JP5272473B2 - DI can molding method - Google Patents

DI can molding method Download PDF

Info

Publication number
JP5272473B2
JP5272473B2 JP2008090530A JP2008090530A JP5272473B2 JP 5272473 B2 JP5272473 B2 JP 5272473B2 JP 2008090530 A JP2008090530 A JP 2008090530A JP 2008090530 A JP2008090530 A JP 2008090530A JP 5272473 B2 JP5272473 B2 JP 5272473B2
Authority
JP
Japan
Prior art keywords
ironing
reduction rate
film
thickness reduction
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008090530A
Other languages
Japanese (ja)
Other versions
JP2009241102A (en
Inventor
克己 小島
雅毅 多田
安秀 大島
浩樹 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2008090530A priority Critical patent/JP5272473B2/en
Priority to PCT/JP2009/056909 priority patent/WO2009123295A1/en
Publication of JP2009241102A publication Critical patent/JP2009241102A/en
Application granted granted Critical
Publication of JP5272473B2 publication Critical patent/JP5272473B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D22/00Shaping without cutting, by stamping, spinning, or deep-drawing
    • B21D22/20Deep-drawing
    • B21D22/28Deep-drawing of cylindrical articles using consecutive dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21DWORKING OR PROCESSING OF SHEET METAL OR METAL TUBES, RODS OR PROFILES WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21D51/00Making hollow objects
    • B21D51/16Making hollow objects characterised by the use of the objects
    • B21D51/26Making hollow objects characterised by the use of the objects cans or tins; Closing same in a permanent manner

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Containers Having Bodies Formed In One Piece (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

A method of forming a DI can is provided in which a steel sheet laminated with an organic resin film is subjected as a raw material to DI forming. In this method, film damage is avoided, and it is easy to pull can bodies out of the punch even when a conventional DI forming machine is used. The angle of ironing die approach is regulated to 2-5°, and ironing forming is conducted so as to satisfy relationship (1), wherein X(n) (%) is the sheet thickness reduction from the original sheet thickness after the n-th ironing operation. Two or more ironing steps are conducted to thereby reduce the sheet thickness. The laminated steel sheet preferably has a yield strength of 300-500 MPa. It is preferred to use a liquid having a viscosity of 0.3-1.0 mPa s as a coolant. X(n)=0.0004X(n-1)3+0.0025X(n-1)2+0.0956X(n-1)+31.1 relationship (1) (provided that X(0)=0)

Description

本発明は、有機樹脂フィルムを被覆したラミネート鋼板を素材とするDI缶の成形方法に関するものである。   The present invention relates to a method for forming a DI can made of a laminated steel sheet coated with an organic resin film.

食缶や飲料缶用途の2ピース缶として、DRD缶、DTR缶、DI缶などが使用されている。中でもDI缶は、素材としてアルミ板、鋼板の両者が用いられ、広く普及した缶である。
ここで、DI缶の成形方法について説明する。まず金属板を円形ブランクに打抜き、次にカッピングプレス機で絞り成形を行い浅い絞りカップを作る。更に、DI缶成形機において、図3に示すように、パンチ4が高速で再絞りダイス6、しごきダイス7、8、9を通過することにより、再絞り加工、しごき加工を施し、背の高いDI缶を作製する。しごき加工は通常3〜4工程になっており、絞り工程、再絞り工程を含めて5〜6工程以上の成形でダイスを順次通過する。このとき、潤滑と冷却の目的でクーラントを用いる。そして、このような複数回の工程により成形された後に、パンチ4の進行方向が反転し、最終段のしごきダイスの先に配置されたストリッパー10のフィンガーにより缶体はパンチ4から抜き取られる。さらに、DI缶成形機での成形後に、缶上端のトリム、ネック成形、フランジ成形などを行うことで、巻締が可能な形状のDI缶になる。
DRD cans, DTR cans, DI cans and the like are used as two-piece cans for food cans and beverage cans. Among them, DI cans are widely used cans, using both aluminum plates and steel plates as materials.
Here, a method for forming a DI can will be described. First, a metal plate is punched into a circular blank, and then drawn with a cupping press to make a shallow drawn cup. Further, in the DI can molding machine, as shown in FIG. 3, the punch 4 passes through the redrawing die 6 and the ironing dies 7, 8, and 9 at a high speed, thereby performing redrawing processing and ironing processing. Make a DI can. Ironing is usually performed in 3 to 4 steps, and the die is sequentially passed through molding in 5 to 6 steps or more including a drawing step and a redrawing step. At this time, coolant is used for the purpose of lubrication and cooling. Then, after being formed by such a plurality of processes, the traveling direction of the punch 4 is reversed, and the can body is extracted from the punch 4 by the fingers of the stripper 10 disposed at the end of the ironing die at the final stage. Furthermore, after forming with a DI can molding machine, trimming of the upper end of the can, neck forming, flange forming, etc., can be performed to form a DI can that can be wound.

従来のDI缶は、アルミ板、スチール(鋼板)ともに成形後に塗装が施されていた。しかし、近年、環境対策、食品安全性等の観点から塗装工程の省略が志向され、アルミ板や鋼板に有機樹脂フィルムをラミネートした材料が開発され、ラミネートした材料をDI缶に成形する試みが行われている。
ただし、ラミネートした材料をDI缶に用いた場合、DI缶での特有のしごき成形時にラミネートフィルムが損傷するという問題があった。この問題を解決する試みとして、特許文献1では、リング状しごき加工ダイスのダイス面を1〜4°の傾斜角(進入角θ)で細め、その末端にカップ側壁と平行な短い長さのランド部を設け、その末端から5〜15°の傾斜角で広げた出口面を有した構造のしごき加工ダイスを、50W/m℃以上の熱伝導率を有する耐摩耗性材料で製作し、そのしごき加工ダイスを用いて、冷却用の液体を供給しながら樹脂被覆金属板よりなるカップをしごき加工して缶体に成形する方法が開示されている。
Conventional DI cans were painted after being molded on both aluminum and steel (steel plates). However, in recent years, the omission of the painting process has been aimed at from the viewpoint of environmental measures, food safety, etc., and a material in which an organic resin film is laminated on an aluminum plate or a steel plate has been developed, and attempts have been made to mold the laminated material into a DI can. It has been broken.
However, when the laminated material is used for the DI can, there is a problem that the laminate film is damaged at the time of ironing unique to the DI can. As an attempt to solve this problem, in Patent Document 1, the die surface of the ring-shaped ironing die is narrowed by an inclination angle of 1 to 4 ° (entrance angle θ), and a land having a short length parallel to the cup side wall is formed at the end. An ironing die having a structure with an exit surface that is widened at an inclination angle of 5 to 15 ° from the end is manufactured from an abrasion-resistant material having a thermal conductivity of 50 W / m ° C or more. A method is disclosed in which a cup made of a resin-coated metal plate is ironed and formed into a can body while supplying a cooling liquid using a processing die.

また、有機樹脂フィルムラミネート鋼板を用いてDI成形を行う場合、パンチからの缶体の抜取りが困難であった。ポリエステル樹脂フィルムラミネート鋼板のDI成形におけるパンチ抜取り性に関しては、特許文献2において、最終段のしごき加工を行うしごきダイスよりも前にストリッパーを配置することにより、抜き取り性が向上することが示されている。
特許第2852403号公報 特開2001−300644号公報
Moreover, when performing DI shaping | molding using an organic resin film laminated steel plate, extraction of the can from the punch was difficult. Regarding punch punchability in DI molding of polyester resin film laminated steel sheet, Patent Document 2 shows that the stripper is improved by placing a stripper before the ironing die for performing the final ironing process. Yes.
Japanese Patent No. 2852403 Japanese Patent Laid-Open No. 2001-300644

特許文献1の技術は有機樹脂被覆されたアルミ板に関する技術である。この技術を有機樹脂フィルムラミネート鋼板に用いた場合、確かにフィルムの損傷は軽減する傾向にある。しかしながら、50W/m℃以上の熱伝導率を有する耐摩耗性材料として特許文献1に例示されているものは一般的な超硬工具材料であり、これと冷却用の液体を供給することを併用して発熱を抑制したとしても、有機樹脂フィルムラミネート鋼板を用いた場合はフィルムの損傷を安定的に回避することは困難である。   The technology of Patent Document 1 is a technology related to an aluminum plate coated with an organic resin. When this technique is used for an organic resin film laminated steel sheet, the damage to the film surely tends to be reduced. However, what is exemplified in Patent Document 1 as a wear-resistant material having a thermal conductivity of 50 W / m ° C. or higher is a general carbide tool material, and this is used in combination with supplying a cooling liquid. Even when heat generation is suppressed, it is difficult to stably avoid film damage when an organic resin film laminated steel sheet is used.

一方、パンチからの缶体の抜き取りに関する特許文献2の技術は確かに効果的であると考えられる。しかし、この技術は従来にない新たな機構のDI成形機で初めて採用することのできるもので、広く普及した従来のDI成形機には適用できないという問題がある。   On the other hand, the technique of Patent Document 2 relating to extraction of a can body from a punch is certainly considered to be effective. However, this technique can be used for the first time in a DI molding machine with a new mechanism that has not been heretofore, and there is a problem that it cannot be applied to a widely used conventional DI molding machine.

本発明は、かかる事情に鑑みなされたもので、有機樹脂フィルムラミネート鋼板を素材としてDI成形するにあたり、フィルムの損傷を回避し、また、従来のDI成形を用いた場合にもパンチからの缶体の抜き取りが容易であるDI缶の成形方法を提供することを目的とする。   The present invention has been made in view of such circumstances, and in forming DI using an organic resin film-laminated steel sheet as a raw material, damage to the film is avoided, and a can body from a punch is also used when conventional DI forming is used. An object of the present invention is to provide a method for forming a DI can that can be easily extracted.

本発明の要旨は以下のとおりである。
[1]有機樹脂フィルムを被覆したラミネート鋼板を素材とするDI缶の成形方法であって、複数回からなるしごき成形により板厚を減少させるにあたり、しごきダイスの進入角を2°以上5°以下とし、第n回目のしごき成形での原板板厚からの板厚減少率をX(n)%としたとき、式(1)を満たすことを特徴とするDI缶の成形方法。
X(n)≦0.0004X(n−1)3+0.0025X(n−1)2+0.0956X(n−1)+31.1・・・式(1)
ただし、X(0)=0
[2]前記[1]において、前記ラミネート鋼板は、降伏強度が300〜500MPaである鋼板の両面に、有機樹脂樹脂フィルムを被覆したラミネート鋼板であることを特徴とするDI缶の成形方法。
[3]前記[1]または[2]において、粘度が0.3〜1.0mPa・sである液体をクーラントとして用いることを特徴とするDI缶の成形方法。
The gist of the present invention is as follows.
[1] DI can molding method using laminated steel sheet coated with organic resin film. When reducing sheet thickness by multiple ironing, the angle of entry of the ironing die is 2 ° or more and 5 ° or less. A DI can molding method characterized by satisfying equation (1), where X (n)% is the thickness reduction rate from the original plate thickness in the nth ironing molding.
X (n) ≦ 0.0004X (n−1) 3 + 0.0025X (n−1) 2 + 0.0956X (n−1) +31.1 Expression (1)
However, X (0) = 0
[2] The method for forming a DI can according to [1], wherein the laminated steel sheet is a laminated steel sheet in which an organic resin resin film is coated on both surfaces of a steel sheet having a yield strength of 300 to 500 MPa.
[3] A method for molding a DI can according to [1] or [2], wherein a liquid having a viscosity of 0.3 to 1.0 mPa · s is used as a coolant.

本発明によれば、フィルムの損傷を回避し、従来のDI成形を用いた場合にもパンチからの缶体の抜き取りが容易である成形方法を提供することができる。   According to the present invention, it is possible to provide a molding method in which damage to the film is avoided and the can body can be easily extracted from the punch even when the conventional DI molding is used.

以下、本発明について詳細に説明する。
ラミネート鋼板をDI成形するにあたり、本発明者らはまずポリエステル膜とアルミシートもしくはアルミ合金シートとからなる積層板(以降、ラミネートアルミ板とする)のDI成形に関する発明である特許文献1に開示された条件で成形実験を行った。
具体的には、図1に示したしごきダイス(特許文献1ではしごきリング)1の進入角2(特許文献1では入口角)を2°、ランドの軸方向長さ3を1mmとした。しごきダイス1の素材はコバルトを母体とする炭化タングステンを用いた。これは特許文献1に規定された条件の熱伝導率を備えるものである。しごき成形の板厚減少率は、しごきダイス1のパンチとのクリアランスを調整することにより、特許文献1の明細書中に記載された板厚減少率となるようにした。すなわち、第1回目のしごき成形での板厚減少率を26%、第1回目から第2回目までを26%、第2回目から第3回目を41%とした。この板厚減少率は、原板からの板厚減少率に換算すると、第1回目は26%、第2回目は45%、第3回目は68%となる。なお、以降、本発明では特に断わらない限り板厚減少率は原板板厚からの板厚減少率とする。また、成形では、市販のぶりき材DI缶成形用潤滑剤を水に対して1.5%添加したクーラントを用いた。用いたラミネート鋼板は、フィルム厚15μmのPET(ポリエチレンテレフタレート)フィルムを、板厚が0.2mm、降伏強度が400MPaの鋼板の両面に熱融着法でラミネートしたものを用いた。
上記条件で成形実験を行った結果、素材にラミネート鋼板を用いた場合は、フィルムがしごきダイスによって削られるフィルム損傷が生じ健全な缶体を得ることができなかった。調査したところ、このフィルム損傷は第2回目のしごき成形の段階で発生していることが判明した。つまり、ラミネートアルミ板を対象とする特許文献1に開示された条件は、ラミネート鋼板には必ずしも適用できないことを確認した。
Hereinafter, the present invention will be described in detail.
In performing DI molding of a laminated steel sheet, the present inventors first disclosed in Patent Document 1 which is an invention related to DI molding of a laminated plate (hereinafter referred to as a laminated aluminum plate) composed of a polyester film and an aluminum sheet or an aluminum alloy sheet. The molding experiment was performed under the conditions.
Specifically, the entrance angle 2 (inlet angle in Patent Document 1) of the ironing die (the ironing ring in Patent Document 1) 1 shown in FIG. 1 is 2 °, and the axial length 3 of the land is 1 mm. The material of the ironing die 1 was tungsten carbide based on cobalt. This is provided with the thermal conductivity under the conditions specified in Patent Document 1. The plate thickness reduction rate of the ironing molding was adjusted to the plate thickness reduction rate described in the specification of Patent Document 1 by adjusting the clearance of the ironing die 1 with the punch. That is, the plate thickness reduction rate in the first ironing was set to 26%, the first to the second to 26%, and the second to the third to 41%. When this plate thickness reduction rate is converted into the plate thickness reduction rate from the original plate, the first round is 26%, the second round is 45%, and the third round is 68%. Hereinafter, in the present invention, unless otherwise specified, the plate thickness reduction rate is the plate thickness reduction rate from the original plate thickness. In the molding, a coolant in which a commercially available tinting material DI can molding lubricant was added to water by 1.5% was used. The laminated steel plate used was a laminate of a PET (polyethylene terephthalate) film having a film thickness of 15 μm on both sides of a steel plate having a plate thickness of 0.2 mm and a yield strength of 400 MPa by a heat fusion method.
As a result of forming experiments under the above conditions, when a laminated steel sheet was used as the material, film damage caused by the film being scraped by the ironing die occurred, and a healthy can body could not be obtained. Upon investigation, it was found that this film damage occurred at the stage of the second ironing process. That is, it was confirmed that the conditions disclosed in Patent Document 1 for a laminated aluminum plate are not necessarily applicable to a laminated steel plate.

そこで、第2回目のしごき成形での板厚減少率を45%から40%としたところ、2回目のフィルム損傷は回避できた。ただし、第3回目のしごき成形でフィルム損傷が生じた。この結果は、第1回目から第2回目のしごき成形における板厚減少率を低減したことで第2回目のしごき成形でのフィルム損傷は回避されたが、一方で、第2回目から第3回目のしごき成形での板厚減少率が高いため、フィルム損傷が生じたものと考えられる。
そこで、第2回目から第3回目のしごき成形における板厚減少率を低減するため、第1回目、第2回目の板厚減少率を再設定した実験を行った。つまり、第1回目の板厚減少率を以前の実験よりも高い30%とし、第2回目の板厚減少率を45%、第3回目の板厚減少率を68%とした。その結果、各回数目のしごき成形でのフィルム損傷は発生せず、合計3回のしごき成形によってフィルム損傷のない健全な缶体を得ることができた。
以上の実験から、ラミネートアルミ板では成形が可能である条件でも、ラミネート鋼板を用いた場合にはフィルム損傷によって成形が不可能となる場合があり、ラミネート鋼板のフィルム損傷を回避するには、複数回のしごき成形における各回数目の板厚減少率を適切に設定する必要があることがわかった。そして、各回数目の板厚減少率でフィルム損傷を発生させないためには、その前段での板厚減少率を適切に設定する必要があることがわかる。
Therefore, when the thickness reduction rate in the second ironing was changed from 45% to 40%, the second film damage could be avoided. However, film damage occurred in the third ironing process. This result shows that the film thickness reduction in the second ironing process was avoided by reducing the plate thickness reduction rate in the first to second ironing processes. On the other hand, the second to third processes were avoided. It is probable that film damage occurred due to the high reduction rate of thickness in the ironing process.
Therefore, in order to reduce the plate thickness reduction rate in the second through third ironing, an experiment was performed in which the first and second plate thickness reduction rates were reset. In other words, the first plate thickness reduction rate was 30% higher than the previous experiment, the second plate thickness reduction rate was 45%, and the third plate thickness reduction rate was 68%. As a result, film damage did not occur in each number of ironing moldings, and a healthy can body without film damage could be obtained by ironing molding three times in total.
From the above experiments, even when the laminated aluminum plate can be formed, it may be impossible to form the laminated steel plate due to film damage. It has been found that it is necessary to appropriately set the sheet thickness reduction rate for each number of times in the ironing process. It can be seen that in order not to cause film damage at the plate thickness reduction rate of each number of times, it is necessary to appropriately set the plate thickness reduction rate in the previous stage.

そこで、上記検討結果を踏まえ、次いで、板厚減少率を適切に設定するために必要な条件を決定するため、複数回のしごき成形において板厚減少率を変化させた実験を行った。この際、しごきダイスの進入角は1°、2°、5°、8°を用い、ラミネート鋼板としては、フィルム厚15μmのPET(ポリエチレンテレフタレート)フィルムを、板厚が0.2mm、降伏強度が400MPaの鋼板の両面に熱融着法でラミネートしたものを用いた。最終的な板厚減少率は75%までとした。実験を行った結果、以下の結論を得た。   Therefore, based on the above examination results, in order to determine the conditions necessary for appropriately setting the sheet thickness reduction rate, an experiment was performed in which the sheet thickness reduction rate was changed in multiple ironing operations. At this time, the entrance angles of the ironing dies are 1 °, 2 °, 5 °, and 8 °, and the laminated steel plate is a PET (polyethylene terephthalate) film with a film thickness of 15 μm, the thickness is 0.2 mm, and the yield strength is 400 MPa. What was laminated on both surfaces of the steel plate by the heat fusion method was used. The final plate thickness reduction rate was up to 75%. As a result of the experiment, the following conclusions were obtained.

しごきダイスの進入角:2°以上5°以下
従来のぶりき材を用いたDI缶では、最終的な板厚減少率は50〜75%程度のものが主流であり、ラミネート鋼板を用いた場合も同程度の板厚減少率を得ることが必要である。しごきダイスの進入角が1°の場合は、2°以上の場合とを比較して同一のクリアランスであっても得られる板厚減少率が極端に低くなってしまう。そして、DI缶で最も板厚減少率の高いレベルの73%の板厚減少率を得るためにはしごき成形の回数は、しごきダイスの進入角が1°の場合は5回以上必要となる。通常のDI成形機は3〜4回のしごき成形に対応しているため、進入角1°のしごきダイスでは目標の板厚減少率が得られないことになる。
しごきダイスの進入角が2°以上であれば73%程度の板厚減少率が得られ、缶高さも規定以上のものが得られる。よって、本発明では、しごきダイスの進入角は2°以上とする。一方、しごきダイスの進入角が8°の場合、複数回のしごき成形における板厚減少率を如何に設定しても、フィルム損傷が発生するために最終的な板厚減少率は30%程度までしか得られないことがわかった。そして、しごきダイスの進入角が5°以下であればフィルム損傷を発生させずに75%程度までの板厚減少率が得られる。よって、しごきダイスの進入角の上限は5°以下とする。
Intrusion angle of ironing dies: 2 ° or more and 5 ° or less For DI cans using conventional tinting materials, the final plate thickness reduction rate is about 50% to 75%. When using laminated steel plates However, it is necessary to obtain a similar thickness reduction rate. When the entrance angle of the ironing die is 1 °, the plate thickness reduction rate obtained even if the clearance is the same as compared to the case of 2 ° or more becomes extremely low. In order to obtain a sheet thickness reduction rate of 73%, which is the highest level of sheet thickness reduction in DI cans, the number of ironing operations is required 5 times or more when the entrance angle of the ironing die is 1 °. Since a normal DI molding machine is compatible with 3-4 times of ironing, a target sheet thickness reduction rate cannot be obtained with an ironing die with an entry angle of 1 °.
If the entrance angle of the ironing die is 2 ° or more, a sheet thickness reduction rate of about 73% can be obtained, and a can height exceeding the specified value can be obtained. Therefore, in the present invention, the approach angle of the ironing die is set to 2 ° or more. On the other hand, if the entrance angle of the ironing die is 8 °, no matter what the sheet thickness reduction rate is set in multiple times of ironing, film damage will occur and the final sheet thickness reduction rate will be about 30%. It turns out that it can only be obtained. If the entrance angle of the ironing die is 5 ° or less, a plate thickness reduction rate of up to about 75% can be obtained without causing film damage. Therefore, the upper limit of the entrance angle of the ironing die is 5 ° or less.

板厚減少率の設定条件
図2は、3回のしごき成形において板厚減少率を変化させて実験を行った結果である。これまでの実験から各回数目のしごき成形でフィルム損傷を発生させないためにはその前段での板厚減少率を適切に設定する必要があることがわかったので、図2では、縦軸にn回目までのしごき成形での板厚減少率を、横軸に(n−1)回目までのしごき成形での板厚減少率をとり、フィルム損傷の有無を示した。
図2より、フィルム損傷の有無の境界線が、フィルム損傷を発生させないための板厚減少率の適切な設定条件を与える上限の板厚減少率となることがわかる。すなわち、この境界線よりも下側の領域であれば、フィルム損傷を回避することができることになる。
ここで、この領域を、n回目までのしごき成形での板厚減少率をX(n)%として多項式で表現すると式(1)の関係となる。
X(n)≦0.0004X(n−1)3+0.0025X(n−1)2+0.0956X(n−1)+31.1 ・・・ 式(1)
ただし、X(0)は0回目のしごき成形での板厚減少率であるのでX(0)=0である。
以上より、本発明においては、第n回目のしごき成形での原板板厚からの板厚減少率をX(n)%としたとき、上記式(1)を満たすこととする。
Conditions for Setting Plate Thickness Reduction Rate FIG. 2 shows the results of experiments conducted by changing the plate thickness reduction rate in three ironing processes. Since it was found from the experiments so far that it is necessary to appropriately set the sheet thickness reduction rate in the previous stage in order to prevent film damage in the ironing molding of each number of times, in FIG. The plate thickness reduction rate in the ironing molding up to the first time, and the plate thickness reduction rate in the ironing molding up to the (n-1) th time on the horizontal axis, showed the presence or absence of film damage.
From FIG. 2, it can be seen that the boundary line of the presence or absence of film damage is the upper limit plate thickness reduction rate that gives an appropriate setting condition for the plate thickness reduction rate so as not to cause film damage. That is, film damage can be avoided if the region is below the boundary line.
Here, when this area is expressed by a polynomial expression with the sheet thickness reduction rate in the ironing forming up to the n-th time being X (n)%, the relationship of Expression (1) is obtained.
X (n) ≦ 0.0004X (n−1) 3 + 0.0025X (n−1) 2 + 0.0956X (n−1) +31.1 Equation (1)
However, since X (0) is the sheet thickness reduction rate in the 0th ironing, X (0) = 0.
As described above, in the present invention, when the plate thickness reduction rate from the original plate thickness in the n-th ironing is X (n)%, the above formula (1) is satisfied.

前述した成形実験で明らかとなったように、ラミネートアルミ板では成形が可能である条件でも、ラミネート鋼板を用いた場合にはフィルム損傷によって成形が不可能となる場合がある。これは、アルミ板と鋼板の機械特性の相違に基づくと考えられる。しごき成形でのフィルム損傷はラミネートされた材料がしごきダイスとパンチとの間に高い圧縮状態で挟まれつつしごき伸ばされる際に発生することから、フィルムに作用する圧縮力が大きく影響する。その圧縮力はラミネートの基板となる材料の変形抵抗によって生じるため、アルミ板と鋼板とでフィルム損傷に相違が生じたと考えられる。アルミ板は鋼板と比較して著しく降伏強度が低い(規格3004系の場合、降伏強度は70MPa程度)ため、フィルムに作用する圧縮力が低く、フィルム損傷が発生し難い結果となったと考えられる。この観点から、ラミネート鋼板を対象とした上記式(1)で示した板厚減少率の設定条件にも鋼板の降伏強度に適用範囲があると考えられる。   As is clear from the forming experiment described above, even when the laminated aluminum plate can be formed, the laminated steel plate may not be formed due to film damage. This is considered to be based on the difference in mechanical properties between the aluminum plate and the steel plate. Film damage in the ironing process occurs when the laminated material is stretched while being held in a highly compressed state between the ironing die and the punch, so that the compressive force acting on the film greatly affects. Since the compressive force is generated by the deformation resistance of the material used as the laminate substrate, it is considered that there was a difference in film damage between the aluminum plate and the steel plate. The aluminum plate has a significantly lower yield strength than the steel plate (in the case of the standard 3004 series, the yield strength is about 70 MPa). Therefore, it is considered that the compressive force acting on the film is low and the film damage is difficult to occur. From this point of view, it is considered that there is an applicable range in the yield strength of the steel sheet in the setting condition of the sheet thickness reduction rate shown by the above formula (1) for the laminated steel sheet.

そこで、次に、降伏強度を変更した材料を用いて成形実験を行った。この際、しごきダイスの進入角には2°を用い、ラミネート鋼板としては、フィルム厚15μmのPET(ポリエチレンテレフタレート)フィルムを、板厚が0.2mmで降伏強度が260MPaから550Mpaと異なる鋼板の両面に熱融着法でラミネートしたものを用いた。しごき成形の板厚減少率は式(1)に合致する条件とし、第3回目までの最終的な板厚減少率は77%までとした。以上の実験の結果、以下の結論を得た。   Therefore, next, a molding experiment was performed using a material whose yield strength was changed. At this time, the entrance angle of the ironing die is 2 °, and the laminated steel plate is a PET (polyethylene terephthalate) film with a film thickness of 15μm on both sides of the steel plate with a thickness of 0.2mm and a yield strength of 260MPa to 550Mpa. What was laminated by the heat sealing | fusion method was used. The sheet thickness reduction rate in the ironing process was set to satisfy the condition (1), and the final sheet thickness reduction rate up to the third time was set to 77%. As a result of the above experiment, the following conclusions were obtained.

鋼板の降伏強度
上記考察のようにフィルム損傷は降伏強度が高い場合に生じ、フィルム損傷を回避することのできる鋼板の降伏強度の上限は500MPaであった。つまり、式(1)の条件で設定した板厚減少率において、フィルム損傷を回避することのできる鋼板の降伏強度は500MPa以下にすることが好ましい。一方、降伏強度が低い場合にはフィルム損傷は発生しなかった。ただし、DI缶が実際に用いられる際には、必要な缶体強度を備える必要がある。例えば、缶の内部が加圧された状態でDI缶を用いる場合、鋼板の降伏強度が低いと缶底部の耐圧強度は不足し、缶底部が膨張する不具合が生じる。また、蓋の缶体への巻き締めは缶体に蓋を押し付けた状態で行われるため、鋼板の降伏強度が低いと缶底部の座屈強度不足し、缶低部が押し潰される不具合が生じる。そのため鋼板の降伏強度は一定以上の値を備える必要があり、上記のような不具合を回避するためには降伏強度が300MPa以上であることが好ましい。
Yield Strength of Steel Sheet As mentioned above, film damage occurs when the yield strength is high, and the upper limit of the yield strength of the steel sheet that can avoid film damage was 500 MPa. That is, it is preferable that the yield strength of the steel sheet capable of avoiding film damage at the sheet thickness reduction rate set under the condition of the formula (1) is 500 MPa or less. On the other hand, film damage did not occur when the yield strength was low. However, when the DI can is actually used, it is necessary to provide the necessary can strength. For example, when a DI can is used in a state where the inside of the can is pressurized, if the yield strength of the steel plate is low, the pressure resistance at the bottom of the can is insufficient and the bottom of the can expands. In addition, since the lid is wound around the can body with the lid pressed against the can body, if the yield strength of the steel plate is low, the buckling strength of the bottom of the can is insufficient, and the lower portion of the can is crushed. . Therefore, the yield strength of the steel sheet needs to have a certain value or more, and the yield strength is preferably 300 MPa or more in order to avoid the above problems.

これまでの実験では、しごき成形を行った後の缶体をパンチから抜取る際に、缶体の上端部がストリッパーのフィンガー部分で潰れ、正常に抜き取れない場合があった。すなわち、抜き取り性が劣る場合があった。これは従来のぶりき材を用いたDI缶でも知られた現象である。そして、特許文献2の明細書中では、ラミネート鋼板の抜き取り性は、ぶりき材よりも劣ると記載されている。
抜き取り性を改善する方法として、ぶりきDI缶では複数回のしごき成形の最終段の板厚減少率を低く設定するという手段が用いられてきた。しかし、この方法をラミネート鋼板を素材とするDI缶に適用した場合、最終段以前のしごき成形での板厚減少率を高くする必要があり、式(1)の条件を満たした上で各回数目の板厚減少率を設定することが困難となる。
そこで、抜き取り性について検討すべき、抜き取り性は缶体内面とパンチとの間の潤滑が影響することに着目し、しごき成形において潤滑性を支配するクーラント(潤滑剤を水で希釈した潤滑/冷却材)の条件を変更して成形実験を行った。
具体的には、クーラントの粘度、クーラント温度を変更した。この際、クーラントの粘度を変化させるため、クーラント中に添加する潤滑剤(市販のぶりきDI缶用潤滑剤)の濃度を、0%以上で変更したものを用いた。クーラントの温度は20〜80℃とした。また、しごきダイスの進入角には2°を用い、ラミネート鋼板としては、フィルム厚15μmのPET(ポリエチレンテレフタレート)フィルムを板厚が0.2mmで降伏強度が400MPaの鋼板の両面に熱融着法でラミネートしたものを用いた。しごき成形の板厚減少率は式(1)に合致する条件とし、第3回目までの最終的な板厚減少率は77%までとした。以上の結果、以下の結論を得た。
In previous experiments, when the can body after ironing was pulled out from the punch, the upper end portion of the can body was crushed by the finger part of the stripper, and it could not be pulled out normally. That is, the extractability may be inferior. This is a phenomenon that is also known in DI cans using conventional tinting materials. And in the specification of patent document 2, it describes that the extractability of a laminated steel plate is inferior to a tinting material.
As a method for improving the drawability, a means has been used to set the plate thickness reduction rate at the final stage of the ironing multiple times low in the tin DI can. However, when this method is applied to DI cans made of laminated steel sheets, it is necessary to increase the sheet thickness reduction rate in ironing before the final stage, and each time after satisfying the condition of equation (1) It becomes difficult to set the plate thickness reduction rate.
Therefore, we should consider the drawability. Focusing on the fact that the drawability is affected by the lubrication between the inner surface of the can body and the punch, the coolant governing the lubricity in ironing (lubricated / cooled with diluted lubricant with water) The material was subjected to a molding experiment with different conditions.
Specifically, the viscosity of the coolant and the coolant temperature were changed. At this time, in order to change the viscosity of the coolant, the lubricant added in the coolant (commercially used tinplate DI can lubricant) whose concentration was changed to 0% or more was used. The temperature of the coolant was 20 to 80 ° C. Also, the entrance angle of the ironing die is 2 °, and the laminated steel plate is a PET (polyethylene terephthalate) film with a film thickness of 15μm, and is bonded to both sides of a steel plate with a thickness of 0.2mm and a yield strength of 400MPa. A laminate was used. The sheet thickness reduction rate in the ironing process was set to satisfy the condition (1), and the final sheet thickness reduction rate up to the third time was set to 77%. As a result, the following conclusions were obtained.

クーラントの粘度
一般に潤滑作用はクーラント中の潤滑剤の濃度が高い方が優れるが、ラミネート鋼板を用いたDI缶の成形では、潤滑剤の濃度が低い方が抜き取り性に優れた特性を示した。実験に用いたクーラントの粘度を、回転式粘度測定機を用いて測定したところ、潤滑剤の濃度が低い場合は粘度も低くなっており、この粘度が抜取り性を支配していると考えられる。つまり、ラミネート鋼板を用いて式(1)に合致した条件でしごき成形を行った際に優れた抜取り性を発揮するクーラントの粘度には上限があり、1.0mPa・s以下が好ましい。しかし、粘度が過剰に低いと、抜き取り性は優れるが、フィルム損傷が発生するようになった。これは、しごき成形の際にクーラントがラミネート鋼板としごきダイス、パンチの接触部分に十分に保持されず、必要な潤滑作用を発揮しえなくなるためと考えられる。フィルム損傷を回避するためには0.3mPa・s以上の粘度が好ましい。
以上より、ラミネート鋼板を用いて式(1)に合致した条件でしごき成形を行った際に優れた抜取り性とフィルム損傷の回避を両立するためには、クーラントの粘度は0.3〜1.0mPa・sとするのが好ましい。
The viscosity of the coolant is generally better when the concentration of the lubricant in the coolant is higher. In the formation of DI cans using laminated steel sheets, the lower the concentration of the lubricant, the better the drawability. When the viscosity of the coolant used in the experiment was measured using a rotary viscometer, the viscosity was low when the concentration of the lubricant was low, and this viscosity is considered to dominate the drawability. In other words, there is an upper limit to the viscosity of the coolant that exhibits excellent drawability when ironing is performed under the conditions that match the formula (1) using a laminated steel sheet, and 1.0 mPa · s or less is preferable. However, when the viscosity is excessively low, the drawability is excellent, but film damage occurs. This is presumably because during the ironing process, the coolant is not sufficiently held in the contact portion of the laminated steel plate and the ironing die and punch, and the necessary lubricating action cannot be exhibited. In order to avoid film damage, a viscosity of 0.3 mPa · s or more is preferable.
From the above, in order to achieve both excellent drawability and avoidance of film damage when ironing is performed using laminated steel sheets under the conditions that match Equation (1), the viscosity of the coolant is 0.3 to 1.0 mPa · s. Is preferable.

本発明で用いるラミネート鋼板において望ましい条件を以下に述べる。
鋼板
本発明のラミネート鋼板の基板となる鋼板は特に問わない。ただし、降伏強度は300Mpa以上500Mpa以下が好ましい。また、以下のような成分、製法のものが望ましい。
(1)C量が0.01〜0.10%程度の低炭素鋼を用い、箱焼鈍で再結晶焼鈍したもの。
(2)C量が0.01〜0.10%程度の低炭素鋼を用い、連続焼鈍で再結晶焼鈍したもの。
(3)C量が0.01〜0.10%程度の低炭素鋼を用い、連続焼鈍で再結晶焼鈍及び過時効処理したもの。
(4)C量が0.01〜0.10%程度の低炭素鋼を用い、箱焼鈍または連続焼鈍で再結晶焼鈍した後、二次冷間圧延(DR)したもの。
(5)C量が概ね0.003%以下程度の極低炭素鋼にNb、Ti等の強力な固溶C固定元素を添加したIF鋼を用い、連続焼鈍で再結晶焼鈍したもの。
降伏強度以外の機械的特性としては、塑性異方性の指標であるr値が0.8以上のものが望ましく、塑性異方性r値の面内異方性Δrはその絶対値が0.7以下ものが望ましい。鋼板の板厚は、目的の缶の形状、必要となる缶体強度から適宜設定することができる。鋼板自体および缶体のコスト上昇を抑制する観点から、概ね0.15〜0.4mm程度のものを用いることが望ましい。
Desirable conditions for the laminated steel sheet used in the present invention are described below.
Steel plate as a substrate of the laminated steel plate of the present invention is not particularly limited. However, the yield strength is preferably 300 MPa or more and 500 MPa or less. The following components and production methods are desirable.
(1) Using low carbon steel having a C content of about 0.01 to 0.10% and recrystallized by box annealing.
(2) A low carbon steel having a C content of about 0.01 to 0.10% and recrystallized by continuous annealing.
(3) Recarbonized and over-aged by continuous annealing using low carbon steel with C content of about 0.01-0.10%.
(4) A low carbon steel having a C content of about 0.01 to 0.10%, which is subjected to secondary cold rolling (DR) after recrystallization annealing by box annealing or continuous annealing.
(5) An ultra-low carbon steel with a C content of approximately 0.003% or less and IF steel with a strong solid solution C-fixing element such as Nb, Ti, etc., and recrystallized by continuous annealing.
As mechanical characteristics other than the yield strength, those having an r value as an index of plastic anisotropy of 0.8 or more are desirable, and the in-plane anisotropy Δr of the plastic anisotropy r value has an absolute value of 0.2. 7 or less is desirable. The plate | board thickness of a steel plate can be suitably set from the shape of the target can and required can body strength. From the viewpoint of suppressing an increase in the cost of the steel plate itself and the can body, it is desirable to use approximately 0.15 to 0.4 mm.

鋼板表面処理
本発明で用いるラミネート鋼板と基板とする鋼板には、表面に各種表面処理を施した表面処理鋼板を用いることが望ましい。表面処理としては、錫めっき、クロームめっき、金属酸化物被覆処理などがある。特に下層が金属クロム、上層がクロム水酸化物からなる二層皮膜を形成させた表面処理鋼板(いわゆるTFS)等が最適である。これを用いる場合は、金属クロム層、クロム水酸化物層の付着量については、特に限定されないが、何れもCr換算で、金属クロム層は70〜200mg/m、クロム水酸化物層は10〜30mg/cmの範囲とすることが望ましい。
Steel Plate Surface Treatment It is desirable to use a surface-treated steel plate with various surface treatments applied to the laminated steel plate and substrate steel plate used in the present invention. Examples of the surface treatment include tin plating, chrome plating, and metal oxide coating treatment. In particular, a surface-treated steel sheet (so-called TFS) or the like in which a two-layer coating composed of metallic chromium as the lower layer and chromium hydroxide as the upper layer is formed is optimal. When this is used, the amount of adhesion of the metal chromium layer and the chromium hydroxide layer is not particularly limited, but in any case, the metal chromium layer is 70 to 200 mg / m 2 and the chromium hydroxide layer is 10 in terms of Cr. It is desirable to be in the range of ˜30 mg / cm 2 .

フィルム
本発明で用いるフィルムラミネート鋼板を構成する有機樹脂フィルムとしては、以下のものが好ましい。
例えば、ポリエステル樹脂がカルボン酸成分とジオール成分の縮重合で得られる樹脂層である。カルボン酸成分はテレフタル酸を主成分とし、その他の共重合成分に、イソフタル酸成分を含んでもよい。グリコール成分としては、エチレングリコール及び/またはブチレングリコールを主成分として、その他の共重合成分に、ジエチレングリコール、シクロヘキサンジメタノールを含んでもよい。あるいは、ポリエステル樹脂の主相が前記樹脂であり、副相として、非相溶であり、かつ、ガラス転移点Tgが5℃以下である樹脂を含有し、ポリエチレン、ポリプロピレン、及びあるいはその酸変性体、あるいはアイオノマーである。また、樹脂組成中に顔料や滑剤、安定剤などの添加剤を加えて用いても良いし、樹脂層に加えて他の機能を有する樹脂層を上層または中間層に配置しても良い。
Films The following are preferable as the organic resin film constituting the film-laminated steel sheet used in the present invention.
For example, a polyester resin is a resin layer obtained by condensation polymerization of a carboxylic acid component and a diol component. The carboxylic acid component may contain terephthalic acid as a main component, and the other copolymer component may contain an isophthalic acid component. As a glycol component, ethylene glycol and / or butylene glycol may be the main component, and other copolymer components may include diethylene glycol and cyclohexanedimethanol. Alternatively, the main phase of the polyester resin is the resin, the resin is incompatible with the secondary phase, and contains a resin having a glass transition point Tg of 5 ° C. or lower, polyethylene, polypropylene, and / or an acid-modified product thereof. Or an ionomer. Further, additives such as pigments, lubricants and stabilizers may be added to the resin composition, or a resin layer having other functions in addition to the resin layer may be disposed in the upper layer or the intermediate layer.

鋼板へのラミネート方法は特に限定されないが、2軸延伸フィルム、あるいは無延伸フィルムを熱圧着させる熱圧着法、Tダイなどを用いて鋼板上に直接樹脂層を形成させる押し出し法など適宜選択することができる。   The method of laminating to the steel plate is not particularly limited, and it may be appropriately selected such as a thermocompression bonding method in which a biaxially stretched film or an unstretched film is thermocompression bonded, or an extrusion method in which a resin layer is directly formed on the steel plate using a T die. Can do.

以下、実施例について説明する。
フィルム厚15μmのPET(ポリエチレンテレフタレート)フィルムを、板厚が0.2mm、降伏強度が400MPaの鋼板の両面に熱融着法でラミネートし、ラミネート鋼板を得た。次いで、得られたラミネート鋼板を円形ブランクに打抜き、カッピングプレス機で絞り比1.74で絞り成形した後、DI缶成形機で再絞り比1.4での再絞り成形とそれに続くしごき成形でDI缶に成形した。しごきダイスの進入角は2°、5°、8°とし、ランドの軸方向長さは1mmとした。また、成形では、市販のぶりき材DI缶成形用潤滑剤を水に対して1.5%添加したクーラントを用いた。
Examples will be described below.
A PET (polyethylene terephthalate) film having a film thickness of 15 μm was laminated on both sides of a steel plate having a plate thickness of 0.2 mm and a yield strength of 400 MPa by a heat fusion method to obtain a laminated steel plate. Next, the resulting laminated steel sheet is punched into a circular blank, drawn with a cupping press at a draw ratio of 1.74, and then formed into a DI can by DI drawing with a DI can forming machine followed by ironing. did. The entrance angle of the ironing die was 2 °, 5 ° and 8 °, and the axial length of the land was 1 mm. In the molding, a coolant in which a commercially available tinting material DI can molding lubricant was added to water by 1.5% was used.

しごき成形での目標板厚減少率(原板厚基準)を52%、73%とし、1〜4工程のしごき成形を行い、成形後に缶体の外面側および内面側のフィルム損傷を目視により評価した。得られた結果を、各しごき工程での板厚減少率X(n)、式(1)の値と併せて表1に示す。   The target plate thickness reduction rate (original plate thickness standard) in ironing was set to 52% and 73%, and ironing was performed in 1 to 4 steps, and the film damage on the outer and inner surfaces of the can was visually evaluated after forming. . The obtained results are shown in Table 1 together with the plate thickness reduction rate X (n) in each ironing step and the value of the formula (1).

Figure 0005272473
Figure 0005272473

表1より、しごきダイスの進入角が2°、5°で、各しごき工程での板厚減少率X(n)が式(1)の値よりも低い本発明で規定した条件の場合は、フィルム損傷が発生せず、3工程または4工程でのしごき工程で目標の板圧減少率を得ることができる。
一方、しごきダイスの進入角が2°、5°でも、各しごき工程での板厚減少率X(n)が式(1)の値よりも高い比較例の場合は、フィルム損傷が発生している。
また、しごきダイスの進入角が8°の場合は、各しごき工程での板厚減少率X(n)が式(1)の値よりも低い条件でも、フィルム損傷が発生して目標の板厚減少率を得ることができない。
From Table 1, in the case of the conditions defined in the present invention where the entrance angle of the ironing die is 2 °, 5 ° and the plate thickness reduction rate X (n) in each ironing process is lower than the value of the formula (1), Film damage does not occur, and a target plate pressure reduction rate can be obtained in the ironing process in three or four processes.
On the other hand, even when the entrance angle of the ironing die is 2 ° and 5 °, film damage occurs in the comparative example in which the plate thickness reduction rate X (n) in each ironing process is higher than the value of the formula (1). Yes.
In addition, when the ironing die has an approach angle of 8 °, the film thickness is damaged and the target thickness is reduced even if the thickness reduction rate X (n) in each ironing process is lower than the value of equation (1). The reduction rate cannot be obtained.

フィルム厚15μmのPET(ポリエチレンテレフタレート)フィルムを、板厚が0.2mm、降伏強度が260〜550MPaの鋼板の両面に熱融着法でラミネートし、ラミネート鋼板を得た。得られたラミネート鋼板を円形ブランクに打抜き、カッピングプレス機で絞り比1.74で絞り成形した後、DI缶成形機で再絞り比1.4での再絞り成形とそれに続くしごき成形でDI缶に成形した。その際、しごきダイスの進入角は2°とし、ランドの軸方向長さは1mmとした。また、しごき工程の回数は3工程とし、各回数目の板厚減少率X(n)を、第1回目は30.5%、第2回目は45.5%、第3回目は73.0%とした。尚、この条件において式(1)の値は、第1回目のしごき成形では31.1%、第2回目のしごき成形では47.7%、第3回目のしごき成形では78.3%であり、本発明の規定した条件となっている。成形では、市販のぶりき材DI缶成形用潤滑剤を水に対して1.5%添加したクーラントを用いた。   A PET (polyethylene terephthalate) film having a film thickness of 15 μm was laminated on both surfaces of a steel plate having a thickness of 0.2 mm and a yield strength of 260 to 550 MPa by a heat-sealing method to obtain a laminated steel plate. The obtained laminated steel sheet was punched into a circular blank, drawn with a cupping press machine at a drawing ratio of 1.74, and then formed into a DI can by DI drawing with a DI can molding machine followed by ironing. At that time, the entrance angle of the ironing die was 2 °, and the axial length of the land was 1 mm. In addition, the number of ironing steps was 3, and the plate thickness reduction rate X (n) at each time was 30.5% for the first time, 45.5% for the second time, and 73.0% for the third time. In this condition, the value of the formula (1) is 31.1% in the first ironing, 47.7% in the second ironing, and 78.3% in the third ironing. It is a condition. In the molding, a coolant in which a commercially available tinting material DI can molding lubricant was added to water by 1.5% was used.

成形後に、缶体の外面側および内面側のフィルム損傷を目視により評価した。
また、DI成形後の缶底部に市販の炭酸飲料に用いられているDI缶に準拠した形状のボトム成形を行い、缶体上部をトリムした後、耐圧強度試験機に装着して缶体内部を空気で加圧し、缶底部の耐圧強度を測定した。評価は、耐圧強度が7kgf/cm2以上であるものを○、7kgf/cm2未満であるものを×とした。
さらに、DI成形後の缶底部に市販の魚肉缶に準拠した形状のボトム成形を行い、缶体上部をトリムした後、フランジ成形して蓋を巻きつけ、圧縮試験機に装着して缶体を缶高さ方向で圧縮して缶底部の座屈強度を測定した。評価は、座屈強度が100kgf以上であるものを○、100kgf未満であるものを×とした。
以上により得られた結果を表2に示す。
After molding, film damage on the outer surface side and the inner surface side of the can was visually evaluated.
In addition, the bottom of the can after the DI molding is shaped into a bottom conforming to the DI cans used in commercial carbonated beverages, and after trimming the top of the can body, it is attached to a pressure-resistant strength tester and the inside of the can body is Pressure was applied with air, and the pressure resistance at the bottom of the can was measured. Evaluation what breakdown voltage strength of 7 kgf / cm 2 or more ○, was × what is less than 7 kgf / cm 2.
Furthermore, the bottom of the can after DI molding is shaped into a shape that conforms to a commercially available fish meat can, and after trimming the top of the can body, it is flange-formed, wrapped with a lid, and attached to a compression tester. The buckling strength at the bottom of the can was measured by compressing in the can height direction. In the evaluation, a case where the buckling strength was 100 kgf or more was evaluated as ◯, and a case where the buckling strength was less than 100 kgf was evaluated as ×.
The results obtained as described above are shown in Table 2.

Figure 0005272473
Figure 0005272473

鋼板の降伏強度が500MPa以下であれば、フィルム損傷が発生しなかった。一方、降伏強度が300MPa以上であれば耐圧強度、座屈強度が十分であった。   When the yield strength of the steel sheet was 500 MPa or less, film damage did not occur. On the other hand, if the yield strength was 300 MPa or more, the pressure strength and buckling strength were sufficient.

フィルム厚15μmのPET(ポリエチレンテレフタレート)フィルムを、板厚が0.2mm、降伏強度が400MPaの鋼板の両面に熱融着法でラミネートし、ラミネート鋼板を得た。得られたラミネート鋼板を円形ブランクに打抜き、カッピングプレス機で絞り比1.74で絞り成形した後、DI缶成形機で再絞り比1.4での再絞り成形とそれに続くしごき成形でDI缶に成形した。その際、しごきダイスの進入角は2°とし、ランドの軸方向長さは1mmとした。また、しごき工程の回数は3工程とし、各回数目の板厚減少率X(n)を、第1回目は30.5%、第2回目は45.5%、第3回目は73.0%とした。尚、この条件において式(1)の値は、第1回目のしごき成形では31.1%、第2回目のしごき成形では47.7%、第3回目のしごき成形では78.3%であり、本発明の規定した条件となっている。成形では、クーラントの粘度を変化させるため、クーラント中に添加する潤滑剤(市販のぶりきDI缶用潤滑剤)の濃度を、0%以上で変更したものを用いた。クーラントの温度は20〜80℃とした。クーラントの粘度は回転式粘度測定機を用いた。   A PET (polyethylene terephthalate) film having a film thickness of 15 μm was laminated on both sides of a steel plate having a plate thickness of 0.2 mm and a yield strength of 400 MPa by a heat fusion method to obtain a laminated steel plate. The obtained laminated steel sheet was punched into a circular blank, drawn with a cupping press at a drawing ratio of 1.74, and then formed into a DI can by a redrawing with a DI drawing machine at a redrawing ratio of 1.4 followed by ironing. At that time, the entrance angle of the ironing die was 2 °, and the axial length of the land was 1 mm. In addition, the number of ironing steps was 3, and the plate thickness reduction rate X (n) at each time was 30.5% for the first time, 45.5% for the second time, and 73.0% for the third time. In this condition, the value of the expression (1) is 31.1% in the first ironing, 47.7% in the second ironing, and 78.3% in the third ironing. It is a condition. In the molding, in order to change the viscosity of the coolant, the concentration of the lubricant (commercially available lubricant for tinplate DI can) added to the coolant was changed to 0% or more. The temperature of the coolant was 20 to 80 ° C. The viscosity of the coolant was measured using a rotary viscometer.

成形後に、缶体の外面側および内面側のフィルム損傷を目視により評価した。
また、缶体からのパンチの抜き取り性を評価した。缶体からのパンチの抜き取り性は、ストリッパーのフィンガー部分で潰れ状態で評価し、潰れが小さく規定のトリム高さが確保できるものを○、確保できないものを×とした。得られた結果を表3に示す。
After molding, film damage on the outer surface side and the inner surface side of the can was visually evaluated.
In addition, the punching ability from the can was evaluated. The punch pullability from the can body was evaluated in a crushed state at the finger part of the stripper, and ◯ indicates that the crushed portion is small and a specified trim height can be secured, and x indicates that it cannot be secured. The obtained results are shown in Table 3.

Figure 0005272473
Figure 0005272473

クーラントの粘度が1.0mPa・s以下であれば抜き取り性に問題がない。一方、クーラントの粘度が0.3mPa・s以上であればフィルム損傷が発生しない。   When the viscosity of the coolant is 1.0 mPa · s or less, there is no problem in the drawability. On the other hand, when the viscosity of the coolant is 0.3 mPa · s or more, film damage does not occur.

本発明は食缶や飲料缶として最適である。そして、これら以外にも、本発明で想定されているような有機樹脂フィルムラミネート鋼板を素材として従来のDI成形を用いて、フィルムの損傷を回避し、缶体の抜き取り性が要求される用途にも好適に使用される。   The present invention is most suitable as a food can or a beverage can. And besides these, using organic resin film laminated steel plate as envisioned in the present invention as a raw material, using conventional DI molding, avoiding damage to the film, for applications where can body pullability is required Are also preferably used.

しごきダイスの進入角を示す図である。It is a figure which shows the approach angle of an ironing die. しごき成形における板厚減少率とフィルム損傷との関係を示す図である。It is a figure which shows the relationship between the plate | board thickness reduction | decrease rate and film damage in ironing. DI缶成形機を示す簡略図である。It is a simplified diagram showing a DI can molding machine.

符号の説明Explanation of symbols

1 しごきダイス
2 しごきダイスの進入角
3 ランドの軸方向長さ
4 パンチ
5 絞りカップ
6 再絞りダイス
7 しごきダイス(1工程目)
8 しごきダイス(2工程目)
9 しごきダイス(3工程目)
10 ストリッパー
DESCRIPTION OF SYMBOLS 1 Ironing die 2 Entrance angle of ironing die 3 Land axial length 4 Punch 5 Drawing cup 6 Redrawing die 7 Ironing die (1st process)
8 Ironing dice (2nd process)
9 Ironing dice (3rd process)
10 Stripper

Claims (3)

有機樹脂フィルムを被覆したラミネート鋼板を素材とするDI缶の成形方法であって、
1回のしごき成形を行うための独立したしごきダイスのみを複数用い、複数回からなるしごき成形により板厚を減少させるにあたり、しごきダイスの進入角を2°以上5°以下とし、第n回目のしごき成形での原板板厚からの板厚減少率をX(n)%としたとき、式(1)を満たすことを特徴とするDI缶の成形方法。
X(n)≦0.0004X(n−1)+0.0025X(n−1)+0.0956X(n−1)+31.1・・・式(1)
ただし、X(0)=0
A method of forming a DI can made of a laminated steel sheet coated with an organic resin film,
In order to reduce the sheet thickness by using multiple independent ironing dies for one ironing forming, and reducing the sheet thickness by multiple ironing forming, the entry angle of the ironing die is set to 2 ° to 5 °, and the nth time A method of forming a DI can characterized by satisfying the formula (1), where X (n)% is the thickness reduction rate from the original sheet thickness in ironing.
X (n) ≦ 0.0004X (n−1) 3 + 0.0025X (n−1) 2 + 0.0956X (n−1) +31.1 Formula (1)
However, X (0) = 0
前記ラミネート鋼板は、降伏強度が300〜500MPaである鋼板の両面に、有機樹脂樹脂フィルムを被覆したラミネート鋼板であることを特徴とする請求項1に記載のDI缶の成形方法。   2. The method for forming a DI can according to claim 1, wherein the laminated steel sheet is a laminated steel sheet in which an organic resin resin film is coated on both surfaces of a steel sheet having a yield strength of 300 to 500 MPa. 粘度が0.3〜1.0mPa・sである液体をクーラントとして用いることを特徴とする請求項1または2に記載のDI缶の成形方法。   The method for molding a DI can according to claim 1 or 2, wherein a liquid having a viscosity of 0.3 to 1.0 mPa · s is used as a coolant.
JP2008090530A 2008-03-31 2008-03-31 DI can molding method Expired - Fee Related JP5272473B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008090530A JP5272473B2 (en) 2008-03-31 2008-03-31 DI can molding method
PCT/JP2009/056909 WO2009123295A1 (en) 2008-03-31 2009-03-27 Method of forming di can

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008090530A JP5272473B2 (en) 2008-03-31 2008-03-31 DI can molding method

Publications (2)

Publication Number Publication Date
JP2009241102A JP2009241102A (en) 2009-10-22
JP5272473B2 true JP5272473B2 (en) 2013-08-28

Family

ID=41135662

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008090530A Expired - Fee Related JP5272473B2 (en) 2008-03-31 2008-03-31 DI can molding method

Country Status (2)

Country Link
JP (1) JP5272473B2 (en)
WO (1) WO2009123295A1 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3488944A1 (en) * 2017-11-27 2019-05-29 Tata Steel IJmuiden B.V. Process for the production of a can body by wall ironing
JP7521224B2 (en) * 2020-03-27 2024-07-24 東洋製罐グループホールディングス株式会社 Manufacturing method of bottomed cylindrical body

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS4990668A (en) * 1972-12-29 1974-08-29
JP4975224B2 (en) * 2001-07-04 2012-07-11 東洋鋼鈑株式会社 Ironing method, ironing die and drawn iron can

Also Published As

Publication number Publication date
JP2009241102A (en) 2009-10-22
WO2009123295A1 (en) 2009-10-08

Similar Documents

Publication Publication Date Title
KR101115587B1 (en) Resin-coated aluminum seamless can body having excellent body burst resistance and flange crack resistance in distribution
KR100982125B1 (en) Two-piece can, process for producing the same and steel sheet for two-piece can
JP4692147B2 (en) Two-piece can manufacturing method and two-piece laminated can
TWI718430B (en) Resin coated metal plate for container
TWI480152B (en) Laminated metal plates and canned food containers
WO2007052364A1 (en) Method of drawing/ironing of resin-coated metal sheet and drawn and ironed resin-coated can formed by the same
CN111479688B (en) Resin-coated metal plate for container
JP4692146B2 (en) Two-piece can manufacturing method and two-piece laminated can
JP4692144B2 (en) Two-piece can and manufacturing method thereof, and steel plate for two-piece can
KR100982120B1 (en) Two piece can, process for producing the same, and steel plate for two piece can
JP4961696B2 (en) Two-piece can manufacturing method and two-piece laminated can
JP5186772B2 (en) Two-piece can manufacturing method and two-piece laminated can
KR101095485B1 (en) Process for manufacturing drawn can for aerosol and drawn can for aerosol
JP5272473B2 (en) DI can molding method
JP4670543B2 (en) Two-piece can and manufacturing method thereof, and steel plate for two-piece can
JP4622737B2 (en) Laminated steel sheet for 2-piece can and 2-piece laminated can
EP3488944A1 (en) Process for the production of a can body by wall ironing
JP4835066B2 (en) Two-piece can and manufacturing method thereof, and steel plate for two-piece can
JP4622736B2 (en) Laminated steel sheet for 2-piece cans, 2-piece can manufacturing method, and 2-piece laminate cans
CN109311276A (en) Metallic container cover laminated metal sheet and its manufacturing method
JP2003063519A (en) Resin-coated seamless can
JP5073931B2 (en) Two-piece can and manufacturing method thereof, and steel plate for two-piece can

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110128

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120321

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20120327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121211

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130208

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130429

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5272473

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees