JP5271368B2 - Manufacturing method of ceramic member - Google Patents

Manufacturing method of ceramic member Download PDF

Info

Publication number
JP5271368B2
JP5271368B2 JP2011016150A JP2011016150A JP5271368B2 JP 5271368 B2 JP5271368 B2 JP 5271368B2 JP 2011016150 A JP2011016150 A JP 2011016150A JP 2011016150 A JP2011016150 A JP 2011016150A JP 5271368 B2 JP5271368 B2 JP 5271368B2
Authority
JP
Japan
Prior art keywords
ceramic
bag
manufacturing
ceramic member
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2011016150A
Other languages
Japanese (ja)
Other versions
JP2012156091A (en
Inventor
義一 服部
俊幸 南浜
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Spark Plug Co Ltd
Original Assignee
NGK Spark Plug Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Spark Plug Co Ltd filed Critical NGK Spark Plug Co Ltd
Priority to JP2011016150A priority Critical patent/JP5271368B2/en
Priority to CN201210017250.7A priority patent/CN102617152B/en
Publication of JP2012156091A publication Critical patent/JP2012156091A/en
Application granted granted Critical
Publication of JP5271368B2 publication Critical patent/JP5271368B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Spark Plugs (AREA)
  • Devices For Post-Treatments, Processing, Supply, Discharge, And Other Processes (AREA)

Abstract

Provided is a method for manufacturing a ceramic component, preventing component damage when the ceramic component is taken out during the manufacturing process. The method for manufacturing the ceramic component comprises a take-out step, where a ceramic former of the ceramic component in the manufacturing process is taken out from an accommodating container in which the ceramic former is accommodated. The take-out step comprises a transferring step, where the upper portion of the accommodating container is grabbed by a transporting mechanism and then the accommodating container and the transporting mechanism are inverted together, so as to transfer the ceramic former in the accommodating container to an accommodating portion on the transporting mechanism. The transferring step comprises a first step, where the volume of the space in the accommodating portion right above the ceramic former is reduced after the accommodating container is grabbed by the transporting mechanism and the inversion is performed; and a second step, where the ceramic former is accommodated in the accommodating portion after the inversion.

Description

本発明は、製造工程中のセラミックス部材を収納容器から取り出す工程を有するセラミックス部材の製造方法に関するものである。   The present invention relates to a method for manufacturing a ceramic member, which includes a step of taking out a ceramic member in a manufacturing process from a storage container.

セラミックス部材として、スパークプラグ用絶縁体や、グロープラグ用絶縁体、あるいは酸素センサ用セラミックス部材など、種々のセラミックス部材が知られている。このようなセラミックス部材は、一般に、アルミナ等の絶縁性セラミックスにより形成されており、例えば焼成等の種々の工程に順次供されて、製造される(例えば、特許文献1参照)。   Various ceramic members such as spark plug insulators, glow plug insulators, or oxygen sensor ceramic members are known as ceramic members. Such a ceramic member is generally formed of an insulating ceramic such as alumina, and is sequentially subjected to various processes such as firing, for example (see, for example, Patent Document 1).

特開2000−100546号公報Japanese Patent Laid-Open No. 2000-100500

しかしながら、上記のようなセラミックス部材は、一般に、全体として細長く形成されると共に、長手方向に内部を貫通する縦穴が設けられており、衝撃に対して比較的弱い形状を有している。セラミックス部材の製造工程において、既述したように種々の工程に順次供する際には、収納容器内に収納された製造工程中のセラミックス部材を収納容器から取り出して、次の工程に供する必要が生じる。このような取り出しの際には、製造工程中のセラミックス部材が衝撃に対して比較的弱い形状を有することにより、一部の部材において損傷が生じる可能性がある。そのため、上記のような部材の取り出しの工程において、製造工程中のセラミックス部材の損傷を抑え、いわゆる歩留まりを向上させることが望まれていた。   However, the ceramic member as described above is generally formed to be elongated as a whole and is provided with a vertical hole penetrating the inside in the longitudinal direction, and has a relatively weak shape against impact. In the manufacturing process of the ceramic member, when it is sequentially subjected to various processes as described above, the ceramic member in the manufacturing process stored in the storage container needs to be taken out from the storage container and used for the next process. . At the time of such removal, a ceramic member in the manufacturing process has a shape that is relatively weak against an impact, so that damage may occur in some members. Therefore, in the process of taking out the member as described above, it has been desired to suppress damage to the ceramic member during the manufacturing process and improve the so-called yield.

本発明は、上述した従来の課題を解決するためになされたものであり、セラミックス部材の製造工程において、製造工程中のセラミックス部材を取り出す際に、取り出す部材の損傷を抑えることを目的とする。   The present invention has been made in order to solve the above-described conventional problems, and an object of the present invention is to suppress damage to a member to be extracted when the ceramic member is being extracted during the manufacturing process.

本発明は、上述の課題の少なくとも一部を解決するためになされたものであり、以下の形態または適用例として実施することが可能である。   SUMMARY An advantage of some aspects of the invention is to solve at least a part of the problems described above, and the invention can be implemented as the following forms or application examples.

[適用例1]
製造工程中のセラミックス部材であるセラミックス形成物を、該セラミックス形成物が収納されている少なくとも上方が開放している収納容器から取り出す取り出し工程を備えるセラミックス部材の製造方法において、
前記取り出し工程は、搬送機構によって前記収納容器の上方を掴み、その後に前記収納容器を前記搬送機構と共に反転させて、前記収納容器内の前記セラミックス形成物を、前記搬送機構に設けられた収納部内に移し替える移し替え工程を有し、
前記移し替え工程は、
前記搬送機構によって前記収納容器を掴んだ後に、前記反転の動作の前に、前記収納部内で前記セラミックス形成物の直上に形成される空間の容積を減少させる第1の工程と、
前記反転の動作の後に、前記セラミックス形成物を前記収納部内に収納する第2の工程と、
を備えることを特徴とするセラミックス部材の製造方法。
[Application Example 1]
In a method for manufacturing a ceramic member, comprising a step of taking out a ceramic formed article that is a ceramic member in a manufacturing process from a storage container in which at least the upper part in which the ceramic formed article is stored is open,
In the take-out step, the upper part of the storage container is gripped by a transport mechanism, and then the storage container is inverted together with the transport mechanism, so that the ceramic formed material in the storage container is placed in a storage part provided in the transport mechanism. Has a transfer process to transfer to
The transfer step includes
A first step of reducing a volume of a space formed immediately above the ceramic formed material in the storage unit after the holding mechanism is gripped by the transfer mechanism and before the reversing operation;
A second step of storing the ceramic formed article in the storage unit after the reversing operation;
A method for producing a ceramic member, comprising:

適用例1に記載のセラミックス部材の製造方法によれば、収納容器からセラミックス形成物を取り出す際に、搬送機構によって掴まれた収納容器の反転前に、収納容器内でセラミックス形成物の直上に形成される空間の容積を減少させるため、上記反転時にセラミックス形成物の落下を抑えることができる。そのため、落下に起因するセラミックス形成物の損傷を抑制しつつ、セラミックス形成物の移し替えを行なうことができる。   According to the method for manufacturing a ceramic member described in Application Example 1, when the ceramic formation is taken out from the storage container, the ceramic member is formed immediately above the ceramic formation in the storage container before the storage container gripped by the transport mechanism. Since the volume of the space to be reduced is reduced, it is possible to suppress the ceramic formation from dropping during the reversal. Therefore, the ceramic formed article can be transferred while suppressing damage to the ceramic formed article caused by dropping.

[適用例2]
適用例1記載のセラミックス部材の製造方法であって、前記収納部は、前記収納部内側の底面上に配置される移動面を備えた伸縮部を有し、前記第1の工程は、前記伸縮部を駆動することによって、前記移動面と前記収納部内側の底面との距離を長くする工程であり、前記第2の工程は、前記伸縮部を駆動することによって、前記セラミックス形成物を載置した前記移動面と、前記収納部内側の底面との距離を短くする工程であるセラミックス部材の製造方法。適用例2に記載のセラミックス部材の製造方法によれば、移動面を備える伸縮部を駆動することによって、収納容器内でセラミックス形成物の直上に形成される空間の容積を減少させる動作、および、セラミックス形成物を収納部に収納する動作を、容易に行なうことができる。
[Application Example 2]
In the method for manufacturing a ceramic member according to Application Example 1, the storage unit includes an expansion / contraction part having a moving surface disposed on a bottom surface inside the storage unit, and the first step includes the expansion / contraction process. Driving the portion to increase the distance between the moving surface and the bottom surface inside the storage portion, and the second step is to place the ceramic formed article by driving the extendable portion. A method of manufacturing a ceramic member, which is a step of shortening the distance between the moving surface and the bottom surface inside the storage portion. According to the method for manufacturing a ceramic member described in the application example 2, the operation of reducing the volume of the space formed immediately above the ceramic formed material in the storage container by driving the extendable portion including the moving surface, and The operation | movement which accommodates a ceramic formation in a accommodating part can be performed easily.

[適用例3]
適用例2記載のセラミックス部材の製造方法であって、前記伸縮部は、前記収納部内側の底面上に配置されると共に、前記移動面を表面の一部として備え、自身の内部に流体の供給及び排出が行なわれる伸縮部材を備え、前記第1の工程は、前記伸縮部の駆動の動作として、前記伸縮部材の内部に前記流体を導入することによって前記伸縮部材の内部の体積を増加させ、前記第2の工程は、前記伸縮部の駆動の動作として、前記伸縮部材の内部から前記流体を排出させることによって前記伸縮部材の内部の体積を減少させるセラミックス部材の製造方法。適用例3に記載のセラミックス部材の製造方法によれば、伸縮部材内部への流体の導入あるいは流体の排出により、収納容器内でセラミックス形成物の直上に形成される空間の容積を減少させる動作、および、セラミックス形成物を収納部に収納する動作を、容易に行なうことができる。
[Application Example 3]
The method for manufacturing a ceramic member according to Application Example 2, wherein the expansion and contraction portion is disposed on a bottom surface inside the storage portion, includes the moving surface as a part of the surface, and supplies fluid to itself. And the elastic member to be discharged, the first step is to increase the volume of the elastic member by introducing the fluid into the elastic member as an operation of driving the elastic portion, The second step is a method of manufacturing a ceramic member, wherein the volume of the expansion / contraction member is reduced by discharging the fluid from the expansion / contraction member as an operation of driving the expansion / contraction portion. According to the method for manufacturing a ceramic member described in Application Example 3, the operation of reducing the volume of the space formed immediately above the ceramic formed material in the storage container by introducing the fluid into the elastic member or discharging the fluid. And the operation | movement which accommodates a ceramic formation in a accommodating part can be performed easily.

[適用例4]
適用例3記載のセラミックス部材の製造方法であって、前記伸縮部材は、ゴム材料によって形成され、自身の内部に前記流体が導入されることによって膨張し、前記流体を排出することによって収縮する袋状部材であるセラミックス部材の製造方法。適用例4に記載のセラミックス部材の製造方法によれば、伸縮部材として、ゴム材料によって形成される袋状部材を用いるため、伸縮部材内に流体を導入したときに、収納容器内のセラミックス形成物と伸縮部材との間の隙間をより小さくすることが容易になる。また、収納容器の反転時にセラミックス形成物が移動面上に落下する場合であっても、落下の衝撃を充分に低減させることが可能になる。
[Application Example 4]
The method for manufacturing a ceramic member according to Application Example 3, wherein the elastic member is formed of a rubber material, expands when the fluid is introduced into itself, and contracts by discharging the fluid. A method for producing a ceramic member which is a shaped member. According to the method for manufacturing a ceramic member described in Application Example 4, since a bag-shaped member formed of a rubber material is used as the expansion and contraction member, when a fluid is introduced into the expansion and contraction member, the ceramic formation in the storage container It becomes easy to make the gap between the elastic member and the elastic member smaller. Further, even when the ceramic formed article falls on the moving surface when the storage container is reversed, the impact of the drop can be sufficiently reduced.

[適用例5]
適用例3記載のセラミックス部材の製造方法であって、前記伸縮部材は、前記移動面と、所定のパターンで折り畳み可能な折り畳み側面とを、表面の少なくとも一部として有する袋状部材を備え、前記第1の工程では、前記袋状部材内に前記流体が供給されることによって、前記折り畳み側面が伸展すると共に、前記移動面が、前記収納部内側の底面から離間し、前記第2の工程では、前記袋状部材内から前記流体を排出することによって、前記セラミックス形成物を載置する前記移動面が、前記収納部内側の底面に近接するように移動すると共に、前記折り畳み側面が前記所定のパターンで折り畳まれるセラミックス部材の製造方法。適用例5に記載のセラミックス部材の製造方法によれば、袋状部材への流体の供給あるいは排出を行なうことで、袋状部材は、折り畳み側面が伸展された状態と折り畳まれた状態との間で変化するため、移動面と収納部内側底面との距離を容易に変更することができる。
[Application Example 5]
In the method for manufacturing a ceramic member according to Application Example 3, the elastic member includes a bag-shaped member having the moving surface and a foldable side surface that can be folded in a predetermined pattern as at least a part of the surface. In the first step, when the fluid is supplied into the bag-like member, the folding side surface extends, and the moving surface is separated from the bottom surface inside the storage unit. In the second step, By discharging the fluid from the bag-like member, the moving surface on which the ceramic formed article is placed moves so as to be close to the bottom surface inside the storage portion, and the folding side surface is the predetermined A method for producing a ceramic member that is folded in a pattern. According to the method for manufacturing a ceramic member described in Application Example 5, by supplying or discharging a fluid to or from the bag-like member, the bag-like member is between the folded side and the folded side. Therefore, the distance between the moving surface and the inner bottom surface of the storage unit can be easily changed.

[適用例6]
適用例5記載のセラミックス部材の製造方法であって、前記伸縮部は、前記袋状部材の内部から前記流体を排出する際に、前記移動面と前記収納部内側の底面との距離の面間ばらつきを抑制する水平化部を備えるセラミックス部材の製造方法。適用例6に記載のセラミックス部材の製造方法によれば、第2工程の終了時に、セラミックス形成物を載置した移動面と収納部内側の底面との距離が、他の領域に比べて長い領域が生じることを抑制できる。
[Application Example 6]
The method for manufacturing a ceramic member according to Application Example 5, wherein when the fluid is discharged from the inside of the bag-shaped member, the expansion / contraction part is a distance between the moving surface and a bottom surface inside the storage unit. A method for producing a ceramic member comprising a leveling portion for suppressing variation. According to the method for manufacturing a ceramic member described in Application Example 6, at the end of the second step, the distance between the moving surface on which the ceramic formed material is placed and the bottom surface inside the storage portion is longer than other areas. Can be suppressed.

[適用例7]
適用例6記載のセラミックス部材の製造方法であって、前記水平化部は、前記袋状部材内から前記流体を排出するための排出口に近接して設けられ、前記伸縮部の一部によって前記排出口が塞がれるのを防止する支持部であるセラミックス部材の製造方法。適用例7に記載のセラミックス部材の製造方法によれば、伸縮部の一部によって排出口が塞がれるのを防止することにより、伸縮部材内に流体が残留したまま第2工程が終了することを抑え、移動面と収納部内側の底面との距離を均一化することができる。
[Application Example 7]
The method for manufacturing a ceramic member according to Application Example 6, wherein the leveling portion is provided in the vicinity of a discharge port for discharging the fluid from the bag-like member, and a part of the expansion / contraction portion A method for manufacturing a ceramic member, which is a support portion that prevents the discharge port from being blocked. According to the method for manufacturing a ceramic member described in Application Example 7, the second step is completed with the fluid remaining in the elastic member by preventing the discharge port from being blocked by a part of the elastic member. And the distance between the moving surface and the bottom surface inside the storage portion can be made uniform.

[適用例8]
適用例2記載のセラミックス部材の製造方法であって、前記伸縮部は、前記移動面を構成する板状部材と、前記板状部材と前記収納部内側の底面との距離が変更可能なシリンダ機構と、を備えるセラミックス部材の製造方法。適用例8に記載のセラミックス部材の製造方法によれば、シリンダ機構を駆動することにより、収納容器内でセラミックス形成物の直上に形成される空間の容積を減少させる動作、および、セラミックス形成物を収納部に収納する動作を、容易に行なうことができる。
[Application Example 8]
The method for manufacturing a ceramic member according to Application Example 2, wherein the expansion / contraction part is a cylinder mechanism capable of changing a distance between a plate-like member constituting the moving surface and the plate-like member and a bottom surface inside the storage part. And a method for producing a ceramic member. According to the method for manufacturing a ceramic member described in Application Example 8, by operating the cylinder mechanism, the operation of reducing the volume of the space formed immediately above the ceramic formation in the storage container, and the ceramic formation The operation of storing in the storage unit can be easily performed.

[適用例9]
適用例8記載のセラミックス部材の製造方法であって、前記移動面は、前記セラミックス形成物と対向する面に、緩衝材を備えるセラミックス部材の製造方法。適用例9に記載のセラミックス部材の製造方法によれば、セラミックス形成物の損傷を抑える効果を更に高めることができる。
[Application Example 9]
It is a manufacturing method of the ceramic member of the application example 8, Comprising: The said moving surface is a manufacturing method of the ceramic member provided with a shock absorbing material in the surface facing the said ceramic formation. According to the method for manufacturing a ceramic member described in Application Example 9, it is possible to further enhance the effect of suppressing damage to the ceramic formed product.

[適用例10]
適用例2ないし9いずれか記載のセラミックス部材の製造方法であって、前記第2の工程は、前記セラミックス形成物を載置した前記移動面と、前記収納部内側の底面との距離を、50mm/s以下の速さで短くする工程であるセラミックス部材の製造方法。適用例10に記載のセラミックス部材の製造方法によれば、第2の工程の終了時に、セラミックス形成物に対して加わる衝撃を抑えて、セラミックス形成物の損傷を抑制することができる。
[Application Example 10]
The method for manufacturing a ceramic member according to any one of Application Examples 2 to 9, wherein in the second step, the distance between the moving surface on which the ceramic formed article is placed and the bottom surface inside the storage portion is 50 mm. The manufacturing method of the ceramic member which is the process shortened at the speed of / s or less. According to the method for manufacturing a ceramic member described in Application Example 10, it is possible to suppress an impact applied to the ceramic formed product at the end of the second step, thereby suppressing damage to the ceramic formed product.

[適用例11]
適用例2ないし10いずれか記載のセラミックス部材の製造方法であって、前記第1の工程は、前記収納容器の上方の開放部が、前記伸縮部によって覆われていることを特徴とするセラミックス部材の製造方法。適用例11に記載のセラミックス部材の製造方法によれば、収納容器内に収納されたいずれのセラミックス形成物についても、反転の動作の際に落下を抑制する効果を高めることができる。
[Application Example 11]
The method for manufacturing a ceramic member according to any one of Application Examples 2 to 10, wherein the first step includes a step of covering an open portion above the storage container with the expansion and contraction portion. Manufacturing method. According to the method for manufacturing a ceramic member described in the application example 11, the effect of suppressing the drop during the reversal operation can be enhanced for any ceramic formed product stored in the storage container.

本発明は、上記以外の種々の形態で実現可能であり、例えば、本発明のセラミックス部材の製造方法を実行するためのセラミックス部材の製造装置や、本発明のセラミックス部材の製造方法により製造したセラミックス部材を備えるスパークプラグ、グロープラグ、あるいは酸素センサの製造方法などの形態で実現することが可能である。   The present invention can be realized in various forms other than those described above. For example, the ceramic member manufacturing apparatus for executing the ceramic member manufacturing method of the present invention and the ceramics manufactured by the ceramic member manufacturing method of the present invention It can be realized in the form of a spark plug having a member, a glow plug, or a method for manufacturing an oxygen sensor.

ロボットアーム30を用いて絶縁体形成物10を取り出す様子を模式的に表わす説明図である。FIG. 4 is an explanatory diagram schematically showing how the insulator formed article 10 is taken out using a robot arm 30. ハンド部32の構成を模式的に表わす斜視図である。3 is a perspective view schematically showing a configuration of a hand unit 32. FIG. 絶縁体形成物10を移し替える工程を表わす説明図である。It is explanatory drawing showing the process of transferring the insulator formation thing. ハンド部32で鞘20を上方から掴んだ様子を表わす説明図である。It is explanatory drawing showing a mode that the sheath 20 was grasped from the upper part by the hand part 32. FIG. 袋状部材34内に空気を供給した後の様子を表わす説明図である。FIG. 5 is an explanatory diagram showing a state after air is supplied into the bag-shaped member 34. 掴んだ鞘20ごとハンド部32を反転させた様子を表わす説明図である。It is explanatory drawing showing a mode that the hand part 32 was reversed with the grasped sheath 20. FIG. 袋状部材34から空気を排出させた様子を表わす説明図である。It is explanatory drawing showing a mode that air was discharged | emitted from the bag-shaped member. スペーサ54の様子を表わす平面図である。FIG. 6 is a plan view showing a state of a spacer 54. 袋状部材34に空気を供給して膨張させた様子を表わす説明図である。It is explanatory drawing showing a mode that air was supplied to the bag-shaped member 34, and it expanded. 袋状部材34から空気を排出させて収縮させた様子を表わす説明図である。It is explanatory drawing showing a mode that air was discharged | emitted from the bag-shaped member 34, and it was made to shrink | contract. 袋状部材134から流体を排出した様子を表わす説明図である。It is explanatory drawing showing a mode that the fluid was discharged | emitted from the bag-shaped member. 各条件の効果を確認するための実験結果を表わす説明図である。It is explanatory drawing showing the experimental result for confirming the effect of each condition. ステップS100におけるハンド部32内の様子を表わす説明図である。It is explanatory drawing showing the mode in the hand part 32 in step S100. ステップS110におけるハンド部32内の様子を表わす説明図である。It is explanatory drawing showing the mode in the hand part 32 in step S110. ステップS100におけるハンド部32内の様子を表わす説明図である。It is explanatory drawing showing the mode in the hand part 32 in step S100. ステップS110におけるハンド部32内の様子を表わす説明図である。It is explanatory drawing showing the mode in the hand part 32 in step S110.

A.第1実施例:
以下に、本願発明の実施例としてのセラミックス部材の製造方法について説明する。本実施例では、セラミックス部材の製造方法として、スパークプラグ用絶縁体の製造方法について説明する。
A. First embodiment:
Below, the manufacturing method of the ceramic member as an Example of this invention is demonstrated. In this embodiment, a method for manufacturing an insulator for a spark plug will be described as a method for manufacturing a ceramic member.

セラミックスによって形成されるスパークプラグ用絶縁体は、全体として細長い形状であり、長手方向に内部を貫通する縦穴が形成されている。このようなスパークプラグ用絶縁体を製造する際には、例えば、アルミナ粉末と所定の焼結助剤粉末にバインダ(例えばPVA)を混合して成る原料粉末をプレス成形し、必要に応じて切削加工することにより、個々のスパークプラグ用絶縁体に対応する所定の形状が形成される。そして、その後に、焼成等の種々の工程を経ることによって、スパークプラグ用絶縁体が完成される。以下の説明では、絶縁体に対応する形状が形成された後、スパークプラグ用絶縁体として完成するまでの間の部材を、絶縁体形成物と呼ぶ。   The spark plug insulator formed of ceramics has an elongated shape as a whole, and has a vertical hole penetrating the inside in the longitudinal direction. When manufacturing such an insulator for a spark plug, for example, a raw material powder obtained by mixing an alumina powder and a predetermined sintering aid powder with a binder (for example, PVA) is press-molded and cut as necessary. By processing, a predetermined shape corresponding to each spark plug insulator is formed. And the insulator for spark plugs is completed by passing through various processes, such as baking, after that. In the following description, a member from when a shape corresponding to an insulator is formed until it is completed as an insulator for a spark plug is referred to as an insulator formation.

スパークプラグ用絶縁体を製造する際には、絶縁体完成に至るまでの工程の少なくとも一部において、各々の工程に応じた容器内に絶縁体形成物を収納し、工程終了後には上記容器内から絶縁体形成物を取りだして、次の工程のための異なる容器へと絶縁体形成物を移し替える必要が生じる。本実施例は、このような製造工程間における先の工程で用いた容器からの絶縁体形成物の取り出しに係るものである。本実施例では、製造工程の中の焼成工程の後に、焼成工程の際に絶縁体形成物を収納していた収納容器から絶縁体形成物を取り出す動作について説明する。   When manufacturing an insulator for a spark plug, in at least a part of the process up to completion of the insulator, the insulator formed product is stored in a container according to each process, and after the process is completed, It is necessary to take out the insulator formation from and transfer the insulator formation to a different container for the next step. The present embodiment relates to the extraction of the insulator formed material from the container used in the previous process between the manufacturing processes. In the present embodiment, an operation of taking out the insulator formation from the storage container in which the insulator formation was stored in the baking process after the baking process in the manufacturing process will be described.

焼成工程では、鞘と呼ばれる収納容器内に複数の絶縁体形成物が収納されて焼成炉内に搬入され、絶縁体形成物は鞘ごと焼成工程に供される。鞘は、例えば、アルミナ(コランダム)あるいはムライト(3Al/2SiO)等のアルミナ系セラミックスにより構成される。鞘の大きさ、および、鞘内に収納される絶縁体形成物の数は、製造の規模や効率、あるいは焼成炉の大きさなどを考慮して、適宜設定すればよい。焼成前に鞘内に絶縁体形成物を収納する際には、製造の効率、および、鞘内における絶縁体形成物の損傷の抑制を考慮して、通常は、鞘内に絶縁体形成物を立てた状態で、隙間無く絶縁体形成物を収納する。そして、焼成によって絶縁体形成物が若干縮むため、焼成後の絶縁体形成物は、若干の隙間が絶縁体形成物間に形成されて鞘内に収納された状態になる。 In the firing step, a plurality of insulator formations are accommodated in a storage container called a sheath and carried into a firing furnace, and the insulator formations are subjected to the firing step together with the sheath. The sheath is made of alumina ceramic such as alumina (corundum) or mullite (3Al 2 O 3 / 2SiO 2 ). The size of the sheath and the number of insulator formations accommodated in the sheath may be appropriately set in consideration of the production scale and efficiency, the size of the firing furnace, and the like. When housing the insulator formation in the sheath before firing, the insulator formation is usually placed in the sheath in consideration of manufacturing efficiency and suppression of damage to the insulator formation in the sheath. In the standing state, the insulator formed product is stored without a gap. And since an insulator formation thing shrinks a little by baking, the insulator formation thing after baking will be in the state where some clearance gaps were formed between insulator formation products and were accommodated in the sheath.

図1は、焼成工程が終了した絶縁体形成物10を収納する鞘20から、ロボットアーム30を用いて絶縁体形成物10を取り出そうとする様子を、模式的に表わす説明図である。鞘20は、既述したように内部に複数の絶縁体形成物10を収納しており、上方が開放された直方体状の形状を有している。ロボットアーム30は、絶縁体形成物10を鞘20から移し替えるための搬送機構を構成する。ロボットアーム30は、内部に収納部31となる空間が形成されたハンド部32と、ハンド部32に接続されたアーム部33とを有している。   FIG. 1 is an explanatory view schematically showing a state in which the insulator formed product 10 is taken out from the sheath 20 that houses the insulator formed product 10 after the firing process by using the robot arm 30. As described above, the sheath 20 accommodates the plurality of insulator formations 10 therein, and has a rectangular parallelepiped shape with the top opened. The robot arm 30 constitutes a transport mechanism for transferring the insulator formed article 10 from the sheath 20. The robot arm 30 includes a hand unit 32 in which a space serving as a storage unit 31 is formed, and an arm unit 33 connected to the hand unit 32.

ハンド部32は、四角形状の底面部36と、底面部36の各辺に沿って底面部36に垂直な向きに配置された4つの側面部35(側面部35a〜35d)とを備えている。図1では、ハンド部32は下端側が開放されているが、本実施例では、ハンド部32を反転させて、ハンド部32内の空間である収納部31へと絶縁体形成物を移し替える動作を行なう。そのため、ハンド部32を反転させた後に下方に位置する部位を、底面部36と呼ぶ。なお、本実施例のハンド部32では、側面部35a(図1に示す側面部35dに対向する部位)において、アーム部33が接続される接続部が設けられている。   The hand portion 32 includes a rectangular bottom surface portion 36, and four side surface portions 35 (side surface portions 35 a to 35 d) arranged along each side of the bottom surface portion 36 in a direction perpendicular to the bottom surface portion 36. . In FIG. 1, the lower end side of the hand part 32 is opened, but in this embodiment, the hand part 32 is reversed and the insulator formed material is transferred to the storage part 31 that is a space in the hand part 32. To do. For this reason, a portion positioned below after the hand portion 32 is inverted is referred to as a bottom surface portion 36. In addition, in the hand part 32 of a present Example, the connection part to which the arm part 33 is connected is provided in the side part 35a (part facing the side part 35d shown in FIG. 1).

図2は、ハンド部32の構成を模式的に表わす斜視図である。図2では、図1における開放された下端側からハンド部32を見た様子を示す。本実施例では、側面部35aは、底面部36に対して固定されている。側面部35b,35cは、底面部36に当接する状態と底面部36から離間した状態とを変更可能となっている。側面部35dは、ヒンジ部37を介して底面部36に接続されており、ヒンジ部37を中心として回転し、側面部35dによって形成される側面を開閉可能となっている。   FIG. 2 is a perspective view schematically showing the configuration of the hand unit 32. FIG. 2 shows a state in which the hand unit 32 is viewed from the opened lower end side in FIG. In the present embodiment, the side surface portion 35 a is fixed to the bottom surface portion 36. The side surface portions 35 b and 35 c can be changed between a state in contact with the bottom surface portion 36 and a state in which the side surface portions 35 b and 35 c are separated from the bottom surface portion 36. The side surface portion 35d is connected to the bottom surface portion 36 via the hinge portion 37, rotates about the hinge portion 37, and can open and close the side surface formed by the side surface portion 35d.

側面部35b,35cを底面部36の外周に当接させると共に、側面部35dを閉状態とすることにより、ハンド部32において各側面部35間の隙間が塞がれ、ハンド部32は、全体として略直方体形状となる。このような状態では、ハンド部32下方の開口部の内周は、鞘20上方の開口部の外周と、ほぼ同じ形状および大きさとなる。鞘20内の絶縁体形成物をハンド部32内に移し替える際には、側面部35b,35cを底面部36の外周から離間させると共に、側面部35dを開状態として、ハンド部32によって、鞘20の上方の開口部を覆う。そして、側面部35b,35cを底面部36の外周に当接させると共に、側面部35dを閉状態として、ハンド部32によって鞘20を上部側から掴む。図1では、鞘20の上部を掴むためにハンド部32の位置を低下させる動作を白抜き矢印で表わしており、鞘20の上部を掴むために側面部35b,35cを底面部36側に動かす動作を水平方向の矢印で表わしている。なお、ハンド部32の形状および鞘20を掴む際の動作の態様は、鞘20を上方から掴む動作ができれば、図2の態様に限るものではない。   The side surfaces 35b and 35c are brought into contact with the outer periphery of the bottom surface portion 36 and the side surface portion 35d is closed to close the gap between the side surface portions 35 in the hand portion 32. As a substantially rectangular parallelepiped shape. In such a state, the inner periphery of the opening below the hand portion 32 has substantially the same shape and size as the outer periphery of the opening above the sheath 20. When transferring the insulator formation in the sheath 20 into the hand portion 32, the side portions 35 b and 35 c are separated from the outer periphery of the bottom surface portion 36, and the side portion 35 d is opened and the sheath portion is opened by the hand portion 32. The upper opening of 20 is covered. Then, the side surface portions 35b and 35c are brought into contact with the outer periphery of the bottom surface portion 36, the side surface portion 35d is closed, and the sheath 20 is grasped from the upper side by the hand portion 32. In FIG. 1, the operation of lowering the position of the hand portion 32 to grasp the upper portion of the sheath 20 is represented by a white arrow, and the side portions 35 b and 35 c are moved toward the bottom surface portion 36 to grasp the upper portion of the sheath 20. The operation is represented by a horizontal arrow. Note that the shape of the hand portion 32 and the mode of operation when the sheath 20 is gripped are not limited to the mode of FIG. 2 as long as the sheath 20 can be gripped from above.

図1では、焼成が終了して焼成炉から取り出された絶縁体形成物10を収納する鞘20が、ローラコンベア40によって、ロボットアーム30による移し替えが行なわれるべき位置まで搬送された様子が表わされている。ロボットアーム30のハンド部32およびアーム部33の動きは、図示しないコンピュータを備える制御部によって制御される。すなわち、ロボットアーム30は、コンピュータからの指令に従って、可動域内の任意の位置へのアーム部33の移動や、アーム部33との接続部を支点とするハンド部32の回転や、側面部35b,35cの移動や、側面部35dの開閉等の動作を行なうことができる。さらに、ロボットアーム30は、コンピュータからの指令に従って、後述する袋状部材34に対する流体の供給及び排出の動作を、設定したスピードで行なうことができる。ロボットアーム30は、プログラムに従って、上記のような種々の動作を所定の順序で実行して、鞘20内の絶縁体形成物10を、ハンド部32内の収納部31へ移し替えると共に、さらに、次の製造工程へと絶縁体形成物10を供するための移送容器45へと移し替える動作を行なう。   FIG. 1 shows a state in which the sheath 20 that houses the insulator-formed product 10 that has been removed from the firing furnace after being fired is transported by the roller conveyor 40 to a position where the robot arm 30 should be transferred. It has been. The movements of the hand unit 32 and the arm unit 33 of the robot arm 30 are controlled by a control unit including a computer (not shown). That is, the robot arm 30 moves the arm portion 33 to an arbitrary position within the movable range, rotates the hand portion 32 using the connection portion with the arm portion 33 as a fulcrum, the side surface portion 35b, Operations such as movement of 35c and opening and closing of the side surface portion 35d can be performed. Furthermore, the robot arm 30 can perform fluid supply and discharge operations to the bag-shaped member 34 described later at a set speed in accordance with a command from the computer. The robot arm 30 executes various operations as described above in a predetermined order in accordance with a program to transfer the insulator formation 10 in the sheath 20 to the storage portion 31 in the hand portion 32, and further, The operation of transferring to the transfer container 45 for supplying the insulator formation product 10 to the next manufacturing process is performed.

図3は、絶縁体の製造工程の一部であって、焼成後の鞘20内に収納される絶縁体形成物10を、ロボットアーム30を用いて移送容器45へと移し替える工程を表わす説明図である。また、図4から図7は、図3に表わした各工程の様子を表わす説明図である。図4から図7では、ハンド部32および鞘20の一つの側面を取り外して内部を見た様子を、模式的に示している。また、図4から図7では、ハンド部32に接続するアーム部33については記載を省略している。以下に、図3ないし図7に基づいて、絶縁体形成物の移し替えに係る具体的な構成を説明すると共に、絶縁体形成物を移し替える動作を順次説明する。なお、ロボットアーム30を用いた動作は、既述したようにコンピュータを備える制御部の指令に基づいて実行されるが、絶縁体形成物の移し替えの動作に係る以下の説明では、ロボットアーム30を動作の主体として説明する。   FIG. 3 is an explanation of a part of the insulator manufacturing process, in which the insulator formed article 10 accommodated in the baked sheath 20 is transferred to the transfer container 45 using the robot arm 30. FIG. 4 to 7 are explanatory diagrams showing the state of each process shown in FIG. FIGS. 4 to 7 schematically show a state in which one side of the hand portion 32 and the sheath 20 is removed and the inside is viewed. Also, in FIG. 4 to FIG. 7, the description of the arm part 33 connected to the hand part 32 is omitted. Below, based on FIG. 3 thru | or FIG. 7, while describing the specific structure which concerns on transfer of an insulator formation, the operation | movement which transfers an insulator formation is demonstrated one by one. The operation using the robot arm 30 is executed based on the command of the control unit including the computer as described above. However, in the following explanation regarding the transfer operation of the insulator formation, the robot arm 30 is used. Will be described as the subject of the operation.

鞘20からの絶縁体形成物10の移し替えを行なう際には、まず、ロボットアーム30は、ハンド部32によって、鞘20を上方から掴む(ステップS100)。図4は、ハンド部32によって、鞘20を上方から掴んだ様子を表わす。図4に示すように、ハンド部32の内側の底面には、自身の内部に流体の供給及び排出が行なわれる伸縮部材として、袋状部材34が設けられている。この袋状部材34は、ハンド部32で鞘20を掴んだときに絶縁体形成物と対向する位置に設けられた移動面50と、所定の箇所に設けられた折り目において所定のパターンで折り畳まれた折り畳み側面52とを、表面の少なくとも一部として備えている。移動面50は、底面部36に平行なハンド部32の横断面における内周よりも一回り小さく形成された平坦面であり、本実施例では略四角形状である。袋状部材34と、鞘20内の絶縁体形成物との間には、空間(収納部31)が形成される。   When transferring the insulator formation 10 from the sheath 20, first, the robot arm 30 grasps the sheath 20 from above by the hand portion 32 (step S100). FIG. 4 shows a state in which the sheath 20 is grasped from above by the hand portion 32. As shown in FIG. 4, a bag-like member 34 is provided on the inner bottom surface of the hand portion 32 as a telescopic member that supplies and discharges fluid therein. The bag-like member 34 is folded in a predetermined pattern at a moving surface 50 provided at a position facing the insulator formation when the sheath 20 is grasped by the hand portion 32 and a fold provided at a predetermined position. The folded side surface 52 is provided as at least a part of the surface. The moving surface 50 is a flat surface formed slightly smaller than the inner periphery in the cross section of the hand portion 32 parallel to the bottom surface portion 36, and has a substantially rectangular shape in this embodiment. A space (housing portion 31) is formed between the bag-shaped member 34 and the insulator formation in the sheath 20.

次に、ロボットアーム30において、袋状部材34へと流体を供給して、袋状部材34内部の体積を増加させる(ステップS110)。本実施例のロボットアーム30では、袋状部材34に対して流体を供給する流体供給流路、および、袋状部材34から流体を排出させるための流体排出流路が設けられている(図示せず)。これらの流体流路は、少なくとも一部の部分がアーム部33に沿うように、アーム部33に固定して設けられている。本実施例では、上記流体として空気を用いている。上記流体供給流路は、一端がエアコンプレッサに接続されると共に、他端が底面部36で開口して袋状部材34に接続されており、加圧された空気を袋状部材34内に供給可能となっている。また、流体排出流路は、一端が底面部36で開口して袋状部材34接続されると共に、他端には、開閉バルブおよびスピードコントローラが設けられており、袋状部材34内の空気を、所望のスピードで排出可能となっている。袋状部材34内に空気を供給することによって、袋状部材34の内部の体積が増加し、袋状部材34内の空気を排出することによって、袋状部材34内部の体積が減少する。なお、本実施例では、流体供給流路と流体排出流路とで共用される流路39が設けられており、この流路39が、底面部36の中央部で開口して、袋状部材34内部と接続している。流路39は、袋状部材34との接続部とは異なる端部側で、エアコンプレッサに接続される流路と開閉バルブを備える流路とに分岐している。   Next, the robot arm 30 supplies a fluid to the bag-shaped member 34 to increase the volume inside the bag-shaped member 34 (step S110). In the robot arm 30 of the present embodiment, a fluid supply channel for supplying fluid to the bag-shaped member 34 and a fluid discharge channel for discharging the fluid from the bag-shaped member 34 are provided (not shown). ) These fluid flow paths are fixed to the arm portion 33 so that at least a part of the fluid flow path is along the arm portion 33. In this embodiment, air is used as the fluid. The fluid supply flow path has one end connected to the air compressor and the other end opened at the bottom surface portion 36 and connected to the bag-shaped member 34, and supplies pressurized air into the bag-shaped member 34. It is possible. The fluid discharge channel has one end opened at the bottom portion 36 and connected to the bag-shaped member 34, and the other end is provided with an opening / closing valve and a speed controller. It is possible to discharge at a desired speed. By supplying air into the bag-shaped member 34, the volume inside the bag-shaped member 34 increases, and by discharging the air inside the bag-shaped member 34, the volume inside the bag-shaped member 34 decreases. In the present embodiment, a flow path 39 shared by the fluid supply flow path and the fluid discharge flow path is provided, and the flow path 39 opens at the center of the bottom surface portion 36 to form a bag-shaped member. 34 is connected to the inside. The flow path 39 is branched into a flow path connected to the air compressor and a flow path including an opening / closing valve on an end side different from the connection portion with the bag-shaped member 34.

図5は、ハンド部32によって鞘20を上方から掴んだ後に、袋状部材34内に空気を供給した後の様子を表わす。袋状部材34内に空気を供給すると、袋状部材34の折り畳み側面52が伸展し、移動面50が、ハンド部32の底面部36から次第に離間すると共に鞘20内の絶縁体形成物へと次第に近づく。そのため、袋状部材34内に空気を供給することによって、ハンド部32の収納部31内で絶縁体形成物の直上に形成される空間の容積が次第に減少する。このとき、鞘20の上方の開放部は、袋状部材34によって覆われた状態となる。   FIG. 5 shows a state after air is supplied into the bag-shaped member 34 after the sheath 20 is gripped from above by the hand portion 32. When air is supplied into the bag-shaped member 34, the folded side surface 52 of the bag-shaped member 34 extends, the moving surface 50 gradually moves away from the bottom surface portion 36 of the hand portion 32, and becomes an insulator formation in the sheath 20. Gradually approach. Therefore, by supplying air into the bag-like member 34, the volume of the space formed immediately above the insulator formation in the storage portion 31 of the hand portion 32 gradually decreases. At this time, the open part above the sheath 20 is covered with the bag-like member 34.

ここで、袋状部材34は、膨張したときに全体として略四角柱形状となる形状を有しており、移動面50を底面とすると、折り畳み側面52は、4つの側面に相当する。本実施例の折り畳み側面52は、伸展し終わった時の底面部36からの伸展方向の長さが、ハンド部32によって鞘20を掴んだときの底面部36から絶縁体形成物までの距離とほぼ等しくなるように形成されている。そのため、袋状部材34へと空気を供給して、袋状部材34の折り畳み側面52を充分に伸展させることによって、移動面50を絶縁体形成物10へと当接させることができる。   Here, the bag-shaped member 34 has a shape that becomes a substantially quadrangular prism shape as a whole when inflated, and when the moving surface 50 is a bottom surface, the folded side surface 52 corresponds to four side surfaces. The folding side surface 52 of the present embodiment is such that the length in the extending direction from the bottom surface portion 36 when the expansion is finished is the distance from the bottom surface portion 36 to the insulator formation when the sheath 20 is gripped by the hand portion 32. It is formed to be almost equal. Therefore, the moving surface 50 can be brought into contact with the insulator formation 10 by supplying air to the bag-shaped member 34 and sufficiently extending the folded side surface 52 of the bag-shaped member 34.

袋状部材34を膨張させると、ロボットアーム30は、ハンド部32を、掴んだ鞘20ごと反転させる(ステップS120)。図6は、掴んだ鞘20ごとハンド部32を反転させた様子を表わす。図5に示したように袋状部材34を膨張させて、絶縁体形成物の直上に形成される空間を塞いだ後に反転を行なうと、絶縁体形成物10は鞘20内でほとんど移動することなく反転されて、袋状部材34の移動面50上に載置された状態となる。   When the bag-like member 34 is inflated, the robot arm 30 reverses the hand portion 32 together with the grasped sheath 20 (step S120). FIG. 6 shows a state in which the hand portion 32 is inverted together with the grasped sheath 20. As shown in FIG. 5, when the bag-shaped member 34 is expanded to close the space formed immediately above the insulator formation and then reversed, the insulator formation 10 is almost moved within the sheath 20. Inverted and placed on the moving surface 50 of the bag-like member 34.

ハンド部32を反転させた後には、袋状部材34からの空気の排出を行なう(ステップS130)。図7は、上記反転の動作の後、袋状部材34から空気を排出させた様子を表わす。袋状部材34から空気を排出させることにより、袋状部材34の折り畳み側面52が、所定のパターンで折り畳まれて、移動面50が収納部31の底面部36に近接するように移動する。このような移動面50の移動に伴って、移動面50上に載置される絶縁体形成物10もまた、ハンド部32内の収納部31内へと移動する。袋状部材34からの空気の排出の終了と共に、ハンド部32の内側の収納部31への、絶縁体形成物10の移し替えが終了する。本実施例では、袋状部材34からの空気排出の終了時には、袋状部材34は、図4に示す空気供給前の状態に復帰することとしている。   After the hand part 32 is reversed, the air is discharged from the bag-like member 34 (step S130). FIG. 7 shows a state in which air is discharged from the bag-like member 34 after the reversing operation. By discharging air from the bag-shaped member 34, the folded side surface 52 of the bag-shaped member 34 is folded in a predetermined pattern, and the moving surface 50 moves so as to be close to the bottom surface portion 36 of the storage portion 31. As the moving surface 50 moves, the insulator formed article 10 placed on the moving surface 50 also moves into the storage unit 31 in the hand unit 32. With the completion of the discharge of air from the bag-shaped member 34, the transfer of the insulator formed article 10 to the storage portion 31 inside the hand portion 32 is completed. In the present embodiment, at the end of the air discharge from the bag-shaped member 34, the bag-shaped member 34 is returned to the state before the air supply shown in FIG.

既述したように、移動面50は略四角形状であり、膨張した袋状部材34は略直方体形状を有しているため、袋状部材34から空気を排出させて折り畳み側面52を折り畳むときには、移動面50は、ほぼ水平な状態を保ちつつ、ハンド部32の底面部36に近づく。本実施例では、袋状部材34から空気を排出させる工程において、移動面50が底面部36へと近づく速度が、50mm/s以下となるように、袋状部材34から排出する空気量を制御している。   As described above, since the moving surface 50 has a substantially rectangular shape and the expanded bag-shaped member 34 has a substantially rectangular parallelepiped shape, when the air is discharged from the bag-shaped member 34 and the folding side surface 52 is folded, The moving surface 50 approaches the bottom surface portion 36 of the hand portion 32 while maintaining a substantially horizontal state. In the present embodiment, in the step of discharging air from the bag-shaped member 34, the amount of air discharged from the bag-shaped member 34 is controlled so that the speed at which the moving surface 50 approaches the bottom surface portion 36 is 50 mm / s or less. doing.

本実施例のハンド部32は、空気の排出時に水平性を維持しつつ移動面50を移動させるための構成として、底面部36上にスペーサ54を備えている。図8は、底面部36上に配置したスペーサ54の様子を表わす平面図である。図9は、袋状部材34に空気を供給して膨張させた様子を、図8に示す9−9断面において表わす説明図である。図10は、袋状部材34から空気を排出させて収縮させた様子を、図9と同様の断面において表わす説明図である。   The hand portion 32 of this embodiment includes a spacer 54 on the bottom surface portion 36 as a configuration for moving the moving surface 50 while maintaining horizontality when discharging air. FIG. 8 is a plan view showing the state of the spacer 54 arranged on the bottom surface portion 36. FIG. 9 is an explanatory view showing a state in which air is supplied to the bag-like member 34 to be expanded in a 9-9 cross section shown in FIG. FIG. 10 is an explanatory view showing a state in which air is discharged from the bag-like member 34 and contracted in the same cross section as FIG. 9.

スペーサ54は、底面部36の表面に対して所定の高さを有するように形成されており、底面部36における流路39の開口部を囲む位置に設けられた中央部分55と、底面部36の外周に沿って設けられた周辺部分56とを備えている。中央部分55には、複数の溝57が設けられており、中央部分55と周辺部分56との間に形成される空間と、流路39の開口部との間を、溝57によって連通可能となっている。袋状部材34から空気を排出させて、図9の状態から図10の状態へと変化させるときには、移動面50が底面部36に近接した後にも、袋状部材34内の空気は、溝57を介して流路39へと流れることができる。袋状部材34から排出される空気の流れの様子を、図10において矢印で示している。なお、スペーサ54の形状は、図8とは異なる形状であっても良い。底面部36上において、袋状部材34内から空気を排出するための排出口に近接して設けられ、袋状部材34の一部によって上記排出口が塞がれるのを防止することができる支持部であればよい。   The spacer 54 is formed to have a predetermined height with respect to the surface of the bottom surface portion 36, and a central portion 55 provided at a position surrounding the opening of the flow path 39 in the bottom surface portion 36, and the bottom surface portion 36. And a peripheral portion 56 provided along the outer periphery. The central portion 55 is provided with a plurality of grooves 57, and a space formed between the central portion 55 and the peripheral portion 56 and the opening of the flow path 39 can communicate with each other by the grooves 57. It has become. When the air is discharged from the bag-like member 34 to change from the state of FIG. 9 to the state of FIG. 10, the air in the bag-like member 34 remains in the groove 57 even after the moving surface 50 comes close to the bottom surface portion 36. It can flow to the flow path 39 via. The state of the flow of air discharged from the bag-like member 34 is indicated by arrows in FIG. The shape of the spacer 54 may be different from that shown in FIG. A support provided on the bottom surface portion 36 in the vicinity of a discharge port for discharging air from the bag-shaped member 34 and can prevent the discharge port from being blocked by a part of the bag-shaped member 34. Part.

なお、図7に示した袋状部材34の収縮の後には、ハンド部32からの鞘20の除去が行なわれる。ハンド部32からの鞘20の除去は、例えば、陰圧を発生する図示しない吸着装置を用いて、鞘20を吸着させることにより行なえばよい。   Note that the sheath 20 is removed from the hand portion 32 after the shrinkage of the bag-like member 34 shown in FIG. The removal of the sheath 20 from the hand portion 32 may be performed, for example, by adsorbing the sheath 20 using an unillustrated adsorption device that generates negative pressure.

絶縁体形成物10を収納部31内に移し替えた後には、ロボットアーム30は、アーム部33を移動させることによって、収納部31に収納する絶縁体形成物10を、移送容器45の近傍へと搬送し、移送容器45への絶縁体形成物10の移し替えを行なう(ステップS140)。収納部31からから移送容器45へと絶縁体形成物10を移し替える際には、ロボットアーム30は、ハンド部32の側面部35dを開状態にすると共に、ヒンジ37側がより低くなるように底面部36を傾ける。これにより、収納部31内の絶縁体形成物が移送容器45へと移動して、移し替えられる。絶縁体形成物10の移送容器45への移し替えを終了すると、ロボットアーム30は、プログラムに従って既述した動作を繰り返す。   After the insulator formed product 10 is transferred into the storage unit 31, the robot arm 30 moves the arm unit 33 to move the insulator formed product 10 stored in the storage unit 31 to the vicinity of the transfer container 45. Then, the insulator formed product 10 is transferred to the transfer container 45 (step S140). When transferring the insulator formation 10 from the storage portion 31 to the transfer container 45, the robot arm 30 opens the side surface portion 35d of the hand portion 32, and the bottom surface so that the hinge 37 side is lower. Tilt part 36. Thereby, the insulator formation thing in the accommodating part 31 moves to the transfer container 45, and is transferred. When the transfer of the insulator formation 10 to the transfer container 45 is completed, the robot arm 30 repeats the operation described above according to the program.

なお、袋状部材34内部の体積を変更するために袋状部材34へと供給、あるいは、袋状部材34から排出させる流体は、空気以外であっても良い。例えば、不活性ガス等の他種の気体や、水、不凍液、油等の液体、あるいは、ゲル状の物質を用いても良い。   Note that the fluid supplied to or discharged from the bag-like member 34 in order to change the volume inside the bag-like member 34 may be other than air. For example, other types of gases such as inert gas, liquids such as water, antifreeze, and oil, or gel substances may be used.

袋状部材34は、例えば、織物や不織布などの布によって形成することができる。移動面50上に絶縁体形成物10を載置するために充分な強度を有すると共に、流体を内部に保持できる気密性と、伸展と折り畳みの動作を繰り返すことができる充分な耐久性を有していればよい。移し替えを行なう際の絶縁体形成物10が、室温よりも高い温度であれば、絶縁体形成物10の温度に応じた耐熱性を、更に備えていればよい。   The bag-like member 34 can be formed of a cloth such as a woven fabric or a non-woven fabric, for example. It has sufficient strength to place the insulator formation 10 on the moving surface 50, has airtightness capable of holding the fluid inside, and sufficient durability to repeat extension and folding operations. It only has to be. If the insulator formation 10 at the time of transfer is a temperature higher than room temperature, it is only necessary to further have heat resistance according to the temperature of the insulator formation 10.

袋状部材34の表面の内、移動面50となる部分は、例えば材料となる布を重ねて配置したり、あるいは補強部材を内部に設けることにより、他の部分よりも剛性を高めることとしても良い。これにより、袋状部材34の収縮時に、絶縁体形成物の載置面の水平性を保ちやすくなる。ただし、移動面50において、袋状部材34の伸展時に絶縁体形成物10に当接し得る表面の層は、柔らかい材質、より具体的には、絶縁体形成物10に当接したときに、絶縁体形成物10の形状に従って変形し得る材料で構成されることが望ましい。これにより、移動面50と絶縁体形成物10との当接時における絶縁体形成物10の損傷を抑制することができる。   Of the surface of the bag-like member 34, the portion that becomes the moving surface 50 may be arranged to overlap with a material cloth, for example, or may be provided with a reinforcing member inside so as to increase rigidity more than other portions. good. Thereby, when the bag-shaped member 34 contracts, it becomes easy to maintain the levelness of the mounting surface of the insulator-formed product. However, the surface layer that can come into contact with the insulator formation 10 when the bag-like member 34 is extended on the moving surface 50 is a soft material, more specifically, when the bag is in contact with the insulator formation 10, It is desirable to be made of a material that can be deformed according to the shape of the body forming object 10. Thereby, the damage of the insulator formation 10 at the time of contact | abutting of the moving surface 50 and the insulator formation 10 can be suppressed.

以上のように構成された第1実施例の絶縁体の製造方法によれば、鞘20から絶縁体形成物10を取り出す際に、ハンド部32の反転前に、鞘20内で絶縁体形成物の直上に形成される空間を袋状部材34によって塞いでいるため、ハンド部32の反転時に絶縁体形成物10の落下を抑えることができる。そのため、絶縁体形成物10の落下に起因する絶縁体形成物10の損傷を抑制しつつ、絶縁体形成物10の移し替えを行なうことができる。また、このように製造工程中における損傷を抑えることにより、絶縁体の製造コストを抑制することもできる。   According to the insulator manufacturing method of the first embodiment configured as described above, when the insulator formation product 10 is taken out from the sheath 20, the insulator formation material is formed in the sheath 20 before the hand portion 32 is reversed. Since the space formed immediately above is closed by the bag-shaped member 34, it is possible to prevent the insulator formed article 10 from dropping when the hand portion 32 is reversed. Therefore, the insulator formed product 10 can be transferred while suppressing damage to the insulator formed product 10 due to the fall of the insulator formed product 10. Moreover, the manufacturing cost of an insulator can also be suppressed by suppressing the damage in a manufacturing process in this way.

袋状部材34を伸展させる際に、移動面50と絶縁体形成物10とを当接させない構成も可能である。移動面50と絶縁体形成物10との間にいくらかの空間を残す場合であっても、反転時の落下距離が短くなるので、反転時の損傷を抑制する効果が得られる。   A configuration in which the moving surface 50 and the insulator formed article 10 are not brought into contact with each other when the bag-like member 34 is extended is also possible. Even in the case where some space is left between the moving surface 50 and the insulator formation product 10, since the fall distance at the time of reversal is shortened, the effect of suppressing damage at the time of reversal can be obtained.

また、第1実施例の絶縁体の製造方法によれば、袋状部材34から流体を排出させる際に、移動面50が底面部36へと近づく速度が50mm/s以下となるように、袋状部材34から排出する流体量を制御している。そのため、袋状部材34の収縮停止時に、絶縁体形成物10に加えられる衝撃を充分に抑制して、移し替えの動作に伴う絶縁体形成物10の損傷を抑制することができる。   Further, according to the insulator manufacturing method of the first embodiment, when the fluid is discharged from the bag-shaped member 34, the speed at which the moving surface 50 approaches the bottom surface portion 36 is 50 mm / s or less. The amount of fluid discharged from the member 34 is controlled. Therefore, when the shrinkage of the bag-like member 34 is stopped, the impact applied to the insulator formed product 10 can be sufficiently suppressed, and damage to the insulator formed product 10 accompanying the transfer operation can be suppressed.

また、本実施例では、袋状部材34として、移動面50と折り畳み側面52とを有する部材を用いているため、収縮時に、折り畳み側面52が所定のパターンで折り畳まれて移動面50の高さが低下するときには、移動面50の水平状態を、より容易に保つことが可能になる。さらに、袋状部材34内に、溝57を有するスペーサ54を設けたため、袋状部材34の収縮を終了する際に、移動面50の水平性がより確保され易くなる。図11は、袋状部材34と同様の袋状部材であるが、スペーサ54を設けていない袋状部材134から流体を排出し、袋状部材134によって排出口が塞がれた様子を、図10と同様の断面において表わす説明図である。図11では第1実施例と共通する部分には同じ参照番号を付している。図11に示すように、スペーサ54を有していないと、袋状部材134によって排出口が塞がれて、流体の排出が停止する場合があり、このような場合には、袋状部材134内に流体が残留し、移動面50の外周部の高さが高い状態になる。移動面50の外周の高さが高くなると、例えば次の工程で側面部35dを開放してハンド部32内の絶縁体形成物10を移送容器45に移し替える場合に、図11に示すように、より高い位置から絶縁体形成物10が落下することになり、絶縁体形成物10が損傷する可能性が高まる。本実施例のように、移動面50全体を、充分に底面部36近傍に近接させることにより、次工程での移し替えの際にも、高い位置からの落下に起因する損傷を充分に抑制することができる。   In the present embodiment, since the member having the moving surface 50 and the folded side surface 52 is used as the bag-like member 34, the folded side surface 52 is folded in a predetermined pattern when contracted, and the height of the moving surface 50 is increased. When the drop is caused, the horizontal state of the moving surface 50 can be more easily maintained. Further, since the spacer 54 having the groove 57 is provided in the bag-like member 34, the horizontality of the moving surface 50 is more easily secured when the shrinkage of the bag-like member 34 is finished. FIG. 11 shows a bag-like member similar to the bag-like member 34, but the fluid is discharged from the bag-like member 134 without the spacer 54, and the discharge port is blocked by the bag-like member 134. 10 is an explanatory diagram represented in the same cross section as FIG. In FIG. 11, the same reference numerals are assigned to the parts common to the first embodiment. As shown in FIG. 11, if the spacer 54 is not provided, the discharge port may be blocked by the bag-shaped member 134 and the fluid discharge may be stopped. In such a case, the bag-shaped member 134 may be stopped. The fluid remains inside, and the height of the outer peripheral portion of the moving surface 50 becomes high. When the height of the outer periphery of the moving surface 50 is increased, as shown in FIG. 11, for example, when the side surface portion 35 d is opened and the insulator formation material 10 in the hand portion 32 is transferred to the transfer container 45 in the next step. Then, the insulator formation product 10 falls from a higher position, and the possibility that the insulator formation product 10 is damaged increases. As in the present embodiment, by making the entire moving surface 50 sufficiently close to the vicinity of the bottom surface portion 36, damage caused by dropping from a high position can be sufficiently suppressed even during transfer in the next process. be able to.

第1実施例では、袋状部材34の内部から流体を排出する際に、移動面50と底面部36との距離の面間ばらつきを抑制する水平化部として、支持部である溝付きスペーサ54を用いているが、異なる構成としても良い。例えば、底面部36に設けられて袋状部材34内と流路39とを連通させる排出口を、底面部36の面内で分散させて複数設けることとしても良い。このように、複数の排出口から同時に流体の排出を行なう構成によっても、袋状部材34による排出口の閉塞を抑えつつ、移動面50の水平性の確保を図ることができる。   In the first embodiment, when the fluid is discharged from the inside of the bag-shaped member 34, the grooved spacer 54, which is a support portion, is used as a leveling portion that suppresses variation in the distance between the moving surface 50 and the bottom surface portion 36. However, a different configuration may be used. For example, a plurality of discharge ports provided in the bottom surface portion 36 for communicating the inside of the bag-shaped member 34 and the flow path 39 may be provided by being dispersed in the surface of the bottom surface portion 36. As described above, even when the fluid is simultaneously discharged from the plurality of discharge ports, it is possible to ensure the horizontality of the moving surface 50 while suppressing the blocking of the discharge port by the bag-like member 34.

また、本実施例では、袋状部材34内に流体を供給したときに、鞘20の上方の開放部が袋状部材34によって覆われるため、ハンド部32の反転時に、いずれの絶縁体形成物10も、移動面50上に載置することができる。そのため、袋状部材34によって反転時の絶縁体形成物10の落下を抑制する効果を高めることができる。   Further, in this embodiment, when the fluid is supplied into the bag-shaped member 34, since the open portion above the sheath 20 is covered with the bag-shaped member 34, any insulator formation product is formed when the hand portion 32 is reversed. 10 can also be placed on the moving surface 50. For this reason, the bag-like member 34 can enhance the effect of suppressing the fall of the insulator formed product 10 during reversal.

なお、第1実施例のように、収納部31内で絶縁体形成物の直上に形成される空間の容積を減少させるために、袋状部材34を用いる場合には、ロボットアーム30を、大きさの異なる絶縁体形成物の移し替えに共通して用いることが容易となる。例えば、袋状部材34に供給する空気量(空気の供給時間など)を、製造を予定する最も小さい絶縁体に合わせて、上記空間の容積を充分に小さくできるように設定することができる。このような場合には、袋状部材34を、充分に柔らかい(剛性の低い)材料により形成することで、製造を予定している最も大きい絶縁体に適用する場合に、袋状部材34の内圧が高まっても膨らみすぎない状態とすることが可能になる。このように、製造を予定している絶縁体の大きさの違いがある程度の範囲に収まっていれば、製造対象となる絶縁体の大きさが変更される場合であっても、コンピュータによる制御値を変更する必要がない。   In the case where the bag-like member 34 is used in order to reduce the volume of the space formed immediately above the insulator formation in the storage portion 31 as in the first embodiment, the robot arm 30 is increased in size. It can be easily used in common for transferring different insulator formations. For example, the amount of air supplied to the bag-like member 34 (air supply time, etc.) can be set so that the volume of the space can be made sufficiently small in accordance with the smallest insulator to be manufactured. In such a case, when the bag-like member 34 is formed of a sufficiently soft (low-rigidity) material and applied to the largest insulator that is scheduled to be manufactured, the internal pressure of the bag-like member 34 is reduced. Even if the height increases, it is possible to make it not swell too much. Thus, if the difference in the size of the insulator that is scheduled to be manufactured is within a certain range, even if the size of the insulator to be manufactured is changed, the control value by the computer There is no need to change.

B.第1実施例に関する実験例:
図12は、第1実施例の絶縁体の製造方法に係る各条件の効果を確認するために行なった実験結果を表わす説明図である。図12に示すように、製造方法に係る条件を異ならせた9種類の実験を行なった。これらの実験例では、第1実施例と同様に、鞘20内に収納された絶縁体形成物10を、ロボットアームを用いて移送容器45に移し替えており、袋状部材34の有無、スペーサ54の有無、袋状部材34の収縮速度に係る条件が互いに異なっている。袋状部材34の有無に係る条件については、実験例1のみが袋状部材を有しないハンド部を備えるロボットアームを用いており、実験例2−9は、第1実施例と同様に、袋状部材34を有するハンド部を備えるロボットアームを用いている。スペーサ54の有無に係る条件については、実験例2−5では、袋状部材34内にスペーサ54を設けておらず、実験例6−9では、袋状部材34内にスペーサ54を設けた。袋状部材34の収縮速度とは、ハンド部内に袋状部材34を設ける場合において、袋状部材34から空気を排出させる際の、移動面50と底面部36との間の距離が短くなる速度をいう。袋状部材34の収縮速度に係る条件については、実験例2,6は100mm/s、実験例3,7は50mm/s、実験例4,8は10mm/s、実験例5,9は5mm/sとした。各々の条件について、絶縁体形成物の移し替えの動作を5000回ずつ行ない、絶縁体形成物の割れの発生率を調べた。
B. Experimental example for the first embodiment:
FIG. 12 is an explanatory view showing the result of an experiment conducted for confirming the effect of each condition according to the insulator manufacturing method of the first embodiment. As shown in FIG. 12, nine types of experiments were performed with different conditions relating to the manufacturing method. In these experimental examples, as in the first embodiment, the insulator formation 10 housed in the sheath 20 is transferred to the transfer container 45 using the robot arm, and the presence or absence of the bag-like member 34, the spacer The presence / absence of 54 and the conditions relating to the contraction speed of the bag-like member 34 are different from each other. As for the conditions relating to the presence or absence of the bag-like member 34, only Experimental Example 1 uses a robot arm provided with a hand part that does not have a bag-like member, and Experimental Example 2-9 is a bag similar to the first example. A robot arm having a hand portion having a shaped member 34 is used. Regarding the conditions relating to the presence or absence of the spacer 54, the spacer 54 was not provided in the bag-like member 34 in Experimental Example 2-5, and the spacer 54 was provided in the bag-like member 34 in Experimental Example 6-9. The contraction speed of the bag-shaped member 34 is a speed at which the distance between the moving surface 50 and the bottom surface portion 36 when the bag-shaped member 34 is discharged when the bag-shaped member 34 is provided in the hand portion. Say. Regarding conditions relating to the contraction speed of the bag-shaped member 34, Experimental Examples 2 and 6 are 100 mm / s, Experimental Examples 3 and 7 are 50 mm / s, Experimental Examples 4 and 8 are 10 mm / s, and Experimental Examples 5 and 9 are 5 mm. / S. Under each condition, the operation of transferring the insulator formation was performed 5000 times, and the occurrence rate of cracks in the insulator formation was examined.

図12の実験例1と実験例2とを比較すると、割れ発生率が1%から5ppmに低下しており、袋状部材34を用いることにより、ハンド部32を反転させる際に絶縁体形成物10に加わる衝撃を抑える効果が確認された。また、実験例2と実験例6との比較すると、割れ発生率が5ppmから3ppmに低下しており、実験例3と実験例7とを比較すると、割れ発生率が3ppmから1ppmに低下している。このような結果から、袋状部材34内にスペーサ54を配置して、袋状部材34の収縮時における移動面50の水平性を確保することにより、移送容器45へと絶縁体形成物を移し替える際の絶縁体形成物の損傷を抑制する効果が確認された。さらに、実験例2〜5、あるいは、実験例6〜9を比較すると、収縮速度を50mm/s以下にすることで割れ発生率を有意に低下可能であると分かり、収縮速度を50mm/s以下とすることで、袋状部材34の収縮完了時に絶縁体形成物10に加わる衝撃を抑える効果が確認された。   Compared with Experimental Example 1 and Experimental Example 2 in FIG. 12, the crack occurrence rate is reduced from 1% to 5 ppm, and by using the bag-like member 34, the insulator formed product is reversed when the hand portion 32 is reversed. The effect which suppresses the impact added to 10 was confirmed. Moreover, when the experimental example 2 and the experimental example 6 are compared, the crack occurrence rate is reduced from 5 ppm to 3 ppm, and when the experimental example 3 and the experimental example 7 are compared, the crack occurrence rate is reduced from 3 ppm to 1 ppm. Yes. From such a result, the insulator 54 is transferred to the transfer container 45 by disposing the spacer 54 in the bag-like member 34 and ensuring the horizontality of the moving surface 50 when the bag-like member 34 is contracted. The effect which suppresses the damage of the insulator formation at the time of changing was confirmed. Furthermore, when Experimental Examples 2 to 5 or Experimental Examples 6 to 9 are compared, it is found that the crack generation rate can be significantly reduced by setting the shrinkage rate to 50 mm / s or less, and the shrinkage rate is 50 mm / s or less. As a result, the effect of suppressing the impact applied to the insulator formed product 10 when the shrinkage of the bag-like member 34 was completed was confirmed.

C.第2実施例:
第1実施例では、底面部36上に配置されて、流体の導入によって内部の体積(伸縮部材の体積)が増加すると共に、流体の排出によって内部の体積(伸縮部材の体積)が減少する伸縮部材として、袋状部材34を用いたが、異なる構成としても良い。伸縮部材として、移動面50と折り畳み側面52とを備える袋状部材34に代えて、例えば、伸縮自在なゴム材料によって形成される袋状部材を用いても良い。このような構成を、第2実施例として以下に説明する。
C. Second embodiment:
In the first embodiment, the expansion and contraction is arranged on the bottom surface portion 36 so that the internal volume (volume of the expansion / contraction member) is increased by the introduction of the fluid and the internal volume (volume of the expansion / contraction member) is decreased by the discharge of the fluid. Although the bag-like member 34 is used as the member, a different configuration may be used. For example, a bag-shaped member formed of a stretchable rubber material may be used instead of the bag-shaped member 34 including the moving surface 50 and the folded side surface 52 as the elastic member. Such a configuration will be described below as a second embodiment.

図13および図14は、第2実施例の絶縁体の製造方法における製造途中の様子を表わす説明図である。第2実施例は、ロボットアーム30のハンド部32内に設ける伸縮部材として、袋状部材34に代えて袋状部材134を設けていることを除くと、第1実施例と同様の構成であるため、第1実施例と共通する部分には同じ参照番号を付して詳しい説明は省略する。図13は、図4と同様にステップS100におけるハンド部32内の様子を表わしている。図14は、図5と同様にステップS110におけるハンド部32内の様子を表わしている。図14に示すように、第2実施例では、ハンド部32で鞘20を掴んだ後に、風船状の袋状部材134へと空気等の流体を供給して、絶縁体形成物10の直上に形成される空間の容積を減少させる。その後は、鞘20を掴んだハンド部32を反転させて(ステップS120)、袋状部材134から流体を排出させてハンド部32の収納部31へと絶縁体形成物10を移し替え(ステップS130)、さらに、移送容器45へと絶縁体形成物10を移し替える(ステップS140)。   FIG. 13 and FIG. 14 are explanatory diagrams showing a state in the middle of manufacturing in the method for manufacturing an insulator according to the second embodiment. The second embodiment has the same configuration as that of the first embodiment except that a bag-like member 134 is provided instead of the bag-like member 34 as an elastic member provided in the hand portion 32 of the robot arm 30. Therefore, the same reference numerals are given to the parts common to the first embodiment, and the detailed description is omitted. FIG. 13 shows the inside of the hand unit 32 in step S100 as in FIG. FIG. 14 shows the inside of the hand unit 32 in step S110 as in FIG. As shown in FIG. 14, in the second embodiment, after gripping the sheath 20 with the hand portion 32, a fluid such as air is supplied to the balloon-like bag-shaped member 134, so that it is directly above the insulator formation 10. Reduce the volume of space formed. Thereafter, the hand portion 32 that has grasped the sheath 20 is reversed (step S120), the fluid is discharged from the bag-like member 134, and the insulator formed article 10 is transferred to the storage portion 31 of the hand portion 32 (step S130). In addition, the insulator formation product 10 is transferred to the transfer container 45 (step S140).

以上のように構成された第2実施例の絶縁体の製造方法によっても、第1実施例と同様に、移し替えの動作に伴う絶縁体形成物10の損傷を抑える効果を得ることができる。すなわち、第1実施例の平坦な移動面50に代えて、風船の表面の一部を成して流体の供給及び排出によって伸縮する移動面を底面部36上に設ける場合であっても、移動面を絶縁体形成物10に近づけた後に反転の動作を行なうことで、反転に伴う絶縁体形成物10の損傷を抑えることができる。   According to the insulator manufacturing method of the second embodiment configured as described above, the effect of suppressing damage to the insulator formation 10 due to the transfer operation can be obtained as in the first embodiment. That is, instead of the flat moving surface 50 of the first embodiment, even if a moving surface that forms part of the surface of the balloon and expands and contracts by supplying and discharging the fluid is provided on the bottom surface portion 36, the moving surface is moved. By performing the reversal operation after bringing the surface close to the insulator formation 10, damage to the insulator formation 10 due to reversal can be suppressed.

特に、本実施例のように、袋状部材として伸縮自在なゴム材料から成る袋状部材134を用いる場合には、袋状部材134が絶縁体形成物10に当接したときに、袋状部材134の移動面が伸縮して絶縁体形成物10の表面に沿った形状に変形し、絶縁体形成物10と移動面との間の隙間を埋めることができる。そのため、反転時に絶縁体形成物10に加えられる衝撃を抑える効果を、更に高めることができる。なお、袋状部材134と絶縁体形成物10との間に隙間が残るように、袋状部材134への流体の供給を行なっても良い。このような場合であっても、反転時の絶縁体形成物10の落下距離が短くなると共に、風船状の袋状部材134によって衝撃を吸収することができるため、反転時の絶縁体形成物10の損傷を抑制する効果が得られる。   In particular, when a bag-like member 134 made of a stretchable rubber material is used as the bag-like member as in the present embodiment, when the bag-like member 134 comes into contact with the insulator formation member 10, the bag-like member The moving surface of 134 can be expanded and contracted to be deformed into a shape along the surface of the insulator formation 10, thereby filling a gap between the insulator formation 10 and the movement surface. Therefore, the effect of suppressing the impact applied to the insulator formed product 10 at the time of reversal can be further enhanced. Note that the fluid may be supplied to the bag-shaped member 134 so that a gap remains between the bag-shaped member 134 and the insulator-formed product 10. Even in such a case, since the falling distance of the insulator-formed product 10 at the time of reversal is shortened and the impact can be absorbed by the balloon-like bag-shaped member 134, the insulator-formed product 10 at the time of reversal. The effect which suppresses damage of the is acquired.

第2実施例においても、風船状の袋状部材134内に、第1実施例のスペーサ54と同様の支持部を設けても良い。また、袋状部材134から流体を排出するための複数の排出口を、底面部36において分散配置しても良い。また、風船状の袋状部材134は、底面部36上に設けるのではなく、例えば、ハンド部32の側面部35上に設けても良い。ただし、袋状部材134を底面部36上に設けることで、複数の絶縁体形成物10全体を、衝撃を抑えつつハンド部32内の底面部36上に移動させる効果を高めることができる。   Also in the second embodiment, a support portion similar to the spacer 54 of the first embodiment may be provided in the balloon-like bag-shaped member 134. Further, a plurality of discharge ports for discharging the fluid from the bag-like member 134 may be dispersedly arranged on the bottom surface portion 36. Further, the balloon-like bag-like member 134 may be provided on the side surface portion 35 of the hand portion 32 instead of being provided on the bottom surface portion 36. However, by providing the bag-like member 134 on the bottom surface portion 36, it is possible to enhance the effect of moving the entirety of the plurality of insulator formed products 10 onto the bottom surface portion 36 in the hand portion 32 while suppressing the impact.

また、第1実施例と同様に、移動面の移動速度である収縮速度を、50mm/s以下にすることで、移動面が底面部36への接近を完了したときに絶縁体形成物10が受ける衝撃を抑える同様の効果を得ることができる。   Further, similarly to the first embodiment, by setting the contraction speed, which is the moving speed of the moving surface, to 50 mm / s or less, the insulator formed article 10 is formed when the moving surface completes the approach to the bottom surface portion 36. It is possible to obtain the same effect that suppresses the impact received.

D.第3実施例:
第1および第2実施例では、底面部36上に配置されて底面部36との距離を変更可能な移動面を備える伸縮部として、袋状部材を備える伸縮部を用いたが、異なる構成としても良い。移動面を構成する板状部材と、板状部材と底面部36との距離が変更可能なシリンダ機構と、を備える伸縮部を用いても良い。このような構成を、第3実施例として以下に説明する。
D. Third embodiment:
In 1st and 2nd Example, although the expansion-contraction part provided with a bag-shaped member was used as an expansion-contraction part provided with the movement surface which can be arrange | positioned on the bottom-surface part 36 and can change the distance with the bottom face part 36, As a different structure Also good. An expansion / contraction part provided with a plate-like member constituting the moving surface and a cylinder mechanism capable of changing the distance between the plate-like member and the bottom surface part 36 may be used. Such a configuration will be described below as a third embodiment.

図15および図16は、第3実施例の絶縁体の製造方法における製造途中の様子を表わす説明図である。第3実施例は、ロボットアーム30のハンド部32に設ける伸縮部として、袋状部材を備える伸縮部に代えて、板状部材250と、軸252と、シリンダ機構259と、を備える伸縮部を用いている。第3実施例では、伸縮部以外の構成については第1実施例と同様であるため、第1実施例と共通する部分には同じ参照番号を付して詳しい説明は省略する。図15は、図4と同様にステップS100におけるハンド部32内の様子を表わしている。図16は、図5と同様にステップS110におけるハンド部32内の様子を表わしている。   FIG. 15 and FIG. 16 are explanatory views showing a state in the middle of manufacture in the insulator manufacturing method of the third embodiment. In the third embodiment, an expansion / contraction part provided with a plate-like member 250, a shaft 252 and a cylinder mechanism 259 is used instead of the expansion / contraction part provided with a bag-like member as the extension / contraction part provided in the hand part 32 of the robot arm 30. Used. In the third embodiment, since the configuration other than the expansion and contraction portion is the same as that of the first embodiment, the same reference numerals are assigned to the portions common to the first embodiment, and detailed description thereof is omitted. FIG. 15 shows the inside of the hand unit 32 in step S100 as in FIG. FIG. 16 shows the inside of the hand unit 32 in step S110 as in FIG.

板状部材250は、第1実施例の袋状部材34が備える移動面50と同様の形状を有しており、樹脂、金属、木材等の材料により形成される。軸252は、板状部材250の面に垂直な方向に延出する棒状部材であり、その一端が、板状部材250における底面部36に近接する側の面に接続されている。シリンダ機構259は、油圧や空気圧を用いて直線運動を実現する周知のアクチュエータであり、軸252の他端側に接続されている。ロボットアームを制御するための既述したコンピュータによってシリンダ機構259を駆動制御することにより、板状部材250の位置を、底面部36に近接した状態と、底面部36から離間した状態との間で変化させることができる。   The plate-like member 250 has the same shape as the moving surface 50 provided in the bag-like member 34 of the first embodiment, and is formed of a material such as resin, metal, or wood. The shaft 252 is a rod-like member extending in a direction perpendicular to the surface of the plate-like member 250, and one end thereof is connected to the surface of the plate-like member 250 on the side close to the bottom surface portion 36. The cylinder mechanism 259 is a known actuator that realizes linear motion using hydraulic pressure or air pressure, and is connected to the other end side of the shaft 252. By driving and controlling the cylinder mechanism 259 by the above-described computer for controlling the robot arm, the position of the plate-like member 250 is changed between the state close to the bottom surface portion 36 and the state separated from the bottom surface portion 36. Can be changed.

図16に示すように、第3実施例では、ハンド部32で鞘20を掴んだ後に、シリンダ機構259を駆動して、板状部材250を絶縁体形成物10に近づけ、絶縁体形成物10の直上に形成される空間の容積を減少させる。その後は、鞘20を掴んだハンド部32を反転させて(ステップS120)、シリンダ機構259を駆動して板状部材250を底面部36に近接させて、ハンド部32の収納部31へと絶縁体形成物10を移し替え(ステップS130)、さらに、移送容器45へと絶縁体形成物10を移し替える(ステップS140)。   As shown in FIG. 16, in the third embodiment, after gripping the sheath 20 with the hand portion 32, the cylinder mechanism 259 is driven to bring the plate-like member 250 closer to the insulator formation product 10, and the insulator formation product 10. The volume of the space formed immediately above is reduced. Thereafter, the hand portion 32 that has grasped the sheath 20 is reversed (step S120), and the cylinder mechanism 259 is driven to bring the plate-like member 250 close to the bottom surface portion 36 and insulated from the storage portion 31 of the hand portion 32. The body formed product 10 is transferred (step S130), and further, the insulator formed product 10 is transferred to the transfer container 45 (step S140).

以上のように構成された第3実施例の絶縁体の製造方法によっても、第1実施例と同様に、移し替えの動作に伴う絶縁体形成物10の損傷を抑える効果を得ることができる。すなわち、第1実施例の平坦な移動面50に代えて、板状部材250を備える伸縮部を用いる場合であっても、移動面である板状部材250を絶縁体形成物10に近づけた後に反転の動作を行なうことで、反転に伴う絶縁体形成物10の損傷を抑えることができる。   Also with the insulator manufacturing method of the third embodiment configured as described above, the effect of suppressing damage to the insulator formation 10 due to the transfer operation can be obtained as in the first embodiment. That is, instead of the flat moving surface 50 of the first embodiment, even when an expansion / contraction portion including the plate-like member 250 is used, after the plate-like member 250 that is the moving surface is brought close to the insulator formation 10. By performing the reversal operation, it is possible to suppress damage to the insulator formation 10 due to the reversal.

本実施例の板状部材250において、少なくとも絶縁体形成物10に対向する面に、スポンジ、ゴム、樹脂等により形成される緩衝材を配置するならば、板状部材250が絶縁体形成物10に当接したときに、緩衝材が絶縁体形成物10の表面に沿った形状に変形し、絶縁体形成物10と移動面との間の隙間を埋めることができる。そのため、反転時に絶縁体形成物10に加えられる衝撃を抑える効果を、更に高めることができる。なお、板状部材250と絶縁体形成物10との間に隙間が残るように、シリンダ機構259の駆動制御を行なっても良い。このような場合であっても、反転時の絶縁体形成物10の落下距離が短くなると共に、緩衝材によって落下時の衝撃を吸収することができるため、反転時の絶縁体形成物10の損傷を抑制する効果が得られる。   In the plate-like member 250 of the present embodiment, if a cushioning material formed of sponge, rubber, resin, or the like is disposed on at least the surface facing the insulator-formed product 10, the plate-like member 250 becomes the insulator-formed product 10. The buffer material is deformed into a shape along the surface of the insulator formation 10 when the contact is made, and the gap between the insulator formation 10 and the moving surface can be filled. Therefore, the effect of suppressing the impact applied to the insulator formed product 10 at the time of reversal can be further enhanced. The drive control of the cylinder mechanism 259 may be performed so that a gap remains between the plate-like member 250 and the insulator formed product 10. Even in such a case, the falling distance of the insulator formation 10 at the time of reversal is shortened, and the shock at the time of dropping can be absorbed by the cushioning material. The effect which suppresses is acquired.

なお、第3実施例においても、第1実施例と同様に、移動面の移動速度である収縮速度を、50mm/s以下にすることで、板状部材250が底面部36への接近を完了したときに絶縁体形成物10が受ける衝撃を抑える同様の効果を得ることができる。   In the third embodiment, as in the first embodiment, the contraction speed, which is the moving speed of the moving surface, is set to 50 mm / s or less, so that the plate-like member 250 completes the approach to the bottom surface portion 36. In this case, the same effect can be obtained that suppresses the impact received by the insulator formation 10.

E.変形例:
なお、この発明は上記の実施例や実施形態に限られるものではなく、その要旨を逸脱しない範囲において種々の態様において実施することが可能であり、例えば次のような変形も可能である。
E. Variations:
The present invention is not limited to the above-described examples and embodiments, and can be implemented in various modes without departing from the gist thereof. For example, the following modifications are possible.

E1.変形例1:
第1ないし第3実施例では、焼成後の絶縁体形成物10の移し替えを行なうこととしたが、焼成前の絶縁体形成物10の移し替えにおいて、本願発明を適用しても良い。全体として細長く、長手方向に内部を貫通する縦穴が形成された絶縁体形成物は、焼成の前後にかかわらず、脆く壊れやすい性質を有している。したがって、収納容器内に収納された絶縁体形成物を、次の工程に供するために移し替える動作において本願発明を適用すれば、同様の効果を得ることができる。
E1. Modification 1:
In the first to third embodiments, the insulator formation 10 after firing is transferred. However, the present invention may be applied to transfer the insulator formation 10 before firing. The insulator-formed product, which is elongated as a whole and has a longitudinal hole penetrating the inside in the longitudinal direction, is brittle and fragile regardless of before and after firing. Therefore, the same effect can be obtained if the present invention is applied in the operation of transferring the insulator-formed product stored in the storage container for use in the next step.

E2.変形例2:
第1ないし第3実施例では、伸縮部を、ステップS130においてステップS110の動作の実行前の状態に復帰させているが、異なる構成としても良い。ステップS130では、伸縮部の移動面とハンド部の底面部との距離を短くする動作が行なわれて、絶縁体形成物がハンド部の収納部内に収納されればよく、ステップS140の工程で支障がない限り、底面部36と移動面との間に距離があっても良い。伸縮部において、ステップS130が実行されたときの状態と、ステップS110の直前の状態とが異なる場合には、例えば、ステップS140の後に、伸縮部の状態を初期状態に復帰させればよい。
E2. Modification 2:
In the first to third embodiments, the expansion / contraction part is returned to the state before execution of the operation of step S110 in step S130, but a different configuration may be used. In step S130, an operation for shortening the distance between the moving surface of the telescopic portion and the bottom surface portion of the hand portion is performed, and the insulator formed material may be stored in the storage portion of the hand portion. Unless there is, there may be a distance between the bottom surface portion 36 and the moving surface. In the expansion / contraction part, when the state when step S130 is executed differs from the state immediately before step S110, the state of the expansion / contraction part may be returned to the initial state after step S140, for example.

E3.変形例3:
第1ないし第3実施例では、ハンド部内で絶縁体形成物の直上に形成される空間の容積を減少させるために、袋状部材34,134や板状部材250などを備える伸縮部を用いたが、異なる構成としても良い。例えば、ハンド部32に、鞘20を底部から持ち上げて支える機構を設け、ハンド部32で鞘20を掴んだ後に、鞘20を引き上げて、ハンド部32の底面部36と絶縁体形成物10との距離を縮めることとしても良い。
E3. Modification 3:
In the first to third embodiments, in order to reduce the volume of the space formed immediately above the insulator formation in the hand portion, the expansion / contraction portion including the bag-like members 34 and 134, the plate-like member 250, and the like is used. However, a different configuration may be used. For example, a mechanism for lifting and supporting the sheath 20 from the bottom portion is provided in the hand portion 32, and after the sheath 20 is grasped by the hand portion 32, the sheath 20 is lifted up, and the bottom portion 36 of the hand portion 32 and the insulator formation product 10 It is also possible to shorten the distance.

E4.変形例4:
第1ないし第3実施例では、スパークプラグ用絶縁体の製造方法について説明したが、異なる構成としても良い。例えば、ディーゼルエンジンの補助熱源としてのグロープラグ用絶縁体や、酸素センサ用セラミックス部材を製造する際に、本願発明を適用しても良い。酸素センサは、ジルコニアなどの酸素イオン伝導性固体電解質を用いた起電力型でもよく、チタニアなどの感知物質を用いた抵抗変化型でも良い。全体として細長い形状であり、長手方向に内部を貫通する縦穴が形成されたセラミックス部材を製造する際には、本願発明を適用することにより、同様の効果が得られる。
E4. Modification 4:
In the first to third embodiments, the manufacturing method of the spark plug insulator has been described, but a different configuration may be used. For example, the present invention may be applied when manufacturing a glow plug insulator as an auxiliary heat source of a diesel engine or a ceramic member for an oxygen sensor. The oxygen sensor may be an electromotive force type using an oxygen ion conductive solid electrolyte such as zirconia, or may be a resistance change type using a sensing substance such as titania. When manufacturing a ceramic member having a slender shape as a whole and having a longitudinal hole penetrating the inside in the longitudinal direction, the same effect can be obtained by applying the present invention.

10…絶縁体形成物
20…鞘
30…ロボットアーム
31…収納部
32…ハンド部
33…アーム部
34,134…袋状部材
35a〜35d…側面部
36…底面部
37…ヒンジ部
39…流路
40…ローラコンベア
45…移送容器
50…移動面
52…折り畳み側面
54…スペーサ
55…中央部分
56…周辺部分
57…溝
250…板状部材
252…軸
259…シリンダ機構
DESCRIPTION OF SYMBOLS 10 ... Insulator formation material 20 ... Sheath 30 ... Robot arm 31 ... Storage part 32 ... Hand part 33 ... Arm part 34,134 ... Bag-shaped member 35a-35d ... Side surface part 36 ... Bottom part 37 ... Hinge part 39 ... Channel DESCRIPTION OF SYMBOLS 40 ... Roller conveyor 45 ... Transfer container 50 ... Moving surface 52 ... Folding side surface 54 ... Spacer 55 ... Center part 56 ... Peripheral part 57 ... Groove 250 ... Plate-like member 252 ... Shaft 259 ... Cylinder mechanism

Claims (14)

製造工程中のセラミックス部材であるセラミックス形成物を、該セラミックス形成物が収納されている少なくとも上方が開放している収納容器から取り出す取り出し工程を備えるセラミックス部材の製造方法において、
前記取り出し工程は、搬送機構によって前記収納容器の上方を掴み、その後に前記収納容器を前記搬送機構と共に反転させて、前記収納容器内の前記セラミックス形成物を、前記搬送機構に設けられた収納部内に移し替える移し替え工程を有し、
前記移し替え工程は、
前記搬送機構によって前記収納容器を掴んだ後に、前記反転の動作の前に、前記収納部内で前記セラミックス形成物の直上に形成される空間の容積を減少させる第1の工程と、
前記反転の動作の後に、前記セラミックス形成物を前記収納部内に収納する第2の工程と、
を備えることを特徴とするセラミックス部材の製造方法。
In a method for manufacturing a ceramic member, comprising a step of taking out a ceramic formed article that is a ceramic member in a manufacturing process from a storage container in which at least the upper part in which the ceramic formed article is stored is open,
In the take-out step, the upper part of the storage container is gripped by a transport mechanism, and then the storage container is inverted together with the transport mechanism, so that the ceramic formed material in the storage container is placed in a storage part provided in the transport mechanism. Has a transfer process to transfer to
The transfer step includes
A first step of reducing a volume of a space formed immediately above the ceramic formed material in the storage unit after the holding mechanism is gripped by the transfer mechanism and before the reversing operation;
A second step of storing the ceramic formed article in the storage unit after the reversing operation;
A method for producing a ceramic member, comprising:
請求項1記載のセラミックス部材の製造方法であって、
前記収納部は、前記収納部内側の底面上に配置される移動面を備えた伸縮部を有し、
前記第1の工程は、前記伸縮部を駆動することによって、前記移動面と前記収納部内側の底面との距離を長くする工程であり、
前記第2の工程は、前記伸縮部を駆動することによって、前記セラミックス形成物を載置した前記移動面と、前記収納部内側の底面との距離を短くする工程である
セラミックス部材の製造方法。
A method for producing a ceramic member according to claim 1,
The storage part has an expansion / contraction part with a moving surface arranged on the bottom surface inside the storage part,
The first step is a step of increasing the distance between the moving surface and the bottom surface inside the storage unit by driving the extendable part.
The second step is a step of shortening a distance between the moving surface on which the ceramic formed article is placed and a bottom surface inside the storage unit by driving the expansion and contraction unit.
請求項2記載のセラミックス部材の製造方法であって、
前記伸縮部は、前記収納部内側の底面上に配置されると共に、前記移動面を表面の一部として備え、自身の内部に流体の供給及び排出が行なわれる伸縮部材を備え、
前記第1の工程は、前記伸縮部の駆動の動作として、前記伸縮部材の内部に前記流体を導入することによって前記伸縮部材の内部の体積を増加させ、
前記第2の工程は、前記伸縮部の駆動の動作として、前記伸縮部材の内部から前記流体を排出させることによって前記伸縮部材の内部の体積を減少させる
セラミックス部材の製造方法。
A method for producing a ceramic member according to claim 2,
The expansion / contraction part is disposed on the bottom surface inside the storage part, includes the moving surface as a part of the surface, and includes an expansion / contraction member in which fluid is supplied and discharged.
The first step is to increase the volume of the elastic member by introducing the fluid into the elastic member as an operation of driving the elastic portion,
The second step is a method for manufacturing a ceramic member, wherein the volume of the elastic member is reduced by discharging the fluid from the elastic member as an operation of driving the elastic member.
請求項3記載のセラミックス部材の製造方法であって、
前記伸縮部材は、ゴム材料によって形成され、自身の内部に前記流体が導入されることによって膨張し、前記流体を排出することによって収縮する袋状部材である
セラミックス部材の製造方法。
A method for producing a ceramic member according to claim 3,
The method for producing a ceramic member, wherein the elastic member is a bag-shaped member that is formed of a rubber material, expands when the fluid is introduced into itself, and contracts by discharging the fluid.
請求項3記載のセラミックス部材の製造方法であって、
前記伸縮部材は、前記移動面と、所定のパターンで折り畳み可能な折り畳み側面とを、表面の少なくとも一部として有する袋状部材を備え、
前記第1の工程では、前記袋状部材内に前記流体が供給されることによって、前記折り畳み側面が伸展すると共に、前記移動面が、前記収納部内側の底面から離間し、
前記第2の工程では、前記袋状部材内から前記流体を排出することによって、前記セラミックス形成物を載置する前記移動面が、前記収納部内側の底面に近接するように移動すると共に、前記折り畳み側面が前記所定のパターンで折り畳まれる
セラミックス部材の製造方法。
A method for producing a ceramic member according to claim 3,
The elastic member includes a bag-like member having the moving surface and a folding side surface that can be folded in a predetermined pattern as at least a part of the surface.
In the first step, when the fluid is supplied into the bag-shaped member, the folding side surface extends, and the moving surface is separated from the bottom surface inside the storage unit,
In the second step, by discharging the fluid from the bag-like member, the moving surface on which the ceramic formed material is placed moves so as to be close to the bottom surface inside the storage portion, and A method for manufacturing a ceramic member, wherein a folded side surface is folded in the predetermined pattern.
請求項5記載のセラミックス部材の製造方法であって、
前記伸縮部は、前記袋状部材の内部から前記流体を排出する際に、前記移動面と前記収納部内側の底面との距離の面間ばらつきを抑制する水平化部を備える
セラミックス部材の製造方法。
A method for producing a ceramic member according to claim 5,
The expansion / contraction part includes a leveling part that suppresses variation in the distance between the moving surface and the bottom surface inside the storage part when discharging the fluid from the inside of the bag-shaped member. .
請求項6記載のセラミックス部材の製造方法であって、
前記水平化部は、前記袋状部材内から前記流体を排出するための排出口に近接して設けられ、前記伸縮部の一部によって前記排出口が塞がれるのを防止する支持部である
セラミックス部材の製造方法。
It is a manufacturing method of the ceramic member according to claim 6,
The leveling portion is a support portion that is provided in the vicinity of a discharge port for discharging the fluid from the bag-like member and prevents the discharge port from being blocked by a part of the extendable portion. A method for producing a ceramic member.
請求項2記載のセラミックス部材の製造方法であって、
前記伸縮部は、前記移動面を構成する板状部材と、前記板状部材と前記収納部内側の底面との距離が変更可能なシリンダ機構と、を備える
セラミックス部材の製造方法。
A method for producing a ceramic member according to claim 2,
The said expansion-contraction part is equipped with the plate-shaped member which comprises the said movement surface, and the cylinder mechanism which can change the distance of the said plate-shaped member and the bottom face inside the said accommodating part. The manufacturing method of a ceramic member.
請求項8記載のセラミックス部材の製造方法であって、
前記移動面は、前記セラミックス形成物と対向する面に、緩衝材を備える
セラミックス部材の製造方法。
A method for producing a ceramic member according to claim 8,
The moving surface includes a cushioning material on a surface facing the ceramic formed product. A method for manufacturing a ceramic member.
請求項2ないし9いずれか記載のセラミックス部材の製造方法であって、
前記第2の工程は、前記セラミックス形成物を載置した前記移動面と、前記収納部内側の底面との距離を、50mm/s以下の速さで短くする工程である
セラミックス部材の製造方法。
A method for producing a ceramic member according to any one of claims 2 to 9,
The second step is a method of shortening the distance between the moving surface on which the ceramic formed article is placed and the bottom surface inside the storage portion at a speed of 50 mm / s or less.
請求項2ないし10いずれか記載のセラミックス部材の製造方法であって、
前記第1の工程は、前記収納容器の上方の開放部が、前記伸縮部によって覆われていることを特徴とする
セラミックス部材の製造方法。
A method for producing a ceramic member according to any one of claims 2 to 10,
In the first step, a ceramic member manufacturing method is characterized in that an open part above the storage container is covered with the stretchable part.
セラミックス部材を備えるスパークプラグの製造方法であって、
前記セラミックス部材を製造する際に、請求項1ないし10いずれか記載のセラミックス部材の製造方法を用いる
スパークプラグの製造方法。
A method for producing a spark plug comprising a ceramic member,
A method for manufacturing a spark plug, wherein the method for manufacturing a ceramic member according to claim 1 is used when the ceramic member is manufactured.
セラミックス部材を備えるグロープラグの製造方法であって、
前記セラミックス部材を製造する際に、請求項1ないし10いずれか記載のセラミックス部材の製造方法を用いる
グロープラグの製造方法。
A method of manufacturing a glow plug comprising a ceramic member,
A method for manufacturing a glow plug, which uses the method for manufacturing a ceramic member according to claim 1 when manufacturing the ceramic member.
セラミックス部材を備える酸素センサの製造方法であって、
前記セラミックス部材を製造する際に、請求項1ないし10いずれか記載のセラミックス部材の製造方法を用いる
酸素センサの製造方法。
A method for producing an oxygen sensor comprising a ceramic member,
A method for producing an oxygen sensor, wherein the method for producing a ceramic member according to claim 1 is used when the ceramic member is produced.
JP2011016150A 2011-01-28 2011-01-28 Manufacturing method of ceramic member Expired - Fee Related JP5271368B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2011016150A JP5271368B2 (en) 2011-01-28 2011-01-28 Manufacturing method of ceramic member
CN201210017250.7A CN102617152B (en) 2011-01-28 2012-01-19 Method for manufacturing ceramic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011016150A JP5271368B2 (en) 2011-01-28 2011-01-28 Manufacturing method of ceramic member

Publications (2)

Publication Number Publication Date
JP2012156091A JP2012156091A (en) 2012-08-16
JP5271368B2 true JP5271368B2 (en) 2013-08-21

Family

ID=46557427

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011016150A Expired - Fee Related JP5271368B2 (en) 2011-01-28 2011-01-28 Manufacturing method of ceramic member

Country Status (2)

Country Link
JP (1) JP5271368B2 (en)
CN (1) CN102617152B (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
IT201600109176A1 (en) * 2016-10-28 2018-04-28 Mecc Malavasi S R L METHOD TO SPILL A CASSONE CONTAINING A PLURALITY OF FRUITS AND ROUNDING MACHINE OF A CASSONE CONTAINING A PLURALITY OF FRUITS, SUITABLE FOR OVERWARDING A CASSONE CONTAINING A PLURALITY OF COCOMERS, IN WHICH EACH COCOMER HAS A WEIGHT GREATER THAN 8KG

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0912134A (en) * 1995-06-30 1997-01-14 Murata Mfg Co Ltd Method and device for handling work
JP3609208B2 (en) * 1996-07-26 2005-01-12 日本特殊陶業株式会社 Method for producing ceramic molded body forming oxygen sensor element body
JP2000100546A (en) * 1998-09-25 2000-04-07 Ngk Spark Plug Co Ltd Manufacture of insulator for spark plug
US6368525B1 (en) * 2000-02-07 2002-04-09 General Electric Company Method for removing volatile components from a ceramic article, and related processes
JP2003176179A (en) * 2001-12-11 2003-06-24 Kyocera Corp Method of producing ceramic green sheet and method of manufacturing stacked electronic component
JP4672297B2 (en) * 2004-07-13 2011-04-20 エスアイ精工株式会社 Container reversing discharge device
JP2007247994A (en) * 2006-03-17 2007-09-27 Ngk Spark Plug Co Ltd Ceramic glow plug and its manufacturing method
CN101798224B (en) * 2010-01-29 2012-12-26 深圳顺络电子股份有限公司 Manufacturing method of ceramic electronic component

Also Published As

Publication number Publication date
CN102617152B (en) 2014-07-30
CN102617152A (en) 2012-08-01
JP2012156091A (en) 2012-08-16

Similar Documents

Publication Publication Date Title
JP5271368B2 (en) Manufacturing method of ceramic member
KR20140041820A (en) Vacuum processing device
CN109910049A (en) The just soft coupling machinery handgrip of self-locking
JPWO2011040145A1 (en) Honeycomb structure and manufacturing method thereof
KR20190031530A (en) Sintering furnace
KR102588614B1 (en) Industrial robot and manufacturing system
JP4987559B2 (en) Gripping device and method for manufacturing honeycomb structure
US20190177096A1 (en) Method and device for transferring columnar honeycomb structures
JP2022009056A (en) Displacement expansion mechanism, actuator, polishing device, electronic component processing apparatus, dispenser, and air valve
CN110041083A (en) The manufacturing method of ceramic firing body
JP4972025B2 (en) Transfer method of long ceramic columnar body
TWI616633B (en) Chamber for heat treatment device and heat treatment device
TWI575642B (en) Film formation apparatus
US20180328667A1 (en) Setter for firing, and method for producing honeycomb structure using setter for firing
JP7101483B2 (en) Fire-building equipment and method
CN105043103B (en) A kind of overlength ceramic rod sintering furnace and its application method
KR20130023595A (en) Bulk cutting device used for graphite crucible fabricating
TW202009094A (en) Stage device
JP2017089820A (en) Piping
WO2018092914A1 (en) Gripping device and industrial robot
KR100751032B1 (en) Multi chamber system
JP2016217433A (en) Adsorption mechanism
JP2007235094A (en) Reduced pressure dry processing device
JP2012096437A (en) Method and apparatus for vulcanizing pneumatic tire
TWI565518B (en) Mixer

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130116

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130122

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130510

R150 Certificate of patent or registration of utility model

Ref document number: 5271368

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees