JP5277958B2 - Manufacturing method of fuel cell stack - Google Patents

Manufacturing method of fuel cell stack Download PDF

Info

Publication number
JP5277958B2
JP5277958B2 JP2008333429A JP2008333429A JP5277958B2 JP 5277958 B2 JP5277958 B2 JP 5277958B2 JP 2008333429 A JP2008333429 A JP 2008333429A JP 2008333429 A JP2008333429 A JP 2008333429A JP 5277958 B2 JP5277958 B2 JP 5277958B2
Authority
JP
Japan
Prior art keywords
cell stack
tension
cell
pair
end plates
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008333429A
Other languages
Japanese (ja)
Other versions
JP2010157364A (en
Inventor
一裕 渡辺
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2008333429A priority Critical patent/JP5277958B2/en
Publication of JP2010157364A publication Critical patent/JP2010157364A/en
Application granted granted Critical
Publication of JP5277958B2 publication Critical patent/JP5277958B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method of manufacturing a fuel cell stack of a constant dimension structure in which the fuel cell stack can be assembled with good accuracy by suppressing complication of work inexpensively and space-savingly. <P>SOLUTION: Battery cells 11 of the fuel cell are laminated to make a cell stack 10 and a pair of end plates 20, 20 are arranged so as to pinch the cell stack 10 from cell lamination direction T, the pair of end plates 20 are tightened by a tension measuring tool 50, and the cell stack 10 is tightened in cell lamination direction T through the pair of end plates 20, 20 while measuring the tension with the tension measuring tool 50 so that the tension in cell lamination direction T acting on the tension measuring tool 50 may be a prescribed tension and the tightening amount of the tension measuring tool 50 is determined, and then, the tension measuring tool 50 is removed from the pair of end plates 20, 20 and the pair of end plates 20, 20 are tightened by a tightening member 40 according to the tightening amount. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、定寸構造の燃料電池スタックに組み立てるに好適な燃料電池スタックの製造方法に関する。   The present invention relates to a method of manufacturing a fuel cell stack suitable for assembling a fuel cell stack having a fixed size structure.

従来から、燃料電池スタックは、以下のようにして、製造される。まず、セル(複数セルをシール接着したモジュールである場合を含む)をセル間にガスケットを挟み積層してセル積層体を製造する。次に、セル積層体のセル積層方向両端にターミナル、絶縁体を配置する。さらに絶縁体のセル積層方向外側に、セル積層方向の一端にプレッシャープレート、エンドプレートを、セル積層方向の他端にエンドプレートを配置する。そして、両端に配置された一対のエンドプレートを締結するように締結部材が取り付けられる。   Conventionally, a fuel cell stack is manufactured as follows. First, a cell laminate is manufactured by laminating cells (including a module in which a plurality of cells are sealed and bonded) with a gasket interposed between the cells. Next, terminals and insulators are disposed at both ends of the cell stack in the cell stacking direction. Further, on the outside of the insulator in the cell stacking direction, a pressure plate and an end plate are disposed at one end in the cell stacking direction, and an end plate is disposed at the other end in the cell stacking direction. And a fastening member is attached so that a pair of end plate arrange | positioned at both ends may be fastened.

このとき、セル間でガス及び冷却水のリークを生じないようにするために、締結部材を用いてエンドプレート間に配置されたセル積層体に対して、セル積層方向に所定の荷重を付与するように、エンドプレートを介して締結部材でセル積層体を締め付ける。しかし、セル積層体に対して荷重が大き過ぎるとセパレータが割れてしまうおそれがある。   At this time, in order to prevent leakage of gas and cooling water between the cells, a predetermined load is applied in the cell stacking direction to the cell stack disposed between the end plates using a fastening member. As described above, the cell stack is fastened with the fastening member via the end plate. However, if the load is too large for the cell stack, the separator may be broken.

このような点を鑑みて、例えば、図2に示すように、エンドプレート20とセル積層体10との間に、ロードセル81を配置し、ロードセル81により検出される荷重を測定しながら、セル積層体10に作用する荷重が所定の荷重となるように、締結部材40で締め付けを調整し、燃料電池スタック91に組み立てる。   In view of such a point, for example, as shown in FIG. 2, a load cell 81 is arranged between the end plate 20 and the cell stack 10, and the load detected by the load cell 81 is measured, The tightening is adjusted by the fastening member 40 so that the load acting on the body 10 becomes a predetermined load, and the fuel cell stack 91 is assembled.

