JP5278093B2 - 記事関連情報提供方法、装置、プログラム、記録媒体 - Google Patents

記事関連情報提供方法、装置、プログラム、記録媒体 Download PDF

Info

Publication number
JP5278093B2
JP5278093B2 JP2009077335A JP2009077335A JP5278093B2 JP 5278093 B2 JP5278093 B2 JP 5278093B2 JP 2009077335 A JP2009077335 A JP 2009077335A JP 2009077335 A JP2009077335 A JP 2009077335A JP 5278093 B2 JP5278093 B2 JP 5278093B2
Authority
JP
Japan
Prior art keywords
image
article
data
article number
area
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009077335A
Other languages
English (en)
Other versions
JP2010231431A (ja
Inventor
和真 小泉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2009077335A priority Critical patent/JP5278093B2/ja
Publication of JP2010231431A publication Critical patent/JP2010231431A/ja
Application granted granted Critical
Publication of JP5278093B2 publication Critical patent/JP5278093B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Information Retrieval, Db Structures And Fs Structures Therefor (AREA)
  • Telephone Function (AREA)
  • Telephonic Communication Services (AREA)
  • Management, Administration, Business Operations System, And Electronic Commerce (AREA)
  • Character Discrimination (AREA)

Description

本発明は、情報誌の記事に関連する情報を携帯端末装置に表示させる方法、装置、プログラム、記録媒体に関するものである。
本発明は特に、情報誌の記事としては掲載されていない関連情報を携帯端末装置に表示させる場合に有用である。
なお、情報誌とは、住宅・不動産情報、求人情報、ショッピング情報、飲食店情報、演劇レジャー情報など多岐にわたる生活情報を記事と広告で伝える雑誌(通常は定期刊行物)である。情報誌には、有料販売される刊行物や、無料配布される刊行物(フリーペーパー)がある。
情報誌の普及に伴って、各種の情報誌が無料誌の形態をとって、紙媒体としての利便性を生かして、人通りの多い繁華街や駅の周辺に配備されて、配布されている。
近時、情報誌に掲載された記事や広告などについての関連情報を、インターネットを用いて、携帯端末装置に配信するサービスが提供されている。
ここで、情報誌の記事に掲載されていない関連情報を配信する方法を説明する。
《 A.二次元コード 》
たとえば、住宅情報誌が、多数の不動産物件の情報を掲載する情報源として流通している。この住宅情報誌は、限られた紙面に、多数の住宅物件記事や住宅物件広告などを掲載するために、1物件あたりの掲載量(文字数や写真の大きさなど)に制限が設けられている。
そこで、紙面に掲載されていない関連情報を読者に提供するために、二次元コードを用いて、読者をWebサイト(住宅情報サイト)にアクセスさせて、その関連情報を閲覧させる方法がある。
たとえば、特許文献1では、求人情報誌の二次元コードを、携帯電話のカメラで撮影して、URLを復号して、インターネットの該当Webサイトに接続して、求人情報や求職情報を取得させる技術が開示されている。
《 B.画像検索 》
あるいは、住宅情報誌などの情報誌では、記事の画像(住宅の概観写真など)を検索キーとして用いて、記事の関連情報を検索させて、読者に提供させる方法がある。
たとえば、非特許文献1では、携帯電話で、画像を撮影して、撮影画像の特徴データを求めて、これをインターネットの該当Webサイトに送信させて、特徴データに対応する情報を、携帯電話に表示させる技術が開示されている。
《 C.物件番号のキー入力 》
また、住宅情報誌では、動産物件毎に振られている固有の物件コード(文字列)を読者にキー入力させて、物件の情報を検索させて、情報を読者に提供する方法がある。
特開2006−39785号公報(段落番号「0007」〜段落番号「0011」、図1)
オリンパス株式会社新事業企画部、"Sync★R(シンクる)"、サービス概要−特長(Sync★Rの概要)、オリンパス株式会社、[online]、[平成21年3月2日検索]、インターネット<http://gwmj.jp/>
しかしながら、《 A.二次元コード 》の方法では、二次元コードが、大きな面積を必要とするので、誌面のデザインを損なうし、1件の記事に掲載できる文字数が削がれてしまうという問題点がある。
また、《 B.画像検索 》の方法では、マンションなどの不動産物件の外観が似ている場合には、それぞれの外観画像を識別することが難しいという問題点がある。
また、《 C.物件番号のキー入力》の方法では、読者に物件コードをキー入力させる手間を要するし、物件コードとして誤った文字を入力する恐れもある。
本発明は以上のような点を解決するためになされたものであって、本発明の課題は、情報誌に掲載する記事の情報量を削減することなく容易に記事を識別できて、情報誌の記事に掲載されていない関連情報を提供する方法、装置、プログラム、記録媒体を提供することである。
本発明は、以下の各態様に記載の手段により、前記課題を解決する。すなわち、本願発明の第1の発明は、記事番号画像判定データと、記事関連データを有する記事データベースと、を用いる記事関連情報提供方法であって、
記事番号を含む情報誌の記事を電子カメラで撮影して撮影画像データを生成するステップと、
