JP5272159B2 - Mold nondestructive inspection method and apparatus - Google Patents

Mold nondestructive inspection method and apparatus Download PDF

Info

Publication number
JP5272159B2
JP5272159B2 JP2008063390A JP2008063390A JP5272159B2 JP 5272159 B2 JP5272159 B2 JP 5272159B2 JP 2008063390 A JP2008063390 A JP 2008063390A JP 2008063390 A JP2008063390 A JP 2008063390A JP 5272159 B2 JP5272159 B2 JP 5272159B2
Authority
JP
Japan
Prior art keywords
mold
hardness
receiver
transmitter
ultrasonic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008063390A
Other languages
Japanese (ja)
Other versions
JP2009216671A (en
Inventor
英樹 山岸
正吾 冨田
峰宏 篠塚
誠一 政
公二 嶋村
絵美 山口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyama Prefecture
Original Assignee
Toyama Prefecture
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyama Prefecture filed Critical Toyama Prefecture
Priority to JP2008063390A priority Critical patent/JP5272159B2/en
Publication of JP2009216671A publication Critical patent/JP2009216671A/en
Application granted granted Critical
Publication of JP5272159B2 publication Critical patent/JP5272159B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide an inspection method of accurately, easily, and nondestructively measuring the hardness variation following use of a die base material, and its device. <P>SOLUTION: This inspection device comprises a transmitter that is in contact with the surface of the die and transmits ultrasonic wave, a receiver for receiving the ultrasonic wave having propagated near the surface layer of the die, and a body section integrally holding the transmitter and receiver mutually separately by a certain interval. The inspection device measures the attenuation factor or propagation time of the sound pressure of the ultrasonic wave propagating near the surface layer of the die, and calculates the hardness variation amount of the die base material based on the attenuation factor or propagation time of the sound pressure. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、金型が熱的負荷を受け熱的劣化が生じる場合に、その劣化の程度を非破壊にて測定できる検査方法と装置に関し、特に、繰り返し熱負荷使用される金型の硬さ低下を非破壊により定量評価する用途に適している。   The present invention relates to an inspection method and apparatus capable of measuring the degree of deterioration in a non-destructive manner when the mold is subjected to a thermal load and causes thermal degradation, and in particular, the hardness of the mold that is repeatedly used for a thermal load. It is suitable for applications where the deterioration is quantitatively evaluated by nondestructive.

鋼材の分野においては、熱的相変態を利用した焼き入れ、浸炭焼き入れ、窒化処理等の熱処理にて、用途に応じた硬さを設定している。
鋳造用金型においても、鋼材、銅材等の金属材料を用いて金型を製作した後に、鋳造ショットに耐えられるように熱処理を施して使用されている。
しかし、鋳造ショット数の増加に伴い、熱負荷により硬さが低下することから、所定の硬さ以下まで低下すると、破損防止のため再熱処理をする必要がある。
従来、金型の熱劣化による硬さ低下の非破壊評価法として、ショア硬さ法が一般に用いられている。
ショア硬さ法は一定の高さからハンマを落下させ、その跳ね返り高さから硬さを評価するものであるために、硬さ測定面は原則として平面でなくてはならず、また硬さ計を設置するための十分な面積及び跳ね返りに影響がでない十分な厚みが必要である。
しかしながら実際に硬さ評価を必要とする金型部位は曲面や入り組んでいる場合が多く、上記の制約のため正確な評価が難しい。
さらには、ショア硬さ法は、動的手法であることから熟練を必要とするため測定結果に大きいバラツキが生じることも問題である。
そのためショア硬さ法では、真に評価が必要とされるクリティカルな部位の評価ができず、実際にはまだ使用できる金型を、破損防止のため早めに再熱処理を行わざるを得ない現状にある。
一方、固体表面状態を超音波伝播速度で評価する方法が公知であり、例えば特許文献1には、超音波の固体部材表面の超音波伝播時間を測定し、固体部材の表面の歪み等を測定する技術を開示する。
しかし、これは金属疲労など機械的負荷に伴う劣化を評価するものであり、金型基材の熱負荷に伴う硬さ変化を検査・測定するための原理および装置とはなっていない。
In the field of steel materials, hardness according to the application is set by heat treatment such as quenching, carburizing quenching, and nitriding using thermal phase transformation.
Also in a casting mold, after a mold is manufactured using a metal material such as a steel material or a copper material, heat treatment is performed so as to withstand casting shots.
However, as the number of casting shots increases, the hardness decreases due to the thermal load. Therefore, if the hardness falls below a predetermined hardness, it is necessary to perform a heat treatment again to prevent breakage.
Conventionally, the Shore hardness method is generally used as a nondestructive evaluation method for hardness reduction due to thermal deterioration of a mold.
Since the Shore hardness method is to drop a hammer from a certain height and evaluate the hardness from its bounce height, the hardness measurement surface must be a plane in principle, and the hardness meter It is necessary to have a sufficient area for installing and a sufficient thickness that does not affect the bounce.
However, mold parts that actually require hardness evaluation are often curved surfaces or complicated, and accurate evaluation is difficult due to the above-mentioned limitations.
Furthermore, since the Shore hardness method is a dynamic method, skill is required, so that there is a problem in that measurement results vary greatly.
For this reason, the Shore Hardness Method cannot evaluate critical parts that really need to be evaluated, and in reality the mold that can still be used must be reheated early to prevent breakage. is there.
On the other hand, a method for evaluating the solid surface state by the ultrasonic propagation velocity is known. For example, Patent Document 1 measures the ultrasonic propagation time of the surface of the solid member and measures the distortion of the surface of the solid member. The technology to do is disclosed.
However, this is intended to evaluate deterioration associated with a mechanical load such as metal fatigue, and is not a principle and apparatus for inspecting and measuring a change in hardness associated with a thermal load of a mold base.

特開2004−1510077号公報JP 2004-1510077 A

本発明は、金型基材の使用に伴う硬さ変化を非破壊にて正確及び容易に測定できる検査方法及びその装置の提供を目的とする。   An object of the present invention is to provide an inspection method and apparatus capable of accurately and easily measuring non-destructive changes in hardness associated with the use of a mold base.

本発明の要旨は、熱間金型鋼からなる金型の表面に接触し超音波を送信する送信機と、前記金型の表層近傍を伝播した前記超音波を受信する受信機と、前記送信機と受信機とを一定間隔離して一体的に保持した本体部とを備え、前記金型の表層近傍を伝播する超音波の伝播経路が熱負荷により表面側にシフトすることにて生じる前記超音波の音圧の減衰率もしくは伝播時間の変化量から金型基材の硬さの低下の変化量を算出することを特徴とする。
また、本発明に用いる非破壊検査装置は、金型の表面に接触し超音波を送信する送信機と、前記金型の表層を伝播した前記超音波を受信する受信機と、前記送信機と受信機とを一定間隔離して一体的に保持した本体部と、前記超音波が上記金型の表層近傍を伝播する音圧減衰率もしくは伝播時間を測定する測定手段と、前記超音波の音圧減衰率もしくは伝播時間の変化量の演算手段と、を備える。
ここで、超音波は縦波でもよいがSH波(Horizontally Polarized Shear Wave)を用いるのが好ましい。
本発明に係る測定原理は、以下のとおりである。
たとえば金型基材が鋼材の場合は、熱負荷による硬さ低下に伴い音速が増加する。
このため、超音波はスネルの法則に基づき、金型への屈折角度がより表層側にシフトするが、本法は、このような熱負荷による基材の固体音速変化に伴う音波屈折率の変化を応用したものである。
なお、伝播時間は表面粗さの影響を減衰率よりも受けやすく、通常金型の表面粗さはショット数に伴い変化するため、評価項としては音圧の減衰率変化の方が適している。
金型基材における硬さの変化量は、標準試験片による校正に基づいて、演算するのが好ましい。
The gist of the present invention is a transmitter that transmits ultrasonic waves in contact with the surface of a mold made of hot mold steel , a receiver that receives the ultrasonic waves propagated in the vicinity of the surface layer of the mold, and the transmitter And a main body that integrally holds the receiver and the receiver apart from each other, and the ultrasonic wave that propagates in the vicinity of the surface layer of the mold is shifted to the surface side due to a thermal load. The amount of change in hardness reduction of the mold base is calculated from the amount of change in the sound pressure attenuation rate or propagation time.
Further, the nondestructive inspection apparatus used in the present invention includes a transmitter that contacts the surface of a mold and transmits ultrasonic waves, a receiver that receives the ultrasonic waves propagated through the surface layer of the mold, and the transmitter. A main body part that is integrally held with a receiver separated from the receiver, measurement means for measuring a sound pressure attenuation rate or propagation time in which the ultrasonic wave propagates in the vicinity of the surface layer of the mold, and a sound pressure of the ultrasonic wave And means for calculating an attenuation rate or a change amount of propagation time.
Here, the ultrasonic waves may be longitudinal waves, but SH waves (Horizontally Polarized Shear Waves) are preferably used.
The measurement principle according to the present invention is as follows.
For example, when the mold base is steel, the speed of sound increases as the hardness decreases due to heat load.
For this reason, the ultrasonic wave is based on Snell's law, and the refraction angle to the mold shifts to the surface layer side more, but this method changes the refractive index of the sound wave accompanying the change in the solid sound velocity of the substrate due to such a thermal load. Is applied.
The propagation time is more easily affected by the surface roughness than the attenuation rate, and the surface roughness of the mold usually changes with the number of shots. Therefore, a change in the attenuation rate of the sound pressure is more suitable as an evaluation term. .
The amount of change in hardness in the mold base is preferably calculated based on calibration with a standard test piece .

本発明に係る非破壊検査法は、検査装置のプローブの形状を金型の曲率面や測定部位の形状に合せることで容易に且つ正確に測定及び検査ができる。
また、従来の習熟度が求められるショア硬さ法に比較して、本発明に係る検査方法は静的手法であり、測定値のバラツキが小さい。
The nondestructive inspection method according to the present invention can easily and accurately measure and inspect by matching the shape of the probe of the inspection apparatus to the curvature surface of the mold or the shape of the measurement site.
In addition, the inspection method according to the present invention is a static method and has little variation in measured values as compared with the Shore hardness method that requires a conventional skill level.

これにより、従来の早めに再熱処理を繰り返していた場合と比較して、限界適正硬さまで使用できるようになり、その結果として金型の寿命が延び、鋳造コストダウンに貢献できる。
さらには、金型の適正硬さを検査できることになり、金型が破壊する不測の事態を免れることができるので量産信頼性も向上する。
Thereby, compared with the case where reheat treatment is repeated earlier in the past, it becomes possible to use up to the limit appropriate hardness, and as a result, the life of the mold is extended, and the casting cost can be reduced.
Furthermore, the proper hardness of the mold can be inspected, and it is possible to avoid an unexpected situation where the mold breaks, so that the mass production reliability is improved.

以下、本発明に係る実施形態について説明する。
まず、図3にて本発明に係る検査装置10の構成例を説明する。
金型の検査装置10は、測定対象物である金型12の表面に接触させ超音波を送信する送信機14と、金型12の表層近傍を伝播した超音波を受信する受信機16を備える。
送信機14と受信機16は、一定間隔離して位置し、これらを一体的に保持した本体部20に設けられている。
送信機14は、超音波領域の周波数を発信する発信回路による発振回路部15を備え、受信機16も超音波領域の周波数を受信する受信回路を備えた受信回路部17を有している。
本体部20は、金型表面に送信機14と受信機16とのプローブ部に14a、16aを圧接するための重り23と、重り23を金型表面に確実に押し付けるための押圧治具24を有している。
本願検査装置10は、超音波を用いた接触式検査装置であり、金型表面の接触圧を適正に設定する必要がある。
超音波としてSH波を用いた場合には特に接触圧の影響を受けやすい。
そのため金型表面に適正なグリスを塗り、検査装置10にグリスの膜厚を一定とするだけの与圧を一定時間付加しなければならない。
与圧力は、その保持時間短縮のためにも、約2.5MPa以上が望ましい。
グリスは吸湿が少ない油性がよく、校正や履歴を追うために同じグリスを用いるのがよい。
Embodiments according to the present invention will be described below.
First, a configuration example of the inspection apparatus 10 according to the present invention will be described with reference to FIG.
The mold inspection apparatus 10 includes a transmitter 14 that transmits ultrasonic waves in contact with the surface of a mold 12 that is a measurement target, and a receiver 16 that receives ultrasonic waves propagated near the surface layer of the mold 12. .
The transmitter 14 and the receiver 16 are located apart from each other by a certain distance, and are provided in a main body 20 that integrally holds them.
The transmitter 14 includes an oscillation circuit unit 15 that is a transmission circuit that transmits a frequency in the ultrasonic region, and the receiver 16 also includes a reception circuit unit 17 that includes a reception circuit that receives the frequency in the ultrasonic region.
The main body 20 includes a weight 23 for pressing 14a, 16a against the probe portion of the transmitter 14 and the receiver 16 on the mold surface, and a pressing jig 24 for pressing the weight 23 against the mold surface. Have.
The present application inspection apparatus 10 is a contact inspection apparatus using ultrasonic waves, and it is necessary to appropriately set the contact pressure on the mold surface.
When SH waves are used as ultrasonic waves, they are particularly susceptible to contact pressure.
For this reason, it is necessary to apply appropriate grease to the mold surface and to apply pressure to the inspection apparatus 10 for a certain period of time so as to make the film thickness of the grease constant.
The applied pressure is preferably about 2.5 MPa or more in order to shorten the holding time.
Grease has good oiliness with low moisture absorption, and the same grease should be used for calibration and tracking of history.

本体部20は、送信機14と受信機16を一定間隔離すために例えば略コ字状に形成され、送信機14はコ字状の一方の端部に位置し、内部には圧電素子等の超音波出力部14bがプローブ部14aに接続して設けられている。
送信機14と受信機16を本体部20でリジットに対向配置されていれば、必ずしもコ字状でなくてもよく、真に測定したい金型のクリティカル部位に接触できるようにプローブ形状を設定するとよい。
超音波出力部14bは金型12の表面側を向くように配置されているとともに、受信機16の方を向いて斜めに設けられている。
受信機16はコ字状の他方の端部に位置し、内部には圧電素子等の超音波受信部16bがプローブ部16aに接続して設けられている。
超音波受信部16bも金型12の表面側を向くように配置されているとともに、送信機14の方を向いて斜めに設けられている。
これら送信機14の超音波出力部14bと受信機16の超音波受信部16bにおいて、その設置角度は、プローブ部14a、16a及び金型基材のそれぞれの固体音速を基に、スネルの法則から、超音波が金型表層近傍を良く伝播するように設定するとよい。
The main body 20 is formed, for example, in a substantially U shape so as to separate the transmitter 14 and the receiver 16 from each other for a certain distance. The transmitter 14 is located at one end of the U shape, and includes a piezoelectric element or the like inside. An ultrasonic output unit 14b is provided in connection with the probe unit 14a.
If the transmitter 14 and the receiver 16 are arranged opposite to the rigid in the main body unit 20, the shape may not necessarily be U-shaped, and the probe shape is set so that the critical part of the mold to be truly measured can be contacted Good.
The ultrasonic output unit 14 b is disposed so as to face the front surface side of the mold 12, and is provided obliquely toward the receiver 16.
The receiver 16 is located at the other end of the U-shape, and an ultrasonic receiving unit 16b such as a piezoelectric element is connected to the probe unit 16a.
The ultrasonic receiver 16b is also arranged so as to face the front surface side of the mold 12, and is provided obliquely facing the transmitter 14.
In the ultrasonic output unit 14b of the transmitter 14 and the ultrasonic reception unit 16b of the receiver 16, the installation angles are based on Snell's law based on the solid sound speeds of the probe units 14a and 16a and the mold base. The ultrasonic wave may be set so as to propagate well in the vicinity of the mold surface.

受信回路部17の出力は、受信した超音波によるアナログの電気信号をデジタル信号に変換するA/Dコンバータ21に接続され、A/Dコンバータ21の出力は、受信した波形データを記憶する波形メモリ22に接続されている。
波形メモリ22の出力は、ピーク検出器30に接続されている。
ピーク検出器30は、受信した超音波の第一波、第二波等の伝播到達時間あるいは、第一波、第二波、第三波・・・・と減衰する減衰率等を検出する。
これらのデジタル処理は、CPUやメモリを備えたマイクロコンピュータを用いて行ってもよい。
使用する超音波は、縦波でもよいが、剪断水平波(SH波:Horizontally Polarized Shear Wave)が適している。
SH波は、送信機14のプローブ部14aから金型12の表層近傍を進行し、受信機16のプローブ16a向かう。
The output of the receiving circuit unit 17 is connected to an A / D converter 21 that converts an analog electrical signal generated by ultrasonic waves into a digital signal, and the output of the A / D converter 21 is a waveform memory that stores received waveform data. 22 is connected.
The output of the waveform memory 22 is connected to the peak detector 30.
The peak detector 30 detects the propagation arrival time of the first wave, the second wave, etc. of the received ultrasonic wave, or the attenuation rate that attenuates with the first wave, the second wave, the third wave,.
These digital processes may be performed using a microcomputer having a CPU and a memory.
The ultrasonic wave to be used may be a longitudinal wave, but a shear horizontal wave (SH wave: Horizontally Polarized Shear Wave) is suitable.
The SH wave travels in the vicinity of the surface layer of the mold 12 from the probe unit 14 a of the transmitter 14 and travels toward the probe 16 a of the receiver 16.

測定原理を図1の模式図に示す。
送信機から発信された超音波は、金型基材の表層部に進入する際に、スネルの法則に基づいて屈折し、受信機側に伝播到達する。
金型基材がショット時の熱負荷により焼き戻されると、たとえば鋼材の場合は、使用初めの金型基材表層の超音波伝播経路Kが表面側へシフトし、Kのように変化する。
このように、超音波の伝播経路KがKにシフトすると、受信機に到達する伝播時間が短くなり、また受信機に到達した第一波の音圧レベルA1に対する第二波の音圧レベルA2は、2点鎖線に示したように大きくなる。
そのため、第一波の音圧レベルを第二波の音圧レベルで除した減衰率を評価項とした場合、本評価項は金型基材の音速の増加、すなわち、硬さの低下に伴い減少することとなる。
超音波の伝播経路が金型の表面側にシフトする程度は、金型基材が熱被害を受け、相変態や、固溶変化が進行する割合に依存する。
従って、音圧減衰率の変化量は金型基材の材質や熱処理方法によっても依存することから、予め、検査対象となる金型の過去の熱履歴的データに基づいて検量線を作成するのがよい。
また、標準試験片に基づいて校正して測定するとよい。
また、本発明に係る検査装置は硬さ低下の検査のみならず、再熱処理の適正検査、金型製作時の適正検査にも使用できる。
The measurement principle is shown in the schematic diagram of FIG.
When the ultrasonic wave transmitted from the transmitter enters the surface layer portion of the mold base, it is refracted based on Snell's law and propagates to reach the receiver.
When the mold base is tempered by the thermal load at the time of shot, for example, in the case of steel, the ultrasonic propagation path K 0 on the surface of the mold base at the beginning of use shifts to the surface side and changes as K 1. To do.
Thus, when the ultrasonic wave propagation path K 0 is shifted to K 1 , the propagation time to reach the receiver is shortened, and the sound pressure of the second wave with respect to the sound pressure level A 1 of the first wave that has reached the receiver. Level A2 increases as shown by the two-dot chain line.
Therefore, when the attenuation rate obtained by dividing the sound pressure level of the first wave by the sound pressure level of the second wave is used as an evaluation term, this evaluation term is accompanied by an increase in the sound speed of the mold base material, that is, a decrease in hardness. Will decrease.
The degree to which the ultrasonic propagation path shifts to the surface side of the mold depends on the rate at which the mold base material is damaged by heat and the phase transformation or solid solution change proceeds.
Therefore, since the amount of change in the sound pressure decay rate depends on the material of the mold base and the heat treatment method, a calibration curve is prepared in advance based on the past thermal history data of the mold to be inspected. Is good.
Moreover, it is good to calibrate and measure based on a standard test piece.
Further, the inspection apparatus according to the present invention can be used not only for inspection of hardness reduction but also for proper inspection of reheat treatment and proper inspection at the time of mold manufacture.

JIS G 4404に規定する熱間金型鋼SKD61材を用いてダイカスト用金型を製作し、ガス窒化処理した。
金型A,B,C,D,Eを用いて、それぞれマグネシウム製品を鋳造し、横軸に鋳造ショット数、縦軸に第一波の音圧A1と第二波の音圧A2の比を自然対数としてプロットしたのが図2に示すグラフである。
金型A,B,C,D,Eいずれにおいてもショット数の増加とともに音圧減衰率が小さくなっているのが明らかになった。
これにより、金型基材の硬さと音圧減衰率の関係を予め調査しておくことで、本発明に係る検査装置で非破壊的に超音波の音圧減衰率もしくは伝播時間を測定し、金型基材の硬さを検査することができる。
本発明について、ダイカスト金型を例に説明したが、用途はこれに限定されるものではなく、各種金型基材の熱被害量を検査する方法、装置として広く応用できる。
A die casting die was manufactured using the hot die steel SKD61 material defined in JIS G 4404 and subjected to gas nitriding treatment.
Molds A, B, C, D, and E are used to cast magnesium products. The horizontal axis represents the number of shot shots, and the vertical axis represents the ratio between the sound pressure A1 of the first wave and the sound pressure A2 of the second wave. The graph shown in FIG. 2 is plotted as a natural logarithm.
It has been clarified that the sound pressure attenuation rate decreases as the number of shots increases in the molds A, B, C, D, and E.
Thereby, by investigating the relationship between the hardness of the mold base and the sound pressure attenuation rate in advance, the sound pressure attenuation rate or propagation time of the ultrasonic wave is measured nondestructively with the inspection apparatus according to the present invention, The hardness of the mold base can be inspected.
Although the present invention has been described by taking a die casting mold as an example, the application is not limited to this, and the present invention can be widely applied as a method and apparatus for inspecting the heat damage amount of various mold base materials.

本発明の測定原理を模式的に示す。The measurement principle of this invention is shown typically. 鋳造ショット数と音圧減衰率の関係を調査した結果を示す。The result of investigating the relationship between the number of casting shots and the sound pressure decay rate is shown. 本発明に係る検査装置の構成例を示す。The structural example of the inspection apparatus which concerns on this invention is shown.

符号の説明Explanation of symbols

10 検査装置
12 金型
14 送信機
15 発振回路部
16 受信機
17 受信回路部
20 本体部
21 A/Dコンバータ
22 波形メモリ
30 ピーク検出器
DESCRIPTION OF SYMBOLS 10 Inspection apparatus 12 Mold 14 Transmitter 15 Oscillation circuit part 16 Receiver 17 Reception circuit part 20 Main-body part 21 A / D converter 22 Waveform memory 30 Peak detector

Claims (2)

熱間金型鋼からなる金型の表面に接触し超音波を送信する送信機と、前記金型の表層近傍を伝播した前記超音波を受信する受信機と、前記送信機と受信機とを一定間隔離して一体的に保持した本体部とを備え、前記金型の表層近傍を伝播する超音波の伝播経路が熱負荷により表面側にシフトすることにて生じる前記超音波の音圧の減衰率もしくは伝播時間の変化量から金型基材の硬さの低下の変化量を算出することを特徴とする金型の非破壊検査方法。 A transmitter that contacts the surface of a mold made of hot mold steel and transmits ultrasonic waves, a receiver that receives the ultrasonic waves propagated near the surface of the mold, and the transmitter and the receiver are fixed. An ultrasonic wave pressure attenuation rate generated by shifting the ultrasonic propagation path propagating in the vicinity of the surface layer of the mold to the surface side by a thermal load. Alternatively, a non-destructive inspection method for a mold, wherein a change amount of a decrease in hardness of the mold base is calculated from a change amount of propagation time. 前記金型基材における硬さの変化量は、標準試験片による校正に基づいて、前記音圧の減衰率もしくは伝播時間の変化量から前記硬さの変化量を演算するものであることを特徴とする請求項記載の金型の非破壊検査方法。 The amount of change in hardness in the mold base is calculated from the amount of change in the hardness from the amount of change in the sound pressure attenuation rate or propagation time based on calibration with a standard test piece. A nondestructive inspection method for a mold according to claim 1 .
JP2008063390A 2008-03-12 2008-03-12 Mold nondestructive inspection method and apparatus Active JP5272159B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008063390A JP5272159B2 (en) 2008-03-12 2008-03-12 Mold nondestructive inspection method and apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008063390A JP5272159B2 (en) 2008-03-12 2008-03-12 Mold nondestructive inspection method and apparatus

Publications (2)

Publication Number Publication Date
JP2009216671A JP2009216671A (en) 2009-09-24
JP5272159B2 true JP5272159B2 (en) 2013-08-28

Family

ID=41188669

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008063390A Active JP5272159B2 (en) 2008-03-12 2008-03-12 Mold nondestructive inspection method and apparatus

Country Status (1)

Country Link
JP (1) JP5272159B2 (en)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3051897B2 (en) * 1991-05-22 2000-06-12 株式会社日立製作所 Method for producing graphite dispersed ceramic molded body
JPH095309A (en) * 1995-06-22 1997-01-10 Toshiba Tungaloy Co Ltd Sensor for diagnosing surface deterioration and fatigue, device for diagnosing surface deterioration and fatigue and its diagnostic method
JPH09236585A (en) * 1996-03-01 1997-09-09 Toshiba Tungaloy Co Ltd Diagnostic measurement sensor for surface degradation, hardening, fatigue, etc., and diagnostic device and diagnostic method
JPH09257766A (en) * 1996-03-22 1997-10-03 Hihakai Kensa Kk Method and apparatus for evaluating degree of embrittlement of metal material
JPH11248691A (en) * 1998-03-03 1999-09-17 Ishikawajima Harima Heavy Ind Co Ltd Method and device for measuring embrittlement of neutron-irradiated structural material

Also Published As

Publication number Publication date
JP2009216671A (en) 2009-09-24

Similar Documents

Publication Publication Date Title
US7665362B2 (en) Systems, methods and apparatus for non-disruptive and non-destructive inspection of metallurgical furnaces and similar vessels
Mi et al. An ultrasonic method for dynamic monitoring of fatigue crack initiation and growth
Xu et al. Nondestructive testing residual stress using ultrasonic critical refracted longitudinal wave
US5714688A (en) EMAT measurement of ductile cast iron nodularity
JP6082023B2 (en) Method for measuring elastic properties using ultrasound
Javadi et al. Using LCR ultrasonic method to evaluate residual stress in dissimilar welded pipes
CN109724727B (en) Method and device for measuring residual stress of curved surface blade of gas turbine
JP2010169494A (en) Compression strength measurement method, and compression strength measuring instrument using the same
JP5272159B2 (en) Mold nondestructive inspection method and apparatus
JP2010038696A (en) Non-destructive evaluation method of degree of metal fatigue damage and ultrasonic metal fatigue damage degree measuring instrument
JP4736036B2 (en) Method for measuring physical properties of surface layer of solid material
Kim et al. Characterization of the crack depth in concrete using self-compensating frequency response function
EP1893972A1 (en) Systems, methods and apparatus for non-disruptive and non-destructive inspection of metallurgical furnaces and similar vessels
US20080295601A1 (en) Ultrasound prediction of workpiece deformation
Nowacki et al. The sound velocity in an alloy steel at high-temperature conditions
Ling et al. Nondestructive Pressure Measurement in Vessels Using Rayleigh Waves and $ L_ {\rm CR} $ Waves
US11054399B2 (en) Inspection method
JPS62277554A (en) Measuring method for depth of surface cured layer by ultrasonic wave
Li et al. The Law of Response of L CR Wave in the Plastic and Elastic Deformation in A36 Steel
JPH03279856A (en) Ultrasonic material testing device
JP2009139188A (en) Ultrasonic apparatus for measuring surface roughness and method therefor
JP2012189352A (en) Sonic velocity measuring apparatus and method for ultrasonic waves propagated on surface
KR102657400B1 (en) Residual stress measurement method using ultrasonic sensor
RU2451932C1 (en) Method of measuring corrosion of main pipelines
JP5083271B2 (en) Carburizing depth measuring method and carburizing depth measuring device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110302

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110302

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120731

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120801

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130417

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5272159

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250