JP4840197B2 - VEHICLE POWER DEVICE AND VEHICLE POWER DEVICE CONTROL METHOD - Google Patents

VEHICLE POWER DEVICE AND VEHICLE POWER DEVICE CONTROL METHOD Download PDF

Info

Publication number
JP4840197B2
JP4840197B2 JP2007055910A JP2007055910A JP4840197B2 JP 4840197 B2 JP4840197 B2 JP 4840197B2 JP 2007055910 A JP2007055910 A JP 2007055910A JP 2007055910 A JP2007055910 A JP 2007055910A JP 4840197 B2 JP4840197 B2 JP 4840197B2
Authority
JP
Japan
Prior art keywords
power
power supply
voltage
vehicle
switching
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007055910A
Other languages
Japanese (ja)
Other versions
JP2008220084A (en
Inventor
良二 沖
Original Assignee
トヨタ自動車株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by トヨタ自動車株式会社 filed Critical トヨタ自動車株式会社
Priority to JP2007055910A priority Critical patent/JP4840197B2/en
Publication of JP2008220084A publication Critical patent/JP2008220084A/en
Application granted granted Critical
Publication of JP4840197B2 publication Critical patent/JP4840197B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L15/00Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles
    • B60L15/20Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed
    • B60L15/2009Methods, circuits, or devices for controlling the traction-motor speed of electrically-propelled vehicles for control of the vehicle or its driving motor to achieve a desired performance, e.g. speed, torque, programmed variation of speed for braking
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L3/00Electric devices on electrically-propelled vehicles for safety purposes; Monitoring operating variables, e.g. speed, deceleration or energy consumption
    • B60L3/0023Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train
    • B60L3/0046Detecting, eliminating, remedying or compensating for drive train abnormalities, e.g. failures within the drive train relating to electric energy storage systems, e.g. batteries or capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/10Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines
    • B60L50/16Electric propulsion with power supplied within the vehicle using propulsion power supplied by engine-driven generators, e.g. generators driven by combustion engines with provision for separate direct mechanical propulsion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/40Electric propulsion with power supplied within the vehicle using propulsion power supplied by capacitors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L50/00Electric propulsion with power supplied within the vehicle
    • B60L50/50Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells
    • B60L50/60Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries
    • B60L50/61Electric propulsion with power supplied within the vehicle using propulsion power supplied by batteries or fuel cells using power supplied by batteries by batteries charged by engine-driven generators, e.g. series hybrid electric vehicles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L53/00Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles
    • B60L53/10Methods of charging batteries, specially adapted for electric vehicles; Charging stations or on-board charging equipment therefor; Exchange of energy storage elements in electric vehicles characterised by the energy transfer between the charging station and the vehicle
    • B60L53/14Conductive energy transfer
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/12Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries responding to state of charge [SoC]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L58/00Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles
    • B60L58/10Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries
    • B60L58/18Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules
    • B60L58/21Methods or circuit arrangements for monitoring or controlling batteries or fuel cells, specially adapted for electric vehicles for monitoring or controlling batteries of two or more battery modules having the same nominal voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L7/00Electrodynamic brake systems for vehicles in general
    • B60L7/10Dynamic electric regenerative braking
    • B60L7/14Dynamic electric regenerative braking for vehicles propelled by ac motors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/10DC to DC converters
    • B60L2210/14Boost converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/30AC to DC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2210/00Converter types
    • B60L2210/40DC to AC converters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2220/00Electrical machine types; Structures or applications thereof
    • B60L2220/10Electrical machine types
    • B60L2220/14Synchronous machines
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/10Vehicle control parameters
    • B60L2240/12Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/421Speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/42Drive Train control parameters related to electric machines
    • B60L2240/423Torque
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/545Temperature
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/547Voltage
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2240/00Control parameters of input or output; Target parameters
    • B60L2240/40Drive Train control parameters
    • B60L2240/54Drive Train control parameters related to batteries
    • B60L2240/549Current
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60LPROPULSION OF ELECTRICALLY-PROPELLED VEHICLES; SUPPLYING ELECTRIC POWER FOR AUXILIARY EQUIPMENT OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRODYNAMIC BRAKE SYSTEMS FOR VEHICLES IN GENERAL; MAGNETIC SUSPENSION OR LEVITATION FOR VEHICLES; MONITORING OPERATING VARIABLES OF ELECTRICALLY-PROPELLED VEHICLES; ELECTRIC SAFETY DEVICES FOR ELECTRICALLY-PROPELLED VEHICLES
    • B60L2270/00Problem solutions or means not otherwise provided for
    • B60L2270/20Inrush current reduction, i.e. avoiding high currents when connecting the battery
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/62Hybrid vehicles
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/7072Electromobility specific charging systems or methods for batteries, ultracapacitors, supercapacitors or double-layer capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/72Electric energy management in electromobility
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T90/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02T90/10Technologies relating to charging of electric vehicles
    • Y02T90/14Plug-in electric vehicles

Abstract

<P>PROBLEM TO BE SOLVED: To provide a power unit for vehicle and a method of suppressing the power unit for vehicle which reduce the energy loss, when a plurality of accumulators are loaded. <P>SOLUTION: A power unit for vehicle is equipped with batteries BA and BB1 which are a plurality of DC power sources for supplying power to a motor generator MG2 for driving a wheel, a plurality of voltage converters 39A and 39B which are respectively connected between the plurality of DC power sources and a common power line PL2 for voltage conversion, and a controller 30 which controls the plurality of voltage converters. The controller controls the plurality of voltage converters so that each power node of the plurality of DC power sources is connected to the common power node, after having reduced the power voltage difference of the plurality of DC power sources. <P>COPYRIGHT: (C)2008,JPO&amp;INPIT

Description

この発明は、車両の電源装置および車両の電源装置の制御方法に関する。 The present invention relates to a vehicle power supply device and a control method for a vehicle power supply device.

近年、環境に配慮した自動車として、電気自動車、ハイブリッド自動車および燃料電池自動車などのように、電源装置を搭載し、その電力でモータを駆動する車両が注目されている。 2. Description of the Related Art In recent years, vehicles that are equipped with a power supply device and drive a motor with electric power, such as electric vehicles, hybrid vehicles, and fuel cell vehicles, have attracted attention as environmentally friendly vehicles.

このような車両では、外部から充電可能な構成とすることも検討されている。充電した電力で走行可能な距離を伸ばすためには、蓄電装置の大容量化が必要となる。蓄電装置を大容量にするには、多数の蓄電池を並列接続して使用することも考えられるが、充電や放電のばらつきが問題となる。   In such a vehicle, it is also considered that the vehicle can be charged from the outside. In order to extend the distance that can be traveled by the charged electric power, it is necessary to increase the capacity of the power storage device. In order to increase the capacity of the power storage device, it is conceivable to use a large number of storage batteries connected in parallel, but variations in charging and discharging become a problem.

特開2002−10502号公報(特許文献1)は、複数の蓄電池の充電と放電とを同時に行なう蓄電池用充放電装置を開示する。この蓄電池用充放電装置には、交流電源を整流する充電用整流回路と,この充電用整流回路と並列に蓄電池の電気量を上記交流電源に回生する回生用整流回路とが設けられており、さらに、充電用整流回路の出力部に、スイッチング素子を有する昇降圧コンバータが設けられている。
特開2002−10502号公報特開平8−126121号公報
特開2002−10502号公報(特許文献1)は、複数の蓄電池の充電と放電とを同時に行なう蓄電池用充放電装置を開示する。この蓄電池用充放電装置には、交流電源を整流する充電用整流回路と,この充電用整流回路と並列に蓄電池の電気量を上記交流電源に回生する回生用整流回路とが設けられており、さらに、充電用整流回路の出力部に、スイッチング素子を有する昇降圧コンバータが設けられている。
特開2002−10502号公報特開平8−126121号公報
特開2002−10502号公報(特許文献1)は、複数の蓄電池の充電と放電とを同時に行なう蓄電池用充放電装置を開示する。この蓄電池用充放電装置には、交流電源を整流する充電用整流回路と,この充電用整流回路と並列に蓄電池の電気量を上記交流電源に回生する回生用整流回路とが設けられており、さらに、充電用整流回路の出力部に、スイッチング素子を有する昇降圧コンバータが設けられている。
特開2002−10502号公報特開平8−126121号公報
Japanese Patent Laying-Open No. 2002-10502 (Patent Document 1) discloses a storage battery charging / discharging device that simultaneously charges and discharges a plurality of storage batteries. This storage battery charging / discharging device is provided with a charging rectifier circuit for rectifying an AC power source, and a regenerative rectifier circuit for regenerating the amount of electricity of the storage battery to the AC power source in parallel with the charging rectifier circuit, Furthermore, a buck-boost converter having a switching element is provided at the output of the charging rectifier circuit. Japanese Patent Laying-Open No. 2002-10502 (Patent Document 1) comprising a storage battery charging / similarly device that simultaneously charges and discharges a plurality of storage batteries. This storage battery charging / similarly device is provided with a charging rectifier circuit for rectifying an AC power source, and a regenerative rectifier circuit for regenerating the amount of electricity of the storage battery to the AC power source in parallel with the charging rectifier circuit, further, a buck-boost converter having a switching element is provided at the output of the charging rectifier circuit.
JP 2002-10502 A JP 2002-10502 A JP-A-8-126121 JP-A-8-126121

モータは、回転速度が高速になるにつれて逆起電力が増大する。モータの電源電圧が逆起電力より低いと制御性を維持できない。弱め界磁制御を行なって逆起電力をモータ電源電圧よりも低く抑えることで制御性を維持できるが、その分出力トルクは低くなってしまう。したがって、逆起電力よりもモータ電源電圧を高く維持し、制御性と高出力の両立を図るために、バッテリ電圧を昇圧コンバータで昇圧してモータに供給することも行なわれている。   The back electromotive force of the motor increases as the rotational speed increases. If the power supply voltage of the motor is lower than the back electromotive force, controllability cannot be maintained. Controllability can be maintained by performing field-weakening control and keeping the back electromotive force lower than the motor power supply voltage, but the output torque is lowered accordingly. Therefore, in order to maintain the motor power supply voltage higher than the counter electromotive force and achieve both controllability and high output, the battery voltage is boosted by a boost converter and supplied to the motor.

一方、モータの回転数が低い領域では、逆起電力がバッテリ電圧よりも十分低いので、昇圧コンバータで昇圧を行なう必要がない。昇圧コンバータは、内部にスイッチング素子を有しており、動作させるとスイッチング損失が発生する。したがって、モータの回転数が低い領域では、昇圧コンバータのスイッチングを停止させてバッテリ電圧をそのままモータに供給するようにしたい。   On the other hand, in the region where the rotational speed of the motor is low, the back electromotive force is sufficiently lower than the battery voltage, so there is no need to boost the voltage by a boost converter. The step-up converter has a switching element inside, and switching loss occurs when operated. Therefore, in a region where the rotational speed of the motor is low, it is desired to stop the switching of the boost converter and supply the battery voltage to the motor as it is.

しかしながら、複数の蓄電装置を並列に搭載する場合には、各蓄電装置の電源電圧に差が生じている場合に、昇圧コンバータを短絡状態に設定すると、高い電圧の蓄電装置から低い電圧の蓄電装置に向けて過大電流が流れてしまう。   However, in the case where a plurality of power storage devices are mounted in parallel, if there is a difference in the power supply voltage of each power storage device, setting the boost converter to a short-circuited state results in a low voltage power storage device from a high voltage power storage device Excessive current will flow toward

この発明の目的は、複数の蓄電装置を搭載する場合に、エネルギー損失が低減された車両の電源装置および車両の電源装置の制御方法を提供することである。   An object of the present invention is to provide a vehicle power supply apparatus and a vehicle power supply control method in which energy loss is reduced when a plurality of power storage devices are mounted.

この発明は、要約すると、車両の電源装置であって、車輪を駆動させるモータに電力を供給するための複数の直流電源と、複数の直流電源と共通電源ノードとの間にそれぞれ接続されて電圧変換を行なう複数の電圧変換部と、複数の電圧変換部を制御する制御装置とを備える。制御装置は、複数の直流電源の電源電圧の差を減少させた後に複数の直流電源の各電源ノードが共通電源ノードに接続されるように複数の電圧変換部を制御する。   In summary, the present invention is a power supply device for a vehicle, and a plurality of DC power supplies for supplying power to a motor for driving wheels, and a voltage connected to each of a plurality of DC power supplies and a common power supply node. A plurality of voltage conversion units that perform conversion and a control device that controls the plurality of voltage conversion units. The control device controls the plurality of voltage conversion units so that the power supply nodes of the plurality of DC power supplies are connected to the common power supply node after reducing the difference between the power supply voltages of the plurality of DC power supplies.

好ましくは、複数の電圧変換部のうちの第1の電圧変換部は、複数の直流電源のうちの第1の直流電源の電圧を昇圧して共通電源ノードに供給し得る第1の昇圧コンバータと、第1の直流電源と第1の昇圧コンバータとを接続する第1の接続部を含む。第1の接続部は、第1の直流電源と第1の昇圧コンバータとの間に配置される直列に接続された第1のリレーおよび制限抵抗と、第1の直流電源と第1の昇圧コンバータとを直接接続する第2のリレーとを含む。制御装置は、第1の直流電源と他の直流電源の電圧差が所定値以下になるまで第2のリレーを解放しかつ第1のリレーを接続した状態を保ち、第1の直流電源と他の直流電源の電圧の差が所定値以下になった後には第2のリレーを接続状態に制御する。   Preferably, the first voltage conversion unit of the plurality of voltage conversion units is configured to boost a voltage of the first DC power source among the plurality of DC power sources and supply the voltage to the common power supply node. , Including a first connection for connecting the first DC power source and the first boost converter. The first connection unit includes a first relay and a limiting resistor connected in series between the first DC power source and the first boost converter, the first DC power source, and the first boost converter. And a second relay that directly connects to each other. The control device releases the second relay and keeps the first relay connected until the voltage difference between the first DC power supply and the other DC power supply becomes a predetermined value or less. The second relay is controlled to be in a connected state after the difference in voltage between the DC power supplies becomes equal to or less than a predetermined value.

好ましくは、制御装置は、車両負荷からの車両の電源装置に対する出力要求が所定値以下である場合には、複数の直流電源の電源電圧の差を減少させ、車両負荷からの車両の電源装置に対する出力要求が所定値より大きい場合には、複数の電圧変換部の少なくともいずれかによって対応する直流電源の電源電圧を昇圧させて共通電源ノードに出力させる。   Preferably, when the output request from the vehicle load to the vehicle power supply device is equal to or less than a predetermined value, the control device reduces a difference in the power supply voltages of the plurality of DC power supplies and supplies the vehicle power supply device from the vehicle load. When the output request is larger than the predetermined value, the power supply voltage of the corresponding DC power supply is boosted and output to the common power supply node by at least one of the plurality of voltage conversion units.

好ましくは、複数の直流電源のうちの2つの直流電源は、第1、第2の蓄電装置である。第1、第2の蓄電装置にそれぞれ対応する第1、第2の電圧変換部の各々は、スイッチング素子およびコイルを含む。制御装置は、複数の電圧変換部の各々のスイッチング素子のスイッチングを制御することによって、第1、第2の蓄電装置の電圧差が減少するように一方の蓄電装置から他方の蓄電装置に対して電力を移す。   Preferably, two DC power sources among the plurality of DC power sources are the first and second power storage devices. Each of the first and second voltage converters corresponding to the first and second power storage devices includes a switching element and a coil, respectively. The control device controls switching of each switching element of the plurality of voltage conversion units, so that the voltage difference between the first and second power storage devices decreases from one power storage device to the other power storage device. Transfer power.

好ましくは、複数の直流電源のうちの2つの直流電源は、第1、第2の蓄電装置である。第1、第2の蓄電装置にそれぞれ対応する第1、第2の電圧変換部の各々は、コイルと、共通電源ノードとコイルとの間に設けられるスイッチング素子と、スイッチング素子に並列に設けられる整流素子と、コイルを流れる電流を検知する電流センサとを含む。制御装置は、第1、第2の蓄電装置のうちの電源電圧が高い方に対応する一方の電圧変換部のスイッチング素子を導通状態に制御し、他方の電圧変換部のスイッチング素子を非導通状態に制御し、他方の電圧変換部の電流センサにおいて電流が検出されたことをもって第1、第2の蓄電装置の電源電圧の差が所定値以下となったと判断する。   Preferably, two DC power sources among the plurality of DC power sources are the first and second power storage devices. Each of the first and second voltage converters corresponding to the first and second power storage devices is provided in parallel with the coil, a switching element provided between the common power supply node and the coil, and the switching element. A rectifier element and a current sensor for detecting a current flowing through the coil are included. The control device controls the switching element of one of the voltage conversion units corresponding to the higher power supply voltage of the first and second power storage devices to be in a conductive state, and the switching element of the other voltage conversion unit is in a non-conductive state When the current is detected by the current sensor of the other voltage conversion unit, it is determined that the difference between the power supply voltages of the first and second power storage devices has become a predetermined value or less.

好ましくは、複数の直流電源のうちの少なくとも1つは蓄電装置であり、車両の電源装置は、蓄電装置に対して外部電源から充電を行なうために外部電源から電力を受ける受電部をさらに備える。   Preferably, at least one of the plurality of DC power supplies is a power storage device, and the power supply device of the vehicle further includes a power receiving unit that receives power from the external power supply in order to charge the power storage device from the external power supply.

この発明は、他の局面に従うと、車輪を駆動させるモータに電力を供給するための複数の直流電源と、複数の直流電源と共通電源ノードとの間にそれぞれ接続されて電圧変換を行なう複数の電圧変換部とを備える車両の電源装置の制御方法であって、複数の直流電源の電源電圧の差を減少させるように複数の電圧変換部を制御する第1のステップと、複数の直流電源の電源電圧の差が所定値よりも小さくなった場合に、複数の直流電源の各電源ノードが共通電源ノードに接続されるように複数の電圧変換部を制御する第2のステップとを備える。   According to another aspect of the present invention, a plurality of DC power supplies for supplying power to a motor for driving a wheel, and a plurality of DC power supplies and a plurality of DC power supplies connected to a common power supply node, respectively, and perform voltage conversion. A method for controlling a power supply device for a vehicle comprising a voltage conversion unit, the first step of controlling a plurality of voltage conversion units so as to reduce a difference in power supply voltages of a plurality of DC power supplies, And a second step of controlling the plurality of voltage conversion units so that each power supply node of the plurality of DC power supplies is connected to the common power supply node when the difference between the power supply voltages becomes smaller than a predetermined value.

好ましくは、複数の電圧変換部のうちの第1の電圧変換部は、複数の直流電源のうちの第1の直流電源の電圧を昇圧して共通電源ノードに供給し得る第1の昇圧コンバータと、第1の直流電源と第1の昇圧コンバータとを接続する第1の接続部を含む。第1の接続部は、第1の直流電源と第1の昇圧コンバータとの間に配置される直列に接続された第1のリレーおよび制限抵抗と、第1の直流電源と第1の昇圧コンバータとを直接接続する第2のリレーとを含む。第1のステップは、第1の直流電源と他の直流電源の電圧差が所定値以下になるまで、第2のリレーを解放した状態を保つステップと、第1の直流電源と他の直流電源の電圧差が所定値以下になるまで、第1のリレーを接続した状態を保つステップとを含む。第2のステップは、第1の直流電源と他の直流電源の電圧の差が所定値以下になった後には第2のリレーを接続状態に制御するステップを含む。   Preferably, the first voltage conversion unit of the plurality of voltage conversion units is configured to boost a voltage of the first DC power source among the plurality of DC power sources and supply the voltage to the common power supply node. , Including a first connection for connecting the first DC power source and the first boost converter. The first connection unit includes a first relay and a limiting resistor connected in series between the first DC power source and the first boost converter, the first DC power source, and the first boost converter. And a second relay that directly connects to each other. The first step includes a step of keeping the second relay open until a voltage difference between the first DC power source and the other DC power source becomes a predetermined value or less, and the first DC power source and the other DC power source. Until the first voltage difference becomes equal to or less than a predetermined value. The second step includes a step of controlling the second relay to the connected state after the difference between the voltage of the first DC power source and the other DC power source becomes a predetermined value or less.

好ましくは、制御方法は、車両負荷からの車両の電源装置に対する出力要求がしきい値以下であるか否かを判断するステップをさらに備える。第1のステップは、出力要求がしきい値以下である場合に実行される。   Preferably, the control method further includes a step of determining whether an output request from the vehicle load to the power supply device of the vehicle is equal to or less than a threshold value. The first step is performed when the output request is below a threshold value.

好ましくは、複数の直流電源のうちの2つの直流電源は、第1、第2の蓄電装置である。第1、第2の蓄電装置にそれぞれ対応する第1、第2の電圧変換部の各々は、スイッチング素子およびコイルを含む。第1のステップは、複数の電圧変換部の各々のスイッチング素子のスイッチングを制御することによって、第1、第2の蓄電装置の電圧差が減少するように一方の蓄電装置から他方の蓄電装置に対して電力を移す。   Preferably, two DC power sources among the plurality of DC power sources are the first and second power storage devices. Each of the first and second voltage converters corresponding to the first and second power storage devices includes a switching element and a coil, respectively. In the first step, from one power storage device to the other power storage device so as to reduce the voltage difference between the first and second power storage devices by controlling switching of each switching element of the plurality of voltage conversion units. In contrast, power is transferred.

好ましくは、複数の直流電源のうちの2つの直流電源は、第1、第2の蓄電装置である。第1、第2の蓄電装置にそれぞれ対応する第1、第2の電圧変換部の各々は、コイルと、共通電源ノードとコイルとの間に設けられるスイッチング素子と、スイッチング素子に並列に設けられる整流素子と、コイルを流れる電流を検知する電流センサとを含む。第1のステップは、第1、第2の蓄電装置のうちの電源電圧が高い方に対応する一方の電圧変換部のスイッチング素子を導通状態に制御するステップと、他方の電圧変換部のスイッチング素子を非導通状態に制御するステップと、他方の電圧変換部の電流センサにおいて電流が検出されたことをもって第1、第2の蓄電装置の電源電圧の差が所定値以下となったと判断するステップとを含む。   Preferably, two DC power sources among the plurality of DC power sources are the first and second power storage devices. Each of the first and second voltage converters corresponding to the first and second power storage devices is provided in parallel with the coil, a switching element provided between the common power supply node and the coil, and the switching element. A rectifier element and a current sensor for detecting a current flowing through the coil are included. The first step is a step of controlling the switching element of one of the voltage conversion units corresponding to the higher one of the first and second power storage devices to the conductive state, and the switching element of the other voltage conversion unit And a step of determining that the difference between the power supply voltages of the first and second power storage devices is equal to or less than a predetermined value when a current is detected by the current sensor of the other voltage converter. including.

好ましくは、複数の直流電源のうちの少なくとも1つは蓄電装置である。車両の電源装置は、蓄電装置に対して外部電源から充電を行なうために外部電源から電力を受ける受電部をさらに備える。   Preferably, at least one of the plurality of DC power supplies is a power storage device. The power supply device for a vehicle further includes a power receiving unit that receives power from the external power supply in order to charge the power storage device from the external power supply.

本発明によれば、複数の蓄電装置を搭載する場合に、エネルギー損失が低減され効率のよい走行が実現できる。 According to the present invention, when a plurality of power storage devices are mounted, energy loss is reduced and efficient traveling can be realized.

以下、本発明の実施の形態について図面を参照しながら詳細に説明する。なお、図中同一または相当部分には同一符号を付してその説明は繰返さない。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. In the drawings, the same or corresponding parts are denoted by the same reference numerals and description thereof will not be repeated.

図1は、本発明の実施の形態に係る車両1の主たる構成を示す図である。
図1を参照して、車両1は、蓄電装置であるバッテリBA,BB1と、電圧変換部39A,39Bと、平滑用コンデンサCHと、電圧センサ10A,10B1,13と、インバータ14,22と、エンジン4と、モータジェネレータMG1,MG2と、動力分割機構3と、車輪2と、制御装置30とを含む。
FIG. 1 is a diagram showing a main configuration of a vehicle 1 according to an embodiment of the present invention.
Referring to FIG. 1, vehicle 1 includes batteries BA and BB1, which are power storage devices, voltage converters 39A and 39B, a smoothing capacitor CH, voltage sensors 10A and 10B1 and 13, inverters 14 and 22, Engine 4, motor generators MG <b> 1, MG <b> 2, power split mechanism 3, wheels 2, and control device 30 are included. 1, vehicle 1 includes batteries BA and BB1, which are power storage devices, voltage converters 39A and 39B, a smoothing capacitor CH, voltage sensors 10A and 10B1 and 13, inverters 14 and 22, Engine 4, motor generators MG <b> 1, MG <b> 2, power split mechanism 3, wheels 2, and control device 30 are included.

電圧変換部39A,39Bは、昇圧コンバータ12A,12Bと、平滑用コンデンサC1,C2と、電圧センサ21A,21Bとを含む。 Voltage converters 39A and 39B include boost converters 12A and 12B, smoothing capacitors C1 and C2, and voltage sensors 21A and 21B.

この車両に搭載される蓄電装置は外部から充電が可能である。このために、車両1は、さらに、電力入力ラインACL1,ACL2と、リレー回路51と、入力端子50と、電圧センサ74とを含む。   The power storage device mounted on the vehicle can be charged from the outside. For this purpose, vehicle 1 further includes power input lines ACL <b> 1 and ACL <b> 2, relay circuit 51, input terminal 50, and voltage sensor 74.

リレー回路51は、リレーRY1,RY2を含む。リレーRY1,RY2としては、たとえば、機械的な接点リレーを用いることができるが、半導体リレーを用いてもよい。そして、リレーRY1の一端に電力入力ラインACL1の一方端が接続され、電力入力ラインACL1の他方端は、モータジェネレータMG1の三相コイルの中性点N1に接続される。また、リレーRY2の一端に電力入力ラインACL2の一方端が接続され、電力入力ラインACL2の他方端は、モータジェネレータMG2の三相コイルの中性点N2に接続される。さらに、リレーRY1,RY2の他端に入力端子50が接続される。   Relay circuit 51 includes relays RY1 and RY2. As relays RY1 and RY2, for example, mechanical contact relays can be used, but semiconductor relays may also be used. Then, one end of power input line ACL1 is connected to one end of relay RY1, and the other end of power input line ACL1 is connected to neutral point N1 of three-phase coil of motor generator MG1. Further, one end of power input line ACL2 is connected to one end of relay RY2, and the other end of power input line ACL2 is connected to neutral point N2 of the three-phase coil of motor generator MG2. Further, the input terminal 50 is connected to the other end of the relays RY1, RY2.

リレー回路51は、制御装置30からの入力許可信号ENが活性化されると、入力端子50を電力入力ラインACL1,ACL2と電気的に接続する。具体的には、リレー回路51は、入力許可信号ENが活性化されると、リレーRY1,RY2をオンし、入力許可信号ENが非活性化されると、リレーRY1,RY2をオフする。   Relay circuit 51 electrically connects input terminal 50 to power input lines ACL1 and ACL2 when input permission signal EN from control device 30 is activated. Specifically, relay circuit 51 turns on relays RY1, RY2 when input permission signal EN is activated, and turns off relays RY1, RY2 when input permission signal EN is deactivated.

入力端子50は、車両外部の商用電源90をこのハイブリッド車両1に接続するための端子である。そして、このハイブリッド車両1においては、入力端子50に接続される車両外部の商用電源90からバッテリBAまたはBB1を充電することができる。   The input terminal 50 is a terminal for connecting the commercial power source 90 outside the vehicle to the hybrid vehicle 1. In this hybrid vehicle 1, the battery BA or BB 1 can be charged from a commercial power supply 90 connected to the input terminal 50 outside the vehicle.

なお、以上の構成は、2つの回転電機のステータコイルの中性点を利用するものであるが、そのような構成に代えて、たとえば、AC100Vの商用電源に接続するために車載型または車外に設置されるバッテリ充電装置を使用しても良いし、また昇圧コンバータ12A,12Bを合わせて交流直流変換装置として機能させる方式を用いても良い。   The above configuration uses the neutral point of the stator coil of the two rotating electrical machines. Instead of such a configuration, for example, in order to connect to a commercial power supply of AC 100V, An installed battery charging device may be used, or a method in which the boost converters 12A and 12B are combined to function as an AC / DC converter may be used.

平滑用コンデンサC1は、電源ラインPL1Aと接地ラインSL2間に接続される。電圧センサ21Aは、平滑用コンデンサC1の両端間の電圧VLAを検出して制御装置30に対して出力する。昇圧コンバータ12Aは、平滑用コンデンサC1の端子間電圧を昇圧する。   Smoothing capacitor C1 is connected between power supply line PL1A and ground line SL2. The voltage sensor 21 </ b> A detects the voltage VLA across the smoothing capacitor C <b> 1 and outputs it to the control device 30. Boost converter 12A boosts the voltage across terminals of smoothing capacitor C1.

平滑用コンデンサC2は、電源ラインPL1Bと接地ラインSL2間に接続される。電圧センサ21Bは、平滑用コンデンサC2の両端間の電圧VLBを検出して制御装置30に対して出力する。昇圧コンバータ12Bは、平滑用コンデンサC2の端子間電圧を昇圧する。   Smoothing capacitor C2 is connected between power supply line PL1B and ground line SL2. The voltage sensor 21B detects the voltage VLB across the smoothing capacitor C2 and outputs it to the control device 30. Boost converter 12B boosts the voltage across terminals of smoothing capacitor C2.

平滑用コンデンサCHは、昇圧コンバータ12A,12Bによって昇圧された電圧を平滑化する。電圧センサ13は、平滑用コンデンサCHの端子間電圧VHを検知して制御装置30に出力する。   Smoothing capacitor CH smoothes the voltage boosted by boost converters 12A and 12B. The voltage sensor 13 detects the inter-terminal voltage VH of the smoothing capacitor CH and outputs it to the control device 30.

インバータ14は、昇圧コンバータ12Bまたは12Aから与えられる直流電圧を三相交流電圧に変換してモータジェネレータMG1に出力する。インバータ22は、昇圧コンバータ12Bまたは12Aから与えられる直流電圧を三相交流電圧に変換してモータジェネレータMG2に出力する。   Inverter 14 converts the DC voltage applied from boost converter 12B or 12A into a three-phase AC voltage and outputs the same to motor generator MG1. Inverter 22 converts the DC voltage applied from boost converter 12B or 12A into a three-phase AC voltage and outputs the same to motor generator MG2.

動力分割機構3は、エンジン4とモータジェネレータMG1,MG2に結合されてこれらの間で動力を分配する機構である。たとえば動力分割機構としてはサンギヤ、プラネタリキャリヤ、リングギヤの3つの回転軸を有する遊星歯車機構を用いることができる。遊星歯車機構は、3つの回転軸のうち2つの回転軸の回転が定まれば、他の1つの回転軸の回転は強制的に定まる。この3つの回転軸がエンジン4、モータジェネレータMG1,MG2の各回転軸にそれぞれ接続される。なおモータジェネレータMG2の回転軸は、図示しない減速ギヤや差動ギヤによって車輪2に結合されている。また動力分割機構3の内部にモータジェネレータMG2の回転軸に対する減速機をさらに組み込んだり、自動変速機を組み込んだりしてもよい。   Power split device 3 is a mechanism that is coupled to engine 4 and motor generators MG1 and MG2 and distributes power between them. For example, as the power split mechanism, a planetary gear mechanism having three rotating shafts of a sun gear, a planetary carrier, and a ring gear can be used. In the planetary gear mechanism, if rotation of two of the three rotation shafts is determined, rotation of the other one rotation shaft is forcibly determined. These three rotation shafts are connected to the rotation shafts of engine 4 and motor generators MG1, MG2, respectively. The rotating shaft of motor generator MG2 is coupled to wheel 2 by a reduction gear and a differential gear (not shown). Further, a reduction gear for the rotation shaft of motor generator MG2 may be further incorporated in power split mechanism 3, or an automatic transmission may be incorporated.

電圧変換部39Aは、正極側に設けられる接続部40Aと、負極側に設けられる接続部であるシステムメインリレーSMRGとを含む。接続部40Aは、バッテリBAの正極と電源ラインPL1Aとの間に接続されるシステムメインリレーSMRBと、システムメインリレーSMRBと並列接続される直列に接続されたシステムメインリレーSMRPおよび制限抵抗R0とを含む。システムメインリレーSMRGは、バッテリBAの負極(接地ラインSL1)と接地ラインSL2との間に接続される。   Voltage conversion unit 39A includes a connection unit 40A provided on the positive electrode side and a system main relay SMRG that is a connection unit provided on the negative electrode side. Connection unit 40A includes a system main relay SMRB connected between the positive electrode of battery BA and power supply line PL1A, a system main relay SMRP connected in series with system main relay SMRB, and a limiting resistor R0. Including. System main relay SMRG is connected between a negative electrode (ground line SL1) of battery BA and ground line SL2.

システムメインリレーSMRP,SMRB,SMRGは、制御装置30から与えられる制御信号CONT1〜CONT3にそれぞれ応じて導通/非導通状態が制御される。   System main relays SMRP, SMRB, and SMRG are controlled to be in a conductive / non-conductive state in response to control signals CONT1 to CONT3 supplied from control device 30, respectively.

電圧センサ10Aは、バッテリBAの端子間の電圧VAを測定する。図示しないが、電圧センサ10AとともにバッテリBAの充電状態を監視するために、バッテリBAに流れる電流を検知する電流センサが設けられている。バッテリBAとしては、たとえば、鉛蓄電池、ニッケル水素電池、リチウムイオン電池等の二次電池や、電気二重層コンデンサ等の大容量キャパシタなどを用いることができる。   Voltage sensor 10A measures voltage VA between the terminals of battery BA. Although not shown, in order to monitor the charging state of the battery BA together with the voltage sensor 10A, a current sensor for detecting a current flowing through the battery BA is provided. As the battery BA, for example, a secondary battery such as a lead storage battery, a nickel metal hydride battery, or a lithium ion battery, or a large-capacity capacitor such as an electric double layer capacitor can be used.

電圧変換部39Bは、正極側に設けられる接続部40Bと、負極側に設けられる接続部であるシステムメインリレーSR1Gとを含む。接続部40Bは、バッテリBB1の正極と電源ラインPL1Bとの間に接続されるシステムメインリレーSR1Bと、システムメインリレーSR1Bと並列接続される直列に接続されたシステムメインリレーSR1Pおよび制限抵抗R1とを含む。システムメインリレーSR1Gは、バッテリBB1の負極と接地ラインSL2との間に接続される。   Voltage conversion unit 39B includes a connection part 40B provided on the positive electrode side and a system main relay SR1G which is a connection part provided on the negative electrode side. Connection unit 40B includes a system main relay SR1B connected between the positive electrode of battery BB1 and power supply line PL1B, a system main relay SR1P connected in series with system main relay SR1B, and a limiting resistor R1. Including. System main relay SR1G is connected between the negative electrode of battery BB1 and ground line SL2.

システムメインリレーSR1P,SR1B,SR1Gは、制御装置30から与えられる制御信号CONT4〜CONT6にそれぞれ応じて導通/非導通状態が制御される。 System main relays SR1P, SR1B, and SR1G are controlled to be in a conductive / non-conductive state according to control signals CONT4 to CONT6 provided from control device 30, respectively.

接地ラインSL2は、後に説明するように昇圧コンバータ12A,12Bの中を通ってインバータ14および22側に延びている。 As will be described later, ground line SL2 extends through boost converters 12A and 12B to inverters 14 and 22 side.

電圧センサ10B1は、バッテリBB1の端子間の電圧VBB1を測定する。図示しないが、電圧センサ10B1とともにバッテリBB1の充電状態を監視するために、各バッテリに流れる電流を検知する電流センサが設けられている。バッテリBB1としては、たとえば、鉛蓄電池、ニッケル水素電池、リチウムイオン電池等の二次電池や、電気二重層コンデンサ等の大容量キャパシタなどを用いることができる。   Voltage sensor 10B1 measures voltage VBB1 between the terminals of battery BB1. Although not shown, in order to monitor the charging state of the battery BB1 together with the voltage sensor 10B1, a current sensor for detecting a current flowing through each battery is provided. As the battery BB1, for example, a secondary battery such as a lead storage battery, a nickel metal hydride battery, or a lithium ion battery, or a large capacity capacitor such as an electric double layer capacitor can be used.

インバータ14は、電源ラインPL2と接地ラインSL2に接続されている。インバータ14は、昇圧コンバータ12Aおよび12Bから昇圧された電圧を受けて、たとえばエンジン4を始動させるために、モータジェネレータMG1を駆動する。また、インバータ14は、エンジン4から伝達される動力によってモータジェネレータMG1で発電された電力を昇圧コンバータ12Aおよび12Bに戻す。このとき昇圧コンバータ12Aおよび12Bは、降圧回路として動作するように制御装置30によって制御される。   Inverter 14 is connected to power supply line PL2 and ground line SL2. Inverter 14 receives the boosted voltage from boost converters 12A and 12B, and drives motor generator MG1 to start engine 4, for example. Inverter 14 returns the electric power generated by motor generator MG1 by the power transmitted from engine 4 to boost converters 12A and 12B. At this time, boost converters 12A and 12B are controlled by control device 30 so as to operate as a step-down circuit.

電流センサ24は、モータジェネレータMG1に流れる電流をモータ電流値MCRT1として検出し、モータ電流値MCRT1を制御装置30へ出力する。   Current sensor 24 detects the current flowing through motor generator MG1 as motor current value MCRT1, and outputs motor current value MCRT1 to control device 30.

インバータ22は、インバータ14と並列的に、電源ラインPL2と接地ラインSL2に接続されている。インバータ22は車輪2を駆動するモータジェネレータMG2に対して昇圧コンバータ12Aおよび12Bの出力する直流電圧を三相交流電圧に変換して出力する。またインバータ22は、回生制動に伴い、モータジェネレータMG2において発電された電力を昇圧コンバータ12Aおよび12Bに戻す。このとき昇圧コンバータ12Aおよび12Bは、降圧回路として動作するように制御装置30によって制御される。   Inverter 22 is connected to power supply line PL2 and ground line SL2 in parallel with inverter 14. Inverter 22 converts the DC voltage output from boost converters 12 </ b> A and 12 </ b> B into a three-phase AC voltage and outputs the same to motor generator MG <b> 2 driving wheel 2. Inverter 22 returns the electric power generated in motor generator MG2 to boost converters 12A and 12B in accordance with regenerative braking. At this time, boost converters 12A and 12B are controlled by control device 30 so as to operate as a step-down circuit.

電流センサ25は、モータジェネレータMG2に流れる電流をモータ電流値MCRT2として検出し、モータ電流値MCRT2を制御装置30へ出力する。   Current sensor 25 detects the current flowing through motor generator MG2 as motor current value MCRT2, and outputs motor current value MCRT2 to control device 30.

制御装置30は、モータジェネレータMG1,MG2の各トルク指令値および回転速度、電圧VBA,VBB1,VBB2,VLA,VLB,VHの各値、モータ電流値MCRT1,MCRT2および起動信号IGONを受ける。そして制御装置30は、昇圧コンバータ12Bに対して昇圧指示を行なう制御信号PWUB,降圧指示を行なう制御信号PWDBおよび動作禁止を指示するシャットダウン信号を出力する。   Control device 30 receives torque command values and rotational speeds of motor generators MG1, MG2, voltages VBA, VBB1, VBB2, VLA, VLB, VH, motor current values MCRT1, MCRT2, and start signal IGON. Control device 30 outputs a control signal PWUB for instructing boosting to boost converter 12B, a control signal PWDB for instructing step-down, and a shutdown signal for instructing prohibition of operation.

さらに、制御装置30は、インバータ14に対して昇圧コンバータ12A,12Bの出力である直流電圧を、モータジェネレータMG1を駆動するための交流電圧に変換する駆動指示を行なう制御信号PWMI1と、モータジェネレータMG1で発電された交流電圧を直流電圧に変換して昇圧コンバータ12A,12B側に戻す回生指示を行なう制御信号PWMC1とを出力する。   Further, control device 30 provides control signal PWMI1 for instructing inverter 14 to convert a DC voltage, which is the output of boost converters 12A and 12B, into an AC voltage for driving motor generator MG1, and motor generator MG1. And outputs a control signal PWMC1 for instructing regeneration to convert the AC voltage generated in step S1 to a DC voltage and return it to the boost converters 12A and 12B.

同様に制御装置30は、インバータ22に対してモータジェネレータMG2を駆動するための交流電圧に直流電圧を変換する駆動指示を行なう制御信号PWMI2と、モータジェネレータMG2で発電された交流電圧を直流電圧に変換して昇圧コンバータ12A,12B側に戻す回生指示を行なう制御信号PWMC2とを出力する。   Similarly, control device 30 converts control signal PWMI2 for instructing inverter 22 to drive to convert DC voltage into AC voltage for driving motor generator MG2, and AC voltage generated by motor generator MG2 to DC voltage. A control signal PWMC2 for instructing regeneration to be converted and returned to the boost converters 12A and 12B is output.

図2は、図1のインバータ14および22の詳細な構成を示す回路図である。
図1、図2を参照して、インバータ14は、U相アーム15と、V相アーム16と、W相アーム17とを含む。U相アーム15,V相アーム16,およびW相アーム17は、電源ラインPL2と接地ラインSL2との間に並列に接続される。
FIG. 2 is a circuit diagram showing a detailed configuration of inverters 14 and 22 in FIG.
Referring to FIGS. 1 and 2, inverter 14 includes a U-phase arm 15, a V-phase arm 16, and a W-phase arm 17. U-phase arm 15, V-phase arm 16, and W-phase arm 17 are connected in parallel between power supply line PL2 and ground line SL2.

U相アーム15は、電源ラインPL2と接地ラインSL2との間に直列接続されたIGBT素子Q3,Q4と、IGBT素子Q3,Q4とそれぞれ並列に接続されるダイオードD3,D4とを含む。ダイオードD3のカソードはIGBT素子Q3のコレクタと接続され、ダイオードD3のアノードはIGBT素子Q3のエミッタと接続される。ダイオードD4のカソードはIGBT素子Q4のコレクタと接続され、ダイオードD4のアノードはIGBT素子Q4のエミッタと接続される。   U-phase arm 15 includes IGBT elements Q3 and Q4 connected in series between power supply line PL2 and ground line SL2, and diodes D3 and D4 connected in parallel with IGBT elements Q3 and Q4, respectively. The cathode of diode D3 is connected to the collector of IGBT element Q3, and the anode of diode D3 is connected to the emitter of IGBT element Q3. The cathode of diode D4 is connected to the collector of IGBT element Q4, and the anode of diode D4 is connected to the emitter of IGBT element Q4.

V相アーム16は、電源ラインPL2と接地ラインSL2との間に直列接続されたIGBT素子Q5,Q6と、IGBT素子Q5,Q6とそれぞれ並列に接続されるダイオードD5,D6とを含む。ダイオードD5のカソードはIGBT素子Q5のコレクタと接続され、ダイオードD5のアノードはIGBT素子Q5のエミッタと接続される。ダイオードD6のカソードはIGBT素子Q6のコレクタと接続され、ダイオードD6のアノードはIGBT素子Q6のエミッタと接続される。   V-phase arm 16 includes IGBT elements Q5 and Q6 connected in series between power supply line PL2 and ground line SL2, and diodes D5 and D6 connected in parallel with IGBT elements Q5 and Q6, respectively. The cathode of diode D5 is connected to the collector of IGBT element Q5, and the anode of diode D5 is connected to the emitter of IGBT element Q5. The cathode of diode D6 is connected to the collector of IGBT element Q6, and the anode of diode D6 is connected to the emitter of IGBT element Q6.

W相アーム17は、電源ラインPL2と接地ラインSL2との間に直列接続されたIGBT素子Q7,Q8と、IGBT素子Q7,Q8とそれぞれ並列に接続されるダイオードD7,D8とを含む。ダイオードD7のカソードはIGBT素子Q7のコレクタと接続され、ダイオードD7のアノードはIGBT素子Q7のエミッタと接続される。ダイオードD8のカソードはIGBT素子Q8のコレクタと接続され、ダイオードD8のアノードはIGBT素子Q8のエミッタと接続される。   W-phase arm 17 includes IGBT elements Q7 and Q8 connected in series between power supply line PL2 and ground line SL2, and diodes D7 and D8 connected in parallel with IGBT elements Q7 and Q8, respectively. The cathode of diode D7 is connected to the collector of IGBT element Q7, and the anode of diode D7 is connected to the emitter of IGBT element Q7. The cathode of diode D8 is connected to the collector of IGBT element Q8, and the anode of diode D8 is connected to the emitter of IGBT element Q8.

各相アームの中間点は、モータジェネレータMG1の各相コイルの各相端に接続されている。すなわち、モータジェネレータMG1は、三相の永久磁石同期モータであり、U,V,W相の3つのコイルは各々一方端が中点に共に接続されている。そして、U相コイルの他方端がIGBT素子Q3,Q4の接続ノードから引出されたラインULに接続される。またV相コイルの他方端がIGBT素子Q5,Q6の接続ノードから引出されたラインVLに接続される。またW相コイルの他方端がIGBT素子Q7,Q8の接続ノードから引出されたラインWLに接続される。   An intermediate point of each phase arm is connected to each phase end of each phase coil of motor generator MG1. That is, motor generator MG1 is a three-phase permanent magnet synchronous motor, and one end of each of three coils of U, V, and W phases is connected to the midpoint. The other end of the U-phase coil is connected to a line UL drawn from the connection node of IGBT elements Q3 and Q4. The other end of the V-phase coil is connected to a line VL drawn from the connection node of IGBT elements Q5 and Q6. The other end of the W-phase coil is connected to a line WL drawn from the connection node of IGBT elements Q7 and Q8.

なお、図1のインバータ22についても、モータジェネレータMG2に接続される点が異なるが、内部の回路構成についてはインバータ14と同様であるので詳細な説明は繰返さない。また、図2には、インバータに制御信号PWMI,PWMCが与えられることが記載されているが、記載が複雑になるのを避けるためであり、図1に示されるように、別々の制御信号PWMI1,PWMC1と制御信号PWMI2,PWMC2がそれぞれインバータ14,22に入力される。   1 also differs in that it is connected to motor generator MG2, but the internal circuit configuration is the same as that of inverter 14, and therefore detailed description thereof will not be repeated. FIG. 2 shows that the control signals PWMI and PWMC are given to the inverter, but this is for avoiding complicated description. As shown in FIG. 1, separate control signals PWMI1 are used. , PWMC1 and control signals PWMI2 and PWMC2 are input to inverters 14 and 22, respectively.

図3は、図1の昇圧コンバータ12Aおよび12Bの詳細な構成を示す回路図である。
図1、図3を参照して、昇圧コンバータ12Aは、一方端が電源ラインPL1Aに接続されるリアクトルL1と、電源ラインPL2と接地ラインSL2との間に直列に接続されるIGBT素子Q1,Q2と、IGBT素子Q1,Q2にそれぞれ並列に接続されるダイオードD1,D2とを含む。
FIG. 3 is a circuit diagram showing a detailed configuration of boost converters 12A and 12B in FIG.
1 and 3, boost converter 12A includes a reactor L1 having one end connected to power supply line PL1A, and IGBT elements Q1, Q2 connected in series between power supply line PL2 and ground line SL2. And diodes D1, D2 connected in parallel to IGBT elements Q1, Q2, respectively.

リアクトルL1の他方端はIGBT素子Q1のエミッタおよびIGBT素子Q2のコレクタに接続される。ダイオードD1のカソードはIGBT素子Q1のコレクタと接続され、ダイオードD1のアノードはIGBT素子Q1のエミッタと接続される。ダイオードD2のカソードはIGBT素子Q2のコレクタと接続され、ダイオードD2のアノードはIGBT素子Q2のエミッタと接続される。   Reactor L1 has the other end connected to the emitter of IGBT element Q1 and the collector of IGBT element Q2. The cathode of diode D1 is connected to the collector of IGBT element Q1, and the anode of diode D1 is connected to the emitter of IGBT element Q1. The cathode of diode D2 is connected to the collector of IGBT element Q2, and the anode of diode D2 is connected to the emitter of IGBT element Q2.

なお、図1の昇圧コンバータ12Bについては、電源ラインPL1Aに代えて電源ラインPL1Bに接続される点が昇圧コンバータ12Aと異なるが、内部の回路構成については昇圧コンバータ12Aと同様であるので詳細な説明は繰返さない。また、図3には、昇圧コンバータに制御信号PWU,PWDが与えられることが記載されているが、記載が複雑になるのを避けるためであり、図1に示されるように、別々の制御信号PWUA,PWDAと制御信号PWUB,PWDBがそれぞれインバータ14,22に入力される。   The boost converter 12B in FIG. 1 is different from the boost converter 12A in that it is connected to the power supply line PL1B instead of the power supply line PL1A. Does not repeat. FIG. 3 shows that the control signals PWU and PWD are given to the boost converter, but this is for the purpose of avoiding complicated description. As shown in FIG. PWUA and PWDA and control signals PWUB and PWDB are input to inverters 14 and 22, respectively.

ここで、再び図1を参照して、本願実施の形態に共通する動作を説明する。本願実施の形態の車両の電源装置は、車輪を駆動させるモータジェネレータMG2に電力を供給するための複数の直流電源であるバッテリBA,BB1と、複数の直流電源と共通電源ラインPL2との間にそれぞれ接続されて電圧変換を行なう複数の電圧変換部39A,39Bと、複数の電圧変換部を制御する制御装置30とを備える。制御装置は、複数の直流電源の電源電圧の差を減少させた後に複数の直流電源の各電源ノードが共通電源ノードに接続されるように複数の電圧変換部を制御する。   Here, with reference to FIG. 1 again, operations common to the embodiments of the present application will be described. The power supply device for a vehicle according to the present embodiment includes batteries BA and BB1, which are a plurality of DC power supplies for supplying power to motor generator MG2 for driving wheels, and a plurality of DC power supplies and a common power supply line PL2. A plurality of voltage conversion units 39A and 39B that are connected to perform voltage conversion and a control device 30 that controls the plurality of voltage conversion units are provided. The control device controls the plurality of voltage conversion units so that the power supply nodes of the plurality of DC power supplies are connected to the common power supply node after reducing the difference between the power supply voltages of the plurality of DC power supplies.

電源電圧の差を減少させた後に、複数の直流電源の各電源ノードが共通電源ノードに接続されるので、接続時に電源電圧が高い直流電源から電源電圧が低い直流電源に過大な電流が流れることが防止される。 After reducing the difference in power supply voltage, each power supply node of multiple DC power supplies is connected to a common power supply node, so that an excessive current flows from a DC power supply with a high power supply voltage to a DC power supply with a low power supply voltage at the time of connection. Is prevented.

[実施の形態1]
図4は、本発明の実施の形態1における電圧変換部39A,39Bに対する制御を説明するためのフローチャートである。 FIG. 4 is a flowchart for explaining control for the voltage conversion units 39A and 39B according to the first embodiment of the present invention. このフローチャートの処理は、所定のメインルーチンから一定時間毎または所定の条件が成立する毎に呼び出されて実行される。 The processing of this flowchart is called and executed from a predetermined main routine at regular time intervals or every time a predetermined condition is satisfied. [Embodiment 1] [Embodiment 1]
FIG. 4 is a flowchart for explaining control on voltage conversion units 39A and 39B in the first embodiment of the present invention. The processing of this flowchart is called and executed from a predetermined main routine every predetermined time or every time a predetermined condition is satisfied. FIG. 4 is a flowchart for explaining control on voltage conversion units 39A and 39B in the first embodiment of the present invention. The processing of this flowchart is called and executed from a predetermined main routine every predetermined time or every time a predetermined condition is satisfied ..

図1、図4を参照して、このフローチャートの処理が開始されると、ステップS1において上アームON要求が有るか否かが判断される。上アームとは、昇圧コンバータ12Aおよび12Bの各々のIGBT素子Q1のことである。また上アームON要求というのは、昇圧コンバータのIGBT素子Q1,Q2のスイッチングを停止し、上アームであるIGBT素子Q1を導通状態に固定し、下アームであるIGBT素子Q2を非導通状態に固定することによって、電源ラインPL2と電源ラインPL1AまたはPL1Bとが接続された状態にすることである。昇圧が不要な場合にはこのようにすることによって、スイッチング損失が低減され、エネルギー効率が改善される。   Referring to FIGS. 1 and 4, when the processing of this flowchart is started, it is determined in step S1 whether or not there is an upper arm ON request. Upper arm refers to IGBT element Q1 of each of boost converters 12A and 12B. The upper arm ON request is to stop the switching of the IGBT elements Q1 and Q2 of the boost converter, fix the IGBT element Q1 which is the upper arm to the conductive state, and fix the IGBT element Q2 which is the lower arm to the non-conductive state. By doing so, the power supply line PL2 and the power supply line PL1A or PL1B are connected. When boosting is unnecessary, this is done to reduce switching loss and improve energy efficiency.

たとえば、通電電流が0Aであるときに昇圧コンバータのスイッチングをしていると消費電力は45W程度である。これが上アームON状態にすると消費電力は0Wとなる。また、通電電流が20Aであるときに昇圧コンバータのスイッチングをしていると消費電力は100W程度である。これが上アームON状態にすると消費電力は25Wに低減される。   For example, if the boost converter is switched when the energization current is 0 A, the power consumption is about 45 W. When this is in the upper arm ON state, the power consumption is 0 W. Further, when the boost converter is switched when the energization current is 20 A, the power consumption is about 100 W. When this is in the upper arm ON state, the power consumption is reduced to 25W.

ただし、昇圧コンバータで昇圧が不要となる条件は限られている。
図5は、昇圧コンバータで昇圧が不要となる条件について説明するための図である。
However, the conditions under which boosting is unnecessary in the boost converter are limited.
FIG. 5 is a diagram for explaining conditions under which boosting is unnecessary in the boost converter.

図5を参照して、横軸はモータ回転数Nm(rpm)であり、波形W1は、モータの最大パワー曲線であり、これに対する縦軸はモータトルクTm(N・m)である。また、波形W2は昇圧コンバータの出力電圧VHの制御値であり、これに対する縦軸はVH(V)である。   Referring to FIG. 5, the horizontal axis represents the motor rotation speed Nm (rpm), the waveform W1 represents the maximum motor power curve, and the vertical axis represents the motor torque Tm (N · m). The waveform W2 is a control value of the output voltage VH of the boost converter, and the vertical axis for this is VH (V).

モータの逆起電力は回転数が増加するにしたがって増加する。しかし、波形W2は、回転数が0からNm0までのしばらくの間は、バッテリ電圧が逆起電力よりも高いので、バッテリ電圧VBAT(一定値)である。   The back electromotive force of the motor increases as the rotational speed increases. However, the waveform W2 is the battery voltage VBAT (constant value) because the battery voltage is higher than the counter electromotive force for a while from 0 to Nm0.

回転数が増加して逆起電力がバッテリ電圧VBATを超えるようになると、回転数の増加にしたがって昇圧コンバータの出力電圧VHが逆起電力よりも高い電圧になるように制御される。   When the rotational speed increases and the back electromotive force exceeds the battery voltage VBAT, the output voltage VH of the boost converter is controlled to be higher than the back electromotive force as the rotational speed increases.

しかし、昇圧コンバータの昇圧電圧には最大値VMAXが存在する。このため、昇圧電圧がVMAXに到達した回転数Nm1以降は、モータ回転数Nmが増加しても波形W2に示された昇圧電圧はVMAXのまま変化しなくなる。モータ回転数Nmが回転数Nm1より大の領域では、回転数が増加すると弱め界磁制御が行なわれるので、波形W1に示すように、回転数が増加すると最大トルクはそれに伴い次第に低下する。   However, there is a maximum value VMAX in the boost voltage of the boost converter. For this reason, after the rotational speed Nm1 at which the boosted voltage reaches VMAX, the boosted voltage indicated by the waveform W2 remains unchanged at VMAX even if the motor rotational speed Nm increases. In the region where the motor rotational speed Nm is larger than the rotational speed Nm1, field weakening control is performed as the rotational speed increases, so that the maximum torque gradually decreases as the rotational speed increases, as shown by the waveform W1.

図5において、波形W3を境界として領域A1,A2が示されている。領域A1は、昇圧コンバータを停止させバッテリ電圧VBATをインバータに与えても良い領域である。領域A2は昇圧コンバータによってバッテリ電圧を昇圧させる必要がある領域である。そして、図4のステップS1では、現在の車両の動作状態におけるモータ回転数とトルクで定まる動作点が図5のマップ上の領域A1に属するかが判断されている。そして、動作点が領域A1に属する場合に上アームON要求が発生する。   In FIG. 5, regions A1 and A2 are shown with the waveform W3 as a boundary. Region A1 is a region where the boost converter may be stopped and battery voltage VBAT may be applied to the inverter. Region A2 is a region where the battery voltage needs to be boosted by the boost converter. In step S1 in FIG. 4, it is determined whether the operating point determined by the motor rotation speed and torque in the current operating state of the vehicle belongs to the area A1 on the map in FIG. When the operating point belongs to the area A1, an upper arm ON request is generated.

ステップS1において上アームON要求が有ると判断された場合には、ステップS2に処理が進む。ステップS2では、電池出力の要求値がしきい値であるA(kW)以下であるか否かが判断される。なお、ステップS1では、モータがどれだけ出力を要求しているかを検出しているのに対し、ステップS2ではモータの出力要求に加えて他の電力消費(補機等)も考慮したバッテリに対する出力要求が検出される。後に説明するように制限抵抗を介して電流を供給すると、この要求値が大きい場合には熱損失が大きくなるからである。   If it is determined in step S1 that there is an upper arm ON request, the process proceeds to step S2. In step S2, it is determined whether or not the required battery output value is equal to or less than the threshold value A (kW). In step S1, it is detected how much output the motor is requesting, whereas in step S2, in addition to the motor output request, output to the battery taking into account other power consumption (auxiliary equipment, etc.). A request is detected. This is because when a current is supplied through a limiting resistor as will be described later, heat loss increases when this required value is large.

ステップS2において、電池出力要求がしきい値A(kw)以下であった場合には、ステップS3に処理が進む。ステップS3では電池電圧のチェックが行なわれる。ここでバッテリBAとバッテリBB1の電圧が測定されても良いし、予め定期的に測定されていたバッテリの電圧がメモリから読み出されても良い。   If the battery output request is equal to or less than the threshold value A (kw) in step S2, the process proceeds to step S3. In step S3, the battery voltage is checked. Here, the voltages of the battery BA and the battery BB1 may be measured, or the voltage of the battery that has been regularly measured in advance may be read from the memory.

ステップS3に続いてステップS4の処理が実行される。ステップS4では、バッテリ電圧VBA,VBB1の比較が行なわれる。   Subsequent to step S3, the process of step S4 is executed. In step S4, battery voltages VBA and VBB1 are compared.

ステップS4においてVBA>VBB1が成立した場合には、ステップS5に処理が進む。ステップS5では、システムメインリレーSR1PがOFF状態からON状態に状態が変更される。そしてステップS6において、システムメインリレーSR1BがON状態からOFF状態に状態が変更される。これにより、バッテリBB1に対する電流の出入りは制限抵抗R1を介して行なわれるように接続が変更されたことになる。   If VBA> VBB1 is satisfied in step S4, the process proceeds to step S5. In step S5, system main relay SR1P is changed from the OFF state to the ON state. In step S6, system main relay SR1B is changed from the ON state to the OFF state. As a result, the connection is changed so that current flows into and out of battery BB1 via limiting resistor R1.

さらに、ステップS7では、昇圧コンバータ12A,12Bの各々において上アームであるIGBT素子Q1がON状態に制御される。すると、2つのバッテリが制限抵抗R1を介して接続されたことになり、ステップS8に示すように電圧が高い方のバッテリBAから電圧が低い方のバッテリBB1に対して充電が実行される。   Further, in step S7, IGBT element Q1 which is the upper arm in each of boost converters 12A and 12B is controlled to be in the ON state. Then, the two batteries are connected via the limiting resistor R1, and charging is executed from the battery BA having the higher voltage to the battery BB1 having the lower voltage as shown in step S8.

図6は、図4のステップS8において行なわれる充電の様子を説明するための回路図である。   FIG. 6 is a circuit diagram for illustrating the state of charging performed in step S8 of FIG.

図6の電流Iに示すように、電圧VBAのほうが電圧VBB1よりも高い場合には、システムメインリレーSMRBおよび昇圧コンバータ12Aの上アームを経由して、バッテリBAから電流Iが流出し、昇圧コンバータ12Bの上アームとシステムメインリレーSR1Pおよび制限抵抗R1とを経由してバッテリBB1に電流が流入する。   As shown by current I in FIG. 6, when voltage VBA is higher than voltage VBB1, current I flows out from battery BA via system main relay SMRB and the upper arm of boost converter 12A, and the boost converter Current flows into battery BB1 via upper arm of 12B, system main relay SR1P, and limiting resistor R1.

なお、図4および図6では、制限抵抗R1で充電電流を制限する例を示したが、これに代えて制限抵抗R0で充電電流を制限したり、また制限抵抗R0,R1の両方を使用して電流を制限したりするように制御を変形しても良い。   4 and 6 show an example in which the charging current is limited by the limiting resistor R1, instead, the charging current is limited by the limiting resistor R0, or both the limiting resistors R0 and R1 are used. The control may be modified so as to limit the current.

再び図4を参照して、ステップS8に続くステップS9においてバッテリ電圧VBAとバッテリ電圧VBB1とがほぼ等しくなったか否かが判断される。実際には、バッテリ電圧VBAとバッテリ電圧VBB1の差の絶対値が所定のしきい値以下となったか否かが判断される。この所定のしきい値は、システムメインリレーSR1Bを導通させる際にスパークにより溶着が起こらないことやコンデンサC1,C2,CH等の部品に許容値を超える過熱が発生しないことが考慮されて決定される。   Referring to FIG. 4 again, in step S9 following step S8, it is determined whether or not battery voltage VBA and battery voltage VBB1 are substantially equal. Actually, it is determined whether or not the absolute value of the difference between the battery voltage VBA and the battery voltage VBB1 is equal to or less than a predetermined threshold value. This predetermined threshold value is determined in consideration of the fact that no welding occurs due to spark when the system main relay SR1B is turned on, and that overheating exceeding the allowable value does not occur in components such as the capacitors C1, C2, and CH. The

ステップS9において、バッテリ電圧VBAとバッテリ電圧VBB1とがまだ等しくなっていない場合には、ステップS8に処理が戻りバッテリの充電が継続される。一方、ステップS9において、バッテリ電圧VBAとバッテリ電圧VBB1とがほぼ等しくなったと判断された場合には、ステップS10に処理が進む。   If the battery voltage VBA and the battery voltage VBB1 are not yet equal in step S9, the process returns to step S8 and the battery is continuously charged. On the other hand, if it is determined in step S9 that the battery voltage VBA and the battery voltage VBB1 are substantially equal, the process proceeds to step S10.

ステップS10では、システムメインリレーSR1BがOFF状態からON状態に変更され、続いてステップS11においてシステムメインリレーSR1PがON状態からOFF状態に変更される。これにより、バッテリBB1から制限抵抗R1を介さずに電流が供給されるように接続が変更されたことになる。   In step S10, system main relay SR1B is changed from the OFF state to the ON state, and in step S11, system main relay SR1P is changed from the ON state to the OFF state. As a result, the connection is changed so that current is supplied from the battery BB1 without passing through the limiting resistor R1.

他方、ステップS4において、VBA>VBB1が成立しなかった場合には、ステップS15に処理が進む。ステップS15では、システムメインリレーSMRPがOFF状態からON状態に状態が変更される。そしてステップS16において、システムメインリレーSMRBがON状態からOFF状態に状態が変更される。これにより、バッテリBAに対する電流の出入りは制限抵抗R0を介して行なわれるように接続が変更されたことになる。   On the other hand, if VBA> VBB1 is not satisfied in step S4, the process proceeds to step S15. In step S15, the system main relay SMRP is changed from the OFF state to the ON state. In step S16, system main relay SMRB is changed from the ON state to the OFF state. As a result, the connection is changed so that the current flows into and out of the battery BA through the limiting resistor R0.

さらに、ステップS17では、昇圧コンバータ12A,12Bの各々において上アームであるIGBT素子Q1がON状態に制御される。すると、2つのバッテリが制限抵抗R1を介して接続されたことになり、ステップS18に示すように電圧が高い方のバッテリBB1から電圧が低い方のバッテリBAに対して充電が実行される。   Further, in step S17, IGBT element Q1 which is the upper arm in each of boost converters 12A and 12B is controlled to be in the ON state. Then, the two batteries are connected via the limiting resistor R1, and charging is performed from the battery BB1 having a higher voltage to the battery BA having a lower voltage as shown in step S18.

そしてステップS19においてバッテリ電圧VBAとバッテリ電圧VBB1とがほぼ等しくなったか否かが判断される。実際には、バッテリ電圧VBAとバッテリ電圧VBB1の差の絶対値が所定のしきい値以下となったか否かが判断される。この所定のしきい値は、システムメインリレーSMRBを導通させる際にスパークにより溶着が起こらないことやコンデンサC1,C2,CH等の部品に許容値を超える過熱が発生しないことが考慮されて決定される。   In step S19, it is determined whether or not battery voltage VBA and battery voltage VBB1 are substantially equal. Actually, it is determined whether or not the absolute value of the difference between the battery voltage VBA and the battery voltage VBB1 is equal to or less than a predetermined threshold value. The predetermined threshold value is determined in consideration of the fact that no welding occurs due to spark when the system main relay SMRB is turned on, and that overheating exceeding the allowable value does not occur in components such as the capacitors C1, C2, and CH. The

ステップS19において、バッテリ電圧VBAとバッテリ電圧VBB1とがまだ等しくなっていない場合には、ステップS18に処理が戻りバッテリの充電が継続される。一方、ステップS19において、バッテリ電圧VBAとバッテリ電圧VBB1とがほぼ等しくなったと判断された場合には、ステップS20に処理が進む。   If the battery voltage VBA and the battery voltage VBB1 are not yet equal in step S19, the process returns to step S18 and the battery is continuously charged. On the other hand, if it is determined in step S19 that the battery voltage VBA and the battery voltage VBB1 are substantially equal, the process proceeds to step S20.

ステップS20では、システムメインリレーSMRBがOFF状態からON状態に変更され、続いてステップS21においてシステムメインリレーSMRPがON状態からOFF状態に変更される。これにより、バッテリBAから制限抵抗R0を介さずに電流が供給されるように接続が変更されたことになる。   In step S20, system main relay SMRB is changed from the OFF state to the ON state, and in step S21, system main relay SMRP is changed from the ON state to the OFF state. As a result, the connection is changed so that current is supplied from the battery BA without passing through the limiting resistor R0.

最後に、ステップS1,S2の条件が成立しなかった場合や、ステップS11,S21の処理が終了した場合には、ステップS22に処理が進み、制御はメインルーチンに移される。   Finally, when the conditions of steps S1 and S2 are not satisfied, or when the processes of steps S11 and S21 are completed, the process proceeds to step S22, and the control is transferred to the main routine.

ここで、再び図1を参照して、実施の形態1における動作を説明する。複数の電圧変換部のうちの第1の電圧変換部39Aは、複数の直流電源のうちのバッテリBAの電圧を昇圧して共通電源ラインPL2に供給し得る昇圧コンバータ12Aと、バッテリBAと昇圧コンバータ12Aとを接続する接続部40Aを含む。接続部40Aは、バッテリBAと昇圧コンバータ12Aとの間に配置される直列に接続されたシステムメインリレーSMRPおよび制限抵抗R0と、バッテリBAと昇圧コンバータ12Aとを直接接続するシステムメインリレーSMRBとを含む。制御装置30は、バッテリBAと他の直流電源の電圧差が所定値以下になるまでシステムメインリレーSMRBを解放しかつシステムメインリレーSMRPを接続した状態を保ち、バッテリBAと他の直流電源の電圧の差が所定値以下になった後にはシステムメインリレーSMRBを接続状態に制御する。   Here, the operation in the first embodiment will be described with reference to FIG. 1 again. The first voltage converter 39A among the plurality of voltage converters boosts the voltage of the battery BA of the plurality of DC power supplies and supplies the boosted voltage to the common power line PL2, and the battery BA and the boost converter. 40A of connection parts which connect 12A are included. Connection unit 40A includes a system main relay SMRP and a limiting resistor R0 connected in series between battery BA and boost converter 12A, and a system main relay SMRB directly connecting battery BA and boost converter 12A. Including. The control device 30 releases the system main relay SMRB and keeps the system main relay SMRP connected until the voltage difference between the battery BA and the other DC power supply becomes a predetermined value or less, and the voltage between the battery BA and the other DC power supply is maintained. After the difference between the values becomes equal to or less than a predetermined value, the system main relay SMRB is controlled to be connected.

したがって、バッテリBAとバッテリBB1との間で電源電圧に差がある場合には、制限抵抗で電流が制限されてその状態で電源電圧が等しくなってから電流制限が解除されるので、過大な電流が生じることなく、並列に設けられた複数のバッテリを昇圧コンバータで電流が制御された状態から負荷に直結された状態に遷移させることができる。   Therefore, when there is a difference in power supply voltage between the battery BA and the battery BB1, the current is limited by the limiting resistor, and the current limitation is canceled after the power supply voltage becomes equal in that state. Thus, a plurality of batteries provided in parallel can be transitioned from a state where the current is controlled by the boost converter to a state directly connected to the load.

制御装置30は、車両負荷からの車両の電源装置に対する出力要求が所定値以下である場合(たとえば、動作点が図5の領域A1に属する場合)には、複数の直流電源の電源電圧の差を減少させる。また、制御装置30は、車両負荷からの車両の電源装置に対する出力要求が所定値より大きい場合(たとえば、動作点が図5の領域A2に属する場合)には、電圧変換部39A,39Bの少なくともいずれかに含まれる昇圧コンバータによって対応するバッテリの電源電圧を昇圧させて共通電源ラインPL2に出力させる。これにより、低回転の低負荷における車両の電源装置の効率が改善される。   When the output request from the vehicle load to the power supply device of the vehicle is equal to or less than a predetermined value (for example, when the operating point belongs to region A1 in FIG. 5), control device 30 determines the difference between the power supply voltages of the plurality of DC power supplies. Decrease. Further, when the output request from the vehicle load to the power supply device of the vehicle is greater than a predetermined value (for example, when the operating point belongs to region A2 in FIG. 5), control device 30 has at least voltage conversion units 39A and 39B. The power supply voltage of the corresponding battery is boosted by the boost converter included in any of the boosting converters and output to the common power supply line PL2. As a result, the efficiency of the power supply device for the vehicle at a low load with low rotation is improved.

[実施の形態2]
実施の形態1では、システムメインリレー部分に設けられた電流制限抵抗を介して充電を行なってからバッテリをインバータに直結する制御を示した。他の方法として、2つの昇圧コンバータの通過電流を制御して電流制限をしながら電圧の高いバッテリから低いバッテリに充電を行なってもよい。
[Embodiment 2]
In the first embodiment, the control is shown in which the battery is directly connected to the inverter after charging through the current limiting resistor provided in the system main relay portion. As another method, charging may be performed from a battery having a high voltage to a battery having a low voltage while controlling the current passing through the two boost converters to limit the current.

図7は、本発明の実施の形態2における電圧変換部39A,39Bに対する制御を説明するためのフローチャートである。このフローチャートの処理は、所定のメインルーチンから一定時間毎または所定の条件が成立する毎に呼び出されて実行される。   FIG. 7 is a flowchart for illustrating control on voltage conversion units 39A and 39B in the second embodiment of the present invention. The processing of this flowchart is called and executed from a predetermined main routine every predetermined time or every time a predetermined condition is satisfied.

図1、図7を参照して、このフローチャートの処理が開始されると、ステップS31において上アームON要求が有るか否かが判断される。上アームON要求については実施の形態1の場合と同様であるので説明は繰返さない。   Referring to FIGS. 1 and 7, when the processing of this flowchart is started, it is determined in step S31 whether or not there is an upper arm ON request. Since the upper arm ON request is the same as in the first embodiment, description thereof will not be repeated.

ステップS31において、上アームON要求が有った場合には、ステップS32に処理が進む。ステップS32では電池電圧のチェックが行なわれる。ここでバッテリBAとバッテリBB1の電圧が測定されても良いし、予め定期的に測定されていたバッテリの電圧がメモリから読み出されても良い。   If there is an upper arm ON request in step S31, the process proceeds to step S32. In step S32, the battery voltage is checked. Here, the voltages of the battery BA and the battery BB1 may be measured, or the voltage of the battery that has been regularly measured in advance may be read from the memory.

ステップS32に続いてステップS33の処理が実行される。ステップS33では、バッテリ電圧VBA,VBB1の比較が行なわれる。   Following step S32, the process of step S33 is executed. In step S33, the battery voltages VBA and VBB1 are compared.

ステップS33においてVBA>VBB1が成立した場合には、ステップS34に処理が進む。ステップS34では、電圧が高い方のバッテリBAから電圧が低いほうのバッテリBB1に適切なレートで充電が行なわれるように、昇圧コンバータ12A,12Bの制御が行なわれる。このとき昇圧コンバータ12A,12Bのスイッチング素子のスイッチングのデューティー比を制御することにより、充電電流の制限が行なわれることになる。   If VBA> VBB1 is satisfied in step S33, the process proceeds to step S34. In step S34, boost converters 12A and 12B are controlled such that charging is performed from battery BA having the higher voltage to battery BB1 having the lower voltage at an appropriate rate. At this time, the charging current is limited by controlling the switching duty ratio of the switching elements of boost converters 12A and 12B.

そして、ステップS35において、バッテリ電圧VBAとバッテリ電圧VBB1とがほぼ等しくなったか否かが判断される。実際には、バッテリ電圧VBAとバッテリ電圧VBB1の差の絶対値が所定のしきい値以下となったか否かが判断される。この所定のしきい値は、コンデンサC1,C2,CH等の部品に許容値を超える過熱が発生しないことが考慮されて決定される。   In step S35, it is determined whether or not battery voltage VBA and battery voltage VBB1 are substantially equal. Actually, it is determined whether or not the absolute value of the difference between the battery voltage VBA and the battery voltage VBB1 is equal to or less than a predetermined threshold value. The predetermined threshold value is determined in consideration of the fact that overheating exceeding the allowable value does not occur in components such as capacitors C1, C2, and CH.

ステップS35において、バッテリ電圧VBAとバッテリ電圧VBB1とがまだ等しくなっていない場合には、ステップS34に処理が戻りバッテリの充電が継続される。一方、ステップS35において、バッテリ電圧VBAとバッテリ電圧VBB1とがほぼ等しくなったと判断された場合には、ステップS38に処理が進む。   If the battery voltage VBA and the battery voltage VBB1 are not yet equal in step S35, the process returns to step S34 and the battery is continuously charged. On the other hand, if it is determined in step S35 that the battery voltage VBA and the battery voltage VBB1 are substantially equal, the process proceeds to step S38.

他方、ステップS33においてVBA>VBB1が成立しなかった場合には、ステップS36に処理が進む。ステップS36では、電圧が高い方のバッテリBB1から電圧が低いほうのバッテリBAに適切なレートで充電が行なわれるように、昇圧コンバータ12A,12Bの制御が行なわれる。このとき昇圧コンバータ12A,12Bのスイッチング素子のスイッチングのデューティー比を制御することにより、充電電流の制限が行なわれることになる。   On the other hand, if VBA> VBB1 is not satisfied in step S33, the process proceeds to step S36. In step S36, boost converters 12A and 12B are controlled so that battery BB1 having a higher voltage is charged to battery BA having a lower voltage at an appropriate rate. At this time, the charging current is limited by controlling the switching duty ratio of the switching elements of boost converters 12A and 12B.

そして、ステップS37において、バッテリ電圧VBAとバッテリ電圧VBB1とがほぼ等しくなったか否かが判断される。実際には、バッテリ電圧VBAとバッテリ電圧VBB1の差の絶対値が所定のしきい値以下となったか否かが判断される。この所定のしきい値は、コンデンサC1,C2,CH等の部品に許容値を超える過熱が発生しないことが考慮されて決定される。   In step S37, it is determined whether or not battery voltage VBA and battery voltage VBB1 are substantially equal. Actually, it is determined whether or not the absolute value of the difference between the battery voltage VBA and the battery voltage VBB1 is equal to or less than a predetermined threshold value. The predetermined threshold value is determined in consideration of the fact that overheating exceeding the allowable value does not occur in components such as capacitors C1, C2, and CH.

ステップS37において、バッテリ電圧VBAとバッテリ電圧VBB1とがまだ等しくなっていない場合には、ステップS36に処理が戻りバッテリの充電が継続される。一方、ステップS37において、バッテリ電圧VBAとバッテリ電圧VBB1とがほぼ等しくなったと判断された場合には、ステップS38に処理が進む。   If the battery voltage VBA and the battery voltage VBB1 are not yet equal in step S37, the process returns to step S36 and the battery is continuously charged. On the other hand, if it is determined in step S37 that the battery voltage VBA and the battery voltage VBB1 are substantially equal, the process proceeds to step S38.

ステップS38では、昇圧コンバータ12A,12Bの各々において上アームであるIGBT素子Q1がON状態に制御される。これにより、2つのバッテリが直接的に(ただしリアクトルを介して)インバータに接続されるので、以後昇圧コンバータにおけるスイッチング損失が低減される。   In step S38, IGBT element Q1 which is the upper arm in each of boost converters 12A and 12B is controlled to be in the ON state. As a result, the two batteries are directly connected to the inverter (but via the reactor), so that the switching loss in the boost converter is reduced thereafter.

ステップS31で上アームON要求が無かった場合および、ステップS38の処理が終了した場合には、ステップS39に処理が進み制御はメインルーチンに移される。   If there is no upper arm ON request in step S31 and if the process of step S38 is completed, the process proceeds to step S39 and the control is moved to the main routine.

ここで、再び図1を参照して、実施の形態2における動作を説明する。実施の形態2においては、複数の直流電源のうちの2つの直流電源は、蓄電装置であるバッテリBA,BB1である。バッテリBA,BB1にそれぞれ対応する電圧変換部39A,39Bの各々は、スイッチング素子であるIGBT素子Q1およびリアクトルL1を含む。制御装置30は、電圧変換部39A,39Bの各々のスイッチング素子のスイッチングを制御することによって、バッテリBA,BB1の電圧差が減少するように一方のバッテリから他方のバッテリに対して電力を移す。   Here, the operation in the second embodiment will be described with reference to FIG. 1 again. In the second embodiment, two DC power sources out of the plurality of DC power sources are batteries BA and BB1, which are power storage devices. Each of voltage converters 39A and 39B corresponding to batteries BA and BB1 includes an IGBT element Q1 and a reactor L1, which are switching elements. Control device 30 controls the switching of each switching element of voltage converters 39A and 39B to transfer power from one battery to the other so that the voltage difference between batteries BA and BB1 decreases.

実施の形態2では、実施の形態1と同様な効果が得られ、かつ実施の形態1のような機械的な接続変更を伴わないので、たとえばリレーの接続待ち時間などをとる必要がなく、高速な制御が可能となる。 In the second embodiment, the same effect as in the first embodiment can be obtained, and the mechanical connection change as in the first embodiment is not involved. Control is possible.

[実施の形態3]
実施の形態3では、電圧が高いバッテリの電力を負荷で消費させて電圧を等しくする例を説明する。その際に、電圧検出精度を高めるために電流センサを使用している。
[Embodiment 3]

In the third embodiment, an example will be described in which the power of a battery having a high voltage is consumed by a load to equalize the voltages. At that time, a current sensor is used to increase voltage detection accuracy. In the third embodiment, an example will be described in which the power of a battery having a high voltage is consumed by a load to equalize the emissions. At that time, a current sensor is used to increase voltage detection accuracy.

図8は、実施の形態3における制御を説明するためのフローチャートである。このフローチャートの処理は、所定のメインルーチンから一定時間毎または所定の条件が成立する毎に呼び出されて実行される。 FIG. 8 is a flowchart for explaining control in the third embodiment. The processing of this flowchart is called and executed from a predetermined main routine every predetermined time or every time a predetermined condition is satisfied.

図1、図8を参照して、このフローチャートの処理が開始されると、まず、ステップS51において上アームON要求が有るか否かが判断される。上アームON要求については実施の形態1、実施の形態2の場合と同様であるので説明は繰返さない。   Referring to FIGS. 1 and 8, when the processing of this flowchart is started, it is first determined in step S51 whether or not there is an upper arm ON request. Since the upper arm ON request is the same as in the first and second embodiments, description thereof will not be repeated.

ステップS51において、上アームON要求が有った場合には、ステップS52に処理が進む。ステップS52では電池電圧のチェックが行なわれる。ここでバッテリBAとバッテリBB1の電圧が測定されても良いし、予め定期的に測定されていたバッテリの電圧がメモリから読み出されても良い。   If there is an upper arm ON request in step S51, the process proceeds to step S52. In step S52, the battery voltage is checked. Here, the voltages of the battery BA and the battery BB1 may be measured, or the voltage of the battery that has been regularly measured in advance may be read from the memory.

ステップS52に続いてステップS53の処理が実行される。ステップS53では、バッテリ電圧VBA,VBB1の比較が行なわれる。   Following step S52, the process of step S53 is executed. In step S53, the battery voltages VBA and VBB1 are compared.

ステップS53においてVBA>VBB1が成立した場合には、ステップS54に処理が進む。ステップS54では、電圧が高かったバッテリ側に接続されている昇圧コンバータ12Aの上アーム(IGBT素子Q1)をON状態に制御する。続いてステップS55において昇圧コンバータ12Bの上下アーム(IGBT素子Q1,Q2)を両方ともOFF状態に制御する。これにより、まず最初は電圧が高いバッテリBAから電流が負荷に供給される。なお、ステップS54とステップS55の順序は入れ替えても良い。また、ダイオードD1が存在するのでこれを用いて電流を供給することとすれば、ステップS54もステップS55と同じく上下アームともOFF状態に制御するのでも良い。   If VBA> VBB1 is satisfied in step S53, the process proceeds to step S54. In step S54, the upper arm (IGBT element Q1) of boost converter 12A connected to the battery side where the voltage is high is controlled to be in an ON state. In step S55, the upper and lower arms (IGBT elements Q1, Q2) of boost converter 12B are both controlled to be in the OFF state. Thereby, first, a current is supplied to the load from the battery BA having a high voltage. Note that the order of step S54 and step S55 may be interchanged. Further, since the diode D1 is present and current is supplied using the diode D1, the upper and lower arms may be controlled to be in the OFF state as in step S55.

ステップS55に続くステップS56では、車両の走行時のモータやエアコンなどの負荷でのパワーの消費が行なわれる。すると、電圧が高い方のバッテリの電力が消費されそれに伴いバッテリ電圧が低下する。   In step S56 following step S55, power is consumed by a load such as a motor or an air conditioner when the vehicle is running. Then, the power of the battery with the higher voltage is consumed, and the battery voltage is lowered accordingly.

ステップS57では、電圧が低かったほうのバッテリBB1からの電流が、昇圧コンバータ12BのダイオードD1を通って流れ始めるのを検出する。 In step S57, it is detected that the current from battery BB1 having the lower voltage starts to flow through diode D1 of boost converter 12B.

図9は、実施の形態3における電流の流れを説明するための回路図である。
図8、図9を参照して、昇圧コンバータ12Aでは上アーム(素子Q1A)はON状態に制御され、下アーム(素子Q2A)はOFF状態に制御されている。 With reference to FIGS. 8 and 9, in the boost converter 12A, the upper arm (element Q1A) is controlled to the ON state, and the lower arm (element Q2A) is controlled to the OFF state. また昇圧コンバータ12Bでは上アーム(素子Q1B)も下アーム(素子Q2B)もOFF状態に制御されている。 Further, in the boost converter 12B, both the upper arm (element Q1B) and the lower arm (element Q2B) are controlled to be in the OFF state. まだ電圧VBAが電圧VBB1よりも高い間は、ダイオードD1Bには逆方向の電圧がかかるので、電流IBB1は流れず、電流IBAのみが流れる。 While the voltage VBA is still higher than the voltage VBB1, the voltage in the opposite direction is applied to the diode D1B, so that the current IBB1 does not flow and only the current IBA flows. この状態が電流センサ100Aおよび100Bで検出されている。 This state is detected by the current sensors 100A and 100B. FIG. 9 is a circuit diagram for explaining a current flow in the third embodiment. FIG. 9 is a circuit diagram for explaining a current flow in the third embodiment.
8 and 9, in boost converter 12A, the upper arm (element Q1A) is controlled to be in the ON state, and the lower arm (element Q2A) is controlled to be in the OFF state. In boost converter 12B, both the upper arm (element Q1B) and the lower arm (element Q2B) are controlled to be in the OFF state. While the voltage VBA is still higher than the voltage VBB1, a reverse voltage is applied to the diode D1B, so that the current IBB1 does not flow and only the current IBA flows. This state is detected by the current sensors 100A and 100B. 8 and 9, in boost converter 12A, the upper arm (element Q1A) is controlled to be in the ON state, and the lower arm (element Q2A) is controlled to be in the OFF state. In boost converter 12B, both the upper arm (element Q1B) and the lower arm (element Q2B) are controlled to be in the OFF state. While the voltage VBA is still higher than the voltage VBB1, a reverse voltage is applied to the diode D1B, so that the current IBB1 does This state is detected by the current sensors 100A and 100B. Not flow and only the current IBA flows.

ステップS57において、電流IBB>0(A)となり電流が流れ始めるか否かが判断される。そして、まだ電流IBBが流れ始めない場合にはステップS56に処理が戻りさらにバッテリBAの電力が消費される。   In step S57, it is determined whether or not current IBB> 0 (A) and current starts to flow. If the current IBB has not yet started to flow, the process returns to step S56 to further consume the power of the battery BA.

バッテリBAの電力が消費された結果、バッテリBAの電圧がバッテリBB1と同程度に低下した場合には、ステップS57において、電流IBB>0(A)となり電流が流れ始めたことが検出される。すると、ステップS57からステップS58に処理が進み、昇圧コンバータ12Bの上アーム(Q1)がオン状態に制御される。   If the voltage of the battery BA decreases as much as the battery BB1 as a result of consuming the power of the battery BA, it is detected in step S57 that the current IBB> 0 (A) and the current starts to flow. Then, the process proceeds from step S57 to step S58, and the upper arm (Q1) of boost converter 12B is controlled to be on.

以後は、バッテリBB1からも負荷に対する電力供給が行なわれる。
他方、ステップS53においてVBA>VBB1が成立しなかった場合には、ステップS64に処理が進む。 On the other hand, if VBA> VBB1 is not established in step S53, the process proceeds to step S64. ステップS64では、電圧が高かったバッテリ側に接続されている昇圧コンバータ12Bの上アーム(IGBT素子Q1)をON状態に制御する。 In step S64, the upper arm (IGBT element Q1) of the boost converter 12B connected to the battery side where the voltage is high is controlled to the ON state. 続いてステップS65において昇圧コンバータ12Aの上下アーム(IGBT素子Q1,Q2)を両方ともOFF状態に制御する。 Subsequently, in step S65, both the upper and lower arms (IGBT elements Q1 and Q2) of the boost converter 12A are controlled to the OFF state. これにより、まず最初は電圧が高いバッテリBB1から電流が負荷に供給される。 As a result, the current is first supplied to the load from the battery BB1 having a high voltage. なお、ステップS64とステップS65の順序は入れ替えても良い。 The order of steps S64 and S65 may be interchanged. また、ダイオードD1が存在するのでこれを用いて電流を供給することとすれば、ステップS64もステップS65と同じく上下アームともOFF状態に制御するのでも良い。 Further, since the diode D1 exists, if the current is supplied by using the diode D1, both the upper and lower arms may be controlled in the OFF state in step S64 as in step S65. Thereafter, the battery BB1 also supplies power to the load. Therefore, the battery BB1 also supplies power to the load.
On the other hand, if VBA> VBB1 is not satisfied in step S53, the process proceeds to step S64. In step S64, the upper arm (IGBT element Q1) of boost converter 12B connected to the battery side where the voltage is high is controlled to be in an ON state. Subsequently, in step S65, both the upper and lower arms (IGBT elements Q1, Q2) of boost converter 12A are controlled to be in the OFF state. Thereby, first, a current is supplied to the load from the battery BB1 having a high voltage. Note that the order of step S64 and step S65 may be interchanged. In addition, since the diode D1 exists and the current is supplied by using the diode D1, the upper and lower arms may be controlled to be in the OFF state as in step S65. On the other hand, if VBA> VBB1 is not satisfied in step S53, the process proceeds to step S64. In step S64, the upper arm (IGBT element Q1) of boost converter 12B connected to the battery side where the voltage is high is controlled to be in an ON state. Thus, in step S65, both the upper and lower arms (IGBT elements Q1, Q2) of boost converter 12A are controlled to be in the OFF state. Thus, first, a current is supplied to the load from the battery BB1 having a high voltage. Note that the order of step S64 and step S65 may be interchanged. In addition, since the diode D1 exists and the current is supplied by using the diode D1, the upper and lower arms may be controlled to be in the OFF state as in step S65.

ステップS65に続くステップS66では、車両の走行時のモータやエアコンなどの負荷でのパワーの消費が行なわれる。すると、電圧が高い方のバッテリBB1の電力が消費されそれに伴いバッテリ電圧VBB1が低下する。   In step S66 following step S65, power is consumed by a load such as a motor or an air conditioner when the vehicle is traveling. Then, the power of battery BB1 with the higher voltage is consumed, and battery voltage VBB1 decreases accordingly.

ステップS67では、電圧が低かったほうのバッテリBAからの電流が、昇圧コンバータ12BのダイオードD1を通って流れ始めるのを電流センサ100Aを用いて検出する。   In step S67, it is detected using current sensor 100A that the current from battery BA having the lower voltage starts to flow through diode D1 of boost converter 12B.

ステップS67において、電流IBA>0(A)となり電流が流れ始めるか否かが判断される。そして、まだ電流IBAが流れ始めない場合にはステップS66に処理が戻りさらにバッテリBB1の電力が消費される。   In step S67, it is determined whether or not current IBA> 0 (A) and current starts to flow. If the current IBA has not yet started to flow, the process returns to step S66 and the power of the battery BB1 is further consumed.

バッテリBB1の電力が消費された結果、バッテリBAの電圧がバッテリBAと同程度に低下した場合には、ステップS67において、電流IBA>0(A)となり電流が流れ始めたことが検出される。すると、ステップS67からステップS68に処理が進み、昇圧コンバータ12Aの上アーム(Q1)がオン状態に制御される。   If the voltage of the battery BA drops to the same level as the battery BA as a result of the power consumption of the battery BB1, it is detected in step S67 that the current IBA> 0 (A) and the current starts to flow. Then, the process proceeds from step S67 to step S68, and the upper arm (Q1) of boost converter 12A is controlled to be on.

以後は、バッテリBAからも負荷に対する電力供給が行なわれる。
ステップS51において上アームON要求が無かった場合や、ステップS58またはS68の処理が終了した場合には、ステップS69に処理が進み、制御はメインルーチンに移される。
Thereafter, the battery BA also supplies power to the load.
If there is no upper arm ON request in step S51, or if the process of step S58 or S68 ends, the process proceeds to step S69, and control is transferred to the main routine.

ここで、再び図1を参照して、実施の形態3における動作を説明する。実施の形態3においては、複数の直流電源のうちの2つの直流電源は、第1、第2の蓄電装置であるバッテリBA,BB1である。第1、第2の蓄電装置にそれぞれ対応する電圧変換部39A,39Bの各々は、図9に示すように、コイルと、共通電源ラインPL2とコイルとの間に設けられるスイッチング素子Q1A、Q1Bと、スイッチング素子に並列に設けられる整流素子D1A,D1Bと、コイルを流れる電流を検知する電流センサ100A,100Bとを含む。制御装置30は、バッテリBA,BB1のうちの電源電圧が高い方に対応する一方の電圧変換部のスイッチング素子(図9ではQ1A)を導通状態に制御し、他方の電圧変換部のスイッチング素子(図9ではQ1B)を非導通状態に制御し、他方の電圧変換部の電流センサ(図9では100B)において電流が検出されたことをもって第1、第2の蓄電装置の電源電圧の差が所定値以下となったと判断する。   Here, referring to FIG. 1 again, the operation in the third embodiment will be described. In the third embodiment, two DC power supplies out of the plurality of DC power supplies are batteries BA and BB1, which are first and second power storage devices. As shown in FIG. 9, each of voltage conversion units 39A and 39B corresponding to the first and second power storage devices includes a coil and switching elements Q1A and Q1B provided between common power supply line PL2 and the coil. And rectifying elements D1A and D1B provided in parallel to the switching elements, and current sensors 100A and 100B for detecting a current flowing through the coil. The control device 30 controls the switching element (Q1A in FIG. 9) corresponding to the one of the batteries BA and BB1 having the higher power supply voltage to be in a conductive state, and the switching element (Q1A in FIG. 9) In FIG. 9, Q1B) is controlled to be in a non-conducting state, and when a current is detected by the current sensor (100B in FIG. 9) of the other voltage converter, the difference between the power supply voltages of the first and second power storage devices is predetermined. Judged to be below the value.

実施の形態3では、2つのバッテリの電圧が等しくなったことを電流センサによっても検出するので、電圧の検出精度が向上する。 In the third embodiment, since the current sensors also detect that the voltages of the two batteries are equal, the voltage detection accuracy is improved.

[変形例]
実施の形態1〜3では、バッテリ2つを使用する例を紹介したが、バッテリ数をさらに追加し、次々と切換えてバッテリを使用するようにした構成に本願発明を適用することもできる。
[Modification]

In the first to third embodiments, an example in which two batteries are used has been introduced. However, the present invention can be applied to a configuration in which the number of batteries is further added and the batteries are used by switching one after another. In the first to third embodiments, an example in which two batteries are used has been introduced. However, the present invention can be applied to a configuration in which the number of batteries is further added and the batteries are used by switching one after another.

図10は、主バッテリに対して複数の副バッテリを搭載した車両の構成を示した回路図である。 FIG. 10 is a circuit diagram showing a configuration of a vehicle in which a plurality of sub batteries are mounted on the main battery.

図10を参照して、車両1Aは、図1に示した車両1の構成において、電圧変換部39Bに代えて電圧変換部39Cを含み、さらにバッテリBB2および電圧センサ10B2を含む。他の構成については、車両1Aは車両1と同様であるので説明は繰返さない。   Referring to FIG. 10, vehicle 1A includes, in the configuration of vehicle 1 shown in FIG. 1, a voltage conversion unit 39C instead of voltage conversion unit 39B, and further includes a battery BB2 and a voltage sensor 10B2. Since other vehicle 1A is the same as vehicle 1, description thereof will not be repeated.

電圧変換部39Cは、図1に示した電圧変換部39Bの構成に加えて、バッテリBB2の負極側に設けられる接続部であるシステムメインリレーSR2Gと、接続部40Cとを含む。接続部40Cは、バッテリBB2の正極と電源ラインPL1Bとの間に接続されるシステムメインリレーSR2Bと、システムメインリレーSR2Bと並列接続される直列に接続されたシステムメインリレーSR2Pおよび制限抵抗R2とを含む。システムメインリレーSR2Gは、バッテリBB2の負極と接地ラインSL2との間に接続される。   Voltage conversion unit 39C includes a system main relay SR2G that is a connection unit provided on the negative electrode side of battery BB2, and a connection unit 40C, in addition to the configuration of voltage conversion unit 39B shown in FIG. Connection unit 40C includes a system main relay SR2B connected between the positive electrode of battery BB2 and power supply line PL1B, a system main relay SR2P connected in series with system main relay SR2B, and a limiting resistor R2. Including. System main relay SR2G is connected between the negative electrode of battery BB2 and ground line SL2.

システムメインリレーSR2P,SR2B,SR2Gは、制御装置30から与えられる制御信号CONT7〜CONT9に応じて導通/非導通状態が制御される。 System main relays SR2P, SR2B, and SR2G are controlled to be in a conductive / non-conductive state in accordance with control signals CONT7 to CONT9 provided from control device 30.

昇圧コンバータ12Bは、複数の副バッテリBB1,BB2のうちのいずれか1つに選択的に接続されて電圧変換を行なう。 Boost converter 12B is selectively connected to any one of a plurality of sub-batteries BB1 and BB2 to perform voltage conversion.

副バッテリBB1,BB2の一方と主バッテリBAとは、たとえば、同時使用することにより電源ラインに接続される電気負荷(インバータ22およびモータジェネレータMG2など)に許容された最大パワーを出力可能であるように蓄電可能容量が設定される。これによりエンジンを使用しないEV(Electric Vehicle)走行において最大パワーの走行が可能である。副バッテリの蓄電状態が悪化したら、副バッテリを交換してさらに走行させればよい。そして副バッテリの電力が消費されてしまったら、主バッテリに加えてエンジンを使用することによって、副バッテリを使用しないでも最大パワーの走行を可能とすることができる。   One of secondary batteries BB1 and BB2 and main battery BA can output the maximum power allowed for an electrical load (such as inverter 22 and motor generator MG2) connected to the power supply line when used simultaneously, for example. Is set to the chargeable capacity. As a result, traveling at maximum power is possible in EV (Electric Vehicle) traveling without using the engine. If the power storage state of the secondary battery deteriorates, the secondary battery may be replaced and run further. If the power of the secondary battery is consumed, the maximum power can be run without using the secondary battery by using the engine in addition to the main battery.

また、このような構成とすることにより、昇圧コンバータ12Bを複数の副バッテリで兼用するので、昇圧コンバータの数をバッテリの数ほど増やさなくて良くなる。EV走行距離をさらに伸ばすには、バッテリBB1,BB2に並列にさらにバッテリを追加すればよい。   Further, with such a configuration, the boost converter 12B is shared by a plurality of sub-batteries, so that the number of boost converters need not be increased by the number of batteries. In order to further extend the EV travel distance, a battery may be added in parallel to the batteries BB1 and BB2.

図10のような構成を採用した場合でも、使用している方の副バッテリを図4、図7、図8のフローチャートにおけるバッテリBB1と置き換えて制御することによって、本発明を容易に適用することができる。   Even when the configuration as shown in FIG. 10 is adopted, the present invention can be easily applied by replacing the sub-battery used with the battery BB1 in the flowcharts of FIGS. 4, 7, and 8. Can do.

また、以上の実施の形態で開示された制御方法は、コンピュータを用いてソフトウエアで実行可能である。この制御方法をコンピュータに実行させるためのプログラムをコンピュータ読み取り可能に記録した記録媒体(ROM、CD−ROM、メモリカードなど)から車両の制御装置中のコンピュータに読み込ませたり、また通信回線を通じて提供したりしても良い。   In addition, the control methods disclosed in the above embodiments can be executed by software using a computer. A program for causing a computer to execute this control method is read from a recording medium (ROM, CD-ROM, memory card, etc.) recorded in a computer-readable manner into a computer in a vehicle control device or provided through a communication line. You may do it.

なお、本実施の形態では動力分割機構によりエンジンの動力を車軸と発電機とに分割して伝達可能なシリーズ/パラレル型ハイブリッドシステムに適用した例を示した。しかし本発明は、発電機を駆動するためにのみエンジンを用い、発電機により発電された電力を使うモータでのみ車軸の駆動力を発生させるシリーズ型ハイブリッド自動車や、モータのみで走行する電気自動車、燃料電池自動車にも適用できる。   In the present embodiment, an example is shown in which the present invention is applied to a series / parallel type hybrid system in which the power of the engine can be divided and transmitted to the axle and the generator by the power split mechanism. However, the present invention uses an engine only for driving a generator and generates a driving force of an axle only with a motor that uses electric power generated by the generator, an electric vehicle that runs only with a motor, It can also be applied to fuel cell vehicles.

今回開示された実施の形態はすべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は上記した説明ではなくて特許請求の範囲によって示され、特許請求の範囲と均等の意味および範囲内でのすべての変更が含まれることが意図される。   The embodiment disclosed this time should be considered as illustrative in all points and not restrictive. The scope of the present invention is defined by the terms of the claims, rather than the description above, and is intended to include any modifications within the scope and meaning equivalent to the terms of the claims.

本発明の実施の形態に係る車両1の主たる構成を示す図である。 1 is a diagram illustrating a main configuration of a vehicle 1 according to an embodiment of the present invention. 図1のインバータ14および22の詳細な構成を示す回路図である。 It is a circuit diagram which shows the detailed structure of the inverters 14 and 22 of FIG. 図1の昇圧コンバータ12Aおよび12Bの詳細な構成を示す回路図である。 FIG. 2 is a circuit diagram showing a detailed configuration of boost converters 12A and 12B in FIG. 1. 本発明の実施の形態1における電圧変換部39A,39Bに対する制御を説明するためのフローチャートである。 It is a flowchart for demonstrating control with respect to voltage conversion part 39A, 39B in Embodiment 1 of this invention. 昇圧コンバータで昇圧が不要となる条件について説明するための図である。 It is a figure for demonstrating the conditions from which pressure | voltage rise is unnecessary with a step-up converter. 図4のステップS8において行なわれる充電の様子を説明するための回路図である。 FIG. 5 is a circuit diagram for illustrating a state of charging performed in step S8 of FIG. 本発明の実施の形態2における電圧変換部39A,39Bに対する制御を説明するためのフローチャートである。 It is a flowchart for demonstrating control with respect to voltage conversion part 39A, 39B in Embodiment 2 of this invention. 実施の形態3における制御を説明するためのフローチャートである。 10 is a flowchart for illustrating control in the third embodiment. 実施の形態3における電流の流れを説明するための回路図である。 FIG. 6 is a circuit diagram for illustrating a current flow in a third embodiment. 主バッテリに対して複数の副バッテリを搭載した車両の構成を示した回路図である。 It is the circuit diagram which showed the structure of the vehicle carrying a some sub battery with respect to the main battery.

符号の説明Explanation of symbols

1,1A 車両、2 車輪、3 動力分割機構、4 エンジン、10A,10B1,10B2,13,21A,21B,74 電圧センサ、12A,12B 昇圧コンバータ、14,22 インバータ、15 U相アーム、16 V相アーム、17 W相アーム、24,25,100A,100B 電流センサ、30 制御装置、39A,39B,39C 電圧変換部、40A,40B 接続部、50 入力端子、51 リレー回路、90 商用電源、ACL1,ACL2 電力入力ライン、BA,BB1,BB2 バッテリ、C1,C2,CH 平滑用コンデンサ、D1〜D8 ダイオード、L1 リアクトル、MG1,MG2 モータジェネレータ、N1,N2 中性点、PL1A,PL1B,PL2 電源ライン、Q1〜Q8 IGBT素子、R0,R1,R2 制限抵抗、RY1,RY2 リレー、SL1,SL2 接地ライン、SMRP,SMRB,SMRG,SR1P,SR1B,SR1G,SR2P,SR2B,SR2G システムメインリレー。   1, 1A vehicle, 2 wheels, 3 power split mechanism, 4 engine, 10A, 10B1, 10B2, 13, 21A, 21B, 74 voltage sensor, 12A, 12B boost converter, 14, 22 inverter, 15 U-phase arm, 16 V Phase arm, 17 W-phase arm, 24, 25, 100A, 100B Current sensor, 30 Control device, 39A, 39B, 39C Voltage converter, 40A, 40B Connection, 50 input terminal, 51 Relay circuit, 90 Commercial power supply, ACL1 , ACL2 power input line, BA, BB1, BB2 battery, C1, C2, CH smoothing capacitor, D1-D8 diode, L1 reactor, MG1, MG2 motor generator, N1, N2 neutral point, PL1A, PL1B, PL2 power line , Q1-Q8 IGBT elements, R0, R1 , R2 limiting resistor, RY1, RY2 relay, SL1, SL2 ground line, SMRP, SMRB, SMRG, SR1P, SR1B, SR1G, SR2P, SR2B, SR2G System main relay.

Claims (12)

  1. 車輪を駆動させるモータに電力を供給するための複数の直流電源と、
    前記複数の直流電源と共通電源ノードとの間にそれぞれ接続されて電圧変換を行なう複数の電圧変換部と、
    前記複数の電圧変換部を制御する制御装置とを備え、
    前記複数の電圧変換部の各々は、
    対応する直流電源の正極に一端が電気的に接続されるコイルと、
    前記コイルの他端と前記共通電源ノードとの間に接続されるスイッチング素子とを含み、
    前記制御装置は、車両負荷からの車両の電源装置に対する出力要求が減少し前記複数の電圧変換部による電圧変換が不要となった場合には、前記複数の直流電源の電源電圧の差を減少させる処理と、前記複数の直流電源の各電源ノードが前記共通電源ノードに接続されるように前記複数の電圧変換部の各々の前記スイッチング素子を同時に導通させる処理とを行なう、車両の電源装置。 The control device reduces the difference between the power supply voltages of the plurality of DC power supplies when the output request from the vehicle load to the power supply device of the vehicle is reduced and the voltage conversion by the plurality of voltage converters becomes unnecessary. A vehicle power supply device that simultaneously performs a process of conducting the switching elements of the plurality of voltage conversion units so that the power supply nodes of the plurality of DC power supplies are connected to the common power supply node. A plurality of DC power supplies for supplying power to a motor for driving the wheels; A plurality of DC power supplies for supplying power to a motor for driving the wheels;
    A plurality of voltage converters connected between the plurality of DC power supplies and a common power supply node to perform voltage conversion; A plurality of voltage converters connected between the plurality of DC power supplies and a common power supply node to perform voltage conversion;
    A control device for controlling the plurality of voltage converters, A control device for controlling the plurality of voltage converters,
    Each of the plurality of voltage converters is Each of the plurality of voltage converters is
    A coil whose one end is electrically connected to the positive electrode of the corresponding DC power source; A coil whose one end is electrically connected to the positive electrode of the corresponding DC power source;
    A switching element connected between the other end of the coil and the common power supply node, A switching element connected between the other end of the coil and the common power supply node,
    The control device reduces a difference between power supply voltages of the plurality of DC power supplies when the output request from the vehicle load to the vehicle power supply device is reduced and voltage conversion by the plurality of voltage conversion units is not necessary. And a process for simultaneously turning on each of the switching elements of the plurality of voltage converters so that each power supply node of the plurality of DC power supplies is connected to the common power supply node. The control device reduces a difference between power supply voltages of the plurality of DC power supplies when the output request from the vehicle load to the vehicle power supply device is reduced and voltage conversion by the plurality of voltage conversion units is not necessary. And a process for simultaneously turning on each of the switching elements of the plurality of voltage converters so that each power supply node of the plurality of DC power supplies is connected to the common power supply node.
  2. 前記複数の電圧変換部のうちの第1の電圧変換部は、
    前記コイルと前記スイッチング素子とを含んで構成され、前記複数の直流電源のうちの第1の直流電源の電圧を昇圧して前記共通電源ノードに供給し得る第1の昇圧コンバータと、 A first boost converter including the coil and the switching element, which can boost the voltage of the first DC power supply among the plurality of DC power supplies and supply the voltage to the common power supply node.
    前記第1の直流電源と前記第1の昇圧コンバータとを接続する第1の接続部を含み、 A first connection portion for connecting the first DC power supply and the first boost converter is included.
    前記第1の接続部は、 The first connection portion is
    前記第1の直流電源と前記第1の昇圧コンバータとの間に配置される直列に接続された第1のリレーおよび制限抵抗と、 A first relay and a limiting resistor connected in series arranged between the first DC power supply and the first boost converter,
    前記第1の直流電源と前記第1の昇圧コンバータとを直接接続する第2のリレーとを含み、 It includes a second relay that directly connects the first DC power supply and the first boost converter.
    前記制御装置は、前記第1の直流電源と他の直流電源の電圧差が所定値以下になるまで前記第2のリレーを解放しかつ前記第1のリレーを接続した状態を保ち、前記第1の直流電源と他の直流電源の電圧の差が所定値以下になった後には前記第2のリレーを接続状態に制御する、請求項1に記載の車両の電源装置。 The control device releases the second relay and keeps the first relay connected until the voltage difference between the first DC power supply and the other DC power supply becomes a predetermined value or less, and keeps the first relay connected. The vehicle power supply device according to claim 1, wherein the second relay is controlled to a connected state after the voltage difference between the DC power supply and the other DC power supply becomes equal to or less than a predetermined value. The first voltage conversion unit among the plurality of voltage conversion units is: The first voltage conversion unit among the plurality of voltage conversion units is:
    A first boost converter configured to include the coil and the switching element and boost the voltage of a first DC power supply of the plurality of DC power supplies and supply the boosted voltage to the common power supply node; A first boost converter configured to include the coil and the switching element and boost the voltage of a first DC power supply of the plurality of DC power supplies and supply the boosted voltage to the common power supply node;
    Including a first connection for connecting the first DC power source and the first boost converter; Including a first connection for connecting the first DC power source and the first boost converter;
    The first connection portion is The first connection portion is
    A first relay and a limiting resistor connected in series disposed between the first DC power source and the first boost converter; A first relay and a limiting resistor connected in series disposed between the first DC power source and the first boost converter;
    A second relay for directly connecting the first DC power source and the first boost converter; A second relay for directly connecting the first DC power source and the first boost converter;
    The control device releases the second relay and keeps the first relay connected until a voltage difference between the first DC power source and another DC power source becomes a predetermined value or less, 2. The vehicle power supply device according to claim 1, wherein the second relay is controlled to be in a connected state after a difference in voltage between the DC power supply of the second DC power supply and another DC power supply becomes a predetermined value or less. The control device releases the second relay and keeps the first relay connected until a voltage difference between the first DC power source and another DC power source becomes a predetermined value or less, 2. The vehicle power supply device according to claim 1, wherein the second relay is controlled to be in a connected state after a difference in voltage between the DC power supply of the second DC power supply and another DC power supply becomes a predetermined value or less.
  3. 前記制御装置は、車両負荷からの前記車両の電源装置に対する出力要求が所定値以下である場合には、前記複数の直流電源の電源電圧の差を減少させ、車両負荷からの前記車両の電源装置に対する出力要求が所定値より大きい場合には、前記複数の電圧変換部の少なくともいずれかによって対応する直流電源の電源電圧を昇圧させて前記共通電源ノードに出力させる、請求項1に記載の車両の電源装置。   When the output request from the vehicle load to the power supply device of the vehicle is equal to or less than a predetermined value, the control device reduces a difference in power supply voltages of the plurality of DC power supplies, and the power supply device of the vehicle from the vehicle load 2. The vehicle according to claim 1, wherein when the output request for is greater than a predetermined value, the power supply voltage of the corresponding DC power supply is boosted and output to the common power supply node by at least one of the plurality of voltage conversion units. Power supply.
  4. 前記複数の直流電源のうちの2つの直流電源は、第1、第2の蓄電装置であり、
    記制御装置は、前記複数の電圧変換部の各々のスイッチング素子のスイッチングを制御することによって、前記第1、第2の蓄電装置の電圧差が減少するように一方の蓄電装置から他方の蓄電装置に対して電力を移す、請求項1に記載の車両の電源装置。
    Two DC power sources out of the plurality of DC power sources are first and second power storage devices,
    Before SL controller by controlling the switching of each switching element of said plurality of voltage conversion units, the first, the other power storage from one of the power storage device such that the voltage difference between the second power storage devices is reduced The vehicle power supply device according to claim 1, wherein power is transferred to the device. Before SL controller by controlling the switching of each switching element of said plurality of voltage conversion units, the first, the other power storage from one of the power storage device such that the voltage difference between the second power storage devices is reduced The vehicle power supply device according to claim 1, wherein power is transferred to the device.
  5. 前記複数の直流電源のうちの2つの直流電源は、第1、第2の蓄電装置であり、
    前記第1、第2の蓄電装置にそれぞれ対応する第1、第2の電圧変換部の各々は、
    記スイッチング素子に並列に設けられる整流素子と、
    前記コイルを流れる電流を検知する電流センサとを含み、

    前記制御装置は、前記第1、第2の蓄電装置のうちの電源電圧が高い方に対応する一方の電圧変換部のスイッチング素子を導通状態に制御し、他方の電圧変換部のスイッチング素子を非導通状態に制御し、前記他方の電圧変換部の電流センサにおいて電流が検出されたことをもって前記第1、第2の蓄電装置の電源電圧の差が所定値以下となったと判断する、請求項1に記載の車両の電源装置。 The control device controls the switching element of one voltage conversion unit corresponding to the higher power supply voltage of the first and second power storage devices to be in a conductive state, and does not control the switching element of the other voltage conversion unit. Claim 1 in which it is determined that the difference between the power supply voltages of the first and second power storage devices is equal to or less than a predetermined value when the current is detected by the current sensor of the other voltage conversion unit while controlling the conduction state. The vehicle power supply described in. Two DC power sources out of the plurality of DC power sources are first and second power storage devices, Two DC power sources out of the plurality of DC power sources are first and second power storage devices,
    Each of the first and second voltage converters corresponding to the first and second power storage devices respectively Each of the first and second voltage converters corresponding to the first and second power storage devices respectively
    A rectifying element provided in parallel before Symbol switching element, A rectifying element provided in parallel before Symbol switching element,
    A current sensor for detecting a current flowing through the coil, A current sensor for detecting a current flowing through the coil,
    The control device controls the switching element of one voltage conversion unit corresponding to the higher power supply voltage of the first and second power storage devices to be in a conductive state, and sets the switching element of the other voltage conversion unit to a non-conductive state. The control is performed in a conductive state, and it is determined that a difference between power supply voltages of the first and second power storage devices is equal to or less than a predetermined value when a current is detected by a current sensor of the other voltage conversion unit. A power supply device for a vehicle according to claim 1. The control device controls the switching element of one voltage conversion unit corresponding to the higher power supply voltage of the first and second power storage devices to be in a conductive state, and sets the switching element of the other voltage conversion unit to a non-conductive state. The control is performed in a conductive state, and it is determined that a difference between power supply voltages of the first and second power storage devices is equal to or less than a predetermined value when a current is detected by a current sensor of the other voltage conversion unit. A power supply device for a vehicle according to claim 1.
  6. 前記複数の直流電源のうちの少なくとも1つは蓄電装置であり、
    前記蓄電装置に対して外部電源から充電を行なうために前記外部電源から電力を受ける受電部をさらに備える、請求項1に記載の車両の電源装置。 The vehicle power supply device according to claim 1, further comprising a power receiving unit that receives power from the external power source in order to charge the power storage device from the external power source. At least one of the plurality of DC power supplies is a power storage device; At least one of the plurality of DC power supplies is a power storage device;
    The power supply device for a vehicle according to claim 1, further comprising a power receiving unit that receives power from the external power supply in order to charge the power storage device from an external power supply. The power supply device for a vehicle according to claim 1, further comprising a power receiving unit that receives power from the external power supply in order to charge the power storage device from an external power supply.
  7. 車輪を駆動させるモータに電力を供給するための複数の直流電源と、前記複数の直流電源と共通電源ノードとの間にそれぞれ接続されて電圧変換を行なう複数の電圧変換部とを備える車両の電源装置の制御方法であって、
    前記複数の電圧変換部の各々は、

    対応する直流電源の正極に一端が電気的に接続されるコイルと、 A coil whose one end is electrically connected to the positive electrode of the corresponding DC power supply,
    前記コイルの他端と前記共通電源ノードとの間に接続されるスイッチング素子とを含み、 Includes a switching element connected between the other end of the coil and the common power supply node.
    車両負荷からの前記車両の電源装置に対する出力要求が減少し前記複数の電圧変換部による電圧変換が不要となった場合には、前記複数の直流電源の電源電圧の差を減少させるように前記複数の電圧変換部を制御する第1のステップと、 When the output request from the vehicle load to the power supply device of the vehicle is reduced and the voltage conversion by the plurality of voltage converters becomes unnecessary, the plurality of DC power supplies are reduced in difference in power supply voltage. The first step of controlling the voltage converter of
    車両負荷からの前記車両の電源装置に対する出力要求が減少し前記複数の電圧変換部による電圧変換が不要となった場合には、前記複数の直流電源の各電源ノードが前記共通電源ノードに接続されるように前記複数の電圧変換部の各々の前記スイッチング素子を同時に導通させる第2のステップとを備える、車両の電源装置の制御方法。 When the output request from the vehicle load to the power supply device of the vehicle is reduced and the voltage conversion by the plurality of voltage converters becomes unnecessary , each power supply node of the plurality of DC power supplies is connected to the common power supply node. A method for controlling a power supply device of a vehicle, comprising a second step of simultaneously conducting each of the switching elements of the plurality of voltage conversion units. A power supply for a vehicle comprising a plurality of DC power supplies for supplying power to a motor for driving wheels, and a plurality of voltage conversion sections connected between the plurality of DC power supplies and a common power supply node for performing voltage conversion, respectively. An apparatus control method comprising: A power supply for a vehicle comprising a plurality of DC power supplies for supplying power to a motor for driving wheels, and a plurality of voltage conversion sections connected between the plurality of DC power supplies and a common power supply node for performing voltage conversion, respectively . An apparatus control method comprising:
    Each of the plurality of voltage converters is Each of the plurality of voltage converters is
    A coil whose one end is electrically connected to the positive electrode of the corresponding DC power source; A coil whose one end is electrically connected to the positive electrode of the corresponding DC power source;
    A switching element connected between the other end of the coil and the common power supply node, A switching element connected between the other end of the coil and the common power supply node,
    When the output request from the vehicle load to the power supply device of the vehicle decreases and voltage conversion by the plurality of voltage conversion units becomes unnecessary, the plurality of the plurality of DC power supplies are reduced so as to reduce the difference between the plurality of DC power supplies. A first step of controlling the voltage converter of When the output request from the vehicle load to the power supply device of the vehicle decreases and voltage conversion by the plurality of voltage conversion units becomes unnecessary, the plurality of the plurality of DC power supplies are reduced so as to reduce the difference between the plurality of DC power supplies. A first step of controlling the voltage converter of
    When output requests from the vehicle load to the power supply device of the vehicle decrease and voltage conversion by the plurality of voltage conversion units becomes unnecessary , each power supply node of the plurality of DC power supplies is connected to the common power supply node. And a second step of simultaneously turning on each of the switching elements of the plurality of voltage converters. When output requests from the vehicle load to the power supply device of the vehicle decrease and voltage conversion by the plurality of voltage conversion units becomes unnecessary , each power supply node of the plurality of DC power supplies is connected to the common power supply node. a second step of simultaneously turning on each of the switching elements of the plurality of voltage converters.
  8. 前記複数の電圧変換部のうちの第1の電圧変換部は、
    前記コイルと前記スイッチング素子とを含んで構成され、前記複数の直流電源のうちの第1の直流電源の電圧を昇圧して前記共通電源ノードに供給し得る第1の昇圧コンバータと、
    前記第1の直流電源と前記第1の昇圧コンバータとを接続する第1の接続部を含み、
    前記第1の接続部は、
    前記第1の直流電源と前記第1の昇圧コンバータとの間に配置される直列に接続された第1のリレーおよび制限抵抗と、
    前記第1の直流電源と前記第1の昇圧コンバータとを直接接続する第2のリレーとを含み、
    前記第1のステップは、
    前記第1の直流電源と他の直流電源の電圧差が前記所定値以下になるまで、前記第2のリレーを解放した状態を保つステップと、 A step of keeping the second relay open until the voltage difference between the first DC power supply and the other DC power supply becomes equal to or less than the predetermined value.
    前記第1の直流電源と他の直流電源の電圧差が前記所定値以下になるまで、前記第1のリレーを接続した状態を保つステップとを含み、 It includes a step of keeping the first relay connected until the voltage difference between the first DC power supply and the other DC power supply becomes equal to or less than the predetermined value.
    前記第2のステップは、 The second step is
    前記第1の直流電源と他の直流電源の電圧の差が前記所定値以下になった後には前記第2のリレーを接続状態に制御するステップを含む、請求項7に記載の車両の電源装置の制御方法。 The vehicle power supply device according to claim 7, further comprising a step of controlling the second relay to a connected state after the voltage difference between the first DC power supply and the other DC power supply becomes equal to or less than the predetermined value. Control method. The first voltage conversion unit among the plurality of voltage conversion units is: The first voltage conversion unit among the plurality of voltage conversion units is:
    A first boost converter configured to include the coil and the switching element and boost the voltage of a first DC power supply of the plurality of DC power supplies and supply the boosted voltage to the common power supply node; A first boost converter configured to include the coil and the switching element and boost the voltage of a first DC power supply of the plurality of DC power supplies and supply the boosted voltage to the common power supply node;
    Including a first connection for connecting the first DC power source and the first boost converter; Including a first connection for connecting the first DC power source and the first boost converter;
    The first connection portion is The first connection portion is
    A first relay and a limiting resistor connected in series disposed between the first DC power source and the first boost converter; A first relay and a limiting resistor connected in series disposed between the first DC power source and the first boost converter;
    A second relay for directly connecting the first DC power source and the first boost converter; A second relay for directly connecting the first DC power source and the first boost converter;
    The first step includes The first step includes
    Maintaining the released state of the second relay until a voltage difference between the first DC power source and another DC power source becomes equal to or less than the predetermined value; Maintaining the released state of the second relay until a voltage difference between the first DC power source and another DC power source becomes equal to or less than the predetermined value;
    Maintaining the connected state of the first relay until the voltage difference between the first DC power source and the other DC power source is equal to or less than the predetermined value, Maintaining the connected state of the first relay until the voltage difference between the first DC power source and the other DC power source is equal to or less than the predetermined value,
    The second step includes The second step includes
    The vehicle power supply device according to claim 7, further comprising a step of controlling the second relay to be in a connected state after a voltage difference between the first DC power supply and another DC power supply becomes equal to or less than the predetermined value. Control method. The vehicle power supply device according to claim 7, further comprising a step of controlling the second relay to be in a connected state after a voltage difference between the first DC power supply and another DC power supply becomes equal to or less than the predetermined value. Control method.
  9. 前記制御方法は、
    車両負荷からの前記車両の電源装置に対する出力要求がしきい値以下であるか否かを判断するステップをさらに備え、
    前記第1のステップは、前記出力要求が前記しきい値以下である場合に実行される、請求項7に記載の車両の電源装置の制御方法。
    The control method is:
    Further comprising the step of determining whether an output request from the vehicle load to the power supply device of the vehicle is a threshold value or less;

    The method of controlling a power supply device for a vehicle according to claim 7, wherein the first step is executed when the output request is equal to or less than the threshold value. The method of controlling a power supply device for a vehicle according to claim 7, wherein the first step is executed when the output request is equal to or less than the threshold value.
  10. 前記複数の直流電源のうちの2つの直流電源は、第1、第2の蓄電装置であり、
    記第1のステップは、前記複数の電圧変換部の各々のスイッチング素子のスイッチングを制御することによって、前記第1、第2の蓄電装置の電圧差が減少するように一方の蓄電装置から他方の蓄電装置に対して電力を移す、請求項7に記載の車両の電源装置の制御方法。
    Two DC power sources out of the plurality of DC power sources are first and second power storage devices,

    Before SL first step, by controlling the switching of each switching element of said plurality of voltage conversion units, the first, one from the other power storage device such that the voltage difference between the second power storage devices is reduced The method for controlling a power supply device for a vehicle according to claim 7, wherein electric power is transferred to the power storage device. Before SL first step, by controlling the switching of each switching element of said plurality of voltage conversion units, the first, one from the other power storage device such that the voltage difference between the second power storage devices is reduced The method for controlling a power supply device for a vehicle according to claim 7, wherein electric power is transferred to the power storage device.
  11. 前記複数の直流電源のうちの2つの直流電源は、第1、第2の蓄電装置であり、
    前記第1、第2の蓄電装置にそれぞれ対応する第1、第2の電圧変換部の各々は、
    記スイッチング素子に並列に設けられる整流素子と、
    前記コイルを流れる電流を検知する電流センサとを含み、
    前記第1のステップは、

    前記第1、第2の蓄電装置のうちの電源電圧が高い方に対応する一方の電圧変換部のスイッチング素子を導通状態に制御するステップと、 A step of controlling the switching element of one of the voltage conversion units corresponding to the higher power supply voltage of the first and second power storage devices to a conductive state, and
    他方の電圧変換部のスイッチング素子を非導通状態に制御するステップと、 The step of controlling the switching element of the other voltage converter to a non-conducting state,
    前記他方の電圧変換部の電流センサにおいて電流が検出されたことをもって前記第1、第2の蓄電装置の電源電圧の差が所定値以下となったと判断するステップとを含む、請求項7に記載の車両の電源装置の制御方法。 The seventh aspect of the present invention includes a step of determining that the difference between the power supply voltages of the first and second power storage devices is equal to or less than a predetermined value when a current is detected by the current sensor of the other voltage conversion unit. How to control the power supply of the vehicle. Two DC power sources out of the plurality of DC power sources are first and second power storage devices, Two DC power sources out of the plurality of DC power sources are first and second power storage devices,
    Each of the first and second voltage converters corresponding to the first and second power storage devices respectively Each of the first and second voltage converters corresponding to the first and second power storage devices respectively
    A rectifying element provided in parallel before Symbol switching element, A rectifying element provided in parallel before Symbol switching element,
    A current sensor for detecting a current flowing through the coil, A current sensor for detecting a current flowing through the coil,
    The first step includes The first step includes
    Controlling the switching element of one of the voltage conversion units corresponding to the higher power supply voltage of the first and second power storage devices to a conductive state; Controlling the switching element of one of the voltage conversion units corresponding to the higher power supply voltage of the first and second power storage devices to a conductive state;
    Controlling the switching element of the other voltage converter to a non-conductive state; Controlling the switching element of the other voltage converter to a non-conductive state;
    And determining that a difference between power supply voltages of the first and second power storage devices is equal to or less than a predetermined value when a current is detected by a current sensor of the other voltage conversion unit. Method for controlling the power supply device of the vehicle. And determining that a difference between power supply voltages of the first and second power storage devices is equal to or less than a predetermined value when a current is detected by a current sensor of the other voltage conversion unit. Method for controlling the power supply device of the vehicle.
  12. 前記複数の直流電源のうちの少なくとも1つは蓄電装置であり、
    前記車両の電源装置は、

    前記蓄電装置に対して外部電源から充電を行なうために前記外部電源から電力を受ける受電部をさらに備える、請求項7に記載の車両の電源装置の制御方法。 The method for controlling a power supply device for a vehicle according to claim 7, further comprising a power receiving unit that receives electric power from the external power source in order to charge the power storage device from the external power source. At least one of the plurality of DC power supplies is a power storage device; At least one of the plurality of DC power supplies is a power storage device;
    The power supply device of the vehicle is The power supply device of the vehicle is
    The vehicle power supply device control method according to claim 7, further comprising a power receiving unit that receives electric power from the external power supply in order to charge the power storage device from an external power supply. The vehicle power supply device control method according to claim 7, further comprising a power receiving unit that receives electric power from the external power supply in order to charge the power storage device from an external power supply.
JP2007055910A 2007-03-06 2007-03-06 VEHICLE POWER DEVICE AND VEHICLE POWER DEVICE CONTROL METHOD Active JP4840197B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007055910A JP4840197B2 (en) 2007-03-06 2007-03-06 VEHICLE POWER DEVICE AND VEHICLE POWER DEVICE CONTROL METHOD

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007055910A JP4840197B2 (en) 2007-03-06 2007-03-06 VEHICLE POWER DEVICE AND VEHICLE POWER DEVICE CONTROL METHOD

Publications (2)

Publication Number Publication Date
JP2008220084A JP2008220084A (en) 2008-09-18
JP4840197B2 true JP4840197B2 (en) 2011-12-21

Family

ID=39839437

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007055910A Active JP4840197B2 (en) 2007-03-06 2007-03-06 VEHICLE POWER DEVICE AND VEHICLE POWER DEVICE CONTROL METHOD

Country Status (1)

Country Link
JP (1) JP4840197B2 (en)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2010050045A1 (en) * 2008-10-31 2010-05-06 トヨタ自動車株式会社 Electromotive vehicle power supply system, electromotive vehicle, and electromotive vehicle control method
EP2353920B1 (en) * 2008-10-31 2019-01-23 Toyota Jidosha Kabushiki Kaisha Electrically driven vehicle and electrically driven vehicle control method
CN102196954B (en) 2008-10-31 2013-10-23 丰田自动车株式会社 Hybrid vehicle and method for controlling same
JP5024454B2 (en) * 2008-10-31 2012-09-12 トヨタ自動車株式会社 Electric vehicle power supply system and control method thereof
WO2010050040A1 (en) * 2008-10-31 2010-05-06 トヨタ自動車株式会社 Electric power source system for electrically driven vehicle and its control method
WO2010050044A1 (en) * 2008-10-31 2010-05-06 トヨタ自動車株式会社 Electric power source system for electrically driven vehicle and its control method
JP2010166790A (en) * 2009-01-19 2010-07-29 Denso Corp In-car power unit
JP2010246234A (en) * 2009-04-03 2010-10-28 Mitsubishi Electric Corp On-vehicle power supply device
JP2010252547A (en) * 2009-04-16 2010-11-04 Nissan Motor Co Ltd Apparatus for charging and discharging of power, and system and method for charging and discharging of power between vehicle
JP4985873B2 (en) * 2009-04-23 2012-07-25 トヨタ自動車株式会社 Electric vehicle power supply system and control method thereof
WO2010131352A1 (en) * 2009-05-14 2010-11-18 トヨタ自動車株式会社 Electric car and method for controlling the same
EP2439098A4 (en) * 2009-06-05 2017-05-17 Toyota Jidosha Kabushiki Kaisha Electric car, and wholly allowable discharge electric energy setting method in the electric car
EP2441616A4 (en) * 2009-06-10 2017-05-17 Toyota Jidosha Kabushiki Kaisha Hybrid vehicle and control method thereof
JP5029784B2 (en) * 2009-06-10 2012-09-19 トヨタ自動車株式会社 Electric vehicle and control method of electric vehicle
CN102458946B (en) * 2009-06-10 2014-05-14 丰田自动车株式会社 Power supply system for electric vehicle and method for controlling same
JP4743342B2 (en) * 2009-06-10 2011-08-10 トヨタ自動車株式会社 Electric vehicle power system, electric vehicle, and electric vehicle power system control method
CN102458907B (en) * 2009-06-10 2014-06-11 丰田自动车株式会社 Power supply system for electric vehicle and control method thereof
WO2011155014A1 (en) * 2010-06-07 2011-12-15 トヨタ自動車株式会社 Power output control device for vehicle and power output control method for vehicle
JP5264949B2 (en) * 2011-03-08 2013-08-14 本田技研工業株式会社 Electric vehicle
JP5867149B2 (en) * 2012-02-22 2016-02-24 Tdk株式会社 Power control unit and power control system
JP5949264B2 (en) * 2012-07-23 2016-07-06 トヨタ自動車株式会社 Power supply device, vehicle equipped with the same, and method for controlling power supply device
EP2998150B1 (en) 2013-07-01 2019-08-21 Mitsubishi Electric Corporation Hybrid drive system

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09154236A (en) * 1995-11-28 1997-06-10 Isuzu Motors Ltd Power supply unit for electric car
JPH09233710A (en) * 1996-02-26 1997-09-05 Sansha Electric Mfg Co Ltd Charger and discharger for transformation of storage battery
JP3277825B2 (en) * 1996-10-25 2002-04-22 トヨタ自動車株式会社 Charging device
US6608396B2 (en) * 2001-12-06 2003-08-19 General Motors Corporation Electrical motor power management system
JP4182708B2 (en) * 2002-08-29 2008-11-19 トヨタ自動車株式会社 Power supply and operation method of power supply
JP4735000B2 (en) * 2004-10-29 2011-07-27 トヨタ自動車株式会社 Motor drive device
JP4208006B2 (en) * 2006-11-08 2009-01-14 トヨタ自動車株式会社 Electric vehicle

Also Published As

Publication number Publication date
JP2008220084A (en) 2008-09-18

Similar Documents

Publication Publication Date Title
US9731667B2 (en) On-vehicle equipment control system and vehicle
US8761985B2 (en) Method of operating a dual motor drive and control system for an electric vehicle
US9827971B2 (en) Vehicle with an energy source supply portion
US8256547B2 (en) Hybrid vehicle
CN101610932B (en) Electric vehicle, vehicle charge device, and vehicle charge system
RU2395410C1 (en) Electrically driven vehicle
JP4622872B2 (en) Vehicle power device, vehicle, and control method for vehicle power device
JP5348334B2 (en) Power supply device for electric vehicle and control method thereof
KR101012430B1 (en) Power controller and vehicle equipped with power controller
RU2403155C1 (en) Electric power supply system, vehicle equipped with it, method for electric power supply system control
JP4208006B2 (en) Electric vehicle
CN101479906B (en) Vehicle power supply apparatus and vehicle incorporating the same
EP2671750B1 (en) Driving force generation system, vehicle using the system, and method for controlling the system
US8659182B2 (en) Power supply system and electric powered vehicle including power supply system, and method for controlling power supply system
CN101449419B (en) Power supply device
JP4281725B2 (en) Hybrid car
JP4325637B2 (en) Load driving device and vehicle equipped with the same
US7859201B2 (en) Charge control apparatus, electrically powered vehicle and electric storage charge control method
US8035247B2 (en) Power supply device for vehicle
CN101528498B (en) Power supply system and vehicle having the same
JP5287983B2 (en) Power supply system and vehicle equipped with the same
KR100708923B1 (en) Motor Drive Device, Hybrid Automobile Drive Device Using The Same, and Computer Readable Recording Medium Containing Program For Causing Computer To Execute Control of Motor Drive Device
JP4535039B2 (en) Power supply system, vehicle equipped with the same, power storage device temperature rise control method, and computer-readable recording medium storing a program for causing a computer to execute power storage device temperature rise control
JP5229389B2 (en) Electric vehicle power supply system and control method thereof
US8793041B2 (en) Electric powered vehicle and control method for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090612

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110111

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110906

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110919

R151 Written notification of patent or utility model registration

Ref document number: 4840197

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20141014

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250