撮影画像データから矩形領域画像を切り取り、矩形領域画像の画像属性データを作成して、この画像属性データに対して縦横比判定データと色判定データと色面積比判定データと平均画像データを含んだ記事番号画像判定データを適用して、
矩形領域画像の領域縦横寸法比を算出する工程と、
矩形領域画像の輪郭線近傍の画素を背景画素として抽出して、背景画素が有するRGB値を用いて、HSV色相系のH値に変換して、領域色とする工程と、
矩形領域画像の画素数に対して、領域色を有する画素数で除して、領域色面積比を算出する工程と、
縦横比判定データに適合する領域縦横寸法比データを有する矩形領域画像が1つの場合には、これを記事番号画像と判定する工程と、
色判定データに適合する領域色を有する矩形領域画像が1つの場合には、これを記事番号画像と判定する工程と、
色面積比判定データに適合する領域色面積比を有する矩形領域画像が1つの場合には、これを記事番号画像と判定する工程と、
矩形領域画像と平均画像とを比較して、最も大きな類似度の矩形領域画像を記事番号画像と判定する工程と、から記事番号画像データを抽出する記事番号画像抽出ステップと、
抽出された記事番号画像データを文字認識して文字列を得て、この文字列を記事番号とする記事番号認識ステップと、
記事番号に基づいて、記事データベースを検索して、得られた記事関連データを読み取って、携帯端末装置に返信する関連記事検索返信ステップと、
携帯端末装置が記事関連データを表示する関連記事表示ステップと、
を含んだ手順でなされることを特徴とする記事関連情報提供方法である。
このように、情報誌の記事を撮影した画像を用いて記事番号(=記事を識別する情報)を文字認識して、その記事番号で検索した結果(=記事に関連する情報。たとえば、情報誌に掲載されていない情報)を、携帯端末装置に表示させることが可能である。なお、本発明の説明で用いる「記事番号」とは、数字に英字や漢字を組み合わせた文字列のことである。
本願発明の第2の発明は、縦横比判定データと色判定データと色面積比判定データと平均画像データを含む、記事番号画像判定データを格納する画像属性格納領域と、
記事関連データを有する記事データベースを格納する記事格納領域と、
を備える記憶手段と、
携帯端末装置が送信する撮影画像を受信する撮影画像受信手段と、
受信した撮影画像から矩形領域画像を切り取り、矩形領域画像の画像属性データを作成して、この画像属性データに対して記事番号画像判定データを適用して、記事番号画像と判定した記事番号画像データを抽出する機能と、
矩形領域画像の領域縦横寸法比を算出する機能と、
矩形領域画像の輪郭線近傍の画素を背景画素として抽出して、背景画素が有するRGB値を用いて、HSV色相系のH値に変換して、領域色とする機能と、
矩形領域画像の画素数に対して、領域色を有する画素数で除して、領域色面積比を算出する機能と、
縦横比判定データに適合する領域縦横寸法比データを有する矩形領域画像が1つの場合には、これを記事番号画像と判定する機能と、
色判定データに適合する領域色を有する矩形領域画像が1つの場合には、これを記事番号画像と判定する機能と、
色面積比判定データに適合する領域色面積比を有する矩形領域画像が1つの場合には、これを記事番号画像と判定する機能と、
矩形領域画像と平均画像とを比較して、最も大きな類似度の矩形領域画像を記事番号画像と判定する機能と、
を含んだ記事番号画像抽出手段と、
抽出された記事番号画像を文字認識して文字列を得て、この文字列を記事番号とする記事番号認識手段と、
記事番号に基づいて、記事データベースを検索して、得られた記事関連データを携帯端末装置に返信する関連記事検索返信手段と、
を備えることを特徴とする関連情報サーバー装置である。
本願発明の第3の発明は、コンピューターに組込むことによって、コンピューターを本願第2の発明に記載の関連情報サーバー装置として動作させるコンピュータープログラムである。
本願発明によれば、
(1)情報誌の記事を撮影した画像から、その記事を識別する記事番号を自動的に文字認識することが可能である。
(2)文字認識した記事番号を検索キーにて、記事データベースを検索して、記事に関連する情報を取得して携帯端末装置に表示させることが可能である。
従って、本発明によれば、携帯電話のカメラが情報誌の記事を撮影した画像を用いて、その記事の関連情報(たとえば、情報誌に掲載されていない情報)を携帯端末装置に表示させることができるという効果がある。
図1は、本発明の実施の形態による記事関連情報提供システム1の概要を説明する図である。(実施例1) 図2は、記事が掲載された誌面500の例である。 図3は、読者による携帯端末装置300の大まかな操作手順を説明する図である。 図4は、携帯端末装置300の表示画面302の説明図である。 図5は、記事関連情報提供システム1の大まかな処理の流れを説明する図である。 図6は、記事番号画像の例である。 図7は、記事番号画像抽出処理を詳細に説明する図である。 図8は、画像属性データ397を説明する図である。 図9は、記事番号画像判定データ191を説明する図である。 図10は、平均画像1911を説明する図である。 図11は、記事番号画像文字認識処理を詳細に説明する図である。 図12は、記事番号画像である。 図13は、携帯端末装置300の詳細な構成図である。 図14は、関連情報サーバー装置100の詳細な構成図である。 図15は、記事番号画像判定フローチャートである。
以下、図面等を参照しながら、本発明の実施の形態について、更に詳しく説明する。
図1は、本発明の実施の形態による記事関連情報提供システム1の概要を説明する図である。
記事関連情報提供システム1は、関連情報サーバー装置100と携帯端末装置300とから構成される。
携帯端末装置300は、基地局600と無線接続して、ゲートウェー800を介して、ネットワーク900上の関連情報サーバー装置100と接続する。
携帯端末装置300は、既存の携帯電話やスマートフォンで、電子カメラを具備して、後述する専用プログラムを搭載する。
携帯端末装置300の電子カメラは、情報誌の誌面500に掲載された記事を撮影して、RGB値を有するカラーデジタルデータ(=画像データ)を生成する。
関連情報サーバー装置100は、周知技術であるOCRによるプログラムを備えたサーバーコンピューターに、後述する専用プログラムを搭載したものである。
また、関連情報サーバー装置100は、既存のデータベースシステムを備える。
図2は、誌面500の例である。
誌面500は、複数の記事から構成されている。
記事には、予め定められた割付デザインの記事番号が含まれている。
例示された住宅誌の誌面500は、18件の住宅物件記事から構成されている。記事の部分拡大図510には、記事番号が含まれている。記事番号の拡大図595は、この「記事番号」の割付デザインが、緑の色帯に白抜きされた6桁の文字列であることを示している。
次に、図3を用いて、読者による携帯端末装置300の大まかな操作手順を説明する。
(1)読者は、携帯端末装置300の電子カメラを用いて、記事番号を含む情報誌の記事を撮影して、撮影画像を関連情報サーバー装置100に送信する。
(2)携帯端末装置300が関連情報サーバー装置100から記事に掲載されていない関連情報を受信して、表示部に表示するので、読者は、これを目視する。
ここで、図4を用いて、携帯端末装置300の表示画面を説明する。
図4の(a)は、撮影画像391の表示画面304の例である。
例示されている表示画面304の撮影画像391には、記事番号「資430356」の画像395が含まれている。
図4の(b)は、関連情報サーバー装置100から受信した関連情報の表示画面304の例である。この表示画面304に表示されている関連情報は、情報誌の記事に掲載されていない情報である。
次に、図5を用いて、記事関連情報提供システム1の大まかな処理の流れを説明する。
(1)《撮影画像の作成》携帯端末装置300は、電子カメラが撮像して作成した撮影画像を、関連情報サーバー装置100に送信する。
(2)《記事番号画像の抽出》関連情報サーバー装置100は、携帯端末装置300から撮影画像を受信して、この撮影画像から記事番号画像を抽出する。
(3)《記事番号画像の文字認識》関連情報サーバー装置100は、記事番号画像を文字認識処理して記事番号文字列を読み出す。
(4)《関連情報の検索》サーバー装置100は、記事番号を検索キーにして、記事データベースを検索して、記事に掲載されていない関連情報を取得する。
(5)《関連情報の返信》サーバー装置100は、記事に掲載されていない関連情報を、関連携帯端末装置100に返信する。
(6)《記事に掲載されていない関連情報の表示》携帯端末装置300は、サーバー装置100が返信した記事に掲載されていない関連情報を受信して表示する。
図6は、記事番号画像の例である。
記事番号画像395は、記事番号「資430356」のカラー画像である。
この記事番号画像395は、「緑」色の「矩形」に、一文字の漢字と6桁の全角数字による記事番号「資430356」が、白抜きで割付けられた画像であり、記事番号画像395の縦横寸法比は「17:2」である。
次に、図7を用いて、(2)《記事番号画像の抽出》の処理の流れを詳細に説明する。
図7は、(2)《記事番号画像の抽出》の処理を詳細に説明する図である。
(2−1)《輪郭部抽出》サーバー装置100は、受信したカラーの撮影画像391(=二次元画像)の各画素のRGB値の相加平均を算出して濃淡値として、各画素のRGB値をこの濃淡値に書き換えて更新することでグレー処理して、グレー処理した撮影画像を作成する。次に、相加平均値の最高値の二分の一を閾値として、グレー処理した撮影画像を二値化処理して、撮影画像の二値化画像を生成する。この二値化画像の黒画素領域の黒画素の中から、白画素と接する黒画素の並びを辿って抽出して、抽出した黒画素を輪郭部画素とする。
なお、グレー処理において、濃淡値としてRGB値の相加平均値を用いる方法は、1つの例である。たとえば、G値を濃淡値としてグレー処理しても良いし、RGB値をそれぞれ濃淡値としてグレー処理して、複数のグレー処理した撮影画像を作成しても良い。また、二値化処理において、RGB値の二分の一の閾値を用いる方法は、1つの例である。たとえば、他の値を閾値として用いてもよいし、複数の閾値を用いて、複数の二値化画像を生成するようにしてもよい。
(2−2)《矩形領域画像切り取り》サーバー装置100は、Douglas−Peuckerアルゴリズムを用いて、輪郭部の画素を間引いて、残った画素を用いて線分を作成して、輪郭線を生成する。次に、サーバー装置100は、生成した輪郭線の辺の個数が4つで、各頂点の角度が90度程度(たとえば、頂点の角度=73度以上、すなわちcosθ = 0.3未満)であれば、各頂点の座標値を用いて、撮影画像391から、四角形画像を切り取り、各頂点の座標値から、四角形画像の傾き角度を算出して、この四角形画像の傾き角度が0度(水平)になるようにアフィン変換にて回転させて、回転させて水平にした四角形画像を矩形領域画像393とする。
ここで、Douglas−Peuckerアルゴリズムとは、輪郭部画素(=点)上の2つの点を両端とする線分を引き、2つの点の間に存在する全ての点と線分との距離が閾値(たとえば、輪郭線の長さ × 0.02 )以下であれば、2つの点の間に存在する全ての点を間引き処理して除き、間引く点が無くなるまでこの間引き処理を繰り返して、残った点を結線して線分を作成して直線近似するアルゴリズムである。
なお、直線近似処理において、Douglas−Peuckerアルゴリズムを用いる方法は、1つの例である。他のアルゴリズムを用いて、輪郭部画素を直線近似処理して輪郭線を算出しても良い。
(2−3)《画像属性作成》サーバー装置100は、この矩形領域画像393の画像属性データ397を作成する。
ここで、図8を用いて、画像属性データ397を説明する。画像属性データ397は、記事番号画像395の画像属性を記述したものである。
図8の(a)は、画像属性データ397の形式を説明する図である。
画像属性データ397は、領域縦横寸法比3972と、領域色3973と、領域色面積比3974と、から構成される。
領域縦横寸法比3972は、矩形領域画像393の横寸法(長い辺)を縦寸法(短い辺)で除した値の範囲を示す値である。なお、矩形領域画像393の横寸法と縦寸法として、矩形領域の横方向の画素の数と、縦方向の画素の数とを用いても良い。
領域色3973は、矩形領域画像393の周辺部の画素の色である。領域色3973は、HSV(Hue Saturation Value)色相系のH(=色相)の値の範囲を現す情報である。
領域色面積比3974は、領域色を有する領域部分の面積を矩形領域画像393の面積で除して算出した値である。なお、面積として、領域色を有する領域部分の画素数と、矩形領域画像393の画素数を用いてもよい。
図8の(b)は、画像属性データ397の例である。
例示されている画像属性データ397は、「8.5、120°、11」である。
この例の意味は、記事番号画像395の領域縦横寸法比3972が「8.5」であって、記事番号画像395の領域色3973が、色相の値が「120°」(すなわち、緑色)であって、記事番号画像395の領域色面積比3974が「11」であるということである。
図7に戻り、説明を続ける。
(2−4)《記事番号画像抽出》サーバー装置100は、画像属性データ397に対して、記事番号画像判定データ191を適用して、記事番号画像であると画像判定された矩形領域画像393が1つの場合には、記事番号画像395として抽出する。
記事番号画像であると画像判定された矩形領域画像393が複数ある場合には、矩形領域画像393に対して、記事番号画像判定データのテンプレート二次元画像(=平均画像。詳細は後述する)を適用して、まず、矩形領域画像393を横方向と縦方向に独立して拡大・縮小して、テンプレート二次元画像の横と縦の画素数とに一致させた変形画像を生成した後に、相互相関関数(たとえば、類似度を算出できるということが数学的にすでにわかっている下記の数式1)を用いて類似度を算出して、最も類似度の高い矩形領域画像393を記事番号画像395として抽出する。
Figure 0005278093
なお、tは、テンプレート二次元画像である。
Mは、テンプレート二次元画像の横方向の画素数である。
Nは、テンプレート二次元画像の縦方向の画素数である。
fは、矩形領域画像393を横方向と縦方向に独立して拡大・縮小して、テンプレート二次元画像tの横と縦の画素数(M×N)と一致させた変形画像である。
kは、変形画像fまたは平均画像tの横方向の画素位置である。
lは、変形画像fまたは平均画像tの縦方向の画素位置である。
f[k][l]は、変形画像fの画素位置(k、l)の画素値(0または1)である。
t[k][l]は、テンプレート二次元画像tの画素位置(k、l)の画素値(0または1)である。
オーバーライン付fは、変形画像fの画素値の平均値である。
オーバーライン付tは、テンプレート二次元画像tの画素値の平均値である。
ここで、図9と図10を用いて、記事番号画像判定データ191を説明する。
図9の(a)は、記事番号画像判定データ191の形式を説明する図である。
記事番号画像判定データ191は、縦横比判定データ1912と色判定データ1913と色面積比判定データ1914とを有する属性判定データと、平均画像1911(=テンプレート二次元画像)と、から構成される。
平均画像1911は、全ての記事番号の記事番号画像395の同じ位置にある画素の値を平均した画素で構成されたビットマップデータである。(詳細は後述する)
縦横比判定データ1912は、比の値の範囲を表す数値である。
色判定データ1913は、色相の値(=H値)の範囲を表す数値である。
色面積比判定データ1914は、比の値の範囲を表す数値である。
図9の(b)は、記事番号画像判定データ191の例である。
例示されている記事番号画像判定データ191は、「(17/2±0.5)、(100°−160°)、(3:11)、(図中のビットマップ画像)」である。
この例の意味は、記事番号画像判定データ191の平均画像1911が、例示されたビットマップ画像であって、記事番号画像判定データ191の縦横寸法比判定データ1912が「17/2±0.5」の値の範囲であって、記事番号画像判定データ191の色判定データ1913が、色相の値が「100°から160°」の値の範囲(すなわち、緑色)であって、記事番号画像判定データ191の色面積比判定データ1914が「11/1±0.3」の値の範囲であるということである。
図10は、平均画像1911を説明する図である。
記事番号が、漢字「資」と6桁の数字から構成されている場合に、6桁の数字が全て「0」から「9」までの9種類の記事番号画像(すなわち、記事番号画像395a「資000000」と、記事番号画像395b「資111111」と、・・・、記事番号画像395j「資999999」など)を用意して、9種類の記事番号画像のそれぞれの同じ位置にある画素の値の相加平均を算出して、その相加平均値を平均画像1911の同じ位置の画素の値とする。
次に、図11を用いて、(3)《記事番号画像の文字認識》の処理を詳細に説明する。
(3−1)《天地余白部除去》サーバー装置100は、二値化された、黒地に白抜き文字の記事番号画像193から、白抜き文字列の上下に存在する余白部(=白抜き文字の白画素を含まない水平方向に配列した画素)を除去した二値化画像195を作成する。
ここで、図12を用いて、記事番号画像の《天地余白部除去》を図解する。
図12には、二値化した記事番号画像193と、白画素ヒストグラム1941が例示されている。
例示された二値化記事番号画像193は、黒地に白抜き文字の画像である。二値化した記事番号画像193は、水平方向(=行)と垂直方向(=列)に配列した画素により構成されている。二値化した記事番号画像193の天地付近には、白抜き文字の白画素を含まない黒行1931(白画素を含まない行。余白部)が存在する。
例示された白画素ヒストグラム1941は、二値化した記事番号画像193の各行に含まれる白画素の個数を表すヒストグラムである。ヒストグラム1941の縦軸は、記事番号画像193の行位置に対応する。ヒストグラム1941の横軸は、記事番号画像193行中の白画素の個数を表す。
ここで、白画素ヒストグラム1941を参照して、白画素の個数が0個の黒行1945の位置を読み取って、黒行の位置に相当する黒行1931を二値化した記事番号画像193から除去することで、記事番号画像の天地余白部を除去した矩形画像195を作成することができる。
図11に戻り、説明を続ける。
(3−2)《数字部6等分》サーバー装置100は、天地の余白部を除去した二値化画像195の文字列の数字部分が6桁の数字を割付けていることがわかっているので、二値化画像195の数字部分を6等分に分割する。
(3−3)《左右余白部除去》サーバー装置100は、数字部を6等分した画像196から、天地余白部を除去したときと同様に、左右余白部(=白抜き文字の白画素を含まない垂直方向に配列した画素)を除去した数字画像197を作成する。
(3−4)《記事番号認識》サーバー装置100は、OCRプログラム180を呼び出して、二値化された数字画像197を渡して、OCRプログラム180がこれをOCR辞書データ192と照合して文字認識した数字コードを受け取る。
図13は、携帯端末装置300の詳細な構成図である。
携帯端末装置300は、CPU301と、表示部302と、操作部303と、カメラ部304と、ネットワーク通信部308と、記憶部309と専用プログラムとを備える。
CPU301と、表示部302と、入力部303と、カメラ部304と、通信部308と、記憶部309とは、BUS199で接続される。
CPU301は、中央演算装置である。
表示部302は、液晶表示装置や有機EL表示装置である。
操作部303は、キーボタンである。操作部302は、表示部103に表示されたソフトキーボタンであってもよい。
カメラ部304は、撮影対象を露光記録した撮像素子から電気信号を読み出してデジタル画像データを生成する電子カメラである。電子カメラ304は、情報誌の記事を撮影して撮影画像データを生成する。
マイク305は、音声を入力する装置である。
スピーカー306は、音声を出力する装置である。
電源部307は、2次電池である。
通信部308は、基地局と相互に無線信号を通信する装置である。
記憶部309は、半導体メモリーや磁気メモリーである。
記憶部309は、撮影画像格納領域3091と、関連情報格納領域3092とを備えて、オペレーティングシステム385と、専用プログラムとを記憶する。
撮影画像格納領域3091は、撮影画像データ391を格納する。
関連情報格納領域3092は、記事関連データ392を格納する。
オペレーティングシステム385は、携帯端末装置300のハードウェア(たとえば、CPU301と、表示部302と、入力部303と、カメラ部304と、ネットワーク通信部308と、記憶部309と、BUS399など)を管理・制御して、応用ソフトウエア(たとえば、専用プログラム)に対して、これらのハードウェアを利用できるようなサービスを提供する基本ソフトウエアである。
このほかに、撮影画像送信手段310と、関連情報受信表示手段320と、を備える。これらの各手段は、それぞれの専用プログラムによって実現され、専用プログラムがCPU301に解釈・実行されることによって機能する。
撮影画像送信手段310は、電子カメラ304が生成した撮影画像を通信部308および基地局を介して、関連情報サーバー装置100に送信する。
関連情報受信表示手段320は、関連情報サーバー装置100が返信する記事関連データを、基地局および通信部308を介して、受信して、これを表示部302に表示する。
図14は、関連情報サーバー装置100の詳細な構成図である。
関連情報サーバー装置100は、CPU101と、ネットワーク通信部104と、記憶部109と専用プログラムとを備える。
CPU101と、ネットワーク通信部104と、記憶部109とは、BUS199で接続される。
CPU101は、中央演算装置である。
ネットワーク通信部104は、LANアダプターである。
記憶部109は、半導体メモリーや磁気メモリーである。
記憶部109は、画像判定格納領域091と、記事格納領域093とを備えて、OCRプログラム180と、オペレーティングシステム185と、専用プログラムとを記憶する。
画像判定格納領域091は、記事番号画像判定データ191を格納する。
記事格納領域093は、記事データベース193を格納する。
記事データベース193は、記事関連データ(たとえば、情報誌に掲載されていないデータ)を有するデータベースである。
OCRプログラム180は、周知技術であるOCRによるプログラムである。
OCRプログラム180は、文字画像を受け取って、この文字画像に対して、このプログラムが具備する漢字OCR辞書データを適用して、文字認識処理して、文字コードを出力する。
オペレーティングシステム185は、コンピューターのハードウェア(たとえば、CPU101と、ネットワーク通信部104と、記憶部109と、BUS199など)を管理・制御して、応用ソフトウエア(たとえば、画像認識プログラム180や専用プログラムなど)に対して、これらのハードウェアを利用できるようなサービスを提供する基本ソフトウエアである。
このほかに、記事番号画像抽出手段120と、記事番号認識手段130と、関連記事返信手段140と、撮影画像受信手段170と、を備える。これらの各手段は、それぞれの専用プログラムによって実現され、専用プログラムがCPU101に解釈・実行されることによって機能する。
撮影画像受信170は、携帯端末装置300が送信する撮影画像391をネットワーク通信部104を介して受信する。
記事番号画像抽出手段120は、受信した撮影画像データ391から記事番号画像395を抽出する。
詳細には、記事番号画像抽出手段120は、画像属性データ397を作成して、作成した画像属性データ397に対して、記事番号画像判定データ191を適用して、矩形領域画像が記事番号画像であると判定された場合には、記事番号画像395として抽出する。
記事番号画像抽出手段120は、輪郭部抽出機能と、矩形領域画像切取機能と、属性情報作成機能と、画像判定機能とを備える。
輪郭部抽出機能は、図7にて説明した(2−1)《輪郭部抽出》の処理を行う機能であって、以下の3つの部分から構成されて、カラーの撮影画像391から輪郭部画素を抽出する。
(1)カラーの撮影画像391の各画素のRGB値を基に所定の濃淡値算出方法で濃淡値を算出して、算出した濃淡値にて画素のRGB値を更新して、グレー処理した撮影画像を生成する。
(2)グレー処理した撮影画像に対して、所定の閾値で二値化して、二値化画像を生成する。
(3)二値化画像の黒画素領域の黒画素の中から、白画素と接する黒画素の並びを辿って抽出して、抽出した黒画素を輪郭部画素とする。
矩形領域画像切取機能は、図7にて説明した(2−2)《矩形領域画像切り取り》の処理を行う機能であって、以下の3つの部分から構成されて、カラーの撮影画像391から矩形領域画像393を切り取る。
(1)輪郭部画素の並びから取り出した2つの画素を両端として生成した線分と、両端とする2つの画素の間に存在する画素と、の距離が所定の閾値以下である線分を輪郭線とする。
(2)輪郭線の辺の個数が4つで、各頂点の角度が90度程度(たとえば、頂点の角度=73度以上、すなわちcosθ = 0.3未満)であれば、各頂点の座標値を読み取る。
各頂点の座標値を用いて、撮影画像391から、四角形画像を切り取る。
(3)各頂点の座標値から、四角形画像の傾き角度を算出して、この四角形画像の傾き角度が0度(水平)になるようにアフィン変換にて回転させて、回転させて水平にした四角形画像を矩形領域画像393とする。
属性情報作成機能は、矩形領域画像データ393を用いて、以下の3つの処理により、画像属性データ397を作成する。
(1)二値化された矩形領域画像、あるいは、矩形領域画像393の水平方向の画素数を垂直方向の画素数で除して、領域縦横寸法比を算出する。
(2)また、矩形領域画像393の輪郭線近傍の画素を背景画素として抽出して、背景画素のRGB値を用いて、HSV色相系のH値に変換して、領域色とする。
(3)また、矩形領域画像393の画素数に対して、領域色を有する画素数で除して、領域色面積比を算出する。
画像判定機能は、切り取った矩形領域画像データ393、および、作成した画像属性データ397を用いて、記事番号画像判定データ191と照合して、以下の4つの処理により、矩形領域画像データの中から記事番号画像データ395を判定して抽出する。
(1)領域縦横寸法比データ3972が、縦横比判定データ1912の示す範囲の値に含まれる場合には、矩形領域画像データを矩形領域画像候補として保持する。ここで、保持した矩形領域画像候補が1つの場合には、矩形領域画像候補を記事番号画像と判定する。
(2)保持した矩形領域画像候補が2つ以上の場合には、保持した矩形領域画像候補の領域色3973が、色判定データ1913の示す範囲の値に含まれる場合には、改めて矩形領域画像候補として保持する。ここで、保持した矩形領域画像候補が1つの場合には、矩形領域画像候補を記事番号画像と判定する。
(3)保持した矩形領域画像候補が2つ以上の場合には、保持した矩形領域画像候補の領域色面積比3974が、色面積比判定データ1914の示す範囲の値に含まれる場合には、改めて矩形領域画像候補として保持する。ここで、保持した矩形領域画像候補が1つの場合には、矩形領域画像候補を記事番号画像と判定する。
(4)保持した矩形領域画像候補が2つ以上の場合には、平均画像1911とそれぞれの矩形領域画像候補との類似度を、相関関数を用いて算出して、最も大きな類似度の矩形領域画像候補を記事番号画像と判定する。
記事番号認識手段130は、抽出された記事番号画像395を文字認識して、文字列を受け取り、この文字列を用いて記事番号を作成する。
記事番号認識手段130は、天地余白部除去機能と、左右余白部除去機能と、左右余白部除去機能と、文字認識機能と、を備える。
天地余白部除去機能は、二値化した記事番号画像を構成する行列配列に対して、中心部から周辺部に向かって、1行ずつを読み取り、行中の白画素の個数を計測して、白画素が0個の行(黒行)が見つかったら、その行より周辺部の行を、二値化した記事番号画像193から除去する。ここで、二値化した記事番号画像は、黒地に白抜き文字の画像である。
数字部6等分機能は、記事番号画像の数字部分の割付情報を用いて、記事番号画像195の数字部分を6等分して、数字部を6等分した画像196を作成する。
左右余白部除去機能は、数字部を6等分した画像196を構成する行列配列に対して、中心部から周辺部に向かって、1列ずつを読み取り、列中の白画素の個数を計測して、白画素が0個の列(黒列)が見つかったら、その列より周辺部の列を、数字部を6等分した画像196から除去して、二値化した数字画像を作成する。
文字認識機能は、OCRプログラム180を呼び出して、二値化した数字画像を渡して、OCRプログラム180がこれをOCR辞書データ192と照合して文字認識した数字コードを受け取る。
関連記事検索返信手段140は、記事番号で構成される検索キーを作成して、記事データベースを検索して、得られた記事関連データを読み取って、携帯端末装置300に返信する。
図15は、記事番号画像抽出処理のフローチャートである。
(1)縦横比判定処理:記事番号画像抽出手段120の画像判定機能は、画像属性データ397の領域縦横寸法比データ3972と、記事番号画像判定データ191の縦横比判定データ1912と照合して、領域縦横寸法比データ3972が、縦横比判定データ1912の示す範囲の値に含まれる場合には、矩形領域画像データを矩形領域画像候補として保持する。(ステップS110)。
(2)保持した矩形領域画像候補数が2つ以上存在するか否かを判定する。
保持した矩形領域画像候補数が1つのみ存在する場合には、ステップS125に進む。
2つ以上存在する場合には、ステップS130に進む。
なお、保持した矩形領域画像候補数が0個の場合には、終了する。(ステップS120)
(3)記事番号画像確定処理:記事番号画像抽出手段120の画像判定機能は、その矩形領域画像候補を記事番号画像と判定して、終了する。(ステップS125)
(4)色判定処理:記事番号画像抽出手段120の画像判定機能は、保持した矩形領域画像候補の領域色3973と記事番号画像判定データの色判定データ1913とを照合して、領域色3973が、色判定データ1913の示す範囲の値に含まれる場合には、改めて矩形領域画像候補として保持する。(ステップS130)
(5)保持した矩形領域画像候補数が2つ以上存在するか否かを判定する。
保持した矩形領域画像候補数が1つのみ存在する場合には、ステップS145に進む。2つ以上存在する場合には、ステップS150に進む。
なお、保持した矩形領域画像候補数が0個の場合には、終了する。(ステップS140)
(6)記事番号画像確定処理:記事番号画像抽出手段120の画像判定機能は、その矩形領域画像候補を記事番号画像と判定して、終了する。(ステップS145)
(7)面積比判定処理:記事番号画像抽出手段120の画像判定機能は、保持した矩形領域画像候補の領域色面積比3974と記事番号画像判定データの色面積比判定データ1914とを照合して、領域色面積比3974が、色面積比判定データ1914の示す範囲の値に含まれる場合には、改めて矩形領域画像候補として保持する。(ステップS150)
(8)保持した矩形領域画像候補数が2つ以上存在するか否かを判定する。
保持した矩形領域画像候補数が1つのみ存在する場合には、ステップS155に進む。2つ以上存在する場合には、ステップS170に進む。
なお、保持した矩形領域画像候補数が0個の場合には、終了する。(ステップS160)
(9)記事番号画像確定処理:記事番号画像抽出手段120の画像判定機能は、その矩形領域画像候補を記事番号画像と判定して、終了する。(ステップS165)
(10)平均画像照合処理:記事番号画像抽出手段120の画像判定機能は、保持した矩形領域画像候補と平均画像1911との類似度を、相関関数を用いて算出して、最も大きな類似度の矩形領域画像候補を記事番号画像と判定する。
画像照合して、類似度を算出して、最も大きな類似度の矩形領域画像候補を、記事番号画像と判定して、終了する。(ステップS170)
背景の色帯より濃い色の番号として割付デザインされた「記事番号」の例を説明する。
背景の色帯より濃い色の番号の記事番号画像では、二値化された記事画像は、白地に黒文字となる。そこで、二値化された記事番号画像193を色反転処理してから、(3)《記事番号画像の文字認識》の処理を行う。
異なる種類の情報誌(たとえば、A社の住宅情報誌と、Bの住宅情報誌)の例を説明する。
異なる種類の情報誌では、それぞれ異なる割付デザインの記事番号が用いられる。
そこで、読者は、それぞれの情報誌に対応した携帯端末装置300の専用プログラムを選択してから、記事関連情報提供システムの処理を行う。
1 記事関連情報提供システム
100 関連情報サーバー装置
110 画像属性作成手段
120 記事番号画像抽出手段
130 記事番号認識手段
140 関連記事返信手段
170 撮影画像受信手段
180 OCRプログラム
185 オペレーティングシステム
191 記事番号画像判定データ
193 記事データベース
195 天地の余白を除去した二値化画像
196 数字部を6等分した画像
197 数字画像
300 携帯端末装置
302 撮影画像の表示画面
391 撮影画像
393 矩形領域画像
395 記事番号画像
397 画像属性データ

Claims (3)

  1. 記事番号画像判定データと、記事関連データを有する記事データベースと、を用いる記事関連情報提供方法であって、
    記事番号を含む情報誌の記事を電子カメラで撮影して撮影画像データを生成するステップと、
    撮影画像データから矩形領域画像を切り取り、矩形領域画像の画像属性データを作成して、この画像属性データに対して縦横比判定データと色判定データと色面積比判定データと平均画像データを含んだ記事番号画像判定データを適用して、
    矩形領域画像の領域縦横寸法比を算出する工程と、
    矩形領域画像の輪郭線近傍の画素を背景画素として抽出して、背景画素が有するRGB値を用いて、HSV色相系のH値に変換して、領域色とする工程と、
    矩形領域画像の画素数に対して、領域色を有する画素数で除して、領域色面積比を算出する工程と、
    縦横比判定データに適合する領域縦横寸法比データを有する矩形領域画像が1つの場合には、これを記事番号画像と判定する工程と、
    色判定データに適合する領域色を有する矩形領域画像が1つの場合には、これを記事番号画像と判定する工程と、
    色面積比判定データに適合する領域色面積比を有する矩形領域画像が1つの場合には、これを記事番号画像と判定する工程と、
    矩形領域画像と平均画像とを比較して、最も大きな類似度の矩形領域画像を記事番号画像と判定する工程と、から記事番号画像データを抽出する記事番号画像抽出ステップと、
    抽出された記事番号画像データを文字認識して文字列を得て、この文字列を記事番号とする記事番号認識ステップと、
    記事番号に基づいて、記事データベースを検索して、得られた記事関連データを読み取って、携帯端末装置に返信する関連記事検索返信ステップと、
    携帯端末装置が記事関連データを表示する関連記事表示ステップと、
    を含んだ手順でなされることを特徴とする記事関連情報提供方法。
  2. 縦横比判定データと色判定データと色面積比判定データと平均画像データを含む、記事番号画像判定データを格納する画像属性格納領域と、
    記事関連データを有する記事データベースを格納する記事格納領域と、
    を備える記憶手段と、
    携帯端末装置が送信する撮影画像を受信する撮影画像受信手段と、
    受信した撮影画像から矩形領域画像を切り取り、矩形領域画像の画像属性データを作成して、この画像属性データに対して記事番号画像判定データを適用して、記事番号画像と判定した記事番号画像データを抽出する機能と、
    矩形領域画像の領域縦横寸法比を算出する機能と、
    矩形領域画像の輪郭線近傍の画素を背景画素として抽出して、背景画素が有するRGB値を用いて、HSV色相系のH値に変換して、領域色とする機能と、
    矩形領域画像の画素数に対して、領域色を有する画素数で除して、領域色面積比を算出する機能と、
    縦横比判定データに適合する領域縦横寸法比データを有する矩形領域画像が1つの場合には、これを記事番号画像と判定する機能と、
    色判定データに適合する領域色を有する矩形領域画像が1つの場合には、これを記事番号画像と判定する機能と、
    色面積比判定データに適合する領域色面積比を有する矩形領域画像が1つの場合には、これを記事番号画像と判定する機能と、
    矩形領域画像と平均画像とを比較して、最も大きな類似度の矩形領域画像を記事番号画像と判定する機能と、
    を含んだ記事番号画像抽出手段と、
    抽出された記事番号画像を文字認識して文字列を得て、この文字列を記事番号とする記事番号認識手段と、
    記事番号に基づいて、記事データベースを検索して、得られた記事関連データを携帯端末装置に返信する関連記事検索返信手段と、
    を備えることを特徴とする関連情報サーバー装置。
  3. コンピューターに組込むことによって、コンピューター請求項2に記載の関連情報サーバー装置として動作させるコンピュータープログラム。
JP2009077335A 2009-03-26 2009-03-26 記事関連情報提供方法、装置、プログラム、記録媒体 Expired - Fee Related JP5278093B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009077335A JP5278093B2 (ja) 2009-03-26 2009-03-26 記事関連情報提供方法、装置、プログラム、記録媒体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009077335A JP5278093B2 (ja) 2009-03-26 2009-03-26 記事関連情報提供方法、装置、プログラム、記録媒体

Publications (2)

Publication Number Publication Date
JP2010231431A JP2010231431A (ja) 2010-10-14
JP5278093B2 true JP5278093B2 (ja) 2013-09-04

Family

ID=43047192

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009077335A Expired - Fee Related JP5278093B2 (ja) 2009-03-26 2009-03-26 記事関連情報提供方法、装置、プログラム、記録媒体

Country Status (1)

Country Link
JP (1) JP5278093B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9953347B2 (en) 2013-09-11 2018-04-24 Cinsay, Inc. Dynamic binding of live video content

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5770023B2 (ja) * 2011-06-10 2015-08-26 日本電信電話株式会社 紙媒体関連情報提供システムおよび紙媒体関連情報提供方法
AT515595A2 (de) * 2014-03-27 2015-10-15 9Yards Gmbh Verfahren zur optischen Erkennung von Zeichen
JP6880867B2 (ja) * 2017-03-16 2021-06-02 株式会社リコー 画像処理装置、画像処理方法およびプログラム

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2637541B2 (ja) * 1989-02-02 1997-08-06 富士通株式会社 色識別方法及び装置
JPH11143986A (ja) * 1997-10-17 1999-05-28 Internatl Business Mach Corp <Ibm> ビットマップイメージの処理方法及び処理装置、ビットマップイメージの処理を行うイメージ処理プログラムを格納した記憶媒体
JPH11341292A (ja) * 1998-05-29 1999-12-10 Canon Inc 画像処理装置及び方法及び記憶媒体
JP2003109007A (ja) * 2001-09-28 2003-04-11 Fuji Xerox Co Ltd 帳票様式分類装置、帳票様式分類方法、帳票様式分類プログラムおよび画像照合装置
JP2004054307A (ja) * 2002-07-16 2004-02-19 Konica Minolta Holdings Inc 情報提示装置、情報提示サーバーおよび情報提示システム
JP2007034531A (ja) * 2005-07-25 2007-02-08 Sharp Corp 文字認識装置、文字認識方法、文字認識プログラム、および記録媒体
JP4494424B2 (ja) * 2007-02-13 2010-06-30 富士通株式会社 プログラム及び検査装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9953347B2 (en) 2013-09-11 2018-04-24 Cinsay, Inc. Dynamic binding of live video content

Also Published As

Publication number Publication date
JP2010231431A (ja) 2010-10-14

Similar Documents

Publication Publication Date Title
US9311531B2 (en) Systems and methods for classifying objects in digital images captured using mobile devices
US8655107B2 (en) Signal processing apparatus, signal processing method, computer-readable medium and computer data signal
US20210141826A1 (en) Shape-based graphics search
JP2010518507A (ja) 特徴マッチング方法
US9916499B2 (en) Method and system for linking printed objects with electronic content
JP2013109773A (ja) 特徴マッチング方法及び商品認識システム
CN111104813A (zh) 二维码图像关键点检测方法、装置、电子设备及存储介质
CN108597034B (zh) 用于生成信息的方法和装置
JP5278093B2 (ja) 記事関連情報提供方法、装置、プログラム、記録媒体
CN110717060A (zh) 图像mask的过滤方法、装置及存储介质
CN114494751A (zh) 证照信息识别方法、装置、设备及介质
CN108090728B (zh) 一种基于智能终端的快递信息录入方法及录入系统
JP5004082B2 (ja) 文書画像検索方法、文書画像登録方法、そのプログラムおよび装置
JP5767887B2 (ja) 画像処理装置、画像処理方法及び画像処理プログラム
JP2017138743A (ja) 画像処理装置、画像処理方法及びプログラム
JP2016025625A (ja) 情報処理装置、情報処理方法及びプログラム
CN111291758A (zh) 用于识别印章文字的方法和装置
JP7282257B2 (ja) 画像処理装置、制御方法及び制御プログラム
JP2006106931A (ja) 文字列探索装置、探索方法およびこの方法のプログラム
KR101625751B1 (ko) 바운더리 코드를 포함하는 ar 마커 장치, 이를 이용한 ar 제공 시스템 및 방법
WO2015012820A1 (en) Method and system for data identification and extraction using pictorial representations in a source document
JP7478628B2 (ja) 画像処理装置、制御方法及び制御プログラム
CN107678655A (zh) 一种图像要素提取方法及图像要素提取系统
JP5967036B2 (ja) 画像検索システム、情報処理装置及びプログラム
KR102280240B1 (ko) 문서 이미지 기반의 관심 정보 추출 장치 및 방법

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130131

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130329

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees