JP5278512B2 - vehicle - Google Patents

vehicle Download PDF

Info

Publication number
JP5278512B2
JP5278512B2 JP2011175144A JP2011175144A JP5278512B2 JP 5278512 B2 JP5278512 B2 JP 5278512B2 JP 2011175144 A JP2011175144 A JP 2011175144A JP 2011175144 A JP2011175144 A JP 2011175144A JP 5278512 B2 JP5278512 B2 JP 5278512B2
Authority
JP
Japan
Prior art keywords
battery
vehicle
battery pack
control
control device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011175144A
Other languages
Japanese (ja)
Other versions
JP2011250691A (en
Inventor
俊文 高岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2011175144A priority Critical patent/JP5278512B2/en
Publication of JP2011250691A publication Critical patent/JP2011250691A/en
Application granted granted Critical
Publication of JP5278512B2 publication Critical patent/JP5278512B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/16Information or communication technologies improving the operation of electric vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To provide an onboard equipment control system and vehicle that can facilitate changing a battery capacity. <P>SOLUTION: A power unit of a vehicle, which can be charged from an external power supply 90 prepared in the external of the vehicle, includes: a main battery BA; and a battery pack 39 removable from the vehicle. The battery pack 39 includes a sub-battery BB1 for driving the electric load (inverters 14 and 22) common to the main battery BA; and a connector 52 in which a first memory unit which stores information about the sub-battery BB1 is provided. The power unit of the vehicle further includes a control device 30 which reads information from the first memory unit and performs control about the sub-battery BB1, while performing control about the main battery BA. <P>COPYRIGHT: (C)2012,JPO&amp;INPIT

Description

この発明は、車載機器制御システムおよび車両に関し、特に外部から充電が可能な車両の車載機器制御システムおよび車両に関する。   The present invention relates to an in-vehicle device control system and a vehicle, and particularly to an in-vehicle device control system and a vehicle for a vehicle that can be charged from the outside.

近年、環境に配慮した自動車として、電気自動車、ハイブリッド自動車および燃料電池自動車などのように、電源装置を搭載し、その電力でモータを駆動する車両が注目されている。   2. Description of the Related Art In recent years, vehicles that are equipped with a power supply device and drive a motor with electric power, such as electric vehicles, hybrid vehicles, and fuel cell vehicles, have attracted attention as environmentally friendly vehicles.

このような車両では、外部から充電可能な構成とすることも検討されている。特開平8−154307号公報(特許文献1)は、外部充電手段によって充電し得るバッテリと、バッテリからの電力により車輪を駆動し得る駆動用電動機と、電動機の作動を制御する制御手段と、該車輪の駆動のために直接的又は間接的に使用される内燃機関とをそなえたハイブリッド電気自動車を開示する。   In such a vehicle, it is also considered that the vehicle can be charged from the outside. JP-A-8-154307 (Patent Document 1) discloses a battery that can be charged by an external charging means, a driving motor that can drive a wheel by electric power from the battery, a control means that controls the operation of the motor, A hybrid electric vehicle with an internal combustion engine used directly or indirectly for driving wheels is disclosed.

特開平8−154307号公報JP-A-8-154307 特開2001−57711号公報JP 2001-57711 A 特許第2530098号公報Japanese Patent No. 2530098 特開2004−262357号公報JP 2004-262357 A

充電した電力で走行可能な距離を伸ばすためには、蓄電装置の大容量化が必要となる。しかしながら、蓄電装置を大容量化するとコストが増加しまた車両重量も増えるので燃費も悪化する。したがって、購入ユーザの使用態様にあったバッテリ容量とするのが好ましい。   In order to extend the distance that can be traveled by the charged electric power, it is necessary to increase the capacity of the power storage device. However, when the capacity of the power storage device is increased, the cost is increased and the vehicle weight is increased, so that the fuel consumption is also deteriorated. Therefore, it is preferable to set the battery capacity according to the usage mode of the purchase user.

すなわち、外部充電可能なハイブリッド車両では、各ユーザの一回充電あたりの走行距離は必ずしも同じではないので、販売するユーザ毎に搭載するバッテリ容量を変更したいという要望が生じる。たとえば、ユーザの自宅と通勤先との間の距離に基づいて最適なバッテリ容量を選択することが考えられる。   That is, in a hybrid vehicle that can be externally charged, the travel distance per charge of each user is not necessarily the same, and thus there is a desire to change the battery capacity installed for each user to be sold. For example, it is conceivable to select an optimum battery capacity based on the distance between the user's home and the commuting destination.

しかし、様々なバッテリ容量の車両を準備するのは製造コストの増大につながり、また製造管理も困難となる。また、転居や転勤などにより使用環境が変わった場合、所有しているバッテリ容量を変更できるほうが好ましい。   However, preparing vehicles with various battery capacities leads to an increase in manufacturing costs and makes manufacturing management difficult. In addition, it is preferable that the battery capacity owned can be changed when the usage environment is changed due to a change of address or transfer.

この発明の目的は、バッテリ容量を容易に変更可能な車載機器制御システムおよび車両を提供することである。   The objective of this invention is providing the vehicle equipment control system and vehicle which can change a battery capacity easily.

この発明は、要約すると、車載機器制御システムであって、車両に着脱可能に構成され、情報を記憶する記憶部を含むバッテリパックと、車両にバッテリパックが接続されている場合には、記憶部に記憶された情報に基づいて車載機器を制御するとともに、車両にバッテリパックが接続されていない場合には、記憶部に記憶された情報以外の情報に基づいて車載機器を制御する制御装置とを備える。   In summary, the present invention is an in-vehicle device control system that is configured to be detachable from a vehicle and includes a storage unit that stores information, and a storage unit when the battery pack is connected to the vehicle. And a control device for controlling the in-vehicle device based on information other than the information stored in the storage unit when the vehicle pack is controlled based on the information stored in the storage unit and the battery pack is not connected to the vehicle. Prepare.

好ましくは、制御装置は、記憶部に記憶された情報に基づいて、バッテリパックの充放電を制御する。   Preferably, the control device controls charging / discharging of the battery pack based on information stored in the storage unit.

好ましくは、車載機器制御システムは、バッテリパックを冷却する冷却装置をさらに備える。制御装置は、記憶部に記憶された情報に基づいて冷却装置を制御する。   Preferably, the in-vehicle device control system further includes a cooling device that cools the battery pack. The control device controls the cooling device based on the information stored in the storage unit.

好ましくは、車載機器制御システムは、車載機器に電力を供給する第1のバッテリをさらに備える。バッテリパックは、車載機器に電力を供給する第2のバッテリをさらに含む。制御装置は、第1のバッテリに関する制御と第2のバッテリに関する制御とを、記憶部に記憶された情報に基づいて車載機器に行なわせる。   Preferably, the in-vehicle device control system further includes a first battery that supplies electric power to the in-vehicle device. The battery pack further includes a second battery that supplies power to the in-vehicle device. The control device causes the in-vehicle device to perform control related to the first battery and control related to the second battery based on information stored in the storage unit.

より好ましくは、制御装置は、所定の制御定数に基づいて第1のバッテリおよび第2のバッテリに関する処理を行ない、記憶部から読み出した情報に基づいて制御定数を変更する。   More preferably, the control device performs processing related to the first battery and the second battery based on a predetermined control constant, and changes the control constant based on information read from the storage unit.

好ましくは、制御装置は、記憶部から読み出した情報に基づいてバッテリパックが正規品か否かを判断する。   Preferably, the control device determines whether or not the battery pack is a genuine product based on information read from the storage unit.

好ましくは、バッテリパックは、車載機器に電力を供給するバッテリと、バッテリを冷却する冷却装置とをさらに含む。   Preferably, the battery pack further includes a battery that supplies power to the in-vehicle device and a cooling device that cools the battery.

この発明は、他の局面に従うと、車載機器制御システムであって、車両に着脱可能に接続するための接続部を有するバッテリパックと、車両に設けられ、接続部の形状を検出する形状検出部と、形状検出部の検出結果に基づいて車載機器を制御する制御装置とを備える。   In accordance with another aspect, the present invention is an in-vehicle device control system, which includes a battery pack having a connecting portion for detachably connecting to a vehicle, and a shape detecting portion that is provided in the vehicle and detects the shape of the connecting portion. And a control device that controls the in-vehicle device based on the detection result of the shape detection unit.

好ましくは、制御装置は、形状検出部の検出結果に基づいてバッテリパックの充放電を制御する。   Preferably, the control device controls charging / discharging of the battery pack based on the detection result of the shape detection unit.

好ましくは、車載機器制御システムは、バッテリパックを冷却する冷却装置をさらに備える。制御装置は、形状検出部の検出結果に基づいて冷却装置を制御する。   Preferably, the in-vehicle device control system further includes a cooling device that cools the battery pack. The control device controls the cooling device based on the detection result of the shape detection unit.

好ましくは、車載機器制御システムは、車載機器に電力を供給する第1のバッテリをさらに備える。バッテリパックは、車載機器に電力を供給する第2のバッテリをさらに含む。制御装置は、第1のバッテリに関する制御と第2のバッテリに関する制御とを、形状検出部の検出結果に基づいて車載機器に行なわせる。   Preferably, the in-vehicle device control system further includes a first battery that supplies electric power to the in-vehicle device. The battery pack further includes a second battery that supplies power to the in-vehicle device. The control device causes the in-vehicle device to perform control related to the first battery and control related to the second battery based on the detection result of the shape detection unit.

より好ましくは、制御装置は、所定の制御定数に基づいて第1のバッテリおよび第2のバッテリに関する処理を行ない、形状検出部の検出結果に基づいて制御定数を変更する。   More preferably, the control device performs processing related to the first battery and the second battery based on a predetermined control constant, and changes the control constant based on the detection result of the shape detection unit.

好ましくは、バッテリパックは、車載機器に電力を供給するバッテリと、バッテリを冷却する冷却装置とをさらに含む。   Preferably, the battery pack further includes a battery that supplies power to the in-vehicle device and a cooling device that cools the battery.

この発明のさらに他の局面に従うと、車両に接続する接続部を有するバッテリパックが着脱可能に構成された車両であって、バッテリパックが車両に接続されている場合には、バッテリパックから読み出された情報に基づいて車載機器を制御するとともに、車両にバッテリパックが接続されていない場合には、車両に記憶された情報に基づいて車載機器を制御する制御装置とを備える。   According to still another aspect of the present invention, when a battery pack having a connection portion connected to the vehicle is configured to be detachable, and the battery pack is connected to the vehicle, reading from the battery pack is performed. And a control device that controls the in-vehicle device based on the information stored in the vehicle when the in-vehicle device is controlled based on the information that has been stored and the battery pack is not connected to the vehicle.

好ましくは、制御装置は、バッテリパックから読み出された情報に基づいて、バッテリパックの充放電を制御する。   Preferably, the control device controls charging / discharging of the battery pack based on information read from the battery pack.

好ましくは、車両は、バッテリパックを冷却する冷却装置をさらに備える。制御装置は、バッテリパックから読み出された情報に基づいて冷却装置を制御する。   Preferably, the vehicle further includes a cooling device that cools the battery pack. The control device controls the cooling device based on information read from the battery pack.

好ましくは、車両は、車載機器に電力を供給する第1のバッテリをさらに備える。バッテリパックは、車載機器に電力を供給する第2のバッテリをさらに含む。制御装置は、第1のバッテリに関する制御と第2のバッテリに関する制御とを、バッテリパックから読み出された情報に基づいて車載機器に行なわせる。   Preferably, the vehicle further includes a first battery that supplies electric power to the in-vehicle device. The battery pack further includes a second battery that supplies power to the in-vehicle device. The control device causes the in-vehicle device to perform control relating to the first battery and control relating to the second battery based on information read from the battery pack.

より好ましくは、制御装置は、所定の制御定数に基づいて第1のバッテリおよび第2のバッテリに関する処理を行ない、バッテリパックから読み出された情報に基づいて制御定数を変更する。   More preferably, the control device performs processing related to the first battery and the second battery based on a predetermined control constant, and changes the control constant based on information read from the battery pack.

好ましくは、制御装置は、バッテリパックから読み出された情報に基づいてバッテリパックが正規品か否かを判断する。   Preferably, the control device determines whether or not the battery pack is a genuine product based on information read from the battery pack.

好ましくは、バッテリパックは、車載機器に電力を供給するバッテリと、バッテリを冷却する冷却装置とをさらに含む。   Preferably, the battery pack further includes a battery that supplies power to the in-vehicle device and a cooling device that cools the battery.

この発明のさらに他の局面に従うと、車両に接続する接続部を有するバッテリパックが着脱可能に構成された車両であって、車両に設けられ、接続部の形状を検出する形状検出部と、形状検出部の検出結果に基づいて車載機器を制御する制御装置とを備える。   According to still another aspect of the present invention, a battery pack having a connection portion connected to the vehicle is configured to be detachable, the shape detection portion provided in the vehicle and detecting the shape of the connection portion, and the shape And a control device that controls the in-vehicle device based on the detection result of the detection unit.

好ましくは、制御装置は、形状検出部の検出結果に基づいてバッテリパックの充放電を制御する。   Preferably, the control device controls charging / discharging of the battery pack based on the detection result of the shape detection unit.

好ましくは、車両は、バッテリパックを冷却する冷却装置をさらに備える。制御装置は、形状検出部の検出結果に基づいて冷却装置を制御する。   Preferably, the vehicle further includes a cooling device that cools the battery pack. The control device controls the cooling device based on the detection result of the shape detection unit.

好ましくは、車両は、車載機器に電力を供給する第1のバッテリをさらに備える。バッテリパックは、車載機器に電力を供給する第2のバッテリをさらに含む。制御装置は、第1のバッテリに関する制御と第2のバッテリに関する制御とを、形状検出部の検出結果に基づいて車載機器に行なわせる。   Preferably, the vehicle further includes a first battery that supplies electric power to the in-vehicle device. The battery pack further includes a second battery that supplies power to the in-vehicle device. The control device causes the in-vehicle device to perform control related to the first battery and control related to the second battery based on the detection result of the shape detection unit.

より好ましくは、制御装置は、所定の制御定数に基づいて第1のバッテリおよび第2のバッテリに関する処理を行ない、形状検出部の検出結果に基づいて制御定数を変更する。   More preferably, the control device performs processing related to the first battery and the second battery based on a predetermined control constant, and changes the control constant based on the detection result of the shape detection unit.

好ましくは、バッテリパックは、車載機器に電力を供給するバッテリと、バッテリを冷却する冷却装置とをさらに含む。   Preferably, the battery pack further includes a battery that supplies power to the in-vehicle device and a cooling device that cools the battery.

本発明によれば、車両の電源装置のバッテリ容量を容易に変更することができる。また、ユーザ毎に最適なバッテリ容量を決定できる。   ADVANTAGE OF THE INVENTION According to this invention, the battery capacity of the power supply device of a vehicle can be changed easily. In addition, an optimum battery capacity can be determined for each user.

本発明の実施の形態に係る車両1の主たる構成を示す図である。1 is a diagram illustrating a main configuration of a vehicle 1 according to an embodiment of the present invention. 図1のインバータ14および22の詳細な構成を示す回路図である。It is a circuit diagram which shows the detailed structure of the inverters 14 and 22 of FIG. 図1の昇圧コンバータ12Aおよび12Bの詳細な構成を示す回路図である。FIG. 2 is a circuit diagram showing a detailed configuration of boost converters 12A and 12B in FIG. 1. 実施の形態1で用いられる車両とバッテリパックとの間に設けられるコネクタの構造を示す図である。It is a figure which shows the structure of the connector provided between the vehicle used in Embodiment 1, and a battery pack. バッテリ種類を判別するスイッチが設けられているコネクタ部材102Aを示す図である。It is a figure which shows the connector member 102A provided with the switch which discriminate | determines a battery kind. 図5に示したコネクタ部材102Aをプラグ差込面方向から見た図である。It is the figure which looked at the connector member 102A shown in FIG. 5 from the plug insertion surface direction. スイッチ122のOFF状態を示した図である。It is a figure showing the OFF state of switch 122. スイッチ122のON状態を示した図である。FIG. 6 is a diagram illustrating an ON state of a switch 122. バッテリパック種類について説明するための図である。It is a figure for demonstrating a battery pack kind. バッテリパックが一種類である場合の容量増減の例を示した図である。It is the figure which showed the example of capacity | capacitance increase / decrease in case a battery pack is one type. 制御装置30が実行する追加バッテリパックの接続に伴う制御を説明するためのフローチャートである。4 is a flowchart for illustrating control associated with connection of an additional battery pack executed by control device 30. 制御定数の一例としてエンジン始動しきい値のマップの切換について説明するための図である。It is a figure for demonstrating switching of the map of an engine starting threshold value as an example of a control constant. 実施の形態2における車両とバッテリパックとの接続を示した図である。FIG. 6 is a diagram showing a connection between a vehicle and a battery pack in a second embodiment. 図13に示した構成の変形例を示した図である。It is the figure which showed the modification of the structure shown in FIG. 実施の形態2において制御装置30が実行する追加バッテリパックの接続に伴う制御を説明するためのフローチャートである。6 is a flowchart for illustrating control associated with connection of an additional battery pack executed by control device 30 in the second embodiment. 実施の形態3における冷却装置の説明をするためのブロック図である。FIG. 10 is a block diagram for illustrating a cooling device in a third embodiment. 実施の形態3で用いられるバッテリパックの構成の変形例を示す図である。10 is a diagram showing a modification of the configuration of the battery pack used in Embodiment 3. FIG.

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

[車両の全体構成]
図1は、本発明の実施の形態に係る車両1の主たる構成を示す図である。
[Overall configuration of vehicle]
FIG. 1 is a diagram showing a main configuration of a vehicle 1 according to an embodiment of the present invention.

図1を参照して、車両1は、蓄電装置である主バッテリBAと、昇圧コンバータ12Aと、平滑用コンデンサC1と、電圧センサ21Aとを含む。   Referring to FIG. 1, vehicle 1 includes a main battery BA that is a power storage device, a boost converter 12A, a smoothing capacitor C1, and a voltage sensor 21A.

車両1は、さらに、平滑用コンデンサCHと、電圧センサ10A,10B1,13と、インバータ14,22と、エンジン4と、モータジェネレータMG1,MG2と、動力分割機構3と、車輪2と、制御装置30とを含む。   Vehicle 1 further includes a smoothing capacitor CH, voltage sensors 10A, 10B1, 13, inverters 14, 22, engine 4, motor generators MG1, MG2, power split mechanism 3, wheels 2, and a control device. 30.

車両1は、さらに、コネクタ52と、コネクタ52によって車両1に対して着脱可能に接続されているバッテリパック39とを含む。バッテリパック39を車両1に搭載したり外したりすることにより、車両1に搭載するバッテリ容量の合計を調整することができる。   Vehicle 1 further includes a connector 52 and a battery pack 39 detachably connected to vehicle 1 by connector 52. By mounting or removing the battery pack 39 on the vehicle 1, the total battery capacity mounted on the vehicle 1 can be adjusted.

バッテリパック39は、副バッテリBB1と、昇圧コンバータ12Bと、平滑用コンデンサC2と、電圧センサ10B1,21Bとを含む。   Battery pack 39 includes sub-battery BB1, boost converter 12B, smoothing capacitor C2, and voltage sensors 10B1 and 21B.

この車両に搭載される蓄電装置は外部から充電が可能である。このために、車両1は、さらに、電力入力ラインACL1,ACL2と、リレー回路51と、入力端子50と、電圧センサ74とを含む。   The power storage device mounted on the vehicle can be charged from the outside. For this purpose, vehicle 1 further includes power input lines ACL <b> 1 and ACL <b> 2, relay circuit 51, input terminal 50, and voltage sensor 74.

リレー回路51は、リレーRY1,RY2を含む。リレーRY1,RY2としては、たとえば、機械的な接点リレーを用いることができるが、半導体リレーを用いてもよい。そして、リレーRY1の一端に電力入力ラインACL1の一方端が接続され、電力入力ラインACL1の他方端は、モータジェネレータMG1の三相コイルの中性点N1に接続される。また、リレーRY2の一端に電力入力ラインACL2の一方端が接続され、電力入力ラインACL2の他方端は、モータジェネレータMG2の三相コイルの中性点N2に接続される。さらに、リレーRY1,RY2の他端に入力端子50が接続される。   Relay circuit 51 includes relays RY1 and RY2. As relays RY1 and RY2, for example, mechanical contact relays can be used, but semiconductor relays may also be used. Then, one end of power input line ACL1 is connected to one end of relay RY1, and the other end of power input line ACL1 is connected to neutral point N1 of three-phase coil of motor generator MG1. Further, one end of power input line ACL2 is connected to one end of relay RY2, and the other end of power input line ACL2 is connected to neutral point N2 of the three-phase coil of motor generator MG2. Further, the input terminal 50 is connected to the other end of the relays RY1, RY2.

リレー回路51は、制御装置30からの入力許可信号ENが活性化されると、入力端子50を電力入力ラインACL1,ACL2と電気的に接続する。具体的には、リレー回路51は、入力許可信号ENが活性化されると、リレーRY1,RY2をオンし、入力許可信号ENが非活性化されると、リレーRY1,RY2をオフする。   Relay circuit 51 electrically connects input terminal 50 to power input lines ACL1 and ACL2 when input permission signal EN from control device 30 is activated. Specifically, relay circuit 51 turns on relays RY1, RY2 when input permission signal EN is activated, and turns off relays RY1, RY2 when input permission signal EN is deactivated.

入力端子50は、商用の外部電源90をこのハイブリッド車両1に接続するための端子である。そして、このハイブリッド車両1においては、入力端子50に接続される外部電源90からバッテリBAまたはBB1を充電することができる。   The input terminal 50 is a terminal for connecting a commercial external power supply 90 to the hybrid vehicle 1. In this hybrid vehicle 1, the battery BA or BB 1 can be charged from the external power supply 90 connected to the input terminal 50.

なお、以上の構成は、2つの回転電機のステータコイルの中性点を利用するものであるが、そのような構成に代えて、たとえば、AC100Vの商用電源に接続するために車載型または車外に設置されるバッテリ充電装置を使用しても良いし、またオプションバッテリパック39を搭載している場合は昇圧コンバータ12A,12Bを合わせて交流直流変換装置として機能させる方式を用いても良い。   The above configuration uses the neutral point of the stator coil of the two rotating electrical machines. Instead of such a configuration, for example, in order to connect to a commercial power supply of AC 100V, An installed battery charging device may be used, and when the optional battery pack 39 is installed, a method in which the boost converters 12A and 12B are combined to function as an AC / DC converter may be used.

平滑用コンデンサC1は、電源ラインPL1Aと接地ラインSL2間に接続される。電圧センサ21Aは、平滑用コンデンサC1の両端間の電圧VLAを検出して制御装置30に対して出力する。昇圧コンバータ12Aは、平滑用コンデンサC1の端子間電圧を昇圧する。   Smoothing capacitor C1 is connected between power supply line PL1A and ground line SL2. The voltage sensor 21 </ b> A detects the voltage VLA across the smoothing capacitor C <b> 1 and outputs it to the control device 30. Boost converter 12A boosts the voltage across terminals of smoothing capacitor C1.

平滑用コンデンサC2は、電源ラインPL1Bと接地ラインSL2間に接続される。電圧センサ21Bは、平滑用コンデンサC2の両端間の電圧VLBを検出して制御装置30に対して出力する。昇圧コンバータ12Bは、平滑用コンデンサC2の端子間電圧を昇圧する。   Smoothing capacitor C2 is connected between power supply line PL1B and ground line SL2. The voltage sensor 21B detects the voltage VLB across the smoothing capacitor C2 and outputs it to the control device 30. Boost converter 12B boosts the voltage across terminals of smoothing capacitor C2.

平滑用コンデンサCHは、昇圧コンバータ12A,12Bによって昇圧された電圧を平滑化する。電圧センサ13は、平滑用コンデンサCHの端子間電圧VHを検知して制御装置30に出力する。   Smoothing capacitor CH smoothes the voltage boosted by boost converters 12A and 12B. The voltage sensor 13 detects the inter-terminal voltage VH of the smoothing capacitor CH and outputs it to the control device 30.

インバータ14は、昇圧コンバータ12Bまたは12Aから与えられる直流電圧を三相交流電圧に変換してモータジェネレータMG1に出力する。インバータ22は、昇圧コンバータ12Bまたは12Aから与えられる直流電圧を三相交流電圧に変換してモータジェネレータMG2に出力する。   Inverter 14 converts the DC voltage applied from boost converter 12B or 12A into a three-phase AC voltage and outputs the same to motor generator MG1. Inverter 22 converts the DC voltage applied from boost converter 12B or 12A into a three-phase AC voltage and outputs the same to motor generator MG2.

動力分割機構3は、エンジン4とモータジェネレータMG1,MG2に結合されてこれらの間で動力を分配する機構である。たとえば動力分割機構としてはサンギヤ、プラネタリキャリヤ、リングギヤの3つの回転軸を有する遊星歯車機構を用いることができる。遊星歯車機構は、3つの回転軸のうち2つの回転軸の回転が定まれば、他の1つの回転軸の回転は強制的に定まる。この3つの回転軸がエンジン4、モータジェネレータMG1,MG2の各回転軸にそれぞれ接続される。なおモータジェネレータMG2の回転軸は、図示しない減速ギヤや差動ギヤによって車輪2に結合されている。また動力分割機構3の内部にモータジェネレータMG2の回転軸に対する減速機をさらに組み込んだり、自動変速機を組み込んだりしてもよい。   Power split device 3 is a mechanism that is coupled to engine 4 and motor generators MG1 and MG2 and distributes power between them. For example, as the power split mechanism, a planetary gear mechanism having three rotating shafts of a sun gear, a planetary carrier, and a ring gear can be used. In the planetary gear mechanism, if rotation of two of the three rotation shafts is determined, rotation of the other one rotation shaft is forcibly determined. These three rotation shafts are connected to the rotation shafts of engine 4 and motor generators MG1, MG2, respectively. The rotating shaft of motor generator MG2 is coupled to wheel 2 by a reduction gear and a differential gear (not shown). Further, a reduction gear for the rotation shaft of motor generator MG2 may be further incorporated in power split mechanism 3, or an automatic transmission may be incorporated.

主バッテリBAに関連して、車両1は、正極側に設けられる接続部40Aと、負極側に設けられる接続部であるシステムメインリレーSMRGとをさらに含む。接続部40Aは、主バッテリBAの正極と電源ラインPL1Aとの間に接続されるシステムメインリレーSMRBと、システムメインリレーSMRBと並列接続される直列に接続されたシステムメインリレーSMRPおよび制限抵抗R0とを含む。システムメインリレーSMRGは、主バッテリBAの負極(接地ラインSL1)と接地ラインSL2との間に接続される。   In relation to main battery BA, vehicle 1 further includes a connection portion 40A provided on the positive electrode side and a system main relay SMRG that is a connection portion provided on the negative electrode side. Connection unit 40A includes a system main relay SMRB connected between the positive electrode of main battery BA and power supply line PL1A, a system main relay SMRP connected in series with system main relay SMRB, and limiting resistor R0. including. System main relay SMRG is connected between a negative electrode (ground line SL1) of main battery BA and ground line SL2.

システムメインリレーSMRP,SMRB,SMRGは、制御装置30から与えられる制御信号CONT1〜CONT3にそれぞれ応じて導通/非導通状態が制御される。   System main relays SMRP, SMRB, and SMRG are controlled to be in a conductive / non-conductive state in response to control signals CONT1 to CONT3 supplied from control device 30, respectively.

電圧センサ10Aは、主バッテリBAの端子間の電圧VAを測定する。図示しないが、電圧センサ10Aとともに主バッテリBAの充電状態を監視するために、主バッテリBAに流れる電流を検知する電流センサが設けられている。主バッテリBAとしては、たとえば、鉛蓄電池、ニッケル水素電池、リチウムイオン電池等の二次電池や、電気二重層コンデンサ等の大容量キャパシタなどを用いることができる。   Voltage sensor 10A measures voltage VA between terminals of main battery BA. Although not shown, in order to monitor the charging state of the main battery BA together with the voltage sensor 10A, a current sensor for detecting the current flowing through the main battery BA is provided. As the main battery BA, for example, a secondary battery such as a lead storage battery, a nickel metal hydride battery, or a lithium ion battery, or a large capacity capacitor such as an electric double layer capacitor can be used.

バッテリパック39は、正極側に設けられる接続部40Bと、負極側に設けられる接続部であるシステムメインリレーSR1Gとを含む。接続部40Bは、副バッテリBB1の正極と電源ラインPL1Bとの間に接続されるシステムメインリレーSR1Bと、システムメインリレーSR1Bと並列接続される直列に接続されたシステムメインリレーSR1Pおよび制限抵抗R1とを含む。システムメインリレーSR1Gは、副バッテリBB1の負極と接地ラインSL2との間に接続される。   Battery pack 39 includes a connecting portion 40B provided on the positive electrode side and a system main relay SR1G which is a connecting portion provided on the negative electrode side. Connection unit 40B includes a system main relay SR1B connected between the positive electrode of sub battery BB1 and power supply line PL1B, a system main relay SR1P connected in series with system main relay SR1B, and a limiting resistor R1. including. System main relay SR1G is connected between the negative electrode of sub battery BB1 and ground line SL2.

システムメインリレーSR1P,SR1B,SR1Gは、制御装置30から与えられる制御信号CONT4〜CONT6にそれぞれ応じて導通/非導通状態が制御される。   System main relays SR1P, SR1B, and SR1G are controlled to be in a conductive / non-conductive state according to control signals CONT4 to CONT6 provided from control device 30, respectively.

接地ラインSL2は、後に説明するように昇圧コンバータ12A,12Bの中を通ってインバータ14および22側に延びている。   As will be described later, ground line SL2 extends through boost converters 12A and 12B to inverters 14 and 22 side.

電圧センサ10B1は、副バッテリBB1の端子間の電圧VBB1を測定する。図示しないが、電圧センサ10B1とともに副バッテリBB1の充電状態を監視するために、各バッテリに流れる電流を検知する電流センサが設けられている副バッテリBB1としては、たとえば、鉛蓄電池、ニッケル水素電池、リチウムイオン電池等の二次電池や、電気二重層コンデンサ等の大容量キャパシタなどを用いることができる。   Voltage sensor 10B1 measures voltage VBB1 between terminals of sub battery BB1. Although not shown, in order to monitor the charging state of the sub battery BB1 together with the voltage sensor 10B1, as the sub battery BB1 provided with a current sensor for detecting a current flowing through each battery, for example, a lead storage battery, a nickel metal hydride battery, A secondary battery such as a lithium ion battery or a large capacity capacitor such as an electric double layer capacitor can be used.

なお、副バッテリBB1は、ユーザの使用状況に応じて増減されるオプションバッテリであり、これに対し主バッテリBAは、車両に必要最低限搭載されているベースバッテリである。   The sub-battery BB1 is an optional battery that is increased or decreased according to the usage status of the user. On the other hand, the main battery BA is a base battery that is mounted in the vehicle as a minimum.

インバータ14は、電源ラインPL2と接地ラインSL2に接続されている。インバータ14は、昇圧コンバータ12Aおよび12Bから昇圧された電圧を受けて、たとえばエンジン4を始動させるために、モータジェネレータMG1を駆動する。また、インバータ14は、エンジン4から伝達される動力によってモータジェネレータMG1で発電された電力を昇圧コンバータ12Aおよび12Bに戻す。このとき昇圧コンバータ12Aおよび12Bは、降圧回路として動作するように制御装置30によって制御される。   Inverter 14 is connected to power supply line PL2 and ground line SL2. Inverter 14 receives the boosted voltage from boost converters 12A and 12B, and drives motor generator MG1 to start engine 4, for example. Inverter 14 returns the electric power generated by motor generator MG1 by the power transmitted from engine 4 to boost converters 12A and 12B. At this time, boost converters 12A and 12B are controlled by control device 30 so as to operate as a step-down circuit.

電流センサ24は、モータジェネレータMG1に流れる電流をモータ電流値MCRT1として検出し、モータ電流値MCRT1を制御装置30へ出力する。   Current sensor 24 detects the current flowing through motor generator MG1 as motor current value MCRT1, and outputs motor current value MCRT1 to control device 30.

インバータ22は、インバータ14と並列的に、電源ラインPL2と接地ラインSL2に接続されている。インバータ22は車輪2を駆動するモータジェネレータMG2に対して昇圧コンバータ12Aおよび12Bの出力する直流電圧を三相交流電圧に変換して出力する。またインバータ22は、回生制動に伴い、モータジェネレータMG2において発電された電力を昇圧コンバータ12Aおよび12Bに戻す。このとき昇圧コンバータ12Aおよび12Bは、降圧回路として動作するように制御装置30によって制御される。   Inverter 22 is connected to power supply line PL2 and ground line SL2 in parallel with inverter 14. Inverter 22 converts the DC voltage output from boost converters 12 </ b> A and 12 </ b> B into a three-phase AC voltage and outputs the same to motor generator MG <b> 2 driving wheel 2. Inverter 22 returns the electric power generated in motor generator MG2 to boost converters 12A and 12B in accordance with regenerative braking. At this time, boost converters 12A and 12B are controlled by control device 30 so as to operate as a step-down circuit.

電流センサ25は、モータジェネレータMG2に流れる電流をモータ電流値MCRT2として検出し、モータ電流値MCRT2を制御装置30へ出力する。   Current sensor 25 detects the current flowing through motor generator MG2 as motor current value MCRT2, and outputs motor current value MCRT2 to control device 30.

制御装置30は、モータジェネレータMG1,MG2の各トルク指令値および回転速度、電圧VBA,VBB1,VBB2,VLA,VLB,VHの各値、モータ電流値MCRT1,MCRT2および起動信号IGONを受ける。そして制御装置30は、昇圧コンバータ12Bに対して昇圧指示を行なう制御信号PWUB,降圧指示を行なう制御信号PWDBおよび動作禁止を指示するシャットダウン信号を出力する。   Control device 30 receives torque command values and rotational speeds of motor generators MG1, MG2, voltages VBA, VBB1, VBB2, VLA, VLB, VH, motor current values MCRT1, MCRT2, and start signal IGON. Control device 30 outputs a control signal PWUB for instructing boosting to boost converter 12B, a control signal PWDB for instructing step-down, and a shutdown signal for instructing prohibition of operation.

さらに、制御装置30は、インバータ14に対して昇圧コンバータ12A,12Bの出力である直流電圧を、モータジェネレータMG1を駆動するための交流電圧に変換する駆動指示を行なう制御信号PWMI1と、モータジェネレータMG1で発電された交流電圧を直流電圧に変換して昇圧コンバータ12A,12B側に戻す回生指示を行なう制御信号PWMC1とを出力する。   Further, control device 30 provides control signal PWMI1 for instructing inverter 14 to convert a DC voltage, which is the output of boost converters 12A and 12B, into an AC voltage for driving motor generator MG1, and motor generator MG1. And outputs a control signal PWMC1 for instructing regeneration to convert the AC voltage generated in step S1 to a DC voltage and return it to the boost converters 12A and 12B.

同様に制御装置30は、インバータ22に対してモータジェネレータMG2を駆動するための交流電圧に直流電圧を変換する駆動指示を行なう制御信号PWMI2と、モータジェネレータMG2で発電された交流電圧を直流電圧に変換して昇圧コンバータ12A,12B側に戻す回生指示を行なう制御信号PWMC2とを出力する。   Similarly, control device 30 converts control signal PWMI2 for instructing inverter 22 to drive to convert DC voltage into AC voltage for driving motor generator MG2, and AC voltage generated by motor generator MG2 to DC voltage. A control signal PWMC2 for instructing regeneration to be converted and returned to the boost converters 12A and 12B is output.

制御装置30は、インバータ14,22および昇圧コンバータ12A,12Bを制御するための各種マップ等を保持するメモリ32を含んでいる。   Control device 30 includes a memory 32 for holding various maps and the like for controlling inverters 14 and 22 and boost converters 12A and 12B.

図2は、図1のインバータ14および22の詳細な構成を示す回路図である。
図1、図2を参照して、インバータ14は、U相アーム15と、V相アーム16と、W相アーム17とを含む。U相アーム15,V相アーム16,およびW相アーム17は、電源ラインPL2と接地ラインSL2との間に並列に接続される。
FIG. 2 is a circuit diagram showing a detailed configuration of inverters 14 and 22 in FIG.
Referring to FIGS. 1 and 2, inverter 14 includes a U-phase arm 15, a V-phase arm 16, and a W-phase arm 17. U-phase arm 15, V-phase arm 16, and W-phase arm 17 are connected in parallel between power supply line PL2 and ground line SL2.

U相アーム15は、電源ラインPL2と接地ラインSL2との間に直列接続されたIGBT素子Q3,Q4と、IGBT素子Q3,Q4とそれぞれ並列に接続されるダイオードD3,D4とを含む。ダイオードD3のカソードはIGBT素子Q3のコレクタと接続され、ダイオードD3のアノードはIGBT素子Q3のエミッタと接続される。ダイオードD4のカソードはIGBT素子Q4のコレクタと接続され、ダイオードD4のアノードはIGBT素子Q4のエミッタと接続される。   U-phase arm 15 includes IGBT elements Q3 and Q4 connected in series between power supply line PL2 and ground line SL2, and diodes D3 and D4 connected in parallel with IGBT elements Q3 and Q4, respectively. The cathode of diode D3 is connected to the collector of IGBT element Q3, and the anode of diode D3 is connected to the emitter of IGBT element Q3. The cathode of diode D4 is connected to the collector of IGBT element Q4, and the anode of diode D4 is connected to the emitter of IGBT element Q4.

V相アーム16は、電源ラインPL2と接地ラインSL2との間に直列接続されたIGBT素子Q5,Q6と、IGBT素子Q5,Q6とそれぞれ並列に接続されるダイオードD5,D6とを含む。ダイオードD5のカソードはIGBT素子Q5のコレクタと接続され、ダイオードD5のアノードはIGBT素子Q5のエミッタと接続される。ダイオードD6のカソードはIGBT素子Q6のコレクタと接続され、ダイオードD6のアノードはIGBT素子Q6のエミッタと接続される。   V-phase arm 16 includes IGBT elements Q5 and Q6 connected in series between power supply line PL2 and ground line SL2, and diodes D5 and D6 connected in parallel with IGBT elements Q5 and Q6, respectively. The cathode of diode D5 is connected to the collector of IGBT element Q5, and the anode of diode D5 is connected to the emitter of IGBT element Q5. The cathode of diode D6 is connected to the collector of IGBT element Q6, and the anode of diode D6 is connected to the emitter of IGBT element Q6.

W相アーム17は、電源ラインPL2と接地ラインSL2との間に直列接続されたIGBT素子Q7,Q8と、IGBT素子Q7,Q8とそれぞれ並列に接続されるダイオードD7,D8とを含む。ダイオードD7のカソードはIGBT素子Q7のコレクタと接続され、ダイオードD7のアノードはIGBT素子Q7のエミッタと接続される。ダイオードD8のカソードはIGBT素子Q8のコレクタと接続され、ダイオードD8のアノードはIGBT素子Q8のエミッタと接続される。   W-phase arm 17 includes IGBT elements Q7 and Q8 connected in series between power supply line PL2 and ground line SL2, and diodes D7 and D8 connected in parallel with IGBT elements Q7 and Q8, respectively. The cathode of diode D7 is connected to the collector of IGBT element Q7, and the anode of diode D7 is connected to the emitter of IGBT element Q7. The cathode of diode D8 is connected to the collector of IGBT element Q8, and the anode of diode D8 is connected to the emitter of IGBT element Q8.

各相アームの中間点は、モータジェネレータMG1の各相コイルの各相端に接続されている。すなわち、モータジェネレータMG1は、三相の永久磁石同期モータであり、U,V,W相の3つのコイルは各々一方端が中点に共に接続されている。そして、U相コイルの他方端がIGBT素子Q3,Q4の接続ノードから引出されたラインULに接続される。またV相コイルの他方端がIGBT素子Q5,Q6の接続ノードから引出されたラインVLに接続される。またW相コイルの他方端がIGBT素子Q7,Q8の接続ノードから引出されたラインWLに接続される。   An intermediate point of each phase arm is connected to each phase end of each phase coil of motor generator MG1. That is, motor generator MG1 is a three-phase permanent magnet synchronous motor, and one end of each of three coils of U, V, and W phases is connected to the midpoint. The other end of the U-phase coil is connected to a line UL drawn from the connection node of IGBT elements Q3 and Q4. The other end of the V-phase coil is connected to a line VL drawn from the connection node of IGBT elements Q5 and Q6. The other end of the W-phase coil is connected to a line WL drawn from the connection node of IGBT elements Q7 and Q8.

なお、図1のインバータ22についても、モータジェネレータMG2に接続される点が異なるが、内部の回路構成についてはインバータ14と同様であるので詳細な説明は繰返さない。また、図2には、インバータに制御信号PWMI,PWMCが与えられることが記載されているが、記載が複雑になるのを避けるためであり、図1に示されるように、別々の制御信号PWMI1,PWMC1と制御信号PWMI2,PWMC2がそれぞれインバータ14,22に入力される。   1 also differs in that it is connected to motor generator MG2, but the internal circuit configuration is the same as that of inverter 14, and therefore detailed description thereof will not be repeated. FIG. 2 shows that the control signals PWMI and PWMC are given to the inverter, but this is for avoiding complicated description. As shown in FIG. 1, separate control signals PWMI1 are used. , PWMC1 and control signals PWMI2 and PWMC2 are input to inverters 14 and 22, respectively.

図3は、図1の昇圧コンバータ12Aおよび12Bの詳細な構成を示す回路図である。
図1、図3を参照して、昇圧コンバータ12Aは、一方端が電源ラインPL1Aに接続されるリアクトルL1と、電源ラインPL2と接地ラインSL2との間に直列に接続されるIGBT素子Q1,Q2と、IGBT素子Q1,Q2にそれぞれ並列に接続されるダイオードD1,D2とを含む。
FIG. 3 is a circuit diagram showing a detailed configuration of boost converters 12A and 12B in FIG.
1 and 3, boost converter 12A includes a reactor L1 having one end connected to power supply line PL1A, and IGBT elements Q1, Q2 connected in series between power supply line PL2 and ground line SL2. And diodes D1, D2 connected in parallel to IGBT elements Q1, Q2, respectively.

リアクトルL1の他方端はIGBT素子Q1のエミッタおよびIGBT素子Q2のコレクタに接続される。ダイオードD1のカソードはIGBT素子Q1のコレクタと接続され、ダイオードD1のアノードはIGBT素子Q1のエミッタと接続される。ダイオードD2のカソードはIGBT素子Q2のコレクタと接続され、ダイオードD2のアノードはIGBT素子Q2のエミッタと接続される。   Reactor L1 has the other end connected to the emitter of IGBT element Q1 and the collector of IGBT element Q2. The cathode of diode D1 is connected to the collector of IGBT element Q1, and the anode of diode D1 is connected to the emitter of IGBT element Q1. The cathode of diode D2 is connected to the collector of IGBT element Q2, and the anode of diode D2 is connected to the emitter of IGBT element Q2.

なお、図1の昇圧コンバータ12Bについては、電源ラインPL1Aに代えて電源ラインPL1Bに接続される点が昇圧コンバータ12Aと異なるが、内部の回路構成については昇圧コンバータ12Aと同様であるので詳細な説明は繰返さない。また、図3には、昇圧コンバータに制御信号PWU,PWDが与えられることが記載されているが、記載が複雑になるのを避けるためであり、図1に示されるように、別々の制御信号PWUA,PWDAと制御信号PWUB,PWDBがそれぞれインバータ14,22に入力される。   The boost converter 12B in FIG. 1 is different from the boost converter 12A in that it is connected to the power supply line PL1B instead of the power supply line PL1A. Does not repeat. FIG. 3 shows that the control signals PWU and PWD are given to the boost converter, but this is for the purpose of avoiding complicated description. As shown in FIG. PWUA and PWDA and control signals PWUB and PWDB are input to inverters 14 and 22, respectively.

[サブバッテリ搭載可能な電源装置]
再び図1を参照して、本願実施の形態の車両の電源装置は、車両1の外部に設けられる外部電源90から充電が可能な車両の電源装置であって、主バッテリBAと、車両から着脱可能なバッテリパック39とを備える。バッテリパック39は、主バッテリBAと共通の電気負荷(インバータ14および22)を駆動するための副バッテリBB1と、副バッテリBB1に関する情報に対応する形状である突起(ピン)が設けられたコネクタ52とを含む。車両の電源装置は、主バッテリBAに関する制御を行なうとともに、コネクタの形状から情報を検出して副バッテリBB1に関する制御を行なう制御装置30をさらに備える。
[Power supply that can be equipped with sub-battery]
Referring to FIG. 1 again, the vehicle power supply device according to the embodiment of the present invention is a vehicle power supply device that can be charged from an external power supply 90 provided outside the vehicle 1, and is attached to and detached from the main battery BA. A possible battery pack 39. The battery pack 39 includes a sub battery BB1 for driving an electric load (inverters 14 and 22) common to the main battery BA, and a connector 52 provided with a protrusion (pin) having a shape corresponding to information related to the sub battery BB1. Including. The power supply device for the vehicle further includes a control device 30 that controls the main battery BA and detects information from the shape of the connector to control the sub battery BB1.

コネクタの形状から検出される情報には、たとえば、副バッテリBB1の容量が含まれており、副バッテリの容量が変更されたときに制御装置30はそれに合わせた適切な制御を行なうことができる。なお主バッテリ、副バッテリについては、蓄電容量はかならずしも主バッテリが大きいとは限らない。主バッテリよりも大きい容量の副バッテリが接続される場合があり得る。また、副バッテリを主バッテリよりも優先使用する場合もあり得る。   The information detected from the shape of the connector includes, for example, the capacity of the sub battery BB1, and when the capacity of the sub battery is changed, the control device 30 can perform appropriate control according to the capacity. In addition, about a main battery and a subbattery, the main battery is not necessarily large in the storage capacity. A secondary battery having a capacity larger than that of the main battery may be connected. In addition, the secondary battery may be preferentially used over the main battery.

好ましくは、車両の電源装置は、バッテリパック39を接続するためのコネクタ52をさらに備える。バッテリパック39は、コネクタを介して制御装置30から与えられる制御信号に基づいて、副バッテリBB1の電源電圧を変換する電圧変換回路である昇圧コンバータ12Bをさらに含む。   Preferably, the vehicle power supply device further includes a connector 52 for connecting battery pack 39. Battery pack 39 further includes a boost converter 12B that is a voltage conversion circuit that converts the power supply voltage of sub battery BB1 based on a control signal supplied from control device 30 via a connector.

このようにバッテリパック39に昇圧コンバータ12Bを内蔵することで主バッテリBAの電圧と副バッテリBB1の電圧とが異なる場合であっても各々のバッテリに独立的に充放電制御を行なうことが可能となる。   Thus, by incorporating boost converter 12B in battery pack 39, even when the voltage of main battery BA and the voltage of sub battery BB1 are different, it is possible to perform charge / discharge control independently for each battery. Become.

なお、電圧を合わせる方法としては、副バッテリBB1の電圧を昇圧コンバータ12Bで主バッテリBAに合わせても良いし、逆に主バッテリBAの電圧を昇圧コンバータ12Aで副バッテリBB1に合わせても良い。   As a method of adjusting the voltage, the voltage of the sub battery BB1 may be adjusted to the main battery BA by the boost converter 12B, and conversely, the voltage of the main battery BA may be adjusted to the sub battery BB1 by the boost converter 12A.

また、昇圧コンバータ12Aを無くして、副バッテリBB1の電圧を昇圧コンバータ12Bで主バッテリBAに合わせても良い。この場合は、副バッテリBB1の電源電圧を主バッテリBAの電源電圧よりも低くなるようにセル数の設定および充放電管理を行なうとよい。なお、逆に昇圧コンバータ12Bを無くして、主バッテリBAの電圧を昇圧コンバータ12Aで副バッテリBB1に合わせても良い。この場合は、主バッテリBAの電源電圧を副バッテリBB1の電源電圧よりも低くなるようにセル数の設定および充放電管理を行なうとよい。   Further, step-up converter 12A may be eliminated, and the voltage of sub battery BB1 may be adjusted to main battery BA by step-up converter 12B. In this case, the number of cells and charge / discharge management may be performed so that the power supply voltage of sub battery BB1 is lower than the power supply voltage of main battery BA. Conversely, the boost converter 12B may be eliminated, and the voltage of the main battery BA may be adjusted to the sub battery BB1 by the boost converter 12A. In this case, the number of cells and charge / discharge management may be performed so that the power supply voltage of main battery BA is lower than the power supply voltage of sub battery BB1.

また好ましくは、車両の電源装置は、外部電源90により主バッテリBAおよび副バッテリBB1を充電するための充電装置をさらに含む。この充電装置は、インバータ14,22と、モータジェネレータMG1,MG2のステータコイルによって構成される。   Preferably, the power supply device for the vehicle further includes a charging device for charging main battery BA and sub-battery BB1 with external power supply 90. This charging device includes inverters 14 and 22 and stator coils of motor generators MG1 and MG2.

[実施の形態1]
図4は、実施の形態1で用いられる車両とバッテリパックとの間に設けられるコネクタの構造を示す図である。
[Embodiment 1]
FIG. 4 is a diagram showing a structure of a connector provided between the vehicle and the battery pack used in the first embodiment.

図4を参照して、コネクタ52は、車両側(インバータ側)に接続されているコネクタ部材102と、バッテリパック側に接続されているコネクタ部材112とが組み合わされるものである。   Referring to FIG. 4, connector 52 is a combination of connector member 102 connected to the vehicle side (inverter side) and connector member 112 connected to the battery pack side.

コネクタ部材112は、バッテリに接続されるパワーケーブル116,120と、パワーケーブル116,120にそれぞれ接続されるプラグ片114,118と、絶縁性のカバーとを含む。プラグ片114はプラス端子であり、プラグ片118はマイナス端子である。   The connector member 112 includes power cables 116 and 120 connected to the battery, plug pieces 114 and 118 connected to the power cables 116 and 120, respectively, and an insulating cover. The plug piece 114 is a plus terminal, and the plug piece 118 is a minus terminal.

コネクタ部材102は、車両のインバータに接続されるパワーケーブル106,110と、パワーケーブル106,110にそれぞれ接続される挿入金具104,108と、絶縁性のカバーとを含む。挿入金具104には、プラグ片114が挿入され、挿入金具108にはプラグ片118が挿入される。絶縁性のカバーで覆われているので、プラグ片が作業者に触れにくい構造となっている。   Connector member 102 includes power cables 106 and 110 connected to an inverter of the vehicle, insertion fittings 104 and 108 connected to power cables 106 and 110, respectively, and an insulating cover. A plug piece 114 is inserted into the insertion fitting 104, and a plug piece 118 is inserted into the insertion fitting 108. Since it is covered with an insulating cover, the plug piece is difficult to touch the operator.

図5は、バッテリ種類を判別するスイッチが設けられているコネクタ部材102Aを示す図である。   FIG. 5 is a diagram showing a connector member 102A provided with a switch for determining the battery type.

図6は、図5に示したコネクタ部材102Aをプラグ差込面方向から見た図である。
図5、図6を参照して、コネクタ部材102の一例としてバッテリ種類判別スイッチ122が設けられたコネクタ部材102Aが示されている。スイッチ122は、たとえば3つのピン挿入口122A,122B,122Cのそれぞれ内部に設けられている。そしてバッテリ側に接続されているコネクタ部材には、バッテリ種類に対応する位置にピンが設けられている。ピンが存在する場合には、スイッチ122がピンで押されてON状態に設定される。ピンが無い場合にはスイッチ122はOFF状態に設定される。
FIG. 6 is a view of the connector member 102A shown in FIG. 5 as viewed from the plug insertion surface direction.
Referring to FIGS. 5 and 6, a connector member 102 </ b> A provided with a battery type determination switch 122 is shown as an example of the connector member 102. For example, the switch 122 is provided in each of the three pin insertion openings 122A, 122B, and 122C. The connector member connected to the battery side is provided with a pin at a position corresponding to the battery type. If there is a pin, the switch 122 is pushed by the pin and set to the ON state. When there is no pin, the switch 122 is set to the OFF state.

図7は、スイッチ122のOFF状態を示した図である。
図8は、スイッチ122のON状態を示した図である。
FIG. 7 is a diagram illustrating the OFF state of the switch 122.
FIG. 8 is a diagram illustrating the ON state of the switch 122.

図7、図8を参照して、スイッチ122は、ECU等の制御装置に信号を送る配線を5Vないし14Vの正電圧に結合するための抵抗126と可動切片128とを含む。ピンがピン挿入口122A,122B,122Cに未挿入の場合には切片128が離れるので、ECU等の制御装置にはH(論理ハイ)レベルの電圧が与えられる。そしてピンがピン挿入口122A,122B,122Cのいずれかに挿入されると、挿入された挿入口内部のスイッチ122の切片128が閉じてL(論理ロウ)レベルの信号が制御装置に伝達される。   Referring to FIGS. 7 and 8, switch 122 includes a resistor 126 and a movable piece 128 for coupling a wiring for sending a signal to a control device such as an ECU to a positive voltage of 5V to 14V. When the pin is not inserted into the pin insertion ports 122A, 122B, 122C, the segment 128 is separated, so that a voltage of H (logic high) level is applied to a control device such as an ECU. When the pin is inserted into any of the pin insertion ports 122A, 122B, and 122C, the intercept 128 of the switch 122 inside the inserted insertion port is closed and an L (logic low) level signal is transmitted to the control device. .

3つの挿入口がある場合には、2の3乗、すなわち8通りの状態を示すことができる。したがって、現在接続されているバッテリパックの容量をこのピンの位置で表わすことにより、車両側の制御装置でこれを判別することができる。   When there are three insertion openings, two cubes, that is, eight states can be shown. Therefore, by representing the capacity of the battery pack currently connected by the position of this pin, this can be determined by the control device on the vehicle side.

図9は、バッテリパック種類について説明するための図である。
図9を参照して、バッテリパックには容量が大きなものと小さなものがオプションとして用意されている。コネクタ52には、容量大のバッテリパック130、容量小のバッテリパック132のいずれか一方を選択して接続する必要がある。または、全くバッテリパックを接続しないという選択を行なっても良い。そして、バッテリパック130とバッテリパック132とでピンを設ける位置を違えておく。予めその位置と容量の関係を取り決めておけば、スイッチ122のON、OFFを観測することにより車両側の制御装置でピン位置を認知し、バッテリパックの容量を知ることができる。
FIG. 9 is a diagram for explaining battery pack types.
Referring to FIG. 9, a battery pack having a large capacity and a small capacity is prepared as an option. It is necessary to select and connect either the large capacity battery pack 130 or the small capacity battery pack 132 to the connector 52. Or you may select not connecting a battery pack at all. The positions where the pins are provided are different between the battery pack 130 and the battery pack 132. If the relationship between the position and the capacity is decided in advance, the pin position can be recognized by the control device on the vehicle side by observing ON / OFF of the switch 122, and the capacity of the battery pack can be known.

実施の形態1では、バッテリパックを接続するためのコネクタのバッテリパック側部材に設けられた形状がバッテリパック容量等の情報を表している。コネクタの車両側部材102Aにはその形状を検出するための検出部である検出スイッチ122が設けられる。   In the first embodiment, the shape provided on the battery pack side member of the connector for connecting the battery pack represents information such as the battery pack capacity. The vehicle-side member 102A of the connector is provided with a detection switch 122 that is a detection unit for detecting its shape.

図10は、バッテリパックが一種類である場合の容量増減の例を示した図である。
図10を参照して、車両側には、インバータに接続される複数のコネクタ52−1〜52−nが設けられている。そして、販売店やサービス工場では、必要な個数だけ増設単位のバッテリパック142−1,142−2…をコネクタに接続する。
FIG. 10 is a diagram showing an example of capacity increase / decrease when there is one type of battery pack.
Referring to FIG. 10, a plurality of connectors 52-1 to 52-n connected to the inverter are provided on the vehicle side. In a dealer or a service factory, a necessary number of additional battery packs 142-1, 142-2, ... are connected to the connector.

車両側の制御装置は、各コネクタに設けられた接続検出スイッチ122によって、接続されているバッテリパックの個数を検出することができ、これによって合計のバッテリ容量を知ることができる。   The control device on the vehicle side can detect the number of battery packs connected by the connection detection switch 122 provided in each connector, and can know the total battery capacity.

図11は、制御装置30が実行する追加バッテリパックの接続に伴う制御を説明するためのフローチャートである。このフローチャートの処理は、たとえば、車両のシステム起動時にメインルーチンから呼び出されて実行される。   FIG. 11 is a flowchart for illustrating control associated with connection of an additional battery pack executed by control device 30. The process of this flowchart is called and executed from the main routine when the vehicle system is activated, for example.

図11を参照して、まず処理が開始されると、ステップS1において、制御装置30は、追加バッテリパックが接続されているか否かを判断する。コネクタ52の検出スイッチ122がON状態になっているときに接続有りと判断される。スイッチ122がいずれもOFF状態であれば接続なしと判断される。   Referring to FIG. 11, when the process is first started, control device 30 determines whether or not an additional battery pack is connected in step S <b> 1. When the detection switch 122 of the connector 52 is in the ON state, it is determined that there is a connection. If both switches 122 are OFF, it is determined that there is no connection.

ステップS1において、追加バッテリなしと判断されると処理がステップS4に進み、特に制御の変更は行なわれずにメインルーチンに制御が移される。この場合には、図1のメモリ32に保持されている複数のマップのうちの標準マップがそのまま適用される。一方、追加バッテリ有りと判断されると処理がステップS2に進む。   If it is determined in step S1 that there is no additional battery, the process proceeds to step S4, and control is transferred to the main routine without any particular change in control. In this case, the standard map of the plurality of maps held in the memory 32 of FIG. 1 is applied as it is. On the other hand, if it is determined that there is an additional battery, the process proceeds to step S2.

ステップS2では、バッテリ容量が検出される。図9で説明したようなバッテリパックの容量を変更する方式では、図6のピン挿入口122A〜122Cのいずれにピンが挿入されるかを確認することによって容量を検出することができる。また図10で説明したようなバッテリパックの個数を変更する方式では、コネクタ52−1〜52−nの各々に設けられたスイッチ122のON状態になっている個数でバッテリパックの接続個数が分かるので、個数に増設単位のバッテリ容量を掛ければバッテリ容量を検出することができる。   In step S2, the battery capacity is detected. In the method of changing the capacity of the battery pack as described with reference to FIG. 9, the capacity can be detected by confirming which of the pin insertion openings 122A to 122C in FIG. In the method of changing the number of battery packs as described with reference to FIG. 10, the number of connected battery packs can be determined by the number of ON switches of the switches 122 provided in each of the connectors 52-1 to 52-n. Therefore, the battery capacity can be detected by multiplying the number by the battery capacity of the additional unit.

ステップS2の処理が終了すると次にステップS3の処理が実行される。ステップS3では、制御装置30でハイブリッドシステムの制御に使用されている制御定数の変更が行なわれる。制御定数の変更は、例えば、バッテリ容量に応じて図1のメモリ32中の複数のマップの切換えることなどで行なわれる。マップとしては、出力パワー要求値に対して、エンジンを始動させるしきい値を規定したエンジン始動マップであるとか、バッテリから出力可能な最大電力Woutやバッテリに充電可能な最大電力Winを規定したマップであるとか、昇圧コンバータの昇圧制御マップであるとか、バッテリ冷却装置の制御マップなどが対象となる。   When the process of step S2 ends, the process of step S3 is executed next. In step S3, the control constant used for control of the hybrid system by the control device 30 is changed. The control constant is changed, for example, by switching a plurality of maps in the memory 32 of FIG. 1 according to the battery capacity. The map is an engine start map that defines a threshold value for starting the engine with respect to the output power request value, or a map that defines the maximum power Wout that can be output from the battery and the maximum power Win that can be charged to the battery. Or a boost control map of the boost converter, or a control map of the battery cooling device.

図12は、制御定数の一例としてエンジン始動しきい値のマップの切換について説明するための図である。   FIG. 12 is a diagram for explaining the switching of the engine start threshold map as an example of the control constant.

図12を参照して、マップAは、バッテリ容量を増加させた場合のマップであり、マップBはバッテリ容量を増加させていないときに用いられる標準のマップである。バッテリ容量が大きいと、バッテリからモータに供給可能な電力も大きくなる。したがって、アクセルペダルが踏込まれ出力パワー要求値が大きくなっても、増設されたバッテリがあればエンジンを始動させずに要求されたパワーをモータのみで車軸に出力させることができる。   Referring to FIG. 12, map A is a map when the battery capacity is increased, and map B is a standard map used when the battery capacity is not increased. When the battery capacity is large, the power that can be supplied from the battery to the motor also increases. Therefore, even if the accelerator pedal is depressed and the required output power value is increased, if there is an additional battery, the requested power can be output to the axles only by the motor without starting the engine.

より具体的に言えば、バッテリの充電状態SOC(State Of Charge)が0〜40%の間は、バッテリ増設されていなければマップBに示すように、5kWの出力パワー要求があるとエンジンが始動する。一方、バッテリ増設がされていればマップAに示すように、10kWの出力パワー要求があるとエンジンが始動する。   More specifically, when the battery state of charge (SOC) is 0 to 40%, if the battery is not added, as shown in Map B, the engine starts when there is a 5 kW output power request. To do. On the other hand, if the battery is added, as shown in Map A, the engine starts when there is a 10 kW output power request.

また、バッテリの充電状態SOCが60%の間は、バッテリ増設されていなければマップBに示すように、10kWの出力パワー要求があるとエンジンが始動する。一方、バッテリ増設がされていればマップAに示すように、20kWの出力パワー要求があるとエンジンが始動する。   Further, while the battery state of charge SOC is 60%, as shown in Map B, if the battery is not added, the engine starts when there is a request for 10 kW of output power. On the other hand, if a battery is added, as shown in Map A, the engine starts when there is a 20 kW output power request.

また、バッテリの充電状態SOCが80%の間は、バッテリ増設されていなければマップBに示すように、15kWの出力パワー要求があるとエンジンが始動する。一方、バッテリ増設がされていればマップAに示すように、30kWの出力パワー要求があるとエンジンが始動する。   When the battery state of charge SOC is 80%, as shown in Map B, if the battery is not added, the engine starts when there is a request for 15 kW output power. On the other hand, if the battery is added, as shown in Map A, the engine starts when there is a 30 kW output power request.

また、バッテリの充電状態SOCが100%の間は、バッテリ増設されていなければマップBに示すように、20kWの出力パワー要求があるとエンジンが始動する。一方、バッテリ増設がされていればマップAに示すように、40kWの出力パワー要求があるとエンジンが始動する。言い換えれば、バッテリ増設されており充電状態SOCが100%であれば、出力パワー要求値が40kWに至るまではエンジンを停止させたままモータのみで走行することが可能となる。   In addition, while the battery state of charge SOC is 100%, as shown in Map B, if the battery is not added, the engine starts when there is a 20 kW output power request. On the other hand, if the battery is added, as shown in Map A, the engine starts when there is a 40 kW output power request. In other words, if the battery is added and the state of charge SOC is 100%, it is possible to run with only the motor with the engine stopped until the required output power value reaches 40 kW.

このように、バッテリ容量が大きくなれば出力可能なパワーも大きくなるので、エンジンを始動させなくても良い領域が広がる。   As described above, since the power that can be output increases as the battery capacity increases, the area in which the engine does not have to be started widens.

また、エンジン始動するSOCも変更されるので、エンジン停止のまま走行可能な距離をバッテリパックの増加に従って適切に伸ばすことができる。また、ハイブリッド車両は、バッテリの電力でモータジェネレータMG1を回転させてエンジンを始動するが、バッテリパックの数を減らした場合にも、エンジン始動して充電を開始するSOCも変更されるので、バッテリから放電しすぎてエンジン始動が不能となることが防止される。   Further, since the SOC for starting the engine is also changed, the distance that can be traveled while the engine is stopped can be appropriately extended as the battery pack increases. The hybrid vehicle starts the engine by rotating the motor generator MG1 with the power of the battery. However, even when the number of battery packs is reduced, the SOC that starts the engine and starts charging is also changed. Therefore, it is possible to prevent the engine from starting up due to excessive discharge.

なお、図12に示したマップは、モデル化して単純に示したものであり実際には車両走行実験によって適合化される。また、Win,Woutについても温度やSOCについて規定されたマップがバッテリ容量に応じて切換えられる。   The map shown in FIG. 12 is simply modeled and shown, and is actually adapted by a vehicle running experiment. In addition, for Win and Wout, maps defined for temperature and SOC are switched according to the battery capacity.

すなわち好ましくは、制御装置30は、所定の制御定数に基づいて主バッテリBAおよび副バッテリBB1に関する処理を行なう。そして制御装置30は、情報を記憶する記憶部に相当するコネクタのピン位置から読み出した情報に基づいて所定の制御定数を変更する。   That is, preferably, control device 30 performs processing related to main battery BA and sub battery BB1 based on a predetermined control constant. And the control apparatus 30 changes a predetermined control constant based on the information read from the pin position of the connector corresponded to the memory | storage part which memorize | stores information.

なお、実施の形態1では、車両側の制御装置30がバッテリパックの情報を自動的に読み出して、その情報に応じて制御定数を変更する例を示したが、必ずしも自動的に実行しない場合も考えられる。たとえば、制御装置30に制御定数を書換え可能なように、書き込み端子を設けておき、バッテリパックを追加、取り外しまたは交換した際に、書き込み端子から制御装置30のメモリ32上の制御定数を書き換えるようにしても良い。   In the first embodiment, the control device 30 on the vehicle side automatically reads the information of the battery pack and changes the control constant according to the information. However, the control device 30 may not always execute automatically. Conceivable. For example, the control device 30 is provided with a write terminal so that the control constant can be rewritten, and when the battery pack is added, removed, or replaced, the control constant on the memory 32 of the control device 30 is rewritten from the write terminal. Anyway.

以上説明したように、実施の形態1においては、装着されたバッテリパックに適した制御条件で車載機器の制御が実行される。たとえば、車載機器であるインバータ、昇圧コンバータを適切に制御することによって、ベースバッテリとオプションバッテリの合計のバッテリの充放電が良好に行なわれる。   As described above, in the first embodiment, the control of the in-vehicle device is executed under the control conditions suitable for the attached battery pack. For example, by appropriately controlling an inverter and a boost converter that are in-vehicle devices, the total battery of the base battery and the optional battery can be charged and discharged satisfactorily.

[実施の形態2]
図13は、実施の形態2における車両とバッテリパックとの接続を示した図である。
[Embodiment 2]
FIG. 13 is a diagram showing a connection between the vehicle and the battery pack in the second embodiment.

図13を参照して、車両150Aとバッテリパック39Aとはコネクタ52によって接続される。コネクタ52には、図4に示したようなパワーケーブル106,110の接続部の他に、CAN(Controller Area Network)通信のような制御用の通信を行なうための通信線の接続部が設けられる。なお、必ずしも通信線用のコネクタはパワーケーブル用と一体化させる必要はなく、別々のコネクタにしてもよい。   Referring to FIG. 13, vehicle 150 </ b> A and battery pack 39 </ b> A are connected by a connector 52. In addition to the connection portions of the power cables 106 and 110 as shown in FIG. 4, the connector 52 is provided with a connection portion of a communication line for performing control communication such as CAN (Controller Area Network) communication. . The communication line connector does not necessarily have to be integrated with the power cable, and may be a separate connector.

バッテリパック39Aは、副バッテリBB1と、副バッテリBB1の電圧を昇圧する昇圧コンバータ12Bと、昇圧コンバータ12Bの制御を行なうバッテリパック制御部156と、バッテリパック制御部156に接続されているメモリ158および通信インタフェース154とを含む。昇圧コンバータ12Bは、コネクタ52を介して車両側の電源ラインPL2および接地ラインSL2に接続されている。   The battery pack 39A includes a sub battery BB1, a boost converter 12B that boosts the voltage of the sub battery BB1, a battery pack control unit 156 that controls the boost converter 12B, a memory 158 connected to the battery pack control unit 156, and Communication interface 154. Boost converter 12B is connected to power line PL2 and ground line SL2 on the vehicle side via connector 52.

車両150Aは、図1に示したような車両1の構成に加えてバッテリパック39Aと通信を行なうための通信インタフェース152をさらに含む。   Vehicle 150A further includes a communication interface 152 for communicating with battery pack 39A in addition to the configuration of vehicle 1 as shown in FIG.

メモリ158には、バッテリパック39Aに関する情報が記憶されている。この情報は、たとえば副バッテリBB1の容量を含む。メモリ158には、バッテリの種類(リチウムイオンバッテリ、ニッケル水素バッテリ等)、製造年月日、製造メーカなどを記憶しておいても良い。   The memory 158 stores information related to the battery pack 39A. This information includes, for example, the capacity of sub battery BB1. The memory 158 may store the type of battery (lithium ion battery, nickel metal hydride battery, etc.), date of manufacture, manufacturer, and the like.

バッテリパック制御部156は、メモリ158からバッテリパック39Aの容量についての情報を読み出して通信インタフェース154、152を介して制御装置30にその情報を伝える。そして、制御装置30は、バッテリパック39Aの容量を考慮して、車両の駆動についての制御定数、各種マップなどを切換える。マップの切換えは、制御装置30で複数のマップを持っておいてその中から適するものを選択するようにしても良いし、メモリ158中にマップのデータを持っておいてそのデータを制御装置30で記憶しているマップに反映させる書換え処理を行なっても良い。   The battery pack control unit 156 reads information on the capacity of the battery pack 39A from the memory 158 and transmits the information to the control device 30 via the communication interfaces 154 and 152. Then, control device 30 switches control constants, various maps, and the like for driving the vehicle in consideration of the capacity of battery pack 39A. The map may be switched by holding a plurality of maps in the control device 30 and selecting a suitable one from them, or holding the map data in the memory 158 and transferring the data to the control device 30. The rewriting process to be reflected in the map stored in (1) may be performed.

図14は、図13に示した構成の変形例を示した図である。
図13では、パワーケーブルと通信線とが別々に設けられていたが、図14ではパワーケーブルに通信の情報を重畳させるPLC(Power Line Communications)インタフェースを採用するので、別途の通信線は不要となる。
FIG. 14 is a diagram showing a modification of the configuration shown in FIG.
In FIG. 13, the power cable and the communication line are provided separately. However, in FIG. 14, a PLC (Power Line Communications) interface that superimposes communication information on the power cable is employed. Become.

バッテリパック39Bは、副バッテリBB1と、副バッテリBB1の電圧を昇圧する昇圧コンバータ12Bと、昇圧コンバータ12Bの制御を行なうバッテリパック制御部166と、バッテリパック制御部166に接続されているメモリ168およびPLC通信インタフェース164とを含む。昇圧コンバータ12Bは、コネクタ52を介して車両側の電源ラインPL2および接地ラインSL2に接続されている。   The battery pack 39B includes a sub battery BB1, a boost converter 12B that boosts the voltage of the sub battery BB1, a battery pack control unit 166 that controls the boost converter 12B, a memory 168 connected to the battery pack control unit 166, and PLC communication interface 164. Boost converter 12B is connected to power line PL2 and ground line SL2 on the vehicle side via connector 52.

車両150Bは、図1に示したような車両1の構成に加えてバッテリパック39Bと通信を行なうためのPLC通信インタフェース162をさらに含む。   Vehicle 150B further includes a PLC communication interface 162 for communicating with battery pack 39B in addition to the configuration of vehicle 1 as shown in FIG.

メモリ168には、バッテリパック39Bに関する情報が記憶されている。この情報は、たとえば副バッテリBB1の容量を含む。   The memory 168 stores information related to the battery pack 39B. This information includes, for example, the capacity of sub battery BB1.

バッテリパック制御部166は、メモリ168からバッテリパック39Bの容量についての情報を読み出してPLC通信インタフェース164、162とパワーケーブルとを介して制御装置30にその情報を伝える。そして、制御装置30は、バッテリパック39Bの容量を考慮して、車両の駆動についての制御定数、各種マップなどを切換える。   The battery pack control unit 166 reads information on the capacity of the battery pack 39B from the memory 168, and transmits the information to the control device 30 via the PLC communication interfaces 164 and 162 and the power cable. Then, control device 30 switches control constants, various maps, and the like for driving the vehicle in consideration of the capacity of battery pack 39B.

図15は、実施の形態2において制御装置30が実行する追加バッテリパックの接続に伴う制御を説明するためのフローチャートである。このフローチャートの処理は、たとえば、車両のシステム起動時にメインルーチンから呼び出されて実行される。   FIG. 15 is a flowchart for illustrating control associated with connection of an additional battery pack executed by control device 30 in the second embodiment. The process of this flowchart is called and executed from the main routine when the vehicle system is activated, for example.

図15を参照して、まず処理が開始されると、ステップS11において、制御装置30は、追加バッテリパックが接続されているか否かを判断する。コネクタ52の検出スイッチ122がON状態になっているときに接続有りと判断される。スイッチ122がOFF状態であれば接続なしと判断される。   Referring to FIG. 15, when the process is started, control device 30 determines whether or not an additional battery pack is connected in step S11. When the detection switch 122 of the connector 52 is in the ON state, it is determined that there is a connection. If the switch 122 is in the OFF state, it is determined that there is no connection.

ステップS11において、追加バッテリなしと判断されると処理がステップS15に進み、特に制御の変更は行なわれずにメインルーチンに制御が移される。追加バッテリ有りと判断されるとステップS12に処理が進む。   If it is determined in step S11 that there is no additional battery, the process proceeds to step S15, and control is transferred to the main routine without particularly changing the control. If it is determined that there is an additional battery, the process proceeds to step S12.

ステップS12では、追加バッテリパックとの間で通信可能か否かが判断される。この通信が可能であれば、通信によってバッテリパック内のメモリからサブバッテリの容量などの情報が読み出される。   In step S12, it is determined whether or not communication with the additional battery pack is possible. If this communication is possible, information such as the capacity of the sub-battery is read from the memory in the battery pack by communication.

ステップS12において、通信可能であった場合には、ステップS13に処理が進む。ステップS13では、制御装置30でハイブリッドシステムの制御に使用されている制御定数の変更が行なわれる。制御定数の変更は、例えば、出力パワー要求値に対して、エンジンを始動させるしきい値を規定したエンジン始動マップであるとか、バッテリから出力可能な最大電力Woutやバッテリに充電可能な最大電力Winを規定したマップなどをバッテリ容量に応じて切換えることで行なうことができる。   If communication is possible in step S12, the process proceeds to step S13. In step S13, the control constant used for control of the hybrid system by the control device 30 is changed. The change of the control constant is, for example, an engine start map that defines a threshold value for starting the engine with respect to the output power request value, or the maximum power Wout that can be output from the battery or the maximum power Win that can be charged to the battery. Can be performed by switching a map or the like that regulates according to the battery capacity.

一方、ステップS12において、通信が成立しなかった場合には、ステップS14に処理が進む。通信が成立しない場合として、たとえば接続が予定されていない規格外のバッテリパック(たとえば純正品でないものや規格を満たしているか不明なもの)が接続された場合が考えられる。その場合には、制御定数をどのように変更するのが適切であるか不明であるので、異常放電等を防止するためフェイル判定とし、車両の動作を禁止する。   On the other hand, if communication is not established in step S12, the process proceeds to step S14. As a case where communication is not established, for example, a case where a non-standard battery pack (for example, a non-genuine product or an unknown one that satisfies the standard) that is not scheduled to be connected is considered. In that case, since it is unclear how it is appropriate to change the control constant, a failure determination is made to prevent abnormal discharge and the operation of the vehicle is prohibited.

すなわち、好ましくは、制御装置30は、記憶部であるメモリ158または168から読み出した情報に基づいてバッテリパック39Aまたは39Bが正規品か否かを判断する。   That is, preferably, control device 30 determines whether or not battery pack 39A or 39B is a genuine product based on information read from memory 158 or 168 as a storage unit.

そして、正規品でないバッテリパックが搭載された場合には、たとえば車両の動作を禁止する。これにより、異常充放電等の誤作動を回避することができる。もしくは、正規品でないバッテリパックを電気的に切り離して正規品のバッテリパックのみを使用して車両を動作させても良い。こうすることでユーザがバッテリパックを正規品でないことを認識せずに購入した車両に接続してしまった場合での車両の動作を確保できる。   And when the battery pack which is not a regular article is mounted, operation of vehicles is prohibited, for example. Thereby, malfunctions, such as abnormal charging / discharging, can be avoided. Alternatively, the vehicle may be operated using only the genuine battery pack by electrically disconnecting the non-genuine battery pack. By doing so, the operation of the vehicle can be ensured when the user connects the battery pack to the purchased vehicle without recognizing that the battery pack is not genuine.

コネクタ形状のみで判別していた場合と比べると、不正改造が困難となる。つまり、コネクタは簡単に複製できるが、メモリの内容まで含めて複製するのは難しいので、正規品でないバッテリパックが搭載され誤作動することが防止される。   Compared to the case where only the connector shape is used, unauthorized modification becomes difficult. In other words, the connector can be easily duplicated, but it is difficult to duplicate the entire contents of the memory, so that it is possible to prevent malfunction due to mounting of a battery pack that is not a genuine product.

ステップS13またはS14の処理が終了すると、ステップS15において制御はメインルーチンに移される。   When the process of step S13 or S14 ends, control is transferred to the main routine in step S15.

以上説明したように、実施の形態2においても、実施の形態1と同様に、装着されたバッテリパックに適した制御条件で車載機器の制御が実行される。   As described above, in the second embodiment, as in the first embodiment, the control of the in-vehicle device is executed under the control conditions suitable for the attached battery pack.

[実施の形態3]
バッテリは、電流を充放電すると発熱する。また、夏季などでは、炎天下に長時間報知するとバッテリが高温になっている場合も考えられる。バッテリの寿命を縮めないためにも、バッテリを冷却して使用するほうが望ましい。
[Embodiment 3]
The battery generates heat when the current is charged and discharged. In summer and the like, it may be possible that the battery is hot when a long time notification is given under the hot sun. In order not to shorten the battery life, it is desirable to cool the battery before use.

しかし、バッテリの搭載量を変更したときには、バッテリからの発熱量も変化する。そこでバッテリ搭載量に応じて冷却能力を変化させることが必要になる。   However, when the amount of battery mounted is changed, the amount of heat generated from the battery also changes. Therefore, it is necessary to change the cooling capacity in accordance with the amount of battery mounted.

図16は、実施の形態3における冷却装置の説明をするためのブロック図である。
図16に示した構成は、図13に示した構成において、冷却装置200が追記されたものである。冷却装置200の他の構成については、図13で説明しているので説明は繰返さない。
FIG. 16 is a block diagram for explaining the cooling device in the third embodiment.
The configuration shown in FIG. 16 is obtained by adding a cooling device 200 to the configuration shown in FIG. Since the other configuration of cooling device 200 has been described with reference to FIG. 13, description thereof will not be repeated.

冷却装置200は、バッテリパック39Aを冷却するために車両側に設けられる。冷却装置200は、バッテリパック39Aの他にもベースバッテリであるバッテリBAを共通して冷却するものであっても良い。   Cooling device 200 is provided on the vehicle side to cool battery pack 39A. The cooling device 200 may be one that cools the battery BA, which is a base battery, in addition to the battery pack 39A.

冷却装置200がバッテリパック39A専用に設けられているものであれば、車両の制御装置30はバッテリパック39Aが装着されたことをバッテリパック制御部156との通信によって検出すると、冷却装置200を動作可能に設定する。制御装置30は図示しない温度センサ等によってバッテリBB1の温度上昇を検出すると、冷却装置200に対してファンを回転させたり冷却水を循環させたりしてバッテリパック39Aの冷却を開始する。   If the cooling device 200 is provided exclusively for the battery pack 39A, the vehicle control device 30 operates the cooling device 200 when detecting that the battery pack 39A is attached by communication with the battery pack control unit 156. Set as possible. When the temperature of battery BB1 is detected by a temperature sensor (not shown) or the like, control device 30 starts cooling battery pack 39A by rotating a fan or circulating cooling water to cooling device 200.

冷却装置200がベースバッテリとバッテリパック39Aとで共通に設けられているものであれば、車両の制御装置30はバッテリパック39Aが装着されたことをバッテリパック制御部156との通信によって検出すると、冷却装置200の冷却能力を増加させる。制御装置30は、バッテリパック39Aの装着時は非装着時よりもファンを回転速度を増加させたり冷却水の循環量を増量させたりする。   If the cooling device 200 is provided in common for the base battery and the battery pack 39A, the vehicle control device 30 detects that the battery pack 39A is attached by communication with the battery pack control unit 156. The cooling capacity of the cooling device 200 is increased. The control device 30 increases the rotational speed of the fan or increases the circulation amount of the cooling water when the battery pack 39A is attached than when the battery pack 39A is not attached.

ここで、図16に示したようにバッテリ冷却装置やそれを制御するECUがバッテリパックと別体であると、バッテリの冷却性能が変化しバッテリのみで走行可能な距離などの車両性能が低下することも考えられる。   Here, as shown in FIG. 16, when the battery cooling device and the ECU that controls the battery cooling device are separate from the battery pack, the cooling performance of the battery changes and the vehicle performance such as the distance that can be traveled only by the battery decreases. It is also possible.

図17は、実施の形態3で用いられるバッテリパックの構成の変形例を示す図である。
図17を参照して、複数のバッテリパック202−1〜202−nがシステムメインリレーSMRを介して電源ラインPL2および接地ラインSL2に接続される。システムメインリレーSMRは車両側の制御装置によって導通/非導通が制御される。
FIG. 17 is a diagram illustrating a modification of the configuration of the battery pack used in the third embodiment.
Referring to FIG. 17, a plurality of battery packs 202-1 to 202-n are connected to power supply line PL2 and ground line SL2 through system main relay SMR. The system main relay SMR is controlled to be conductive / non-conductive by a control device on the vehicle side.

バッテリパック202−1は、コネクタ52と、昇圧コンバータ12Bと副バッテリBB1と、温度センサ204と、ファン制御部206と、送風ファン208とを含む。   Battery pack 202-1 includes a connector 52, a boost converter 12B, a sub battery BB1, a temperature sensor 204, a fan control unit 206, and a blower fan 208.

温度センサ204は副バッテリBB1の温度を測定する。ファン制御部206は、温度センサ204で検出されたバッテリ温度が所定値よりも高いときはファン208を回転させてバッテリ温度が上昇し過ぎないように温度調節を行なう。すなわち、温度センサ204、ファン制御部206、ファン208は、バッテリパック202−1に含まれる温度調節装置に相当する。   The temperature sensor 204 measures the temperature of the sub battery BB1. When the battery temperature detected by temperature sensor 204 is higher than a predetermined value, fan control unit 206 rotates fan 208 to adjust the temperature so that the battery temperature does not rise excessively. That is, the temperature sensor 204, the fan control unit 206, and the fan 208 correspond to a temperature adjustment device included in the battery pack 202-1.

他のバッテリパック202−nもバッテリパック202−1と同様な構成を有するのでその説明は繰返さない。   Since other battery packs 202-n have the same configuration as battery pack 202-1, the description thereof will not be repeated.

実施の形態3においては、バッテリパックごとにファン等を含む温度調節装置を設けたので、バッテリパックの個数や形状が変更されても、特別な考慮を払う必要なくバッテリパックに内蔵されるサブバッテリを適切な温度に保持することができる。言い換えれば、冷却装置とその制御部分をバッテリパック一体構造とし、冷却制御(測温からファン制御まで)をバッテリパック内で完結させることにより、バッテリパック追加時にバッテリの冷却性能が低下しこれに起因して走行性能が低下するのを防止することができる。   In the third embodiment, since the temperature control device including a fan or the like is provided for each battery pack, even if the number or shape of the battery pack is changed, the sub battery built in the battery pack is not required to pay special consideration. Can be maintained at an appropriate temperature. In other words, the cooling device and its control part have a battery pack integrated structure, and cooling control (from temperature measurement to fan control) is completed within the battery pack, resulting in reduced battery cooling performance when the battery pack is added. Thus, it is possible to prevent the running performance from being deteriorated.

最後に、本実施の形態に開示された車載機器制御システムについて、総括して説明する。図1および図13,図14を参照して、車載機器制御システムは、車両に着脱可能に構成され、情報を記憶する記憶部(メモリ158,168)を含むバッテリパック39A,39Bと、車両にバッテリパックが接続されている場合には、記憶部に記憶された情報に基づいて車載機器を制御するとともに、車両にバッテリパックが接続されていない場合には、記憶部に記憶された情報以外の情報に基づいて車載機器を制御する制御装置30とを備える。   Finally, the in-vehicle device control system disclosed in the present embodiment will be generally described. Referring to FIGS. 1, 13, and 14, the in-vehicle device control system is configured to be detachable from the vehicle and includes battery packs 39 </ b> A and 39 </ b> B including storage units (memory 158 and 168) that store information, and the vehicle. When the battery pack is connected, the vehicle-mounted device is controlled based on the information stored in the storage unit, and when the battery pack is not connected to the vehicle, the information other than the information stored in the storage unit And a control device 30 that controls the in-vehicle device based on the information.

図16に示すように、好ましくは、車載機器制御システムは、バッテリパック39Aを冷却する冷却装置200をさらに備える。制御装置30は、記憶部(メモリ158)に記憶された情報に基づいて冷却装置200を制御する。   As shown in FIG. 16, preferably, the in-vehicle device control system further includes a cooling device 200 that cools the battery pack 39A. The control device 30 controls the cooling device 200 based on the information stored in the storage unit (memory 158).

図1および図13に示すように、好ましくは、車載機器制御システムは、車載機器に電力を供給する第1のバッテリBAをさらに備える。バッテリパック39は、車載機器に電力を供給する第2のバッテリBB1をさらに含む。制御装置30は、第1のバッテリBAに関する制御と第2のバッテリBB1に関する制御とを、記憶部(メモリ158)に記憶された情報に基づいて車載機器であるインバータ14,22,昇圧コンバータ12A,12B等に行なわせる。   As shown in FIGS. 1 and 13, the in-vehicle device control system preferably further includes a first battery BA that supplies electric power to the in-vehicle device. The battery pack 39 further includes a second battery BB1 that supplies power to the in-vehicle device. The control device 30 performs control related to the first battery BA and control related to the second battery BB1, based on information stored in the storage unit (memory 158), inverters 14 and 22, boost converter 12A, Let 12B do it.

好ましくは、第1、第2のバッテリに関する制御は、充放電制御を含み、制御装置30は、記憶部に記憶された情報に基づいて、バッテリパックの充放電を制御する。   Preferably, the control related to the first and second batteries includes charge / discharge control, and control device 30 controls charge / discharge of the battery pack based on information stored in the storage unit.

図1および図5に示されるように、この発明の他の局面に従う車載機器制御システムは、車両に着脱可能に接続するための接続部(コネクタ52)を有するバッテリパック39と、車両に設けられ、接続部の形状を検出する形状検出部(スイッチ122)と、形状検出部の検出結果に基づいて車載機器を制御する制御装置30とを備える。   As shown in FIGS. 1 and 5, an in-vehicle device control system according to another aspect of the present invention is provided in a vehicle with a battery pack 39 having a connection portion (connector 52) for detachably connecting to the vehicle. A shape detection unit (switch 122) that detects the shape of the connection unit and a control device 30 that controls the in-vehicle device based on the detection result of the shape detection unit.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

1 ハイブリッド車両、2 車輪、3 動力分割機構、4 エンジン、10A,10B1,13,21A,21B,74 電圧センサ、12A,12B 昇圧コンバータ、14,22 インバータ、15 U相アーム、16 V相アーム、17 W相アーム、24,25 電流センサ、30 制御装置、39,39A,39B,130,132,142,202 バッテリパック、40A,40B 接続部、50 入力端子、51 リレー回路、52 コネクタ、90 外部電源、102,102A,112 コネクタ部材、104,108 挿入金具、106,110,116,120 パワーケーブル、114,118 プラグ片、122 スイッチ、122A,122B,122C ピン挿入口、126 抵抗、128 切片、150A,150B 車両、152,154 通信インタフェース、156,166 バッテリパック制御部、32,158,168 メモリ、162,164 PLC通信インタフェース、204 温度センサ、206 ファン制御部、208 ファン、ACL1,ACL2 電力入力ライン、BA 主バッテリ、BB1 副バッテリ、C1,C2,CH 平滑用コンデンサ、D1〜D8 ダイオード、L1 リアクトル、MG1,MG2 モータジェネレータ、N1,N2 中性点、PL1A,PL1B,PL2 電源ライン、Q1〜Q8 IGBT素子、R0,R1 制限抵抗、RY1,RY2 リレー、SL1,SL2 接地ライン、SMR,SMRP,SMRB,SMRG,SR1P,SR1B,SR1G システムメインリレー。   1 hybrid vehicle, 2 wheels, 3 power split mechanism, 4 engine, 10A, 10B1, 13, 21A, 21B, 74 voltage sensor, 12A, 12B boost converter, 14, 22 inverter, 15 U phase arm, 16 V phase arm, 17 W-phase arm, 24, 25 Current sensor, 30 Control device, 39, 39A, 39B, 130, 132, 142, 202 Battery pack, 40A, 40B Connection part, 50 input terminal, 51 Relay circuit, 52 connector, 90 External Power supply, 102, 102A, 112 connector member, 104, 108 insertion bracket, 106, 110, 116, 120 power cable, 114, 118 plug piece, 122 switch, 122A, 122B, 122C pin insertion port, 126 resistance, 128 section, 150A, 150B vehicle 152,154 Communication interface, 156,166 Battery pack controller, 32,158,168 Memory, 162,164 PLC communication interface, 204 Temperature sensor, 206 Fan controller, 208 Fan, ACL1, ACL2 Power input line, BA main battery , BB1 secondary battery, C1, C2, CH smoothing capacitor, D1 to D8 diode, L1 reactor, MG1, MG2 motor generator, N1, N2 neutral point, PL1A, PL1B, PL2 power line, Q1 to Q8 IGBT element, R0 , R1 limiting resistor, RY1, RY2 relay, SL1, SL2 ground line, SMR, SMRP, SMRB, SMRG, SR1P, SR1B, SR1G System main relay.

Claims (2)

車両であって、
電力で前記車両を駆動する駆動装置と、
前記駆動装置を制御する制御装置と、
前記駆動装置に電力を供給する第1のバッテリと、
前記車両に着脱可能に構成されたバッテリパックとを備え、
前記バッテリパックは、
前記駆動装置に電力を供給するために前記第1のバッテリに追加して使用される第2のバッテリと、
前記制御装置と通信を行なう通信装置とを含み、
前記制御装置は、前記バッテリパックが車両に接続されている場合に前記通信装置との通信が成立したときは前記第1のバッテリと前記第2のバッテリとを使用して前記駆動装置を作動させ、前記バッテリパックが車両に接続されている場合に前記通信装置との通信が成立しなかったときは、前記第2のバッテリを使用せず、前記第1のバッテリを使用して前記駆動装置を作動させる、車両。
A vehicle,
A driving device for driving the vehicle with electric power;
A control device for controlling the driving device;
A first battery for supplying power to the drive device;
A battery pack configured to be detachable from the vehicle,
The battery pack is
A second battery used in addition to the first battery to supply power to the drive device;
A communication device for communicating with the control device,
The control device operates the driving device using the first battery and the second battery when communication with the communication device is established when the battery pack is connected to a vehicle. When the battery pack is connected to a vehicle and communication with the communication device is not established, the second battery is not used and the drive device is used using the first battery. The vehicle to be operated.
車両であって、
電力で前記車両を駆動する駆動装置と、
前記駆動装置を制御する制御装置と、
前記駆動装置に電力を供給する第1のバッテリと、
前記車両に着脱可能に構成されたバッテリパックとを備え、
前記バッテリパックは、
前記駆動装置に電力を供給するために前記第1のバッテリに追加して使用される第2のバッテリと、
前記制御装置と通信を行なう通信装置とを含み、
前記制御装置は、前記バッテリパックが車両に接続されている場合に前記通信装置との通信が成立したときは前記駆動装置による車両の駆動を許可し、前記バッテリパックが車両に接続されている場合に前記通信装置との通信が成立しなかったときは、前記駆動装置による車両の駆動を禁止する、車両。
A vehicle,
A driving device for driving the vehicle with electric power;
A control device for controlling the driving device;
A first battery for supplying power to the drive device;
A battery pack configured to be detachable from the vehicle,
The battery pack is
A second battery used in addition to the first battery to supply power to the drive device;
A communication device for communicating with the control device,
The control device permits driving of the vehicle by the driving device when communication with the communication device is established when the battery pack is connected to the vehicle, and the battery pack is connected to the vehicle. The vehicle prohibits driving of the vehicle by the drive device when communication with the communication device is not established.
JP2011175144A 2011-08-10 2011-08-10 vehicle Expired - Fee Related JP5278512B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011175144A JP5278512B2 (en) 2011-08-10 2011-08-10 vehicle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011175144A JP5278512B2 (en) 2011-08-10 2011-08-10 vehicle

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2007136634A Division JP4842885B2 (en) 2007-05-23 2007-05-23 In-vehicle device control system and vehicle

Publications (2)

Publication Number Publication Date
JP2011250691A JP2011250691A (en) 2011-12-08
JP5278512B2 true JP5278512B2 (en) 2013-09-04

Family

ID=45415216

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011175144A Expired - Fee Related JP5278512B2 (en) 2011-08-10 2011-08-10 vehicle

Country Status (1)

Country Link
JP (1) JP5278512B2 (en)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829891B2 (en) * 1990-07-31 1996-03-27 富士通株式会社 Circulating seat storage box and storage method
JP2014147197A (en) * 2013-01-29 2014-08-14 Hitachi Automotive Systems Ltd Battery control device
CN103640496A (en) * 2013-07-01 2014-03-19 常熟理工学院 8 Mecanum wheel heavy-load synergy drive omni-directional mobile platform
KR101587358B1 (en) * 2014-09-02 2016-02-02 엘에스산전 주식회사 A hybrid vehicle
CN112026552B (en) * 2014-09-02 2021-10-01 葛炽昌 Electric power maintaining method for electric vehicle
JP6439976B2 (en) * 2015-04-23 2018-12-19 トヨタ自動車株式会社 Non-contact power supply battery device
KR20170053071A (en) * 2015-11-05 2017-05-15 현대자동차주식회사 Vehicle battery apparatus
IT201800009787A1 (en) * 2018-10-25 2020-04-25 Italdesign-Giugiaro SPA System for cooling removable battery modules in an electric or hybrid drive vehicle.
US11565592B2 (en) 2018-11-29 2023-01-31 Club Car, Llc Auxiliary power output for battery management system

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3013751B2 (en) * 1994-05-18 2000-02-28 三菱自動車工業株式会社 Hybrid electric vehicle
JP2006006077A (en) * 2004-06-21 2006-01-05 Nissan Motor Co Ltd Power supply device for hybrid vehicle

Also Published As

Publication number Publication date
JP2011250691A (en) 2011-12-08

Similar Documents

Publication Publication Date Title
JP4842885B2 (en) In-vehicle device control system and vehicle
JP5278512B2 (en) vehicle
JP4840197B2 (en) VEHICLE POWER DEVICE AND VEHICLE POWER DEVICE CONTROL METHOD
JP4967282B2 (en) Vehicle, vehicle power supply device and current detection device
JP4715466B2 (en) Hybrid car
JP4839722B2 (en) Vehicle power supply
JP4743342B2 (en) Electric vehicle power system, electric vehicle, and electric vehicle power system control method
JP4798120B2 (en) Vehicle power system
EP2221208B1 (en) Vehicle
JP5099230B2 (en) Electric vehicle power supply system and control method thereof
JP4798305B2 (en) Electric vehicle power supply system and control method thereof
JP5152408B2 (en) Hybrid vehicle and control method thereof
WO2010050045A1 (en) Electromotive vehicle power supply system, electromotive vehicle, and electromotive vehicle control method
JP2010098844A (en) Power supply system of vehicle
JP2009005458A (en) Vehicle power supply device and charging state estimation method of accumulation device in vehicle power supply device
JP2013183525A (en) Electric vehicle
JP2007062589A (en) Hybrid vehicle
JP5205962B2 (en) Battery capacity determination support system and battery capacity determination support method
JP4706383B2 (en) Vehicle power supply
JP5229120B2 (en) Electric vehicle power supply system and electric vehicle
JP2010029012A (en) Vehicle power supply apparatus
JP5155916B2 (en) Electric vehicle
JP5884802B2 (en) Control device for hybrid vehicle
JP2009100565A (en) Electric vehicle
JP4883012B2 (en) Vehicle power supply

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R151 Written notification of patent or utility model registration

Ref document number: 5278512

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

LAPS Cancellation because of no payment of annual fees