また、別の態様として、図3に示すように、セル積層体10のセル積層方向の両側に一対のエンドプレート20を配置し、一対のエンドプレート20を締結部材40で締結する際に、締結部材40のセル積層方向の荷重を測定するために、締結部材40の長手方向に沿った引張加重を測定するひずみケージ(荷重モニター用のひずみゲージ)82を配置し、ひずみゲージ82に作用する引張荷重を測定しながら、一対のエンドプレート20間の締結部材40を締め付けの調整し、燃料電池スタック92を組み立てる。   As another aspect, as shown in FIG. 3, when a pair of end plates 20 are arranged on both sides of the cell stack 10 in the cell stacking direction and the pair of end plates 20 are fastened by a fastening member 40, fastening is performed. In order to measure the load of the member 40 in the cell stacking direction, a strain cage (strain gauge for load monitoring) 82 that measures the tensile load along the longitudinal direction of the fastening member 40 is arranged, and the tensile force acting on the strain gauge 82 While measuring the load, the fastening member 40 between the pair of end plates 20 is adjusted for tightening, and the fuel cell stack 92 is assembled.

さらに、別の態様としては、図4に示すように、セル積層体10のセル積層方向の両側に一対のエンドプレート20を配置し、スタック長が定寸(所定長さL)となるように、一端側からロードセル83に取付けられた加圧治具84でセル積層体10を積層方向に押圧し、ロードセル83により測定された荷重に基づいて、エンドプレート20間に締結部材40を締結し、燃料電池スタック93を組み立てる(例えば、特許文献1参照)。   Furthermore, as another aspect, as shown in FIG. 4, a pair of end plates 20 are disposed on both sides of the cell stack 10 in the cell stacking direction so that the stack length becomes a fixed dimension (predetermined length L). The cell stack 10 is pressed in the stacking direction with a pressure jig 84 attached to the load cell 83 from one end side, and the fastening member 40 is fastened between the end plates 20 based on the load measured by the load cell 83, The fuel cell stack 93 is assembled (see, for example, Patent Document 1).

図2〜4に示すいずれの方法も、ロードセル又はひずみゲージを用いて、セル積層体に作用する荷重を測定するため、セル積層体に所望の荷重を作用させながら、締結部材により、燃料電池スタックを組み立てることができるので、調整した所望の荷重を維持し、かつ、スタックの形状を維持することができる。
特開2006−10858号公報
In any of the methods shown in FIGS. 2 to 4, a load cell or a strain gauge is used to measure a load acting on the cell stack. Therefore, the adjusted desired load can be maintained and the shape of the stack can be maintained.
JP 2006-10858 A

しかしながら、図2に示すようにして、燃料電池スタックを組み立てた場合には、ロードセルは組み付けの際にしか必要でないにもかかわらず、セル積層体にロードセルを設け、スタックにロードセルを内蔵しているため、コストおよびスペースにおいて不利である。さらに組み立て後もロードセルは取り外されないため、ロードセルに接続された配線の取り回しが複雑になり、組み立て作業が煩雑なものとなる。   However, when the fuel cell stack is assembled as shown in FIG. 2, the load cell is provided only in the assembly, and the load cell is provided in the cell stack, and the load cell is built in the stack. Therefore, it is disadvantageous in cost and space. Furthermore, since the load cell is not removed even after assembly, the routing of the wiring connected to the load cell becomes complicated, and the assembly work becomes complicated.

また、図3に示すようにして、燃料電池スタックを組み立てた場合も同様に、締結部材毎に配置されたひずみゲージは組み付けの際にしか必要なく、このひずみゲージは、複数個配置されるので、ロードセルに比べてさらに配線の取り回しが複雑になり、組み立て作業がさらに煩雑なものとなる。   Similarly, when the fuel cell stack is assembled as shown in FIG. 3, the strain gauges arranged for each fastening member are necessary only when assembling, and a plurality of strain gauges are arranged. As compared with the load cell, the wiring is further complicated, and the assembling work is further complicated.

また、図4に示すようにして、燃料電池スタックを組み立てた場合には、加圧治具のロードセルにより荷重を測定し、締結部材で締結するので、エンドプレートに隣接したセルが太鼓状に変形するので、この変形分の荷重を補正しなければならず、最終的にセル積層体に所望の荷重を作用させることが難しいことがある。   As shown in FIG. 4, when the fuel cell stack is assembled, the load is measured by the load cell of the pressurizing jig and fastened by the fastening member, so that the cell adjacent to the end plate is deformed into a drum shape. Therefore, the load for this deformation must be corrected, and it may be difficult to finally apply a desired load to the cell stack.

本発明は、上記する問題に鑑みてなされたものであり、その目的とするところは、安価かつ省スペースで、作業の煩雑さを抑えて、精度良く燃料電池スタックを組み立てることができる定寸構造の燃料電池スタックの製造方法を提供することにある。   The present invention has been made in view of the above-described problems, and the object of the present invention is a fixed-size structure that can assemble a fuel cell stack with high accuracy while being inexpensive and space-saving, suppressing complexity of work. It is an object to provide a method of manufacturing a fuel cell stack.

前記課題を解決すべく、本発明に係る燃料電池スタックの製造方法は、燃料電池のセルを積層させてセル積層体とし、該セル積層体をセル積層方向から挟持するように一対のエンドプレートを配置し、該一対のエンドプレート同士を張力測定具で締結し、該張力測定具に作用する前記セル積層方向の張力が所定の張力となるように、前記張力測定具で前記張力を測定しつつ前記一対のエンドプレートを介して前記セル積層体を前記セル積層方向に締め付けて、前記張力測定具の締め付け量を決定し、前記張力測定具を前記一対のエンドプレートから取り外し、前記締め付け量に応じて前記一対のエンドプレート同士を締結部材で締結することを特徴とする。   In order to solve the above problems, a method of manufacturing a fuel cell stack according to the present invention includes stacking fuel cell cells to form a cell stack, and a pair of end plates so as to sandwich the cell stack from the cell stacking direction. The pair of end plates are fastened with a tension measuring tool, and the tension is measured with the tension measuring tool so that the tension in the cell stacking direction acting on the tension measuring tool becomes a predetermined tension. The cell stack is clamped in the cell stacking direction via the pair of end plates, the tightening amount of the tension measuring tool is determined, the tension measuring tool is detached from the pair of end plates, and according to the tightening amount The pair of end plates are fastened with a fastening member.

本発明では、まず、燃料電池のセルを複数枚積層させてセル積層体を成形する。次に、セル積層体をセルの積層方向から挟持するように一対のエンドプレートを配置する。なお、エンドプレートは、セル積層体をセル積層方向に加圧する(荷重を作用させる)ためのものであり、後述する締結部材の締め付け量に応じて、セル積層体に所望の荷重をさせることができる。   In the present invention, first, a cell laminate is formed by laminating a plurality of cells of a fuel cell. Next, a pair of end plates are arranged so as to sandwich the cell stack from the cell stacking direction. The end plate is for pressurizing the cell stack in the cell stacking direction (applying a load), and can cause the cell stack to have a desired load according to the tightening amount of a fastening member described later. it can.

ここで、本発明では、締結部材により締結する前に、該一対のエンドプレート同士を、張力測定具で締結する。この張力測定具には、セル積層方向に作用する荷重を測定可能な測定器(例えばひずみゲージ)が取着されており、張力測定具は、締結部材と同じ剛性を有した部材であることが好ましく、締結部材と同じ形状、同じ材質であることがより好ましい。   Here, in this invention, before fastening with a fastening member, this pair of end plates are fastened with a tension measuring tool. A measuring instrument (for example, a strain gauge) capable of measuring a load acting in the cell stacking direction is attached to the tension measuring instrument, and the tension measuring instrument may be a member having the same rigidity as the fastening member. Preferably, the fastening member has the same shape and the same material.

そして、張力測定具を用いて、一対のエンドプレートを介してセル積層体を前記セル積層方向に締め付ける。このときに、張力測定具に作用するセル積層方向の張力が所定の張力となるように、張力測定具に作用する張力を測定しつつ、一対のエンドプレートに対する張力測定具のセル積層方向の締め付け量(セル積層体のセル積層方向の変位量)を決定する。   And a cell laminated body is clamp | tightened to the said cell lamination direction via a pair of end plate using a tension measuring tool. At this time, tighten the tension measuring instrument in the cell stacking direction with respect to the pair of end plates while measuring the tension acting on the tension measuring instrument so that the tension in the cell stacking direction acting on the tension measuring instrument becomes a predetermined tension. The amount (the amount of displacement of the cell stack in the cell stacking direction) is determined.

ここでいう所定の張力とは、セル積層体のセル間において、燃料電池使用時にガスや冷却水のリークが生じず、さらには、荷重によりセルを損傷しない程度に、セル積層体に荷重が作用したときに張力測定具に生じる力である。   The predetermined tension mentioned here means that a load is applied to the cell stack so that no gas or cooling water leaks between the cells of the cell stack when the fuel cell is used, and further, the cell is not damaged by the load. This is the force that is generated in the tension measuring instrument.

締め付け量の決定後に、張力測定具を一対のエンドプレートから取り外し、決定された締め付け量に応じて、一対のエンドプレート同士を締結部材で締結し、燃料電池スタックが組み立てられる。   After the tightening amount is determined, the tension measuring tool is removed from the pair of end plates, and the pair of end plates are fastened with a fastening member according to the determined tightening amount, and the fuel cell stack is assembled.

このようにして、張力測定具を用いて、その後、エンドプレートに取り付ける締結部材の取付け具合を決めることができるので、従来の方法と同様に、締結部材を用いて、エンドプレートを介してセル積層体に所望の荷重を作用させることができる。   In this way, since the tension member can be used to determine the degree of attachment of the fastening member to be attached to the end plate, the cell stacking is performed via the end plate using the fastening member, as in the conventional method. A desired load can be applied to the body.

また、張力測定具は、セル積層方向の締め付け量を決定することができれば、その後、エンドプレートから取り外されるので、燃料電池スタック内に残ることはなく、従来の装置内に測定器が残ることを考慮した測定用配線の取り回しの煩雑な作業はほとんど必要なく、組立作業性も向上する。張力測定具を組み立て時に再利用することができ、燃料電池スタックの製造コストの安価化を図ることができる。   Also, if the tension measuring tool can determine the tightening amount in the cell stacking direction, it will be removed from the end plate after that, so it will not remain in the fuel cell stack, and the measuring device will remain in the conventional apparatus. There is almost no complicated work for the wiring of the measurement in consideration, and the assembly workability is improved. The tension measuring instrument can be reused during assembly, and the manufacturing cost of the fuel cell stack can be reduced.

さらに、締め付け量により張力を管理することができるので、締結部材に作用する張力を、張力測定具により測定した張力と同じにすることができるので、より精度良く、セル積層体のセル積層方向に荷重を作用させて、燃料電池スタックを組み立てることができる。   Furthermore, since the tension can be managed by the tightening amount, the tension acting on the fastening member can be made the same as the tension measured by the tension measuring instrument, so that the cell stack can be more accurately aligned in the cell stacking direction. The fuel cell stack can be assembled by applying a load.

本発明によれば、安価かつ省スペースで、作業の煩雑さを抑えて、精度良く燃料電池スタックを組み立てることができる定寸構造の燃料電池スタックを製造することができる。   According to the present invention, it is possible to manufacture a fuel cell stack having a fixed size structure that can be assembled with high accuracy with low cost and space-saving, with reduced work complexity.

以下に、図面を参照して、本発明に係る燃料電池スタックの製造方法の一実施形態に基づいて説明する。   Below, with reference to drawings, it explains based on one embodiment of the manufacturing method of the fuel cell stack concerning the present invention.

図1は、本実施形態に係る燃料電池スタックの製造方法の一連の製造方法を説明するための図であり、図1(a)は、セル積層体にエンドプレートを配置するための図であり、図1(b)は、一対のエンドプレートに張力測定具を締結して、締め付け量を決定する工程を説明するための図であり、図1(c)は、張力測定具を取り外す工程を説明するための図であり、図1(d)は、一対のエンドプレートに締結部材を締結する工程を説明するための図である。 FIG. 1 is a diagram for explaining a series of manufacturing methods of the fuel cell stack manufacturing method according to the present embodiment, and FIG. 1A is a diagram for arranging end plates in a cell stack. , FIG. 1 (b), by fastening the tension measuring instrument to the pair of end plates are diagrams for illustrating a process of determining the tightening amount, FIG. 1 (c), removing the tension measurement instrument step FIG. 1D is a diagram for explaining a process of fastening a fastening member to a pair of end plates.

まず、固体高分子型燃料電池のセル(単セル)11を製造する。この単セルは、膜電極接合体(MEA)を主要な構成要素とし、それを燃料(水素)ガス流路および空気ガス流路を備えたセパレータで挟持して、1つの単セルを形成している。   First, a cell (single cell) 11 of a polymer electrolyte fuel cell is manufactured. This single cell has a membrane electrode assembly (MEA) as a main component, and is sandwiched by a separator having a fuel (hydrogen) gas flow path and an air gas flow path to form one single cell. Yes.

膜電極接合体は、イオン交換膜である電解質膜の一方側にアノード側の電極(アノード触媒層)とアノード側のガス拡散層(アノードガス拡散層)を積層し、他方の側にカソード側の電極(触媒層)とカソード側のガス拡散層(カソードガスガス拡散層)を積層した構造を有する。このような燃料電池のセルを積層して、図1(a)に示すようなセル積層体10を製造する。   In the membrane electrode assembly, an anode side electrode (anode catalyst layer) and an anode side gas diffusion layer (anode gas diffusion layer) are laminated on one side of an electrolyte membrane which is an ion exchange membrane, and the cathode side is laminated on the other side. The electrode (catalyst layer) and the cathode side gas diffusion layer (cathode gas diffusion layer) are stacked. By stacking such fuel cell, a cell stack 10 as shown in FIG. 1A is manufactured.

次に、セル積層方向Tから挟持するように一対のエンドプレート20,20を配置する。エンドプレート20は、セル積層体10をセル積層方向Tに加圧する(荷重を作用させる)ためのものであり、後述する締結部材40又は張力測定具50の締め付け量に応じて、セル積層体10に荷重をさせることができる。この際に、所定の定寸を得るべく、予めセル積層体10とエンドプレート20との間に、シム(スペーサ)を配置してもよい。   Next, the pair of end plates 20 and 20 are arranged so as to be sandwiched from the cell stacking direction T. The end plate 20 is used to pressurize the cell stack 10 in the cell stacking direction T (to apply a load), and according to the tightening amount of a fastening member 40 or a tension measuring tool 50 described later, the cell stack 10 Can be loaded. At this time, a shim (spacer) may be arranged in advance between the cell stack 10 and the end plate 20 in order to obtain a predetermined fixed size.

そして、エンドプレート20を配置した状態で、一対のエンドプレート20同士を複数の張力測定具50で締結する。張力測定具50は、棒状体であり、張力測定具50には、セル積層方向に作用する荷重を測定可能なように(棒状体の軸方向の引張荷重が測定可能なように)ひずみゲージ51が取着されており、後述する締結部材40と同じ形状、同じ材質、すなわち、同じ剛性を有したものである。また、張力測定具50は、後述する締結部材40の本数(例えば6本)準備し、これらの締結部材40のそれぞれは、トレーサビリティのとれた(同じ機械的特性の)ものが望ましい。   Then, a pair of end plates 20 are fastened with a plurality of tension measuring tools 50 in a state where the end plates 20 are arranged. The tension measuring tool 50 is a rod-shaped body, and the strain gauge 51 is configured so that the load acting on the cell stacking direction can be measured (so that the tensile load in the axial direction of the rod-shaped body can be measured). Are attached, and have the same shape and the same material as the fastening member 40 described later, that is, the same rigidity. In addition, the tension measuring tool 50 is prepared in the number of fastening members 40 (for example, six) described later, and each of the fastening members 40 is preferably traceable (having the same mechanical characteristics).

このような張力測定具50を用いて、一対のエンドプレート20,20を介してセル積層体10をセル積層方向Tに締め付ける。このときに、セル積層体10には、圧縮方向に荷重(圧縮力)が作用し、その反力として、張力測定具50には、張力が発生する。この発生した張力を、ひずみゲージ51により測定する。各張力測定具50により測定した張力を張力測定具の断面積を乗じることにより荷重を算出し、この算出した荷重が、セル積層体10に作用する荷重となる。また、この張力測定具50の接続を自動化してもよい。   Using such a tension measuring instrument 50, the cell stack 10 is fastened in the cell stacking direction T via the pair of end plates 20, 20. At this time, a load (compression force) acts on the cell laminate 10 in the compression direction, and as a reaction force, tension is generated in the tension measuring device 50. The generated tension is measured by the strain gauge 51. A load is calculated by multiplying the tension measured by each tension measuring tool 50 by the cross-sectional area of the tension measuring tool, and the calculated load becomes a load acting on the cell laminate 10. Further, the connection of the tension measuring device 50 may be automated.

具体的には、この締結する際に、張力測定具50に作用するセル積層方向Tの張力が基準張力となるように、張力測定具50に配置されたひずみゲージ51で張力を測定しながら、一対のエンドプレート20,20を介してセル積層体10をセル積層方向Tに締め付けて、張力測定具50の締め付け量を決定する。   Specifically, during this fastening, while measuring the tension with the strain gauge 51 arranged in the tension measuring instrument 50 so that the tension in the cell stacking direction T acting on the tension measuring instrument 50 becomes the reference tension, The cell stack 10 is clamped in the cell stacking direction T via the pair of end plates 20, 20 to determine the tightening amount of the tension measuring tool 50.

この基準張力は、セル積層体10のセル11の間において、燃料電池使用時にガスや冷却水のリークが生じず、さらには、荷重によりセル損傷しない程度に、セル積層体10に荷重を作用させたときに張力測定具に生じる力である。   This reference tension is applied between the cells 11 of the cell stack 10 so that no gas or cooling water leaks when the fuel cell is used, and further, the load is applied to the cell stack 10 to the extent that the cell is not damaged by the load. This is the force generated in the tension measuring instrument when

その後、張力測定具50を一対のエンドプレート20,20から取り外し、必要に応じて、シムを交換したのち、先に決定した締め付け量に応じた締め付け量で、一対のエンドプレート同士20,20を締結部材40で締結し、燃料電池スタック1を製造する。   Thereafter, the tension measuring instrument 50 is removed from the pair of end plates 20 and 20, and the shims are exchanged as necessary. Then, the pair of end plates 20 and 20 are attached to each other with a tightening amount corresponding to the previously determined tightening amount. The fuel cell stack 1 is manufactured by fastening with the fastening member 40.

このようにして、張力測定具50を用いて、その後、エンドプレート20に取り付ける締結部材40の取付け具合を決めることができるので、従来の方法と同様に、締結部材40を用いて、エンドプレートを介してセル積層体に所望の荷重を作用させることができる。   In this manner, since the tension measuring tool 50 can be used to determine the degree of attachment of the fastening member 40 to be attached to the end plate 20 thereafter, the end plate can be attached to the end plate using the fastening member 40 as in the conventional method. A desired load can be applied to the cell stack.

また、張力測定具50は、セル積層方向Tの締め付け量を決定することができれば、その後、エンドプレート20から取り外されるので、燃料電池スタック1内に残ることはなく、従来の製品内に組み込まれる高価な荷重モニター用ひずみゲージやロードセルを使用なくてもよい。また、張力測定具50を組み立て時に再利用することができ、燃料電池スタック1の製造コストの安価化を図ることができる。 In addition, if the tightening amount in the cell stacking direction T can be determined, the tension measuring tool 50 is then removed from the end plate 20, so that it does not remain in the fuel cell stack 1 and is incorporated in a conventional product. It is not necessary to use an expensive load monitoring strain gauge or load cell. Further, it is possible to reuse the tension measurement device 50 during assembly viewed vertically, it is possible to achieve an inexpensive production cost of the fuel cell stack 1.

さらに、締め付け量により張力を管理することができるので、締結部材40に作用する張力を、張力測定具50により測定した張力と同じにすることができるので、より精度良く、セル積層体10のセル積層方向Tに荷重を作用させて、燃料電池スタック1を組み立てることができる。   Furthermore, since the tension can be managed by the tightening amount, the tension acting on the fastening member 40 can be made the same as the tension measured by the tension measuring instrument 50, so that the cells of the cell stack 10 can be more accurately obtained. The fuel cell stack 1 can be assembled by applying a load in the stacking direction T.

以上、本発明の実施の形態を図面を用いて詳述してきたが、具体的な構成はこの実施形態に限定されるものではなく、本発明の要旨を逸脱しない範囲における設計変更があっても、それらは本発明に含まれるものである。   As mentioned above, although embodiment of this invention has been explained in full detail using drawing, a concrete structure is not limited to this embodiment, Even if there is a design change in the range which does not deviate from the gist of the present invention. These are included in the present invention.

本実施形態に係る燃料電池スタックの製造方法の一連の製造方法を説明するための図であり、図1(a)は、セル積層体にエンドプレートを配置するための図であり、図1(b)は、一対のエンドプレートに張力測定具を締結して、締め付け量を決定する工程を説明するための図であり、図1(c)は、張力測定具を取り外す工程を説明するための図であり、図1(d)は、一対のエンドプレートに締結部材を締結する工程を説明するための図。It is a figure for demonstrating a series of manufacturing methods of the manufacturing method of the fuel cell stack which concerns on this embodiment, FIG. 1 (a) is a figure for arrange | positioning an end plate in a cell laminated body, FIG. b) is entered into a tension measuring instrument to the pair of end plates are diagrams for illustrating a process of determining the tightening amount, FIG. 1 (c), for illustrating a step of removing the tension measuring instrument FIG.1 (d) is a figure for demonstrating the process of fastening a fastening member to a pair of end plate. 従来の燃料電池スタックの製造方法を説明するための図。The figure for demonstrating the manufacturing method of the conventional fuel cell stack. 従来の別の態様の燃料電池スタックの製造方法を説明するための図。The figure for demonstrating the manufacturing method of the fuel cell stack of another aspect of the past. 従来のさらに別の態様の燃料電池スタックの製造方法を説明するための図。The figure for demonstrating the manufacturing method of the fuel cell stack of another conventional aspect.

符号の説明Explanation of symbols

1:燃料電池スタック、10:セル積層体、11:セル、20:エンドプレート、40:締結部材、50:張力測定具、51:ひずみゲージ、T:セル積層方向   1: fuel cell stack, 10: cell laminate, 11: cell, 20: end plate, 40: fastening member, 50: tension measuring tool, 51: strain gauge, T: cell stacking direction

Claims (1)

燃料電池のセルを積層させてセル積層体とし、
該セル積層体をセル積層方向から挟持するように一対のエンドプレートを配置し、
該一対のエンドプレート同士を張力測定具で締結し、
該張力測定具に作用する前記セル積層方向の張力が所定の張力となるように、前記張力測定具で前記張力を測定しつつ前記一対のエンドプレートを介して前記セル積層体を前記セル積層方向に締め付けて、前記張力測定具の締め付け量を決定し、
前記張力測定具を前記一対のエンドプレートから取り外し、前記締め付け量に応じて前記一対のエンドプレート同士を締結部材で締結することを特徴とする燃料電池スタックの製造方法。
Laminate fuel cell cells into a cell stack,
A pair of end plates are arranged so as to sandwich the cell stack from the cell stacking direction,
Fasten the pair of end plates with a tension measuring tool,
The cell stack is placed in the cell stacking direction via the pair of end plates while measuring the tension with the tension measuring tool so that the tension in the cell stacking direction acting on the tension measuring tool becomes a predetermined tension. To determine the tightening amount of the tension measuring tool,
A method of manufacturing a fuel cell stack, comprising: removing the tension measuring tool from the pair of end plates; and fastening the pair of end plates with a fastening member according to the tightening amount.
JP2008333429A 2008-12-26 2008-12-26 Manufacturing method of fuel cell stack Active JP5277958B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008333429A JP5277958B2 (en) 2008-12-26 2008-12-26 Manufacturing method of fuel cell stack

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008333429A JP5277958B2 (en) 2008-12-26 2008-12-26 Manufacturing method of fuel cell stack

Publications (2)

Publication Number Publication Date
JP2010157364A JP2010157364A (en) 2010-07-15
JP5277958B2 true JP5277958B2 (en) 2013-08-28

Family

ID=42575124

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008333429A Active JP5277958B2 (en) 2008-12-26 2008-12-26 Manufacturing method of fuel cell stack

Country Status (1)

Country Link
JP (1) JP5277958B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101734622B1 (en) 2014-11-21 2017-05-11 현대자동차주식회사 Combination structure of fuel cell stack
DE102017215510A1 (en) 2017-09-05 2019-03-07 Volkswagen Ag A method of determining the compressive tensile force acting on a fuel cell stack
DE102022109188B3 (en) 2022-04-14 2023-08-03 Schaeffler Technologies AG & Co. KG Fuel cell stack and method of assembling a fuel cell stack

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06251794A (en) * 1993-02-26 1994-09-09 Sumitomo Electric Ind Ltd Battery cell stack
JP2002056883A (en) * 2000-08-10 2002-02-22 Mitsubishi Heavy Ind Ltd Fuel cell device and operating method for the same
JP2005524214A (en) * 2002-04-30 2005-08-11 ゼネラル・モーターズ・コーポレーション Method and apparatus for providing uniform fuel cell stack structure
JP2006108058A (en) * 2004-10-08 2006-04-20 Toyota Motor Corp Fuel cell stack, its manufacturing method, and manufacturing device
JP5045880B2 (en) * 2006-06-20 2012-10-10 トヨタ自動車株式会社 Fuel cell
JP5086586B2 (en) * 2006-08-11 2012-11-28 東芝燃料電池システム株式会社 FUEL CELL, ITS MANUFACTURING METHOD, AND DECOMPOSING METHOD
JP2008059932A (en) * 2006-08-31 2008-03-13 Toyota Motor Corp Fuel battery
JP2008135331A (en) * 2006-11-29 2008-06-12 Toyota Motor Corp Fuel cell system, and control method of fuel cell system
JP2008181812A (en) * 2007-01-25 2008-08-07 Toyota Motor Corp Fuel cell manufacturing device and fuel cell

Also Published As

Publication number Publication date
JP2010157364A (en) 2010-07-15

Similar Documents

Publication Publication Date Title
JP4038936B2 (en) Leak test apparatus and leak test method
JP4747938B2 (en) Leakage test method
US9559378B2 (en) Fuel cell stack case with pressure plate
JP4762366B2 (en) Fuel cell stack and method of fastening fuel cell stack
US10727519B2 (en) Manufacturing method and apparatus for fuel cell stack
JP2007042406A (en) Crack detecting method for fuel cell separator and manufacturing method of fuel cell stack
JP5277958B2 (en) Manufacturing method of fuel cell stack
JP5068625B2 (en) Fuel cell
JP2006108058A (en) Fuel cell stack, its manufacturing method, and manufacturing device
JP5133805B2 (en) Fuel cell potential measuring device and method for manufacturing the same
JP5064904B2 (en) Assembly method of fuel cell stack
JP2006286546A (en) Assembling method of fuel cell stack
JP2008181812A (en) Fuel cell manufacturing device and fuel cell
KR100666786B1 (en) Method for manufacturing fuel cell stack
JP7062728B2 (en) Manufacturing method and manufacturing equipment for power generation cell laminate
JP2009129584A (en) Manufacturing method of fuel cell stack
JP6032237B2 (en) Manufacturing method of fuel cell stack
JP2006164899A (en) Assembling device and assembling method of fuel cell stack
KR101521433B1 (en) Welding Test Device of Novel Structure
JP2009266537A (en) Inspection method and inspection device of fuel cell
JP2019079643A (en) Assembly method of cell monitor connector
JP2010114004A (en) Fuel cells
JP2017147107A (en) Power storage device module manufacturing method and apparatus
JP2019179653A (en) Measuring apparatus for battery module
JP2019046669A (en) Method of manufacturing fuel cell stack

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130206

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130506

R151 Written notification of patent or utility model registration

Ref document number: 5277958

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151