JP5271695B2 - Stabilized power circuit - Google Patents

Stabilized power circuit Download PDF

Info

Publication number
JP5271695B2
JP5271695B2 JP2008330667A JP2008330667A JP5271695B2 JP 5271695 B2 JP5271695 B2 JP 5271695B2 JP 2008330667 A JP2008330667 A JP 2008330667A JP 2008330667 A JP2008330667 A JP 2008330667A JP 5271695 B2 JP5271695 B2 JP 5271695B2
Authority
JP
Japan
Prior art keywords
voltage
output voltage
resistance
terminal
stabilized power
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008330667A
Other languages
Japanese (ja)
Other versions
JP2010152686A (en
Inventor
広明 佐々木
祐一 井上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Calsonic Kansei Corp
Original Assignee
Nissan Motor Co Ltd
Calsonic Kansei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd, Calsonic Kansei Corp filed Critical Nissan Motor Co Ltd
Priority to JP2008330667A priority Critical patent/JP5271695B2/en
Publication of JP2010152686A publication Critical patent/JP2010152686A/en
Application granted granted Critical
Publication of JP5271695B2 publication Critical patent/JP5271695B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To suppress a division ratio error due to the variation of a resistance, and to increase the precision of the other output voltages obtained by dividing the first output voltage. <P>SOLUTION: One end of a resistance Rs is connected to an input voltage Vin, and the other end is connected to a cathode K of a stabilized power source integrated circuit IC1. An anode A of the IC 1 is connected to a ground. A resistance ladder circuit is configured of resistances R1, R2 through Rn. One end of the resistance R1 is connected to the output terminal of the cathode K of the IC1 and a first output voltage Vout1. The other end of the resistance R1 is connected to one end of the resistance R2 and the output terminal of the second output voltage Vout2. The other end of the resistance R2 is connected to one end of the resistance R3. After the successive connection, one end of the resistance Rn is connected to the output terminal of the n-th output voltage Voutn, and the other end of the resistance Rn is connected to ground, and a reference voltage Vref is extracted from a certain connection point of the resistance ladder circuit, and connected to the reference R of the IC1. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、複数の出力電圧を出力する安定化電源回路に関する。   The present invention relates to a stabilized power supply circuit that outputs a plurality of output voltages.

安定化電源回路の出力電圧を分圧して、複数の出力電圧を生成する安定化電源回路として、例えば特許文献1に記載の電源回路が知られている。この回路によれば、出力電圧V0を抵抗素子R35〜R37で分圧した参照電圧Vrefを可変シャントレギュレータReg0のリファレンス端子へ接続するとともに、可変シャントレギュレータのカソード端子を出力電圧V0に接続し、アノード端子をグランドに接続している。また、出力電圧V0とグランドとの間には、抵抗素子R40〜R49を備えた抵抗ラダー回路を接続して、出力電圧V0を分圧した階調電圧V1〜V9を生成している。この電源回路において、参照電圧Vrefを生成する分圧回路と、階調電圧V1〜V9を生成するラダー回路とは、並列に接続されている。
特開2006−018148号公報
As a stabilized power supply circuit that divides an output voltage of a stabilized power supply circuit to generate a plurality of output voltages, for example, a power supply circuit described in Patent Document 1 is known. According to this circuit, the reference voltage Vref obtained by dividing the output voltage V0 by the resistance elements R35 to R37 is connected to the reference terminal of the variable shunt regulator Reg0, the cathode terminal of the variable shunt regulator is connected to the output voltage V0, and the anode The terminal is connected to ground. Further, a resistor ladder circuit including resistor elements R40 to R49 is connected between the output voltage V0 and the ground to generate gradation voltages V1 to V9 obtained by dividing the output voltage V0. In this power supply circuit, the voltage dividing circuit that generates the reference voltage Vref and the ladder circuit that generates the gradation voltages V1 to V9 are connected in parallel.
JP 2006-018148 A

しかしながら、上記従来技術では、参照電圧を生成する分圧回路と、階調電圧を生成する抵抗ラダー回路とは並列に接続されているために、出力電圧V0を分圧した階調電圧は、分圧回路を構成する抵抗素子のバラツキと、抵抗ラダー回路を構成する抵抗素子のバラツキとの双方の影響を受けて、階調電圧の精度が低下するという問題点があった。   However, since the voltage dividing circuit for generating the reference voltage and the resistor ladder circuit for generating the gradation voltage are connected in parallel in the above-described prior art, the gradation voltage obtained by dividing the output voltage V0 is divided. There is a problem in that the accuracy of the gradation voltage is lowered due to the influence of both the variation of the resistance elements constituting the voltage circuit and the variation of the resistance elements constituting the resistance ladder circuit.

上記問題点を解決するために、本発明は、第1の出力電圧を分圧した参照電圧が内部基準電圧と一致するように、電源から供給される入力電圧を第1の出力電圧に変換して出力するとともに、第1の出力電圧を分圧した他の出力電圧を生成する安定化電源回路において、電源と負荷との間で直列接続された電圧降下用の抵抗素子と、抵抗素子に対して負荷側であり負荷と並列接続され、参照電圧に基づいて素子内に電流を流すことによって抵抗素子の電圧を調整する制御素子と、制御素子と負荷との間で並列接続されるとともに、第1の出力電圧を分圧して、他の出力電圧と制御素子へ入力する参照電圧とを生成する抵抗ラダー回路とを備えた。 In order to solve the above problems, the present invention converts an input voltage supplied from a power source into a first output voltage so that a reference voltage obtained by dividing the first output voltage matches an internal reference voltage. And a voltage drop resistor element connected in series between the power source and the load, and a resistor element for generating the output voltage divided by the first output voltage A control element that adjusts the voltage of the resistance element by flowing a current in the element based on a reference voltage, and is connected in parallel between the control element and the load. A resistor ladder circuit that divides one output voltage and generates another output voltage and a reference voltage to be input to the control element is provided.

本発明によれば、第1の出力電圧を分圧した他の出力電圧は、抵抗素子のバラツキによる分圧比誤差が抑制され、高精度の他の出力電圧が得られるという効果がある。   According to the present invention, the other output voltage obtained by dividing the first output voltage has an effect that the voltage division ratio error due to the variation of the resistance elements is suppressed, and another highly accurate output voltage can be obtained.

次に図面を参照して、本発明の実施の形態を詳細に説明する。   Next, embodiments of the present invention will be described in detail with reference to the drawings.

図1は、本発明に係る安定化電源回路の実施例1を説明する回路図である。図1において、実施例1の安定化電源回路は、電圧降下用抵抗素子Rsと、安定化電源集積回路IC1と、抵抗素子R1,R2,…,Rnとを備えたシャントレギュレータである。   FIG. 1 is a circuit diagram illustrating a first embodiment of a stabilized power supply circuit according to the present invention. In FIG. 1, the stabilized power supply circuit according to the first embodiment is a shunt regulator including a voltage drop resistance element Rs, a stabilized power supply integrated circuit IC1, and resistance elements R1, R2,.

安定化電源集積回路IC1は、高電位側に接続されるカソード端子Kと、低電位側に接続されるアノード端子Aと、参照電圧が供給されるリファレンス端子Rとを備えた3端子型のシャントレギュレータ用集積回路である。   The stabilized power supply integrated circuit IC1 includes a three-terminal shunt including a cathode terminal K connected to a high potential side, an anode terminal A connected to a low potential side, and a reference terminal R to which a reference voltage is supplied. This is an integrated circuit for a regulator.

電圧降下用抵抗素子Rsの一端は入力電圧Vinに接続され、他端は安定化電源集積回路IC1のカソード端子Kに接続されている。安定化電源集積回路IC1のアノード端子Aはグランドに接続されている。   One end of the voltage drop resistance element Rs is connected to the input voltage Vin, and the other end is connected to the cathode terminal K of the stabilized power supply integrated circuit IC1. The anode terminal A of the stabilized power supply integrated circuit IC1 is connected to the ground.

抵抗素子R1,R2,…,Rnは、直列に接続されて抵抗ラダー回路を構成している。抵抗素子R1の一端は、安定化電源集積回路IC1のカソード端子Kに接続されるとともに、第1の出力電圧Vout1の出力端子に接続される。抵抗素子R1の他端は、抵抗素子R2の一端に接続されるとともに、第2の出力電圧Vout2の出力端子に接続される。抵抗素子R2の他端は、図示しない抵抗素子R3の一端に接続される。以下同様に順次接続され、抵抗素子Rnの一端が第nの出力電圧Voutnの出力端子に接続され、抵抗素子Rnの他端がグランドに接続されている。また、抵抗ラダー回路のある接続点から参照電圧Vref が取り出されて、安定化電源集積回路IC1のリファレンス端子Rに接続されている。   The resistance elements R1, R2,..., Rn are connected in series to form a resistance ladder circuit. One end of the resistance element R1 is connected to the cathode terminal K of the stabilized power supply integrated circuit IC1 and to the output terminal of the first output voltage Vout1. The other end of the resistance element R1 is connected to one end of the resistance element R2 and to the output terminal of the second output voltage Vout2. The other end of the resistance element R2 is connected to one end of a resistance element R3 (not shown). In the same manner, the resistor elements Rn are sequentially connected. One end of the resistor element Rn is connected to the output terminal of the nth output voltage Voutn, and the other end of the resistor element Rn is connected to the ground. A reference voltage Vref is taken out from a connection point of the resistance ladder circuit and connected to the reference terminal R of the stabilized power supply integrated circuit IC1.

次に、図1に示した安定化電源回路の動作を説明する。安定化電源集積回路IC1は、リファレンス端子Rに供給される参照電圧Vref と、内蔵する内部基準電圧とが一致するように、カソード端子Kからアノード端子Aへ流れる電流を制御することにより、電圧降下用抵抗素子Rsにおけるドロップ電圧を制御する。この結果として、入力電圧Vinを変換した第1の出力電圧Vout1を一定の電圧に維持することができる。   Next, the operation of the stabilized power supply circuit shown in FIG. 1 will be described. The stabilized power supply integrated circuit IC1 controls the current flowing from the cathode terminal K to the anode terminal A so that the reference voltage Vref supplied to the reference terminal R and the built-in internal reference voltage coincide with each other. The drop voltage in the resistive element Rs is controlled. As a result, the first output voltage Vout1 obtained by converting the input voltage Vin can be maintained at a constant voltage.

ここで、第1の出力電圧を分圧して、第2の出力電圧から第nの出力電圧を生成する抵抗ラダー回路と、第1の出力電圧を分圧して参照電圧Vref を得る分圧回路とは、従来技術のような個別の回路が並列に接続されたものではなく、一つの抵抗ラダー回路から、参照電圧Vref と第2〜第nの出力電圧以下の電圧とを取り出したものである。   Here, a resistor ladder circuit that divides the first output voltage to generate the nth output voltage from the second output voltage, and a voltage divider circuit that divides the first output voltage to obtain the reference voltage Vref. Is not a circuit in which individual circuits as in the prior art are connected in parallel, but a reference voltage Vref and a voltage lower than the second to nth output voltages are taken out from one resistor ladder circuit.

このため、本実施例の第1の出力電圧以外の第2〜第nの出力電圧である他の出力電圧のバラツキは、抵抗ラダー回路を構成する抵抗素子のバラツキに依存し、従来技術のような参照電圧を取り出す分圧回路を構成する抵抗素子のバラツキと、抵抗ラダー回路を構成する抵抗素子のバラツキとの和となることはない。   For this reason, the variation of other output voltages that are the second to nth output voltages other than the first output voltage of the present embodiment depends on the variation of the resistance elements constituting the resistance ladder circuit, and is different from the conventional technology. Therefore, there is no sum of the variation of the resistance elements constituting the voltage dividing circuit for extracting the reference voltage and the variation of the resistance elements constituting the resistance ladder circuit.

従って本実施例によれば、第1の出力電圧を分圧した他の出力電圧は、抵抗素子のバラツキによる分圧比誤差が抑制され、高精度の他の出力電圧が得られるという効果がある。   Therefore, according to the present embodiment, the other output voltage obtained by dividing the first output voltage has an effect that the voltage division ratio error due to the variation of the resistance elements is suppressed and another output voltage with high accuracy can be obtained.

図2は、本発明に係る安定化電源回路の実施例2を説明する回路図である。図2において、実施例2の安定化電源回路は、電圧降下用抵抗素子Rsと、安定化電源集積回路IC1と、抵抗素子R1,R5,R6とを備えたシャントレギュレータである。   FIG. 2 is a circuit diagram illustrating Example 2 of the stabilized power supply circuit according to the present invention. In FIG. 2, the stabilized power supply circuit according to the second embodiment is a shunt regulator including a voltage drop resistance element Rs, a stabilized power supply integrated circuit IC1, and resistance elements R1, R5, and R6.

安定化電源集積回路IC1は、高電位側に接続されるカソード端子Kと、低電位側に接続されるアノード端子Aと、参照電圧が供給されるリファレンス端子Rとを備えた3端子型のシャントレギュレータ用集積回路である。   The stabilized power supply integrated circuit IC1 includes a three-terminal shunt including a cathode terminal K connected to a high potential side, an anode terminal A connected to a low potential side, and a reference terminal R to which a reference voltage is supplied. This is an integrated circuit for a regulator.

電圧降下用抵抗素子Rsの一端は入力電圧Vinに接続され、他端は安定化電源集積回路IC1のカソード端子Kに接続されている。安定化電源集積回路IC1のアノード端子Aはグランドに接続されている。   One end of the voltage drop resistance element Rs is connected to the input voltage Vin, and the other end is connected to the cathode terminal K of the stabilized power supply integrated circuit IC1. The anode terminal A of the stabilized power supply integrated circuit IC1 is connected to the ground.

抵抗素子R1,R5,R6は、直列に接続されて抵抗ラダー回路を構成している。抵抗素子R1の一端は、安定化電源集積回路IC1のカソード端子Kに接続されるとともに、第1の出力電圧Vout1の出力端子に接続される。抵抗素子R1の他端は、抵抗素子R5の一端に接続されるとともに、安定化電源集積回路IC1のリファレンス端子Rに接続されている。抵抗素子R5の他端は、抵抗素子R6の一端に接続されるとともに、第2の出力電圧Vout2の出力端子に接続されている。抵抗素子R6の他端はグランドに接続されている。   The resistance elements R1, R5, and R6 are connected in series to form a resistance ladder circuit. One end of the resistance element R1 is connected to the cathode terminal K of the stabilized power supply integrated circuit IC1 and to the output terminal of the first output voltage Vout1. The other end of the resistance element R1 is connected to one end of the resistance element R5, and is connected to the reference terminal R of the stabilized power supply integrated circuit IC1. The other end of the resistance element R5 is connected to one end of the resistance element R6 and to the output terminal of the second output voltage Vout2. The other end of the resistance element R6 is connected to the ground.

次に、図2に示した安定化電源回路の動作を説明する。安定化電源集積回路IC1は、リファレンス端子Rに供給される参照電圧Vref と、内蔵する内部基準電圧とが一致するように、カソード端子Kからアノード端子Aへ流れる電流を制御することにより、電圧降下用抵抗素子Rsにおけるドロップ電圧を制御する。この結果として、入力電圧Vinを変換した第1の出力電圧Vout1を一定の電圧に維持することができる。   Next, the operation of the stabilized power supply circuit shown in FIG. 2 will be described. The stabilized power supply integrated circuit IC1 controls the current flowing from the cathode terminal K to the anode terminal A so that the reference voltage Vref supplied to the reference terminal R and the built-in internal reference voltage coincide with each other. The drop voltage in the resistive element Rs is controlled. As a result, the first output voltage Vout1 obtained by converting the input voltage Vin can be maintained at a constant voltage.

ここで、第1の出力電圧を分圧して、第2の出力電圧を生成する抵抗ラダー回路と、第1の出力電圧を分圧して参照電圧Vref を得る分圧回路とは、従来技術のような個別の回路が並列に接続されたものではなく、一つの抵抗ラダー回路から、参照電圧Vref と第2の出力電圧を取り出したものである。   Here, the resistor ladder circuit that divides the first output voltage to generate the second output voltage and the voltage divider circuit that divides the first output voltage to obtain the reference voltage Vref are as in the prior art. The individual circuits are not connected in parallel, but the reference voltage Vref and the second output voltage are extracted from one resistor ladder circuit.

ここで、安定化電源集積回路IC1のリファレンス端子Rから流れ出す電流Iref は、抵抗素子R1,R5に流れる電流より十分小さく無視できるものとする。そして、参照電圧Vref を分圧比β3で分圧した電圧が第2の出力電圧Vout2であるから、分圧比β3は、式(1)となり、第2の出力電圧Vout2は、式(2)となる。   Here, it is assumed that the current Iref flowing out from the reference terminal R of the stabilized power supply integrated circuit IC1 is sufficiently smaller than the current flowing through the resistance elements R1 and R5 and can be ignored. Since the voltage obtained by dividing the reference voltage Vref by the voltage dividing ratio β3 is the second output voltage Vout2, the voltage dividing ratio β3 is expressed by Expression (1), and the second output voltage Vout2 is expressed by Expression (2). .

β3=R6/(R5+R6) …(1)
Vout2=β3・Vref …(2)
β3のバラツキをΔβ3、安定化電源集積回路IC1が内蔵する基準電圧のバラツキをΔVref とすれば、Vout2のばらつきΔVout2は、式(3)となる。
β3 = R6 / (R5 + R6) (1)
Vout2 = β3 · Vref (2)
If the variation of β3 is Δβ3 and the variation of the reference voltage built in the stabilized power integrated circuit IC1 is ΔVref, the variation ΔVout2 of Vout2 is expressed by the following equation (3).

ΔVout2=Δβ3・Vref+β3・ΔVref+Δβ3・ΔVref …(3)
ここで、第3項は、第1、第2項より十分小さいので、ΔVout2は式(4)となる。
ΔVout2 = Δβ3 · Vref + β3 · ΔVref + Δβ3 · ΔVref (3)
Here, since the third term is sufficiently smaller than the first and second terms, ΔVout2 is expressed by equation (4).

ΔVout2≒Δβ3・Vref+β3・ΔVref …(4)
これに対して、第1の出力電圧Vout1を分圧して参照電圧Vref を出力する分圧回路と、第1の出力電圧Vout1を分圧して第2の出力電圧Vout2を出力する抵抗ラダー回路とを並列に設け、その他の構成は、実施例2と同様な従来技術を考える。
ΔVout2≈Δβ3 · Vref + β3 · ΔVref (4)
On the other hand, a voltage dividing circuit that divides the first output voltage Vout1 and outputs the reference voltage Vref, and a resistor ladder circuit that divides the first output voltage Vout1 and outputs the second output voltage Vout2. A conventional technique similar to that of the second embodiment is considered for other configurations.

分圧回路の分圧比をβ1,抵抗ラダー回路の分圧比をβ2とすれば、式(5)〜(8)となる。   When the voltage dividing ratio of the voltage dividing circuit is β1, and the voltage dividing ratio of the resistance ladder circuit is β2, the equations (5) to (8) are obtained.

β1=R2/(R1+R2) …(5)
β2=R4/(R3+R4) …(6)
Vout1=Vref/β1 …(7)
Vout2=β2・Vout1 …(8)
次に、分圧比β1のバラツキをΔβ1、分圧比β2のバラツキをΔβ2、安定化電源集積回路IC1が内蔵する基準電圧のバラツキをΔVref とすれば、Vout1のばらつきΔVout1と、Vout2のばらつきΔVout2とは、それぞれ式(9)、(10)となる。
β1 = R2 / (R1 + R2) (5)
β2 = R4 / (R3 + R4) (6)
Vout1 = Vref / β1 (7)
Vout2 = β2 ・ Vout1 (8)
Next, if the variation of the voltage dividing ratio β1 is Δβ1, the variation of the voltage dividing ratio β2 is Δβ2, and the variation of the reference voltage built in the stabilized power integrated circuit IC1 is ΔVref, the variation ΔVout1 of Vout1 and the variation ΔVout2 of Vout2 , Respectively, are equations (9) and (10).

ΔVout1=ΔVref/β1+Vref/Δβ1+ΔVref/Δβ1
≒Vref/Δβ1+ΔVref/Δβ1 …(9)
ΔVout2=Δβ2・Vout1+β2・ΔVout1+Δβ2・ΔVout1
≒Δβ2・Vout1+β2・ΔVout1 …(10)
式(9)を式(10)へ代入すると、式(11)となる。
ΔVout1 = ΔVref / β1 + Vref / Δβ1 + ΔVref / Δβ1
≒ Vref / Δβ1 + ΔVref / Δβ1 (9)
ΔVout2 = Δβ2 ・ Vout1 + β2 ・ ΔVout1 + Δβ2 ・ ΔVout1
≒ Δβ2 ・ Vout1 + β2 ・ ΔVout1 (10)
Substituting equation (9) into equation (10) yields equation (11).

ΔVout2≒Δβ2・Vout1+β2・(Vref/Δβ1+ΔVref/Δβ1)
≒Δβ2・Vout1+β2・Vref/Δβ1+β2・ΔVref/Δβ1 …(11)
本実施例のΔVout2の式(4)と、従来例ΔVout2の式(11)とを比べると、従来例の式(11)には、ΔVref以外に、Δβ1とΔβ2の2つの分圧比のバラツキが含まれるために、ΔVout2が大きくなる要因があったが、本実施例の式(4)では、一つの分圧比のバラツキしか含まれないために、その分だけΔVout2を小さくすることができる。
ΔVout2 ≒ Δβ2 ・ Vout1 + β2 ・ (Vref / Δβ1 + ΔVref / Δβ1)
≒ Δβ2 ・ Vout1 + β2 ・ Vref / Δβ1 + β2 ・ ΔVref / Δβ1 (11)
Comparing the equation (4) of ΔVout2 of the present example with the equation (11) of the conventional example ΔVout2, the equation (11) of the conventional example has two variations of the partial pressure ratio of Δβ1 and Δβ2 in addition to ΔVref. Because of this, there is a factor that increases ΔVout2. However, in Formula (4) of this embodiment, only one variation in the voltage division ratio is included, so ΔVout2 can be reduced by that amount.

以上説明したように本実施例によれば、実施例1と同様に、第1の出力電圧を分圧した他の出力電圧は、抵抗素子のバラツキによる分圧比誤差が抑制され、高精度の他の出力電圧が得られるという効果がある。また本実施例は、従来技術では4本必要であった抵抗素子の数が3本に減少し、使用する抵抗素子の数を減らすことができるという効果がある。   As described above, according to the present embodiment, as in the first embodiment, the other output voltages obtained by dividing the first output voltage are reduced in the voltage division ratio error due to the variation of the resistance elements, and other than high accuracy. The output voltage can be obtained. In addition, the present embodiment has an effect that the number of resistance elements required in the prior art is reduced to 3, and the number of resistance elements to be used can be reduced.

図3は、本発明に係る安定化電源回路の実施例3を説明する回路図である。図3において、実施例3の安定化電源回路は、図2に示した実施例2の安定化電源回路の第1の出力端子と参照電圧端子との間に、更に抵抗素子R7が接続されている。その他の構成は、実施例2と同様であるので、同じ構成要素には同じ符号を付与して、重複する説明を省略する。   FIG. 3 is a circuit diagram illustrating Example 3 of the stabilized power supply circuit according to the present invention. In FIG. 3, the stabilized power supply circuit according to the third embodiment further includes a resistance element R <b> 7 connected between the first output terminal and the reference voltage terminal of the stabilized power supply circuit according to the second embodiment illustrated in FIG. 2. Yes. Since other configurations are the same as those of the second embodiment, the same reference numerals are given to the same components, and redundant description is omitted.

図3において、抵抗素子R7は、安定化電源集積回路IC1のリファレンス端子Rとグランド(言い換えれば安定化電源集積回路IC1のアノード端子A)との間に接続されている。実施例2においては、安定化電源集積回路IC1のリファレンス端子Rから流れ出す電流Iref を無視できるものとした。しかし、抵抗素子R5,R6をRCフィルターの一部として使用し、RCフィルタの時定数を大きくする必要がある場合、抵抗素子R1,R5,R6に流れる電流をリファレンス端子Rの端子電流Iref に比べて十分大きくできない場合がある。このような場合、抵抗素子R7を追加することにより、抵抗素子R5,R6の抵抗値を大きくして所望のRCフィルタの時定数を実現してもリファレンス端子Rの端子電流Iref がVout2に及ぼす影響を無視することができる。   In FIG. 3, the resistance element R7 is connected between the reference terminal R of the stabilized power supply integrated circuit IC1 and the ground (in other words, the anode terminal A of the stabilized power supply integrated circuit IC1). In the second embodiment, the current Iref flowing from the reference terminal R of the stabilized power supply integrated circuit IC1 can be ignored. However, when the resistance elements R5 and R6 are used as part of the RC filter and the time constant of the RC filter needs to be increased, the current flowing through the resistance elements R1, R5, and R6 is compared with the terminal current Iref of the reference terminal R. May not be large enough. In such a case, by adding the resistance element R7, even if the resistance values of the resistance elements R5 and R6 are increased to realize a desired time constant of the RC filter, the influence of the terminal current Iref of the reference terminal R on Vout2 Can be ignored.

以上説明したように本実施例によれば、実施例1と同様に、第1の出力電圧を分圧した他の出力電圧は、抵抗素子のバラツキによる分圧比誤差が抑制され、高精度の他の出力電圧が得られるという効果がある。   As described above, according to the present embodiment, as in the first embodiment, the other output voltages obtained by dividing the first output voltage are reduced in the voltage division ratio error due to the variation of the resistance elements, and other than high accuracy. The output voltage can be obtained.

また本実施例によれば、第1の出力端子と参照電圧端子との間に、更に抵抗素子を接続したことにより、抵抗ラダー回路を構成する抵抗素子の抵抗値が大きい場合、安定化電源集積回路のリファレンス端子からの漏れ電流による出力誤差を抑制することができるという効果がある。   Further, according to the present embodiment, when a resistance element is further connected between the first output terminal and the reference voltage terminal, and the resistance value of the resistance element constituting the resistance ladder circuit is large, the stabilized power supply is integrated. There is an effect that an output error due to a leakage current from the reference terminal of the circuit can be suppressed.

尚、本実施例の変形例として、図4に示すように、抵抗素子R7を安定化電源集積回路IC1のリファレンス端子Rと第1の出力電圧Vout1(言い換えれば安定化電源集積回路IC1のカソード端子K)との間に接続してもよい。この変形例は、安定化電源集積回路IC1のリファレンス端子Rの電流Iref が端子へ流れ込む方向の場合に有効である。   As a modification of the present embodiment, as shown in FIG. 4, the resistor element R7 is connected to the reference terminal R of the stabilized power supply integrated circuit IC1 and the first output voltage Vout1 (in other words, the cathode terminal of the stabilized power supply integrated circuit IC1). K). This modification is effective when the current Iref of the reference terminal R of the stabilized power supply integrated circuit IC1 flows into the terminal.

本実施例の変形例によれば、参照電圧端子とグランドとの間に、更に抵抗素子を接続したことにより、抵抗ラダー回路を構成する抵抗素子の抵抗値が大きい場合、安定化電源集積回路のリファレンス端子からの漏れ電流による出力誤差を抑制することができるという効果がある。   According to the modification of the present embodiment, when a resistance element is further connected between the reference voltage terminal and the ground, the resistance value of the resistance element constituting the resistance ladder circuit is large. There is an effect that an output error due to a leakage current from the reference terminal can be suppressed.

図5は、本発明に係る安定化電源回路の実施例4を説明する回路図である。図5において、実施例4の安定化電源回路は、図2に示した実施例2の安定化電源回路に、抵抗素子R7とスイッチ素子Q1の直列回路が追加されている。その他の構成は、実施例2と同様であるので、同じ構成要素には同じ符号を付与して、重複する説明を省略する。   FIG. 5 is a circuit diagram for explaining a fourth embodiment of the stabilized power circuit according to the present invention. In FIG. 5, the stabilized power circuit of the fourth embodiment is obtained by adding a series circuit of a resistor element R7 and a switch element Q1 to the stabilized power circuit of the second embodiment shown in FIG. Since other configurations are the same as those of the second embodiment, the same reference numerals are given to the same components, and redundant description is omitted.

図5において、抵抗素子R7とスイッチ素子Q1の直列回路が第2の出力電圧Vout2とグランドとの間に接続されている。   In FIG. 5, a series circuit of a resistor element R7 and a switch element Q1 is connected between the second output voltage Vout2 and the ground.

本実施例は、スイッチ素子Q1のオン/オフにより、第2の出力電圧Vout2の低/高を変化させる実施例である。スイッチ素子Q1は、図示しない駆動回路によりオン/オフが制御される。スイッチ素子Q1がオンの場合、抵抗素子R7が抵抗素子R6と並列になり、第2の出力電圧Vout2は低い値である。スイッチ素子Q1がオフの場合、抵抗素子R7には電流が流れず、第2の出力電圧Vout2は高い値となる。   In this embodiment, the low / high of the second output voltage Vout2 is changed by turning on / off the switch element Q1. The switch element Q1 is controlled to be turned on / off by a drive circuit (not shown). When the switch element Q1 is on, the resistor element R7 is in parallel with the resistor element R6, and the second output voltage Vout2 is a low value. When the switch element Q1 is off, no current flows through the resistance element R7, and the second output voltage Vout2 has a high value.

但し、本実施例においては、スイッチ素子Q1のオン/オフにより第1の出力電圧Vout1も変動するため、第1の出力電圧Vout1の電圧変化幅が許容できる範囲内で本実施例を利用することができる。尚、図5では、抵抗素子R7とスイッチ素子Q1の直列回路を第2の出力電圧Vout2とグランドとの間に接続したが、この直列回路を第1の出力電圧Vout1と第2の出力電圧Vout2との間に接続することもできる。   However, in the present embodiment, since the first output voltage Vout1 also varies due to the on / off of the switch element Q1, the present embodiment is used within a range in which the voltage change width of the first output voltage Vout1 is allowable. Can do. In FIG. 5, the series circuit of the resistor element R7 and the switch element Q1 is connected between the second output voltage Vout2 and the ground, but this series circuit is connected to the first output voltage Vout1 and the second output voltage Vout2. Can also be connected between.

図6は、本発明に係る安定化電源回路の実施例5を説明する回路図である。実施例1〜4は、本発明をシャントレギュレータに適用した実施例であったが、実施例5は、本発明をシリーズレギュレータに適用した実施例である。   FIG. 6 is a circuit diagram for explaining a fifth embodiment of the stabilized power circuit according to the present invention. Examples 1 to 4 are examples in which the present invention is applied to a shunt regulator, while Example 5 is an example in which the present invention is applied to a series regulator.

図6において、実施例5の安定化電源回路は、安定化電源集積回路IC2と、抵抗素子R1,R2,R3とを備えたシリーズレギュレータである。   In FIG. 6, the stabilized power supply circuit according to the fifth embodiment is a series regulator including a stabilized power supply integrated circuit IC2 and resistance elements R1, R2, and R3.

安定化電源集積回路IC2は、入力端子Iと、出力端子Oと、接地端子Gとを備えた
3端子型のシリーズレギュレータ用集積回路である。但し、本実施例では、安定化電源集積回路IC2の接地端子Gは、グランドには接続していない。
The stabilized power supply integrated circuit IC2 is a three-terminal series regulator integrated circuit including an input terminal I, an output terminal O, and a ground terminal G. However, in the present embodiment, the ground terminal G of the stabilized power supply integrated circuit IC2 is not connected to the ground.

安定化電源集積回路IC2の入力端子Iは入力電圧Vinに接続され、安定化電源集積回路IC2の出力端子Oには、第1の出力電圧Vout1の端子と、抵抗素子R1の一端が接続されている。安定化電源集積回路IC2の接地端子Gには、抵抗素子R1の他端と、抵抗素子R2の一端が接続されれている。   The input terminal I of the stabilized power supply integrated circuit IC2 is connected to the input voltage Vin, and the output terminal O of the stabilized power supply integrated circuit IC2 is connected to the terminal of the first output voltage Vout1 and one end of the resistor element R1. Yes. The other end of the resistor element R1 and one end of the resistor element R2 are connected to the ground terminal G of the stabilized power supply integrated circuit IC2.

抵抗素子R2の他端には、第2の出力電圧Vout2の端子と、抵抗素子R3の一端が接続されている。抵抗素子R3の他端は、グランドに接続されている。   The other end of the resistance element R2 is connected to the terminal of the second output voltage Vout2 and one end of the resistance element R3. The other end of the resistance element R3 is connected to the ground.

安定化電源集積回路IC2は、出力端子Oと、接地端子Gとの間の電圧が所定の電圧(以下、この電圧を基準電圧Vref とする)となるように、入力端子Iと出力端子Oとの間の電圧降下を制御する。このため、抵抗素子R1に流れる電流は、Vref /R1という一定値となる。ここで、安定化電源集積回路IC2の接地端子Gから流れ出す電流Igが式(12)の関係を満たし、且つ、第2の出力電圧Vout2の端子から取り出す電流もVref /R1より十分小さければ、第1の出力電圧Vout1の値は、式(13)となり、第2の出力電圧Vout2の値は、式(14)となる。   The stabilized power supply integrated circuit IC2 includes an input terminal I, an output terminal O, and an output terminal O so that a voltage between the output terminal O and the ground terminal G becomes a predetermined voltage (hereinafter, this voltage is referred to as a reference voltage Vref). Control the voltage drop between. For this reason, the current flowing through the resistance element R1 has a constant value of Vref / R1. Here, if the current Ig flowing out from the ground terminal G of the stabilized power supply integrated circuit IC2 satisfies the relationship of the expression (12) and the current taken out from the terminal of the second output voltage Vout2 is also sufficiently smaller than Vref / R1, The value of the first output voltage Vout1 is expressed by equation (13), and the value of the second output voltage Vout2 is expressed by equation (14).

Ig≪Vref /R1 …(12)
Vout1=Vref ・(R1+R2+R3)/R1 …(13)
Vout2=Vref ・R3/R1 …(14)
尚、図6において、安定化電源集積回路IC2の接地端子Gとグランドとの間に抵抗素子を直列接続(R2,R3)して、第2の出力電圧Vout2を取り出しているが、抵抗素子R1を複数の抵抗素子からなる直列接続として、これらの接続点から第2の出力電圧Vout2を取り出すこともできる。
Ig << Vref / R1 (12)
Vout1 = Vref (R1 + R2 + R3) / R1 (13)
Vout2 = Vref R3 / R1 (14)
In FIG. 6, a resistor element is connected in series (R2, R3) between the ground terminal G of the stabilized power supply integrated circuit IC2 and the ground, and the second output voltage Vout2 is taken out. Can be connected in series consisting of a plurality of resistance elements, and the second output voltage Vout2 can be extracted from these connection points.

以上説明したように本実施例によれば、シリーズレギュレータにおいて、第1の出力電圧を分圧した他の出力電圧は、抵抗素子のバラツキによる分圧比誤差が抑制され、高精度の他の出力電圧が得られるという効果がある。   As described above, according to the present embodiment, in the series regulator, the other output voltage obtained by dividing the first output voltage is suppressed from the voltage division ratio error due to the variation of the resistance element, and the other output voltage with high accuracy is obtained. Is effective.

図7は、本発明に係る安定化電源回路の実施例6を説明する回路図である。実施例6は、第2の出力電圧Vout2と、参照電圧Vref とが等しい実施例である。   FIG. 7 is a circuit diagram for explaining a sixth embodiment of the stabilized power circuit according to the present invention. In the sixth embodiment, the second output voltage Vout2 is equal to the reference voltage Vref.

図7において、実施例6の安定化電源回路は、電圧降下用抵抗素子Rsと、安定化電源集積回路IC1と、抵抗素子R1,R2とを備えたシャントレギュレータである。   In FIG. 7, the stabilized power circuit according to the sixth embodiment is a shunt regulator including a voltage drop resistance element Rs, a stabilized power integrated circuit IC1, and resistance elements R1 and R2.

安定化電源集積回路IC1は、高電位側に接続されるカソード端子Kと、低電位側に接続されるアノード端子Aと、参照電圧が供給されるリファレンス端子Rとを備えた3端子型のシャントレギュレータ用集積回路である。   The stabilized power supply integrated circuit IC1 includes a three-terminal shunt including a cathode terminal K connected to a high potential side, an anode terminal A connected to a low potential side, and a reference terminal R to which a reference voltage is supplied. This is an integrated circuit for a regulator.

電圧降下用抵抗素子Rsの一端は入力電圧Vinに接続され、他端は安定化電源集積回路IC1のカソード端子Kに接続されている。安定化電源集積回路IC1のアノード端子Aはグランドに接続されている。   One end of the voltage drop resistance element Rs is connected to the input voltage Vin, and the other end is connected to the cathode terminal K of the stabilized power supply integrated circuit IC1. The anode terminal A of the stabilized power supply integrated circuit IC1 is connected to the ground.

抵抗素子R1の一端は、安定化電源集積回路IC1のカソード端子Kに接続されるとともに、第1の出力電圧Vout1の出力端子に接続される。抵抗素子R1の他端は、抵抗素子R2の一端に接続されるとともに、安定化電源集積回路IC1のリファレンス端子Rと、第2の出力電圧Vout2の出力端子に接続されている。抵抗素子R2の他端は、グランドに接続されている。   One end of the resistance element R1 is connected to the cathode terminal K of the stabilized power supply integrated circuit IC1 and to the output terminal of the first output voltage Vout1. The other end of the resistor element R1 is connected to one end of the resistor element R2, and is connected to the reference terminal R of the stabilized power supply integrated circuit IC1 and the output terminal of the second output voltage Vout2. The other end of the resistance element R2 is connected to the ground.

抵抗素子R1,R2は、直列に接続されて抵抗ラダー回路を構成し、抵抗素子R1と抵抗素子R2との接続点は、第2の出力電圧Vout2を出力するとともに、参照電圧Vref を出力している。   The resistance elements R1 and R2 are connected in series to form a resistance ladder circuit, and the connection point between the resistance elements R1 and R2 outputs the second output voltage Vout2 and outputs the reference voltage Vref. Yes.

以上説明した本実施例によれば、実施例1と同様に、第1の出力電圧を分圧した他の出力電圧は、抵抗素子のバラツキによる分圧比誤差が抑制され、高精度の他の出力電圧が得られるという効果がある。   According to the present embodiment described above, as in the first embodiment, the other output voltages obtained by dividing the first output voltage are reduced in the voltage division ratio error due to the variation of the resistance elements, and other outputs with high accuracy are possible. There is an effect that voltage can be obtained.

また本実施例によれば、他の出力電圧のうち第2の出力電圧と参照電圧とが同じであるので、第2の出力電圧端子を参照電圧端子とすることにより、抵抗ラダー回路を構成する抵抗素子の数を減少させるとともに、他の出力電圧のバラツキを参照電圧のバラツキと同等とすることができるという効果がある。   Further, according to the present embodiment, the second output voltage and the reference voltage among the other output voltages are the same, so that the resistor ladder circuit is configured by using the second output voltage terminal as the reference voltage terminal. There is an effect that the number of resistance elements can be reduced, and variations in other output voltages can be made equal to variations in the reference voltage.

本発明に係る安定化電源回路の実施例1を説明する回路図である。1 is a circuit diagram for explaining a first embodiment of a stabilized power circuit according to the present invention. FIG. 本発明に係る安定化電源回路の実施例2を説明する回路図である。It is a circuit diagram explaining Example 2 of the stabilized power supply circuit which concerns on this invention. 本発明に係る安定化電源回路の実施例3を説明する回路図である。It is a circuit diagram explaining Example 3 of the stabilized power supply circuit which concerns on this invention. 実施例3の変形例を説明する回路図である。FIG. 10 is a circuit diagram illustrating a modification of the third embodiment. 本発明に係る安定化電源回路の実施例4を説明する回路図である。It is a circuit diagram explaining Example 4 of the stabilized power supply circuit which concerns on this invention. 本発明に係る安定化電源回路の実施例5を説明する回路図である。FIG. 9 is a circuit diagram for explaining a fifth embodiment of the stabilized power circuit according to the present invention. 本発明に係る安定化電源回路の実施例6を説明する回路図である。It is a circuit diagram explaining Example 6 of the stabilized power supply circuit which concerns on this invention.

符号の説明Explanation of symbols

IC1:安定化電源集積回路、R1〜R7,Rn:抵抗素子、Rs:電圧降下用抵抗素子、Vin:入力電圧、Vout1:第1の出力電圧、Vout2:第2の出力電圧、Vref :参照電圧。 IC1: Stabilized power supply integrated circuit, R1 to R7, Rn: Resistance element, Rs: Voltage drop resistance element, Vin: Input voltage, Vout1: First output voltage, Vout2: Second output voltage, Vref: Reference voltage .

Claims (4)

第1の出力電圧を分圧した参照電圧が内部基準電圧と一致するように、電源から供給される入力電圧を前記第1の出力電圧に変換して出力するとともに、前記第1の出力電圧を分圧した他の出力電圧を生成する安定化電源回路において、
前記電源と前記負荷との間で直列接続された電圧降下用の抵抗素子と、
前記抵抗素子に対して前記負荷側であり前記負荷と並列接続され、前記参照電圧に基づいて素子内に電流を流すことによって前記抵抗素子の電圧を調整する制御素子と、
前記制御素子と前記負荷との間で並列接続されるとともに、前記第1の出力電圧を分圧して、他の出力電圧と前記制御素子へ入力する前記参照電圧とを生成する抵抗ラダー回路とを備えたことを特徴とする安定化電源回路。
As the reference voltage obtained by dividing the first output voltage divided coincides with the internal reference voltage, and outputs to convert an input voltage supplied to the first output voltage from the power supply, the first output voltage In a stabilized power supply circuit that generates another divided output voltage,
A voltage drop resistance element connected in series between the power source and the load;
A control element that is on the load side with respect to the resistance element and is connected in parallel with the load, and adjusts the voltage of the resistance element by flowing a current in the element based on the reference voltage;
A resistor ladder circuit that is connected in parallel between the control element and the load, and that divides the first output voltage to generate another output voltage and the reference voltage to be input to the control element; stabilizing power supply circuit, characterized in that it includes.
前記第1の出力電圧を出力する第1の出力端子と前記参照電圧を出力する参照電圧端子との間に、更に抵抗素子を接続したことを特徴とする請求項1に記載の安定化電源回路。 2. The stabilized power supply circuit according to claim 1, further comprising a resistance element connected between a first output terminal that outputs the first output voltage and a reference voltage terminal that outputs the reference voltage. . 前記参照電圧端子とグランドとの間に、更に抵抗素子を接続したことを特徴とする請求項1に記載の安定化電源回路。   2. The stabilized power supply circuit according to claim 1, further comprising a resistance element connected between the reference voltage terminal and the ground. 前記他の出力電圧前記参照電圧とが同じである場合、前記参照電圧を出力する参照電圧端子を他の出力電圧端子としたことを特徴とする請求項1乃至請求項3の何れか1項に記載の安定化電源回路。 The reference voltage terminal that outputs the reference voltage when the other output voltage and the reference voltage are the same is another output voltage terminal. 5. The stabilized power circuit described in 1.
JP2008330667A 2008-12-25 2008-12-25 Stabilized power circuit Active JP5271695B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008330667A JP5271695B2 (en) 2008-12-25 2008-12-25 Stabilized power circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008330667A JP5271695B2 (en) 2008-12-25 2008-12-25 Stabilized power circuit

Publications (2)

Publication Number Publication Date
JP2010152686A JP2010152686A (en) 2010-07-08
JP5271695B2 true JP5271695B2 (en) 2013-08-21

Family

ID=42571698

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008330667A Active JP5271695B2 (en) 2008-12-25 2008-12-25 Stabilized power circuit

Country Status (1)

Country Link
JP (1) JP5271695B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02105906A (en) * 1988-10-14 1990-04-18 Mitsubishi Electric Corp Reference voltage generating circuit
JP2006018148A (en) * 2004-07-05 2006-01-19 Funai Electric Co Ltd Liquid crystal driving apparatus

Also Published As

Publication number Publication date
JP2010152686A (en) 2010-07-08

Similar Documents

Publication Publication Date Title
JP4616067B2 (en) Constant voltage power circuit
KR102182026B1 (en) Constant voltage circuit
JP6038516B2 (en) Voltage regulator
JP4928202B2 (en) Slope compensation circuit and switching regulator
JP2012088987A (en) Semiconductor integrated circuit for regulators
JP5470772B2 (en) Current mode control switching regulator
KR101387300B1 (en) LDO(Low Drop Out Regulator) having phase margin compensation means and phase margin compensation method using the LDO
JP2009003660A (en) Voltage regulator
JP5160317B2 (en) Voltage regulator
TWI672572B (en) Voltage Regulator
JP2009055708A (en) Switching regulator and dc-dc conversion device using the switching regulator
WO2012144116A1 (en) Charge-pump type dc-dc converter
JPWO2008032606A1 (en) Reference current circuit, reference voltage circuit, and startup circuit
JP2018173868A (en) Overcurrent protection circuit and voltage regulator
JP5091101B2 (en) Soft start circuit and power supply circuit including the soft start circuit
JP2008270732A (en) Semiconductor device
WO2009096192A1 (en) Buffer circuit and image sensor chip comprising the same, and image pickup device
JP5271695B2 (en) Stabilized power circuit
JP2015119550A (en) Slope compensation circuit and switching power supply apparatus
EP2713492B1 (en) Power Conversion Arrangement and Method for Power Conversion
JP5369749B2 (en) Constant voltage circuit
JP2012032940A (en) Power supply control circuit
JP2007011947A (en) Power source regulator circuit
JP2016090379A (en) measuring device
WO2007099489A2 (en) Improved window comparator with accurate levels for use in dc-dc converters

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130131

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130212

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130411

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130513

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5271695

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350