個作製したら、所定の高さとなるように、多段に積層する。得られた積層体は、前記凸部310bが連なって柱状となり、凸部同士の間が溝と成るように積層されている。別途、この溝に嵌る形状の弱磁性柱(非磁性柱)312を複数個作製しておく。弱磁性柱312の端面には貫通孔を形成する。ついで、前記積層体の各溝に弱磁性柱312を挿入し、挿入前に塗布していた接着剤により一体の円筒状部材310とする。さらに、前記円筒状部材310を1対の固定リング320で挟む。各固定リング320には、前記凸部及び弱磁性柱の各々の貫通孔と一致するように、多数の貫通孔321が形成されている。下方の固定リングの貫通孔内にはネジがきってあり、ボルトを締結できる。固定リング/円筒状部材/固定リングの順で3段に重ね、ボルト340を上の固定リングの貫通孔に通し、下の固定リングで固定することにより、複合積層体300を得る。この複合積層体300について、固定する前の分解斜視図を図13に示し、固定した後の斜視図を図14に示す。固定リング320の外径は、細幅部310aの内周の曲率半径よりも小さい。最後に、複合積層体の外周面を切削加工して、前記細幅部の1周分を切除することにより、隣り合う強磁性の凸部310b同士は分離されて各々が強磁性柱となり、中間ヨークを得る。   Non-Patent Document 1 is considered to suggest the following manufacturing process. That is, by processing a thin silicon steel plate, as shown in FIG. 12, a ferromagnetic ring 310 ′ composed of a ferromagnetic convex portion 310b and a thin ferromagnetic narrow portion 310a connecting the convex portions is obtained. . Next, a through hole is formed in the center of the convex portion 310b. When a plurality of ferromagnetic rings having the same shape are produced, they are laminated in multiple stages so as to have a predetermined height. The obtained laminated body is laminated so that the convex portions 310b are connected to form a column, and a gap is formed between the convex portions. Separately, a plurality of weak magnetic pillars (nonmagnetic pillars) 312 that fit into the grooves are prepared. A through hole is formed in the end surface of the weak magnetic column 312. Next, a weak magnetic column 312 is inserted into each groove of the laminate, and an integrated cylindrical member 310 is formed by the adhesive applied before the insertion. Further, the cylindrical member 310 is sandwiched between a pair of fixing rings 320. Each fixing ring 320 is formed with a large number of through holes 321 so as to coincide with the through holes of the convex portion and the weak magnetic column. A screw is cut in the through hole of the lower fixing ring, and a bolt can be fastened. The composite laminate 300 is obtained by stacking three stages in the order of the fixing ring / cylindrical member / fixing ring, passing the bolt 340 through the through hole of the upper fixing ring, and fixing with the lower fixing ring. An exploded perspective view of the composite laminate 300 before fixing is shown in FIG. 13, and a perspective view after fixing is shown in FIG. The outer diameter of the fixing ring 320 is smaller than the radius of curvature of the inner periphery of the narrow portion 310a. Finally, by cutting the outer peripheral surface of the composite laminate and cutting one round portion of the narrow width portion, the adjacent ferromagnetic convex portions 310b are separated from each other, and each becomes a ferromagnetic column, Get the yoke.

中間ヨークを精密に機能させるためには、前記強磁性柱は周方向に沿って一定間隔で配置される必要がある。磁気回路として磁極列から中間ヨークを見たときに、強磁性柱同士に挟まれた部分は磁気抵抗を備える。この磁気抵抗の大きさは、強磁性柱の間隔が一定であれば、ばらつかない。しかし、強磁性柱の間隔に差があると磁気抵抗の大きさにばらつきが生じ、磁気歯車の特性に大きく影響する。もし、非特許文献1に係る強磁性の凸部310b同士の間に、細いとは言え強磁性の細幅部310aが残されたままになっていると、磁極列間の磁気抵抗を大きく低下させることになり、好ましくない。そのために非特許文献1では凸部間の細幅部を切除している。しかし、非特許文献1の中間ヨークを形成する為には、非磁性柱の加工、組立、切削を経るので多大な工数が必要となり、工業的に大量生産を行うには必ずしも効率がよいとは言えない。   In order for the intermediate yoke to function precisely, the ferromagnetic columns need to be arranged at regular intervals along the circumferential direction. When the intermediate yoke is viewed from the magnetic pole row as a magnetic circuit, the portion sandwiched between the ferromagnetic columns has a magnetic resistance. The magnitude of this magnetoresistance does not vary if the spacing between the ferromagnetic columns is constant. However, if there is a difference in the spacing between the ferromagnetic columns, the magnitude of the magnetic resistance varies, which greatly affects the characteristics of the magnetic gear. If the ferromagnetic narrow portion 310a is left between the ferromagnetic protrusions 310b according to Non-Patent Document 1, although it is thin, the magnetoresistance between the magnetic pole rows is greatly reduced. This is not preferable. Therefore, in Non-Patent Document 1, the narrow part between the convex parts is cut off. However, in order to form the intermediate yoke of Non-Patent Document 1, a large number of man-hours are required because the nonmagnetic column is processed, assembled, and cut, and it is not necessarily efficient for industrial mass production. I can not say.

そこで、本発明は量産性に優れた磁気歯車の製造方法および磁気歯車を実現することを目的としている。   Therefore, an object of the present invention is to realize a magnetic gear manufacturing method and a magnetic gear excellent in mass productivity.

本発明の磁気歯車は、周方向において弱磁性部及び強磁性部が交互に連なる複数のリング状薄板を備え、
前記強磁性部は、内周側のみに突出している凸部を有しており、前記弱磁性部は、非溶融で内部から加熱変態させてなるオーステナイトを主体とする金属組織であり、前記強磁性部同士は周方向における間隔が一定であり、前記強磁性部において、外周側の端及び内周側の端は、一方が磁束の流入端となるとき、他方が前記磁束の流出端となり、前記弱磁性部或いは前記強磁性部が一致するように前記リング状薄板を積層してなることを特徴とする。
Magnetic gear according to the present invention includes a plurality of ring-shaped thin plate weak magnetic portion and the ferromagnetic portion in the circumferential direction is alternately connected,
The ferromagnetic part has a convex part protruding only on the inner peripheral side, and the weak magnetic part is a metal structure mainly composed of austenite that is non-melted and heat-transformed from the inside, and the strong part The magnetic parts have a constant spacing in the circumferential direction, and in the ferromagnetic part, one of the outer peripheral end and the inner peripheral end is the magnetic flux inflow end, and the other is the magnetic flux outflow end. Ri, the weak magnetic portion or the ferromagnetic portion and said Rukoto such by laminating the ring-shaped thin plate to match.

本発明の他の磁気歯車は、周方向において強磁性部及び弱磁性部が交互に連なる複数のリング状薄板を備え、前記強磁性部及び弱磁性部は、径方向の幅が一定のリングを為しており、前記弱磁性部は、非溶融で内部から加熱変態させてなるオーステナイトを主体とする金属組織であり、前記強磁性部同士は周方向におけるピッチが一定であり、前記強磁性部において、外周側の端及び内周側の端は、一方が磁束の流入端となるとき、他方が前記磁束の流出端となり、前記弱磁性部或いは前記強磁性部が一致するように前記リング状薄板を積層してなることを特徴とする。弱磁性部と強磁性部の境界は見た目の色合いの違いでも判別できる。前記ピッチは隣合う強磁性部の中心同士の周方向における周期に相当する。
Other magnetic gear of the present invention comprises a plurality of ring-shaped thin plate ferromagnetic portion and the weak magnetic portion is alternately connected in the circumferential direction, the ferromagnetic part and the weak magnetic portion is constant width of the ring in the radial direction The weak magnetic part is a metal structure mainly composed of austenite that is non-melted and heat-transformed from the inside, and the ferromagnetic parts have a constant pitch in the circumferential direction. in part, the end and the inner peripheral end of the outer peripheral side when one is an inflow end of the magnetic flux and the other Ri Do the outflow end of the magnetic flux, so that the weak magnetic portion or the ferromagnetic portion coincides characterized Rukoto such by laminating the ring-shaped thin plate. The boundary between the weak magnetic part and the ferromagnetic part can also be discriminated by the difference in appearance. The pitch corresponds to the period in the circumferential direction between the centers of adjacent ferromagnetic portions.

前記リング状の薄板は、弱磁性部或いは強磁性部が一致するように多数枚積層して積層体を為していることが好ましい。積層体は、カシメ或いはボルトで相互に固定されていてもよいし、非磁性樹脂のモールドによって一体に固定されていてもよい。   It is preferable that the ring-shaped thin plate is formed by stacking a large number of sheets so that the weak magnetic part or the ferromagnetic part coincides. The laminates may be fixed to each other with caulking or bolts, or may be fixed integrally with a non-magnetic resin mold.

弱磁性部は、例えば、フェライトを主体とする金属組織を非溶融で内部から加熱変態させてなる、オーステナイトを主体とする金属組織である。加熱変態させる前の素材としては、Fe−Cr−C系合金を基本組成として2相を有しうる合金を使用する。この合金には、更に、Si、Mn、Ni又はAlが含有されてもよい。例えば、YEP−FA1(日立金属社製)を用いる。或いは、ステンレス鋼として、強磁性母相部の局部に形成された非磁性部の低温安定性が−40℃程度までの素材(例えば、SUS420J2、SUS403等のマルテンサイト系ステンレス鋼)、炭素を主体にして低温安定性を増加させた素材(例えば、SUS440Aに近い組成の合金鋼)、オーステナイト安定化元素として炭素を増やす代わりにニッケルを増加させた素材、及び、非磁性部となったときの低温安定性を重視して炭素及びニッケルの含有量を大幅に増した素材のいずれかを使用してもよい。なお、素材に弱磁性部を形成した後、強磁性部の飽和磁化量は1.2T以上とし、弱磁性部の飽和磁化量は0.5T以下とすることが望ましい。弱磁性部は比透磁率μ≦2であるが好ましい。   The weak magnetic part is, for example, a metal structure mainly composed of austenite obtained by non-melting and heat-transforming a metal structure mainly composed of ferrite from the inside. As a raw material before heat transformation, an alloy that can have two phases with a Fe—Cr—C alloy as a basic composition is used. This alloy may further contain Si, Mn, Ni or Al. For example, YEP-FA1 (manufactured by Hitachi Metals) is used. Alternatively, as the stainless steel, the nonmagnetic part formed in the local part of the ferromagnetic matrix part has a low-temperature stability up to about −40 ° C. (for example, martensitic stainless steel such as SUS420J2, SUS403, etc.), mainly carbon Materials with increased low-temperature stability (for example, alloy steel with a composition close to SUS440A), materials with increased nickel instead of increasing carbon as an austenite stabilizing element, and low temperatures when becoming non-magnetic parts Any material that greatly increases the content of carbon and nickel with emphasis on stability may be used. In addition, after forming the weak magnetic part in the material, the saturation magnetization amount of the ferromagnetic part is preferably 1.2 T or more, and the saturation magnetization amount of the weak magnetic part is preferably 0.5 T or less. The weak magnetic part preferably has a relative permeability μ ≦ 2.

本発明の磁気歯車の製造方法は、内周側のみに突出する凸部と前記凸部より径方向幅の小さい細幅部が交互に一定の周期で連なる複数のリング状強磁性薄板を前記凸部同士および前記細幅部同士が一致するように積層した積層体と、主として径が一定のリング状に形成されている高周波加熱コイルとの少なくとも一方を、両者の軸線が重なる状態を維持しつつ相対的に移動させ、前記高周波加熱コイルからの磁束を前記リング状強磁性薄板に鎖交させて、前記細幅部を非溶融で内部から加熱変態させることにより、オーステナイトを主体とする金属組織に前記細幅部を変態させることを特徴とする。前記高周波加熱コイルは、引出し線に相当する支持部を除いて、径がほぼ一定のリング状に形成されている。
The method of manufacturing a magnetic gear of the present invention, a plurality of ring-shaped ferromagnetic thin plate small narrow portion of the inner circumferential side only radial width than the protrusion and the protrusion protruding to the continuous at a predetermined period alternately the convex While maintaining at least one of the laminated body laminated so that the portions and the narrow width portions coincide with each other and the high-frequency heating coil formed mainly in a ring shape having a constant diameter, the axes of the two overlap By moving relatively, and interlinking the magnetic flux from the high-frequency heating coil with the ring-shaped ferromagnetic thin plate , the narrow portion is heated and transformed from the inside without melting, thereby forming a metal structure mainly composed of austenite. The narrow portion is transformed. The high frequency heating coil is formed in a ring shape having a substantially constant diameter except for a support portion corresponding to a lead wire.

本発明の他の磁気歯車の製造方法は、径方向幅が一定である複数のリング状強磁性薄板を積層した積層体と、径方向において矩形状に一定の周期で屈曲している高周波加熱コイルとの少なくとも一方を、両者の軸線が重なる状態を維持しつつ相対的に移動させ、
前記高周波加熱コイルからの磁束を、前記リング状強磁性薄板のうち前記高周波加熱コイルに近接する近接部に鎖交させて、前記近接部を非溶融で内部から加熱変態させることにより、オーステナイトを主体とする金属組織に前記近傍部を変態させることを特徴とする。さらに、前記高周波加熱コイルは、同軸に配置する2つの高周波加熱コイルで構成することもできる。1つ目の高周波加熱コイルはリング状の強磁性板の内周側に近接させるものであり、2つ目の高周波加熱コイルはリング状の強磁性板の外周側に近接させるものである。
Another method of manufacturing a magnetic gear of the present invention, the high frequency heating coil radial width that is bent at a predetermined cycle and laminate a plurality of ring-shaped ferromagnetic thin laminated is constant in the radial direction in a rectangular shape And at least one of them is moved relative to each other while maintaining the state where the axes of the two overlap .
The magnetic flux from the high-frequency heating coil is interlinked with the adjacent portion of the ring-shaped ferromagnetic thin plate adjacent to the high-frequency heating coil, and the adjacent portion is heated and transformed from the inside without being melted to mainly contain austenite. The vicinity is transformed into a metal structure. Further, the high-frequency heating coil can be configured by two high-frequency heating coils arranged coaxially. The first high-frequency heating coil is close to the inner peripheral side of the ring-shaped ferromagnetic plate, and the second high-frequency heating coil is close to the outer peripheral side of the ring-shaped ferromagnetic plate.

本発明によれば、歯車の径方向に空隙(磁気ギャップ)を有する増速ギア適用するための磁気歯車に限らず、歯車の軸方向に空隙を有する増速ギアに適用するための磁気歯車も提供できる。直動運動を行うリニアタイプの磁気歯車についても応用できる。   According to the present invention, not only a magnetic gear for applying a speed increasing gear having a gap (magnetic gap) in the radial direction of the gear, but also a magnetic gear for applying to a speed increasing gear having a gap in the axial direction of the gear. Can be provided. It can also be applied to linear-type magnetic gears that perform linear motion.

本発明の他の磁気歯車は、直線方向において弱磁性部及び強磁性部が交互に連なる櫛歯状の複数の薄板を備え、前記櫛歯状の薄板は、直線状の第1の辺と、前記強磁性部が突出して凸部を為している第2の辺とを有し、前記弱磁性部は、非溶融で内部から加熱変態させてなるオーステナイトを主体とする金属組織であり、前記強磁性部同士は直線方向における間隔が一定であり、前記強磁性部において、第1の辺及び第2の辺は、一方が磁束の流入端となるとき、他方が前記磁束の流出端となり、前記弱磁性部或いは前記強磁性部が一致するように前記薄板を積層してなることを特徴とする。
Other magnetic gear of the present invention is provided with a comb-like multiple sheets of weak magnetic portion and the ferromagnetic portion in the linear direction is alternately connected, said comb-shaped thin plate, a first side straight, The ferromagnetic part protrudes and has a second side that forms a convex part, and the weak magnetic part is a metal structure mainly composed of austenite that is non-melted and heat-transformed from the inside, The distance between the ferromagnetic portions in the linear direction is constant, and in the ferromagnetic portion, when one of the first side and the second side becomes an inflow end of the magnetic flux, the other becomes the outflow end of the magnetic flux. Ri, characterized Rukoto such by laminating the thin as the weak magnetic portion or the ferromagnetic portion coincides.

本発明の他の磁気歯車は、直線方向において弱磁性部及び強磁性部が交互に連なる帯状の複数の薄板を備え、前記帯状の薄板は平行な2つの辺を有し、前記弱磁性部は、非溶融で内部から加熱変態させてなるオーステナイトを主体とする金属組織であり、前記強磁性部同士は周方向におけるピッチが一定であり、前記強磁性部において、前記2つの辺は、一方が磁束の流入端となるとき、他方が前記磁束の流出端となり、前記弱磁性部或いは前記強磁性部が一致するように前記薄板を積層してなることを特徴とする。弱磁性部と強磁性部の境界は見た目の色合いの違いでも判別できる。前記ピッチは隣合う強磁性部の中心同士の周方向における周期に相当する。

Other magnetic gear of the present invention comprises a plurality of thin plates of strip-shaped weak magnetic portion and the ferromagnetic portion in the linear direction is alternately connected, said strip-like thin plate having two parallel sides, the weak magnetic portion , A metal structure mainly composed of austenite that is non-melted and heat-transformed from the inside, and the ferromagnetic portions have a constant pitch in the circumferential direction. In the ferromagnetic portion, one of the two sides is when the inflow end of the magnetic flux and the other Ri is Do the outlet end of said magnetic flux, characterized Rukoto such by laminating the thin as the weak magnetic portion or the ferromagnetic portion coincides. The boundary between the weak magnetic part and the ferromagnetic part can also be discriminated by the difference in appearance. The pitch corresponds to the period in the circumferential direction between the centers of adjacent ferromagnetic portions.

前記櫛歯状の薄板又は帯状の薄板は、強磁性部或いは弱磁性部が一致するように多数枚積層して積層体を為していることが好ましい。積層体は、カシメ或いはボルトで相互に固定されていてもよいし、非磁性樹脂のモールドによって一体に固定されていてもよい。   It is preferable that the comb-like thin plate or the strip-like thin plate is formed by laminating a large number of sheets so that the ferromagnetic portions or the weak magnetic portions coincide with each other. The laminates may be fixed to each other with caulking or bolts, or may be fixed integrally with a non-magnetic resin mold.

本発明により、量産性に優れた磁気歯車の製造方法及び磁気歯車を得ることができる。   According to the present invention, a magnetic gear manufacturing method and a magnetic gear excellent in mass productivity can be obtained.

実施形態1に係る上面図である。2 is a top view according to Embodiment 1. FIG. 実施形態1の概略を示す斜視図である。1 is a perspective view showing an outline of Embodiment 1. FIG. 実施形態1に係る複合ヨークの上面図である。3 is a top view of the composite yoke according to Embodiment 1. FIG. 実施形態4に係る上面図である。6 is a top view according to Embodiment 4. FIG. 実施形態4の概略を示す斜視図である。FIG. 6 is a perspective view illustrating an outline of a fourth embodiment. 実施形態5に係る上面図である。10 is a top view according to Embodiment 5. FIG. 実施形態6の概略を示す斜視図である。FIG. 10 is a perspective view illustrating an outline of a sixth embodiment. 実施形態7の概略を示す上面図である。10 is a top view schematically showing Embodiment 7. FIG. 実施形態8の概略を示す上面図である。FIG. 10 is a top view schematically showing Embodiment 8. 非特許文献1に係る模式的な断面図である。It is a typical sectional view concerning nonpatent literature 1. 非特許文献2に係る模式的な斜視図である。It is a typical perspective view concerning nonpatent literature 2. 非特許文献1に係る強磁性リングの上面図である。6 is a top view of a ferromagnetic ring according to Non-Patent Document 1. FIG. 非特許文献1に係る複合積層体の分解斜視図である。1 is an exploded perspective view of a composite laminate according to Non-Patent Document 1. FIG. 非特許文献1に係る複合積層体の斜視図である。1 is a perspective view of a composite laminate according to Non-Patent Document 1. FIG.

以下、本発明の実施の形態について図面を参照しつつ説明する。なお、これら実施形態により本発明が必ずしも限定されるものではない。   Embodiments of the present invention will be described below with reference to the drawings. In addition, this invention is not necessarily limited by these embodiment.

(実施形態1)
ステンレス鋼薄板(YEP−FA1)を加工して、強磁性細幅部10a’を介して強磁性凸部10b’が等間隔で連なっている強磁性リングを得る。強磁性リングは、図12のものとほぼ同じ形状であり、複数枚作製する。これら強磁性リングを所定の厚みとなるように積層し、数箇所をカシメで固定することにより、強磁性リング積層体10’を得る。前記強磁性細幅部が軸方向(積層方向)で一致するよう積層している。後述する図1〜3ではカシメの図示を省略する。
(Embodiment 1)
A thin stainless steel plate (YEP-FA1) is processed to obtain a ferromagnetic ring in which the ferromagnetic convex portions 10b ′ are connected at equal intervals through the ferromagnetic narrow portion 10a ′. The ferromagnetic ring has substantially the same shape as that of FIG. 12, and a plurality of ferromagnetic rings are produced. These ferromagnetic rings are laminated so as to have a predetermined thickness, and several places are fixed by caulking to obtain a ferromagnetic ring laminated body 10 ′. The ferromagnetic narrow portions are stacked so as to coincide with each other in the axial direction (stacking direction). The caulking is not shown in FIGS.

つぎに、図1の上面図に示すように、強磁性リング積層体の最上層の強磁性リングが高周波加熱コイル11に取り囲まれるように配置する。高周波加熱コイルは支持部11c,11dで固定され、動かない。高周波加熱コイルに高周波電流の通電を開始したら、円筒状の強磁性リング積層体の軸線上に高周波加熱コイルの軸線が重なる状態を維持しつつ、円筒状の強磁性リング積層体をその軸線で自転させ、且つ軸線に沿って上方に(図1の紙面に垂直で且つ紙面から出る方向)に移動させる。高周波加熱コイルが強磁性リング積層体の最下層の強磁性リングを取り囲む位置となったら、移動の向きを逆にして、下方に移動させる。高周波加熱コイルの近傍を最上層の強磁性リングが通過したら通電を停止し、ついで強磁性リング積層体の移動と自転を停止して処理を終える。   Next, as shown in the top view of FIG. 1, the uppermost ferromagnetic ring of the ferromagnetic ring laminate is disposed so as to be surrounded by the high-frequency heating coil 11. The high frequency heating coil is fixed by the support portions 11c and 11d and does not move. When energization of the high-frequency current is started to the high-frequency heating coil, the cylindrical ferromagnetic ring laminate is rotated on the axis while maintaining the state where the axis of the high-frequency heating coil overlaps the axis of the cylindrical ferromagnetic ring laminate. And move upward along the axis (in a direction perpendicular to the paper surface of FIG. 1 and exiting from the paper surface). When the high-frequency heating coil is positioned to surround the lowermost ferromagnetic ring of the ferromagnetic ring laminate, the movement direction is reversed and the coil is moved downward. When the uppermost ferromagnetic ring passes in the vicinity of the high frequency heating coil, the energization is stopped, and then the movement and rotation of the ferromagnetic ring laminated body are stopped to finish the process.

処理直後の様子を図2の斜視図に示す。この処理によって、各々の強磁性リングでは、強磁性細幅部が優先的に加熱処理されて弱磁性部10aに変化し、隣り合う強磁性凸部同士が磁気的に分けられて強磁性部10bになる。結果として、強磁性リング積層体10’は、磁気歯車である複合ヨーク10に成る。太い両矢印は、高周波加熱コイルの移動の向きを表わす。なお、軟磁性リング積層体を載せて上下方向に動かす非磁性の台と移動機構、高周波電流供給装置、及び制御装置は図示を省略する。前記台はその径が強磁性リング積層体の径より小さい円板状であり、強磁性リング積層体の内周側を引っ掛けて嵌めるためのノッチを有する。   A state immediately after the processing is shown in the perspective view of FIG. By this treatment, in each ferromagnetic ring, the ferromagnetic narrow portion is preferentially heat-treated to change to the weak magnetic portion 10a, and the adjacent ferromagnetic convex portions are magnetically separated to form the ferromagnetic portion 10b. become. As a result, the ferromagnetic ring laminate 10 ′ becomes a composite yoke 10 that is a magnetic gear. A thick double arrow represents the direction of movement of the high-frequency heating coil. A non-magnetic base and moving mechanism, a high-frequency current supply device, and a control device that place the soft magnetic ring stack and move in the vertical direction are not shown. The base has a disk shape whose diameter is smaller than that of the ferromagnetic ring laminate, and has a notch for hooking and fitting the inner peripheral side of the ferromagnetic ring laminate.

高周波電流を通電した高周波加熱コイル11に近づいていくと、強磁性リングに磁束が鎖交して渦電流が流される。各々の強磁性リングでは、高周波加熱コイルのコイル面と強磁性リングの面が重なる位置で、強磁性リングに印加される磁束が最大となる。強磁性凸部より径方向の幅が狭い強磁性細幅部に渦電流が集中して流れ、渦電流による自己発熱で選択的に加熱される。強磁性リングの外周に発生する誘起電流の浸透深さP(mm)と、最外周からの弱磁性部の幅Wr(mm)は、Wr≦Pの関係となる。   When approaching the high frequency heating coil 11 energized with the high frequency current, the magnetic flux is linked to the ferromagnetic ring, and an eddy current flows. In each ferromagnetic ring, the magnetic flux applied to the ferromagnetic ring is maximized at the position where the coil surface of the high-frequency heating coil and the surface of the ferromagnetic ring overlap. Eddy currents flow in a concentrated manner in narrow ferromagnetic portions that are narrower in radial direction than the ferromagnetic protrusions, and are selectively heated by self-heating by the eddy currents. The penetration depth P (mm) of the induced current generated on the outer periphery of the ferromagnetic ring and the width Wr (mm) of the weak magnetic portion from the outermost periphery are in a relationship of Wr ≦ P.

P=1.6×{(ρ×10)/(μr×f)}1/2、 Wr≦1.6×(ρ×10/f)1/2、 ここで、ρ:高周波加熱時の素材の電気抵抗率[μΩ・m]、 μr:高周波加熱時の素材の比透磁率、 f:高周波加熱時の周波数[Hz]、である。 P = 1.6 × {(ρ × 10 5 ) / (μr × f)} 1/2 , Wr ≦ 1.6 × (ρ × 10 5 / f) 1/2 , where ρ is during high-frequency heating Electrical resistivity [μΩ · m], μr: relative magnetic permeability of the material during high-frequency heating, and f: frequency [Hz] during high-frequency heating.

その結果、強磁性リングは、同一組成の強磁性部と弱磁性部とが共存するものに変化する。強磁性部はフェライト相及び炭化物相を主体とする金属組織である。弱磁性部は非溶融で内部から加熱変態させてなるオーステナイト相を主体とする金属組織である。なお、弱磁性部は非磁性部とも称する。   As a result, the ferromagnetic ring changes to one in which a ferromagnetic portion and a weak magnetic portion having the same composition coexist. The ferromagnetic part is a metal structure mainly composed of a ferrite phase and a carbide phase. The weak magnetic part is a metal structure mainly composed of an austenite phase that is non-melted and heat-transformed from the inside. The weak magnetic part is also called a nonmagnetic part.

図3に得られた複合ヨーク10の上面図を示す。ハッチングで示した部分は弱磁性部10aである。この複合ヨーク10を分解し、各々の処理後の強磁性リングを調べると、元の強磁性細幅部が弱磁性化されて弱磁性部となっていることがわかる。強磁性部10bが積層された領域では、その外周側の面(凸曲面)及び内周側の面(凹曲面)が、一方が磁束流入面となるとき、他方が磁束流出面となる。すなわち、図10の構造の磁気歯車において、強磁性部材列のステーターを図3の複合ヨーク10に置き換えることで、磁気歯車を得る。細幅の弱磁性部によって強磁性部同士が連結されているリング状の一体物なので、図13の中間ヨークのように弱磁性柱を組み付けることもなく、部品点数が低減される。弱磁性部を切削で除去する工程もなく、製造工程が短縮される。機械的結合或いは接着を多用することなく中間ヨークが形成されることから、信頼性の高い磁気歯車が実現できる。高周波加熱コイルを固定すると共にリング状強磁性体を往復運動で出し入れする方式を採用しており、駆動機構の動作が複雑でなくなり、更に処理時間を短縮できる。工業的量産性に優れている。   FIG. 3 shows a top view of the composite yoke 10 obtained. The portion indicated by hatching is the weak magnetic portion 10a. When this composite yoke 10 is disassembled and the ferromagnetic rings after the respective treatments are examined, it can be seen that the original ferromagnetic narrow width portion has been weakened to become a weak magnetic portion. In the region where the ferromagnetic portions 10b are stacked, when one of the outer peripheral surface (convex curved surface) and the inner peripheral surface (concave curved surface) is a magnetic flux inflow surface, the other is a magnetic flux outflow surface. That is, in the magnetic gear having the structure of FIG. 10, the magnetic gear is obtained by replacing the stator of the ferromagnetic member row with the composite yoke 10 of FIG. Since the ferromagnetic parts are connected to each other by the narrow weak magnetic part, the number of parts is reduced without attaching the weak magnetic column unlike the intermediate yoke of FIG. There is no process of removing the weak magnetic part by cutting, and the manufacturing process is shortened. Since the intermediate yoke is formed without much mechanical connection or adhesion, a highly reliable magnetic gear can be realized. A method of fixing the high-frequency heating coil and moving the ring-shaped ferromagnet in and out by reciprocating motion eliminates the complexity of the operation of the drive mechanism and further shortens the processing time. Excellent industrial mass productivity.

(実施形態2)
実施形態1の構成において、カシメを設ける代りに3個の貫通孔を強磁性リングに形成し、積層後に3本のボルトで固定し、強磁性リング積層体を作製する。実施例1と同様に、高周波加熱コイルを用いる熱処理を施し、複合ヨークを形成する。形成された複合ヨークを、図10の構造の磁気歯車の強磁性部材列のステーターに置き換えることで、磁気歯車を得る。
(Embodiment 2)
In the configuration of the first embodiment, instead of providing caulking, three through holes are formed in the ferromagnetic ring, and are fixed with three bolts after lamination to produce a ferromagnetic ring laminate. As in Example 1, heat treatment using a high frequency heating coil is performed to form a composite yoke. A magnetic gear is obtained by replacing the formed composite yoke with the stator of the ferromagnetic member row of the magnetic gear having the structure of FIG.

(実施形態3)
まず、実施形態1と同様の強磁性リングを複数個作製する。
つぎに、高周波加熱コイルと1枚の強磁性リングは、強磁性リングの軸線上に高周波加熱コイルの軸線が重なると共に、軸線方向でずらして配置される。ついで、高周波加熱コイルに通電を開始したら、強磁性リング積層体の軸線上に高周波加熱コイルの軸線が重なる状態を維持しつつ、高周波加熱コイルに対して、非磁性の台に載せた強磁性リングを自転させながら近づける。高周波加熱コイルが取り囲む位置まで強磁性リングを移動させたら、移動の向きを逆にする。高周波加熱コイルの近傍から強磁性リングが離れたら通電を停止し、移動と自転を停止して処理を終える。その結果、強磁性リングでは、細幅部が加熱処理されて弱磁性部に変化し、強磁性の凸部同士は分けられて強磁性部になる。各々の強磁性リングについて同様の加熱処理を行った後に、それらを所定の厚みとなるように積層する。数箇所をカシメで固定し、複合ヨークを形成する。形成された複合ヨークを、図10の構造の磁気歯車の強磁性部材列のステーターに置き換えることで、磁気歯車を得る。
(Embodiment 3)
First, a plurality of ferromagnetic rings similar to those in Embodiment 1 are produced.
Next, the high-frequency heating coil and one ferromagnetic ring are arranged so as to be shifted in the axial direction while the axis of the high-frequency heating coil overlaps the axis of the ferromagnetic ring. Next, when energization of the high-frequency heating coil is started, the ferromagnetic ring placed on a non-magnetic base with respect to the high-frequency heating coil while maintaining the state where the axis of the high-frequency heating coil overlaps the axis of the ferromagnetic ring laminate. Move closer while rotating. When the ferromagnetic ring is moved to the position surrounded by the high frequency heating coil, the direction of movement is reversed. When the ferromagnetic ring is removed from the vicinity of the high-frequency heating coil, the energization is stopped, the movement and rotation are stopped, and the process is finished. As a result, in the ferromagnetic ring, the narrow portion is heat-treated to change to a weak magnetic portion, and the ferromagnetic convex portions are separated into a ferromagnetic portion. After the same heat treatment is performed on each ferromagnetic ring, they are laminated so as to have a predetermined thickness. Several parts are fixed with caulking to form a composite yoke. A magnetic gear is obtained by replacing the formed composite yoke with the stator of the ferromagnetic member row of the magnetic gear having the structure of FIG.

(実施形態4)
実施形態1〜3の高周波加熱コイルは、支持部を除いてリング状である。これに代えて、更に選択的に高周波の渦電流を発生させる為に、必要な箇所のみ強磁性リングに接近させるための高周波加熱コイル21を用いる。他の製法の条件は実施形態1と同様にする。図4に示す高周波加熱コイル21の外周側は、歯車の外周形状の如く、屈曲している。曲率半径がRoである長径部21bと曲率半径がRiである短径部21aとが連結部21eを介して交互に連なる。Ro>Riであり、連結部21eは径方向に沿っている。
(Embodiment 4)
The high-frequency heating coils of Embodiments 1 to 3 are ring-shaped except for the support portion. Instead of this, in order to selectively generate high-frequency eddy currents, a high-frequency heating coil 21 is used to bring the necessary portions closer to the ferromagnetic ring. Other manufacturing conditions are the same as those in the first embodiment. The outer peripheral side of the high frequency heating coil 21 shown in FIG. 4 is bent like the outer peripheral shape of the gear. The long diameter portion 21b having the curvature radius Ro and the short diameter portion 21a having the curvature radius Ri are alternately connected via the connecting portion 21e. Ro> Ri, and the connecting portion 21e is along the radial direction.

高周波加熱コイル21は、その短径部の周期が強磁性細幅部20a’の周期と同じである。径方向で狭幅の強磁性細幅部20a’に対して、近接する短径部21aの発生する磁束が選択的に印加される。長径部21bは、強磁性リングから距離をおいているため、弱磁性化するほどの鎖交磁束を強磁性凸部20b’に施すには至らない。ただし、電流量を増やして磁束密度を増大させる場合には、強磁性細幅部が優先的に非磁性化され次第、高周波加熱コイル21と各強磁性リングを離隔するのが好ましい。   In the high-frequency heating coil 21, the cycle of the minor axis portion is the same as the cycle of the ferromagnetic narrow portion 20a '. A magnetic flux generated by the adjacent short diameter portion 21a is selectively applied to the ferromagnetic narrow width portion 20a 'that is narrow in the radial direction. Since the long diameter portion 21b is at a distance from the ferromagnetic ring, it does not reach the ferromagnetic convex portion 20b 'with an interlinkage magnetic flux that weakens the magnetism. However, when increasing the amount of current and increasing the magnetic flux density, it is preferable to separate the high-frequency heating coil 21 from each ferromagnetic ring as soon as the ferromagnetic narrow width portion is demagnetized preferentially.

図5の斜視図に加熱処理後の様子を示す。複合ヨーク20は、径方向の幅が細い弱磁性部20aと、弱磁性部20aを介して連なる強磁性部20bを有し、磁気歯車用に構成されている。複合ヨーク20の外周面が、周方向で交互に弱磁性部と強磁性部で構成されているが、弱磁性部と強磁性部の境界(色の違い)の図示は省略する。   The state after the heat treatment is shown in the perspective view of FIG. The composite yoke 20 has a weak magnetic part 20a having a narrow radial width and a ferromagnetic part 20b connected via the weak magnetic part 20a, and is configured for a magnetic gear. Although the outer peripheral surface of the composite yoke 20 is composed of a weak magnetic part and a ferromagnetic part alternately in the circumferential direction, the illustration of the boundary (color difference) between the weak magnetic part and the ferromagnetic part is omitted.

(実施形態5)
図6には、外径の異なる2つの高周波加熱コイルを用いて、径方向の幅が均一な複合ヨーク30を形成する様子の概略を示す。複合ヨーク30は弱磁性部30aと強磁性部30bが交互に連なっており、強磁性部30bのピッチは均一である。実施形態4の製造方法と異なる点は、径方向幅が均一な強磁性リングを積層した強磁性リング積層体を用いること、及び、加熱処理の際に内周用の高周波加熱コイル32を併用していることである。
(Embodiment 5)
FIG. 6 schematically shows how the composite yoke 30 having a uniform radial width is formed using two high-frequency heating coils having different outer diameters. In the composite yoke 30, the weak magnetic portions 30a and the ferromagnetic portions 30b are alternately arranged, and the pitch of the ferromagnetic portions 30b is uniform. The difference from the manufacturing method of the fourth embodiment is that a ferromagnetic ring laminated body in which ferromagnetic rings having a uniform radial width are laminated is used together with a high-frequency heating coil 32 for inner circumference in the heat treatment. It is that.

内周用の高周波加熱コイル32及び外周用の高周波加熱コイル31は、軸線を共有し、コイル面を共有し、一体として軸線の向きに移動可能に支持部で支持されている。軸線は同図中の×印で示す両コイルの中心を通る。内周側用の高周波加熱コイルの長径部32aと外周側用の高周波加熱コイルの短径部31aは、それぞれ、形状の周期が強磁性リングに凸部を形成した周期と同じであり、強磁性リングの弱磁性化したい部位に選択的に磁束を印加する。2つのコイルを用いることで、高周波加熱コイル毎に流す電流量を増大しなくても、弱磁性化したい部位に鎖交する磁束密度を高められる。磁束密度向上で強磁性リングに局部的に流れる渦電流密度も高くなり、短時間で必要な熱量を選択的に付与でき、強磁性リング1枚当たりの加熱処理時間を更に短縮できる。径方向幅が均一な強磁性リング或いは強磁性リング積層体を用いるので、実施形態1〜4に比べると、加工し易く、熱処理後の複合ヨーク10における強度の余裕度も大きい。   The high frequency heating coil 32 for inner periphery and the high frequency heating coil 31 for outer periphery share an axis, share a coil surface, and are supported by a support portion so as to be movable in the direction of the axis as a unit. The axis passes through the centers of both coils indicated by x in the figure. The long diameter portion 32a of the high frequency heating coil for the inner peripheral side and the short diameter portion 31a of the high frequency heating coil for the outer peripheral side have the same period as the period in which the convex portions are formed on the ferromagnetic ring, respectively. A magnetic flux is selectively applied to a portion of the ring where it is desired to be weakened. By using two coils, it is possible to increase the magnetic flux density linked to the portion to be weakened without increasing the amount of current flowing for each high frequency heating coil. By increasing the magnetic flux density, the density of the eddy current flowing locally in the ferromagnetic ring is increased, and the necessary amount of heat can be selectively applied in a short time, and the heat treatment time per ferromagnetic ring can be further shortened. Since a ferromagnetic ring or a ferromagnetic ring laminated body having a uniform radial width is used, it is easier to process than the first to fourth embodiments, and the margin of strength in the composite yoke 10 after heat treatment is large.

(実施形態6)
図7の製造方法は、2つの高周波加熱コイルの支持部が延在する向きを、強磁性リング積層体の軸線と平行な向きとしている点でのみ、実施形態5の製造方法と異なる。太い両矢印は、加熱処理の工程で高周波加熱コイルを往復移動させる向きを示す。強磁性部30bが積層された領域では、外周側の面(凸曲面)及び内周側の面(凹曲面)が、一方が磁束流入面となるとき、他方が磁束流出面として機能する。形成された複合ヨークを、図10の構造の磁気歯車の強磁性部材列のステーターに置き換えることで、磁気歯車を得る。
(Embodiment 6)
The manufacturing method of FIG. 7 differs from the manufacturing method of Embodiment 5 only in that the direction in which the support portions of the two high-frequency heating coils extend is parallel to the axis of the ferromagnetic ring laminate. A thick double arrow indicates a direction in which the high-frequency heating coil is reciprocated in the heat treatment step. In the region where the ferromagnetic portions 30b are stacked, when one of the outer peripheral surface (convex curved surface) and the inner peripheral surface (concave curved surface) is a magnetic flux inflow surface, the other functions as a magnetic flux outflow surface. A magnetic gear is obtained by replacing the formed composite yoke with the stator of the ferromagnetic member row of the magnetic gear having the structure shown in FIG.

(実施形態7)
一方の辺に周期的に凸部を形成した軟磁性の櫛歯状薄板を所定の厚みに積層し、直線に展開した高周波加熱コイル41を並置し、高周波電流を通電することで櫛歯状薄板の積層体の細幅部に加熱処理を施す。凸部は櫛の歯に相当する。図8に示すように、加熱処理の結果、リニアの複合ヨーク40を得る。凸部同士の間にある細幅部では、優先的に渦電流が流されて加熱され、弱磁性部40aとなっている。渦電流が集中されない太幅の凸部は金属組織が変化せず、強磁性部40bとなっている。形成されたリニアの複合ヨークを、対向するリニアの移動子の間に所定のギャップを隔てて配置することにより、リニアの磁気歯車を得る。前記移動子は、それぞれが、基体となる強磁性ヨークと複数の磁石列を有し、リニアに駆動するよう支持されている。
(Embodiment 7)
A soft magnetic comb-like thin plate having a convex portion periodically formed on one side is laminated to a predetermined thickness, a high-frequency heating coil 41 deployed in a straight line is juxtaposed, and a high-frequency current is applied to the comb-like thin plate. Heat treatment is performed on the narrow portion of the laminate. The convex portion corresponds to a comb tooth. As shown in FIG. 8, a linear composite yoke 40 is obtained as a result of the heat treatment. In the narrow width portion between the convex portions, an eddy current is preferentially passed and heated to form the weak magnetic portion 40a. The thick convex portion where the eddy current is not concentrated has the same metal structure as the ferromagnetic portion 40b. A linear magnetic gear is obtained by disposing the formed linear composite yoke with a predetermined gap between the opposing linear moving elements. Each of the movable elements has a ferromagnetic yoke as a base and a plurality of magnet arrays, and is supported so as to be driven linearly.

(実施形態8)
一定の幅を有する軟磁性の帯状薄板を所定の厚みに積層し、一対の高周波加熱コイル51の間に並置し、高周波電流を通電することで帯状薄板の積層体のうち高周波加熱コイルに近接している部分に加熱処理を施す。高周波加熱コイル51は、実施形態7のコイルを矩形波状に屈曲させた形状である。図9に示すように、加熱処理の結果、リニアの複合ヨーク50を得る。高周波加熱コイルに近い領域では、優先的に渦電流が流されて加熱され、弱磁性部50aとなっている。高周波加熱コイルから離隔している領域では、渦電流が集中されないので金属組織が変化せず、強磁性部50bとなっている。形成されたリニアの複合ヨークを、対向するリニアの移動子の間に所定のギャップを隔てて平行移動可能に配置することにより、リニアの磁気歯車を得る。前記移動子は、それぞれが、基体となる強磁性ヨークと複数の磁石列を有し、リニアに可動となるよう支持されている。
(Embodiment 8)
A soft magnetic strip-shaped thin plate having a certain width is laminated in a predetermined thickness, juxtaposed between a pair of high-frequency heating coils 51, and energized with a high-frequency current to be close to the high-frequency heating coil in the laminate of strip-shaped thin plates. Heat treatment is applied to the part. The high-frequency heating coil 51 has a shape obtained by bending the coil of the seventh embodiment into a rectangular wave shape. As shown in FIG. 9, a linear composite yoke 50 is obtained as a result of the heat treatment. In the region close to the high-frequency heating coil, an eddy current is preferentially passed and heated to form the weak magnetic portion 50a. In the region separated from the high-frequency heating coil, the eddy current is not concentrated, so that the metal structure is not changed and the ferromagnetic portion 50b is formed. A linear magnetic gear is obtained by arranging the formed linear composite yoke so as to be movable in parallel with a predetermined gap between the opposing linear moving elements. Each of the moving elements has a ferromagnetic yoke as a base and a plurality of magnet arrays, and is supported so as to be linearly movable.

10:複合ヨーク、10a:弱磁性部、10b:強磁性部、
10’:強磁性リング積層体、
10a’:強磁性細幅部、10b’:強磁性凸部、
11:高周波加熱コイル、11c、11d:支持部、
20:複合ヨーク、20a:弱磁性部、20b:強磁性部、
20’:強磁性リング、20a’:強磁性細幅部、20b’:強磁性凸部、
21:高周波加熱コイル、21a:短径部、21b:長径部、
21c,21d:支持部、21e:連結部、
30:複合ヨーク、30a:弱磁性部、30b:強磁性部、
30f:強磁性部と弱磁性部の境界、
31:高周波加熱コイル、
31a:短径部、31b:長径部、31c,31d:コイル支持部、
32:高周波加熱コイル、
32a:長径部、32b:短径部、32c,32d:コイル支持部、
40:複合ヨーク、40a:弱磁性部、40b:強磁性部、
41:高周波加熱コイル、
50:複合ヨーク、50a:弱磁性部、50b:強磁性部、
51:高周波加熱コイル、
110:ステーター、111:アウターローター、
112:インナーローター、
310’:強磁性リング、310a:細幅部、310b:凸部、
300:複合積層体、
310:円筒状部材、311:強磁性リング、312:弱磁性柱、
320:固定リング、321:貫通孔、
340:ボルト、341:ボルト頭部。
10: Composite yoke, 10a: Weak magnetic part, 10b: Ferromagnetic part,
10 ': Ferromagnetic ring laminate,
10a ′: ferromagnetic narrow portion, 10b ′: ferromagnetic convex portion,
11: high frequency heating coil, 11c, 11d: support part,
20: Composite yoke, 20a: Weak magnetic part, 20b: Ferromagnetic part,
20 ′: ferromagnetic ring, 20a ′: ferromagnetic narrow portion, 20b ′: ferromagnetic convex portion,
21: high frequency heating coil, 21a: short diameter part, 21b: long diameter part,
21c, 21d: support part, 21e: connection part,
30: Composite yoke, 30a: Weak magnetic part, 30b: Ferromagnetic part,
30f: boundary between ferromagnetic part and weak magnetic part,
31: a high-frequency heating coil,
31a: minor axis part, 31b: major axis part, 31c, 31d: coil support part,
32: High frequency heating coil,
32a: major axis part, 32b: minor axis part, 32c, 32d: coil support part,
40: Composite yoke, 40a: Weak magnetic part, 40b: Ferromagnetic part,
41: a high-frequency heating coil,
50: Composite yoke, 50a: Weak magnetic part, 50b: Ferromagnetic part,
51: a high-frequency heating coil,
110: Stator, 111: Outer rotor,
112: Inner rotor,
310 ′: ferromagnetic ring, 310a: narrow portion, 310b: convex portion,
300: Composite laminate
310: cylindrical member, 311: ferromagnetic ring, 312: weak magnetic column,
320: fixing ring, 321: through hole,
340: Bolt, 341: Bolt head.

Claims (6)

周方向において弱磁性部及び強磁性部が交互に連なる複数のリング状薄板を備え、
前記強磁性部は、内周側のみに突出している凸部を有しており、
前記弱磁性部は、非溶融で内部から加熱変態させてなるオーステナイトを主体とする金属組織であり、
前記強磁性部同士は周方向における間隔が一定であり、
前記強磁性部において、外周側の端及び内周側の端は、一方が磁束の流入端となるとき、他方が前記磁束の流出端となり、
前記弱磁性部或いは前記強磁性部が一致するように前記リング状薄板を積層してなることを特徴とする磁気歯車。
Comprising a plurality of ring-shaped thin plate weak magnetic portion and the ferromagnetic portion are contiguously formed alternately in the circumferential direction,
The ferromagnetic part has a convex part protruding only on the inner peripheral side,
The weak magnetic part is a metal structure mainly composed of austenite that is non-melted and heat-transformed from the inside,
The ferromagnetic portions have a constant interval in the circumferential direction,
In the ferromagnetic part, the end and the inner peripheral end of the outer peripheral side when one is an inflow end of the magnetic flux, Ri other is Do the outlet end of said magnetic flux,
Magnetic gear according to claim Rukoto said that by laminating ring-shaped thin plate as the weak magnetic portion or the ferromagnetic portion coincides.
周方向において強磁性部及び弱磁性部が交互に連なる複数のリング状薄板を備え、
前記強磁性部及び弱磁性部は、径方向の幅が一定のリングを為しており、
前記弱磁性部は、非溶融で内部から加熱変態させてなるオーステナイトを主体とする金属組織であり、
前記強磁性部同士は周方向におけるピッチが一定であり、
前記強磁性部において、外周側の端及び内周側の端は、一方が磁束の流入端となるとき、他方が前記磁束の流出端となり、
前記弱磁性部或いは前記強磁性部が一致するように前記リング状薄板を積層してなることを特徴とする磁気歯車。
In the circumferential direction with a plurality of ring-shaped thin plate ferromagnetic portion and the weak magnetic portion is alternately connected,
The ferromagnetic part and the weak magnetic part form a ring with a constant radial width,
The weak magnetic part is a metal structure mainly composed of austenite that is non-melted and heat-transformed from the inside,
The ferromagnetic portions have a constant pitch in the circumferential direction,
In the ferromagnetic part, the end and the inner peripheral end of the outer peripheral side when one is an inflow end of the magnetic flux, Ri other is Do the outlet end of said magnetic flux,
Magnetic gear according to claim Rukoto said that by laminating ring-shaped thin plate as the weak magnetic portion or the ferromagnetic portion coincides.
内周側のみに突出する凸部と前記凸部より径方向幅の小さい細幅部が交互に一定の周期で連なる複数のリング状強磁性薄板を前記凸部同士および前記細幅部同士が一致するように積層した積層体と、主として径が一定のリング状に形成されている高周波加熱コイルとの少なくとも一方を、両者の軸線が重なる状態を維持しつつ相対的に移動させ、前記高周波加熱コイルからの磁束を前記リング状強磁性薄板に鎖交させて、前記細幅部を非溶融で内部から加熱変態させることにより、オーステナイトを主体とする金属組織に前記細幅部を変態させることを特徴とする磁気歯車の製造方法。 Inner circumferential side only into a plurality of ring-shaped ferromagnetic thin the convex portions and the narrow portions match a small narrow portion of the radial width than the convex portion and the convex portion is contiguous with a constant period are alternately projecting At least one of the laminated body thus laminated and the high-frequency heating coil mainly formed in a ring shape with a constant diameter is relatively moved while maintaining the state in which the axes of the two are overlapped , and the high-frequency heating coil The narrow portion is transformed into a metal structure mainly composed of austenite by interlinking the magnetic flux from the ring-shaped ferromagnetic thin plate and heat-transforming the narrow portion from the inside without melting. A method for manufacturing a magnetic gear. 径方向幅が一定である複数のリング状強磁性薄板を積層した積層体と、径方向において矩形状に一定の周期で屈曲している高周波加熱コイルとの少なくとも一方を、両者の軸線が重なる状態を維持しつつ相対的に移動させ、
前記高周波加熱コイルからの磁束を、前記リング状強磁性薄板のうち前記高周波加熱コイルに近接する近接部に鎖交させて、前記近接部を非溶融で内部から加熱変態させることにより、オーステナイトを主体とする金属組織に前記近傍部を変態させることを特徴とする磁気歯車の製造方法。
State where the laminate radial width are laminated a plurality of ring-shaped ferromagnetic thin is constant, at least one of the high-frequency heating coil that is bent at a constant cycle in a rectangular shape in the radial direction, both axes overlap While maintaining the relative movement,
The magnetic flux from the high-frequency heating coil is interlinked with the adjacent portion of the ring-shaped ferromagnetic thin plate adjacent to the high-frequency heating coil, and the adjacent portion is heated and transformed from the inside without being melted to mainly contain austenite. A method of manufacturing a magnetic gear, comprising transforming the vicinity of the metal structure.
直線方向において弱磁性部及び強磁性部が交互に連なる櫛歯状の複数の薄板を備え、
前記櫛歯状の薄板は、直線状の第1の辺と、前記強磁性部が突出して凸部を為している第2の辺とを有し、
前記弱磁性部は、非溶融で内部から加熱変態させてなるオーステナイトを主体とする金属組織であり、
前記強磁性部同士は直線方向における間隔が一定であり、
前記強磁性部において、第1の辺及び第2の辺は、一方が磁束の流入端となるとき、他方が前記磁束の流出端となり、
前記弱磁性部或いは前記強磁性部が一致するように前記薄板を積層してなることを特徴とする磁気歯車。
Comprising a plurality of comb-shaped thin plates in which weak magnetic portions and ferromagnetic portions are alternately arranged in a linear direction;
The comb-like thin plate has a straight first side and a second side from which the ferromagnetic part protrudes to form a convex part,
The weak magnetic part is a metal structure mainly composed of austenite that is non-melted and heat-transformed from the inside,
The ferromagnetic portions have a constant interval in the linear direction,
In the ferromagnetic part, the first side and the second side when the one of the inlet end of the magnetic flux, Ri Do and the other outlet end of said magnetic flux,
Magnetic gear according to claim Rukoto such by laminating the thin as the weak magnetic portion or the ferromagnetic portion coincides.
直線方向において弱磁性部及び強磁性部が交互に連なる帯状の複数の薄板を備え、
前記帯状の薄板は平行な2つの辺を有し、
前記弱磁性部は、非溶融で内部から加熱変態させてなるオーステナイトを主体とする金属組織であり、
前記強磁性部同士は周方向におけるピッチが一定であり、
前記強磁性部において、前記2つの辺は、一方が磁束の流入端となるとき、他方が前記磁束の流出端となり、
前記弱磁性部或いは前記強磁性部が一致するように前記薄板を積層してなることを特徴とする磁気歯車。
A plurality of strip-shaped thin plates in which weak magnetic portions and ferromagnetic portions are alternately connected in a linear direction,
The strip-shaped thin plate has two parallel sides,
The weak magnetic part is a metal structure mainly composed of austenite that is non-melted and heat-transformed from the inside,
The ferromagnetic portions have a constant pitch in the circumferential direction,
In the ferromagnetic part, the two sides, when one becomes a leading end of the magnetic flux, Ri other is Do the outlet end of said magnetic flux,
Magnetic gear according to claim Rukoto such by laminating the thin as the weak magnetic portion or the ferromagnetic portion coincides.
JP2009071651A 2009-03-24 2009-03-24 Magnetic gear and manufacturing method thereof Expired - Fee Related JP5278812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009071651A JP5278812B2 (en) 2009-03-24 2009-03-24 Magnetic gear and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009071651A JP5278812B2 (en) 2009-03-24 2009-03-24 Magnetic gear and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010223340A JP2010223340A (en) 2010-10-07
JP5278812B2 true JP5278812B2 (en) 2013-09-04

Family

ID=43040747

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009071651A Expired - Fee Related JP5278812B2 (en) 2009-03-24 2009-03-24 Magnetic gear and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5278812B2 (en)

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5948012B2 (en) * 2009-12-28 2016-07-06 ヤマウチ株式会社 Magnetizing method of torque limiter and torque limiter to permanent magnet
WO2012043807A1 (en) 2010-10-01 2012-04-05 日産自動車株式会社 Vehicle seat and stiffness setting method for vehicle seat
CN102563004B (en) * 2010-12-15 2014-09-24 江建中 Magnetic gear with novel magnetic-field regulating ring
JP5286373B2 (en) * 2011-01-28 2013-09-11 株式会社日立製作所 Magnetic gear
EP2733387B1 (en) * 2011-07-15 2017-01-04 Hitachi Metals, Ltd. Magnetic gear device
JP6045827B2 (en) * 2012-07-09 2016-12-14 株式会社ニッセイ Power generator
JP6020598B2 (en) * 2013-01-11 2016-11-02 日立金属株式会社 Magnetic gear device
JP6093592B2 (en) 2013-02-22 2017-03-08 株式会社Ihi Magnetic wave gear device
WO2015178111A1 (en) * 2014-05-20 2015-11-26 株式会社Ihi Magnetic wave gear device
KR101584160B1 (en) * 2014-06-02 2016-01-21 주식회사 씨앤포이엔지 Electric motor producing high torque
KR101669984B1 (en) * 2014-09-03 2016-10-27 조선대학교산학협력단 Salient-pole type magnetic gear
JP6403329B2 (en) * 2015-01-20 2018-10-10 株式会社Ihi Magnetic wave gear device
JP2016168108A (en) * 2015-03-11 2016-09-23 パナソニック株式会社 Motor device and washing machine including motor device
JP7365250B2 (en) * 2020-01-24 2023-10-19 三菱重工業株式会社 Magnetic geared rotating electric machine and stator manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS534587B2 (en) * 1972-07-27 1978-02-18
JPS61127821A (en) * 1984-11-26 1986-06-16 Honda Motor Co Ltd Method and device for hardening gear
JPH0772305B2 (en) * 1988-11-15 1995-08-02 第一高周波工業株式会社 Hardening method of sprocket wheel and high-frequency inductor used in this method
JP4209116B2 (en) * 2002-01-28 2009-01-14 トヨタ紡織株式会社 Induction hardening method for internal teeth and induction hardening device used therefor

Also Published As

Publication number Publication date
JP2010223340A (en) 2010-10-07

Similar Documents

Publication Publication Date Title
JP5278812B2 (en) Magnetic gear and manufacturing method thereof
TWI429168B (en) Permanent magnet rotating machine
KR100965311B1 (en) Synchronous axial field electrical machine
US8120222B2 (en) Rotating electrical machine
CN1842954A (en) Radial airgap, transverse flux motor
JP5653997B2 (en) Stepping motor with short step interval
JP2005522972A5 (en)
JP6628694B2 (en) Axial gap type rotating electric machine and method of manufacturing the same
EP2510607B1 (en) Electric machine
US8917004B2 (en) Homopolar motor-generator
JP6324384B2 (en) Electromechanical transducer
JP5462877B2 (en) Permanent magnet type stepping motor
CN105580255B (en) Magnetic inductive motor
US20200036243A1 (en) Modified claw-pole motor
TW200425617A (en) Linear motor
Burnand et al. Novel optimized shape and topology for slotless windings in BLDC machines
US20120032547A1 (en) Magnet ring of a multi-pole generator for a wind turbine
JP2016518097A (en) Magnetic flux switching modulation pole machine
KR101247683B1 (en) Amorphous Stator, Electric Motor Using the Same, and Producing Method thereof
CN106208431B (en) transverse flux motor iron core
KR100533012B1 (en) Stater structure for reciprocating motor
JP2013099036A (en) Rotary electric machine
JP2010004635A (en) Field magneton, manufacturing method therefor, and rotating electrical machine
KR101002352B1 (en) High Frequency Motor or Generator
CN206894367U (en) Generator armature and generator

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130426

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130509

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees