JP5268565B2 - Grinding media particles, grinding media and ceramic powder grinding method - Google Patents

Grinding media particles, grinding media and ceramic powder grinding method Download PDF

Info

Publication number
JP5268565B2
JP5268565B2 JP2008278121A JP2008278121A JP5268565B2 JP 5268565 B2 JP5268565 B2 JP 5268565B2 JP 2008278121 A JP2008278121 A JP 2008278121A JP 2008278121 A JP2008278121 A JP 2008278121A JP 5268565 B2 JP5268565 B2 JP 5268565B2
Authority
JP
Japan
Prior art keywords
ceramic powder
pulverizing
pulverizing medium
particles
medium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008278121A
Other languages
Japanese (ja)
Other versions
JP2010104882A (en
Inventor
恒 佐藤
雄二 新宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2008278121A priority Critical patent/JP5268565B2/en
Publication of JP2010104882A publication Critical patent/JP2010104882A/en
Application granted granted Critical
Publication of JP5268565B2 publication Critical patent/JP5268565B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Crushing And Grinding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a medium particle for crushing, a medium for crushing and a method of crushing a ceramic powder which enable crushing a ceramic powder efficiently with such a range of distribution of particle sizes as to cope with e.g. recent requirements for improvement of characteristics of electronic part elements. <P>SOLUTION: The medium particle 1 is spherical and is used to crush a ceramic powder. On the surface of the medium particle 1, circular plane portions 1a are formed at six positions arranged at nearly equal intervals on a large circle A and at six positions arranged at nearly equal intervals on each of two small circles B located in the middle of hemispheres divided by the large circle A. Since a ceramic powder can be efficiently held between the plane portions 1a of the medium particles 1 for crushing and crushed, achieving high crushing efficiency and enabling crushing while controlling the range of distribution of particle sizes. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、セラミック粉末と接触させてセラミック粉末を粉砕するために使用される粉砕用媒体粒子およびその粉砕用媒体粒子を含む粉砕用媒体ならびにセラミック粉末の粉砕方法に関するものである。   The present invention relates to a pulverizing medium particle used for pulverizing a ceramic powder in contact with the ceramic powder, a pulverizing medium containing the pulverizing medium particle, and a method for pulverizing the ceramic powder.

セラミック積層コンデンサやセラミック圧電素子等の電子部品素子は、チタン酸バリウム等のセラミック焼結体からなる絶縁基体に容量電極等の所定の導体パターンが被着されて形成されている。   Electronic component elements such as ceramic multilayer capacitors and ceramic piezoelectric elements are formed by attaching a predetermined conductor pattern such as a capacitor electrode to an insulating base made of a ceramic sintered body such as barium titanate.

このようなセラミック焼結体は、原料のセラミック粉末を粉砕装置により粉砕して所定の粒径に調整した後、このセラミック粉末を有機溶剤,バインダとともにシート状に成形して作製した複数のセラミックグリーンシートを積層し、これを焼成することにより作製される。また、導体パターンは、ニッケルや銅等の金属ペーストをセラミックグリーンシートに所定パターンに塗布し、セラミックグリーンシートの積層体と同時焼成することにより形成される。   Such a ceramic sintered body is made of a plurality of ceramic greens prepared by pulverizing a raw ceramic powder with a pulverizer to a predetermined particle size and then forming the ceramic powder into a sheet with an organic solvent and a binder. It is produced by laminating sheets and firing them. The conductor pattern is formed by applying a metal paste such as nickel or copper to a ceramic green sheet in a predetermined pattern and simultaneously firing the laminated body of ceramic green sheets.

セラミック粉末の粉砕は、一般に、酸化ジルコニウム質焼結体や酸化アルミニウム質焼結体等からなる粉砕用媒体粒子を、振動や回転等の動きをさせながらセラミック粉末と接触(衝突)させて行なわれる。具体的には、粉砕用媒体粒子を大量に集めてなる粉砕用媒体を振動ミルや回転ミル等のミル中でセラミック粉末と混合し、粉砕用媒体粒子の間に挟まれたセラミック粉末に、ミルの振動や回転に伴う摩擦等により剪断応力等の応力を生じさせて粉砕することにより行なわれる。
特開2001−205123号公報
The pulverization of the ceramic powder is generally performed by contacting (collising) the pulverizing medium particles made of a zirconium oxide sintered body, an aluminum oxide sintered body, etc. with the ceramic powder while moving such as vibration and rotation. . Specifically, a pulverizing medium obtained by collecting a large amount of pulverizing medium particles is mixed with ceramic powder in a mill such as a vibration mill or a rotating mill, and the ceramic powder sandwiched between the pulverizing medium particles is mixed with the mill. It is carried out by generating a stress such as a shearing stress by friction or the like accompanying the vibration or rotation of the material and grinding.
JP 2001-205123 A

上記従来の粉砕用媒体は、セラミック粉末を、粒径の分布範囲を抑制しながら効率よく粉砕することが難しいという問題点があった。これは、粉砕用媒体粒子が球形であるため、例えば粉砕用媒体粒子をミルの中に充填したときに、粉砕用媒体粒子同士の接しあう範囲が狭く、粒子同士の間の隙間が比較的広いために、粉砕用媒体粒子とセラミック粉末との接触の効率を高めることが難しいためである。   The conventional pulverizing medium has a problem that it is difficult to efficiently pulverize ceramic powder while suppressing the distribution range of particle diameters. This is because the pulverizing medium particles are spherical, for example, when the pulverizing medium particles are filled in the mill, the range in which the pulverizing medium particles contact each other is narrow, and the gap between the particles is relatively wide. For this reason, it is difficult to increase the efficiency of contact between the pulverizing medium particles and the ceramic powder.

このような問題点に対しては、例えば、粉砕用媒体粒子を多面体とする手段が考えられる(例えば、特許文献1を参照。)。しかしながら、近年、例えば電子部品素子である積層セラミックコンデンサにおける絶縁性のより一層の向上のように、特性の向上が求められている。このような特性の向上のためには、セラミック粉末をさらに効率よく粉砕し、粉砕粒度の分布をよりシャープにする(分布範囲を狭くする)ことが必要になって来ている。そして、単に粉砕用媒体粒子を多面体とした場合には、粉砕用媒体をミル等の中に充填したときに、隣り合う粉砕用媒体粒子の平面部分同士が必ずしも対向しあうとは限らず、上記のような条件に対応できる程度にセラミック粉末を粉砕する効率を高くすることが難しい場合があるという問題点があった。   In order to solve such a problem, for example, means for making the pulverizing medium particles into a polyhedron can be considered (for example, see Patent Document 1). However, in recent years, there has been a demand for improvement in characteristics such as further improvement in insulation in a multilayer ceramic capacitor which is an electronic component element, for example. In order to improve such characteristics, it has become necessary to pulverize ceramic powder more efficiently and to sharpen the pulverized particle size distribution (narrow the distribution range). And when the pulverizing medium particles are simply polyhedral, when the pulverizing medium is filled in a mill or the like, the planar portions of the adjacent pulverizing medium particles are not necessarily opposed to each other. There is a problem that it may be difficult to increase the efficiency of pulverizing the ceramic powder to such an extent that it can cope with such conditions.

本発明はこのような従来の問題点に鑑み案出されたものであり、その目的は、例えば近年の電子部品素子に要求される特性の向上に対応できる程度に、セラミック粉末を効率よく、粒径の分布範囲を抑制して粉砕することができる粉砕用媒体粒子および粉砕用媒体ならびにセラミック粉末の粉砕方法を提供することにある。   The present invention has been devised in view of such conventional problems, and the purpose thereof is to efficiently produce ceramic powder to such an extent that it can cope with, for example, improvement in characteristics required for recent electronic component elements. An object of the present invention is to provide a pulverizing medium particle, a pulverizing medium, and a method for pulverizing ceramic powder, which can be pulverized while suppressing the diameter distribution range.

本発明の粉砕用媒体粒子は、セラミック粉末を粉砕するための球状の粉砕用媒体粒子であって、表面に円形状の平面部が、1つの大円上にほぼ等間隔に並んだ6箇所と、前記大円で区分された両側の半球部のそれぞれの中程に位置する前記大円と平行な2つの小円上にそれぞれほぼ等間隔に並んだ6箇所ずつとに配置されていることを特徴とするものである。   The pulverizing medium particles of the present invention are spherical pulverizing medium particles for pulverizing the ceramic powder, and the surface has a circular plane portion arranged at approximately equal intervals on one great circle. , And arranged on six small circles arranged at approximately equal intervals on two small circles parallel to the great circle located in the middle of each of the hemispherical parts on both sides divided by the great circle. It is a feature.

また、本発明の粉砕用媒体粒子は、上記構成において、前記小円上の前記平面部が、前記大円上の隣り合う前記平面部の間と前記半球部の頂点とを結ぶ円弧上に配置されていることを特徴とするものである。   Further, in the above-described configuration, the pulverizing medium particles of the present invention are arranged such that the plane portion on the small circle is on an arc connecting the plane portions adjacent to each other on the great circle and the apex of the hemisphere portion. It is characterized by being.

本発明の粉砕用媒体は、セラミック粉末を粉砕するための球状の粉砕用媒体粒子からなる粉砕用媒体であって、上記いずれかの構成の本発明の粉砕用媒体粒子を10体積%以上含むことを特徴とするものである。   The pulverizing medium of the present invention is a pulverizing medium composed of spherical pulverizing medium particles for pulverizing ceramic powder, and contains 10% by volume or more of the pulverizing medium particles of the present invention having any one of the above configurations. It is characterized by.

また、本発明の粉砕用媒体は、上記構成において、前記球状の粉砕用媒体粒子として、円形状の平面部が、1つの大円上にほぼ等間隔に並んだ6箇所と、前記大円で区分された両側の半球部のそれぞれの中程に位置する前記大円と平行な2つの小円上にそれぞれほぼ等間隔に並んだ3箇所ずつとに配置された粉砕用媒体粒子を含むことを特徴とするものである。   Further, in the above-described configuration, the grinding medium of the present invention has, as the spherical grinding media particles, six locations in which circular planar portions are arranged at almost equal intervals on one great circle, and the great circle. Including pulverizing medium particles arranged at three points arranged at approximately equal intervals on two small circles parallel to the great circle located in the middle of each of the divided hemispherical parts. It is a feature.

本発明のセラミック粉末の粉砕方法は、粉砕装置内でセラミック粉末を上記いずれかの構成の本発明の粉砕用媒体と接触させて粉砕することを特徴とするものである。   The ceramic powder pulverization method of the present invention is characterized in that the ceramic powder is pulverized in contact with the pulverization medium of the present invention having any one of the above structures in a pulverizer.

本発明の粉砕用媒体粒子によれば、表面に円形状の平面部が、1つの大円上にほぼ等間隔に並んだ6箇所と、前記大円で区分された両側の半球部のそれぞれの中程に位置する前記大円と平行な2つの小円上にそれぞれほぼ等間隔に並んだ6箇所ずつとに配置されていることから、このような粉砕用媒体粒子を粉砕装置内で粉砕用媒体として用いるときに、1つの粉砕用媒体粒子において、その横方向に6箇所と、上下それぞれ斜め(小円)方向に6箇所ずつとに平面部がほぼ等間隔に並んで位置する。ここで、一般に、球状の物体を、密度を高くして配置しようとするときには、1つの球状の物体に対して横方向および上下斜め方向に他の球状の物体が位置する。そのため、横方向および上下斜め方向でそれぞれ接し合う粉砕用媒体粒子同士の間で、平面部同士をより確実に、効率よく接し合わせることができる。したがって、粉砕用媒体粒子の平面部同士の間で、効果的にセラミック粉末を挟んで、摩擦に伴う剪断応力等の応力を加えてセラミック粉末を粉砕することができる。   According to the pulverizing medium particles of the present invention, each of the six portions where the circular flat surface portion is arranged on the surface of the large circle at almost equal intervals and the hemispherical portions on both sides divided by the large circle are provided. Since it is arranged in six places arranged at approximately equal intervals on two small circles parallel to the great circle located in the middle, such grinding media particles are used for grinding in the grinding device. When used as a medium, in one pulverizing medium particle, the plane portions are located at almost equal intervals in six places in the lateral direction and six places in the upper and lower oblique (small circle) directions. Here, in general, when a spherical object is to be arranged with a high density, other spherical objects are positioned laterally and vertically obliquely with respect to one spherical object. Therefore, the flat portions can be more reliably and efficiently brought into contact with each other between the pulverizing medium particles that are in contact with each other in the lateral direction and the oblique direction. Therefore, the ceramic powder can be effectively pulverized by applying a stress such as a shearing stress accompanying friction between the flat portions of the pulverizing medium particles and effectively applying the ceramic powder.

また、本発明の粉砕用媒体粒子によれば、上記構成において、前記小円上の前記平面部が、前記大円上の隣り合う前記平面部の間と前記半球部の頂点とを結ぶ円弧上に配置されている場合には、このような球状の粉砕用媒体粒子を、互いにいわゆる体心立方または面心立方の格子を構成するように配置したときに、ちょうど互いの平面部同士が対向し合うような位置になる。そのため、粉砕用媒体粒子の粉砕装置内における充填の密度をより高める上で有効であり、平面部同士の間でセラミック粉末をより一層効率よく粉砕することができる。したがって、この場合には、セラミック粉末をより一層効率よく、粒径の分布範囲を抑制して粉砕することが可能な粉砕用媒体粒子を提供することができる。   Further, according to the pulverizing medium particle of the present invention, in the above configuration, the planar portion on the small circle is on an arc connecting between the planar portions adjacent to each other on the great circle and the apex of the hemispherical portion. When the spherical grinding media particles are arranged so as to form a so-called body-centered cubic or face-centered cubic lattice, the plane portions of each other are just opposite each other. It will be in a suitable position. Therefore, it is effective in increasing the packing density of the pulverizing medium particles in the pulverizing apparatus, and the ceramic powder can be pulverized more efficiently between the flat portions. Therefore, in this case, it is possible to provide pulverizing medium particles capable of pulverizing the ceramic powder more efficiently and suppressing the particle size distribution range.

本発明の粉砕用媒体によれば、セラミック粉末を粉砕するための球状の粉砕用媒体粒子からなる粉砕用媒体であって、上記いずれかの構成の本発明の粉砕用媒体粒子を10体積%以上含むことから、セラミック粉末の粉砕を効率よく、粒径の分布範囲を抑制して粉砕することが可能な粉砕用媒体を提供することができる。   According to the pulverizing medium of the present invention, a pulverizing medium comprising spherical pulverizing medium particles for pulverizing the ceramic powder, the pulverizing medium particles of the present invention having any one of the above structures being 10% by volume or more. Therefore, a pulverizing medium capable of efficiently pulverizing the ceramic powder and suppressing the particle size distribution range can be provided.

また、本発明の粉砕用媒体は、上記構成において、前記球状の粉砕用媒体粒子として、円形状の平面部が、1つの大円上にほぼ等間隔に並んだ6箇所と、前記大円で区分された両側の半球部のそれぞれの中程に位置する前記大円と平行な2つの小円上にそれぞれほぼ等間隔に並んだ3箇所ずつとに配置された粉砕用媒体粒子を含む場合には、セラミック粉末の粉砕を、効率を高めて、より長期にわたって行なわせることが可能な粉砕用媒体とすることもできる。   Further, in the above-described configuration, the grinding medium of the present invention has, as the spherical grinding media particles, six locations in which circular planar portions are arranged at almost equal intervals on one great circle, and the great circle. In the case of including pulverizing medium particles arranged in three places arranged at approximately equal intervals on two small circles parallel to the great circle located in the middle of each of the divided hemispherical parts. Can also be used as a pulverizing medium capable of increasing the efficiency and allowing the ceramic powder to be pulverized over a longer period of time.

すなわち、このような12個の平面部が配置された粉砕用媒体粒子は、上記構成の平面部が配置された粉砕用媒体粒子と同様に、球形の粉砕用媒体粒子に比べてセラミック粉末の粉砕を効率よく行なうことができる。また、小円上にほぼ等間隔に並んで配置された平面部同士の間に、粉砕用媒体粒子同士の接触(摩擦)に伴って新たに平面部が形成される可能性がある。そして、この場合には、このような12個の平面部が配置された(配置されていた)粉砕用媒体粒子を、新たに上記構成の本発明の粉砕用媒体粒子(小円上に平面部が6箇所ずつ配置されたもの)として機能させることができる。そのため、粉砕用媒体を、より長期にわたり安定して、効率よくセラミック粉末の粉砕を行なうことが可能なものとすることができる。   That is, the pulverizing medium particles in which the twelve flat portions are arranged, like the pulverizing medium particles in which the flat portions having the above-described configuration are arranged, pulverize the ceramic powder as compared with the spherical pulverizing medium particles. Can be performed efficiently. In addition, there is a possibility that a new flat portion may be formed between the flat portions arranged side by side at almost equal intervals on the small circle, due to the contact (friction) between the grinding medium particles. In this case, the pulverizing medium particles having such 12 plane portions (arranged) are newly replaced with the pulverizing medium particles of the present invention having the above-described configuration (the flat portion on the small circle). Can be made to function as 6). Therefore, the pulverizing medium can be stably and efficiently pulverized ceramic powder for a longer period of time.

本発明のセラミック粉末の粉砕方法によれば、粉砕装置内でセラミック粉末を上記いずれかの構成の本発明の粉砕用媒体と接触させて粉砕することから、セラミック粉末を、効率よく、粒度分布を抑制して粉砕することが可能となる。   According to the method for pulverizing ceramic powder of the present invention, the ceramic powder is pulverized in contact with the pulverizing medium of the present invention having any one of the above structures in a pulverizer, so that the ceramic powder is efficiently dispersed in particle size distribution. It becomes possible to suppress and grind.

まず、本発明の粉砕用媒体粒子および粉砕用媒体について、添付の図面を参照しつつ説明する。   First, the pulverizing medium particles and the pulverizing medium of the present invention will be described with reference to the accompanying drawings.

図1は本発明の粉砕用媒体粒子の実施の形態の一例を示す斜視図である。図1において、1は粉砕用媒体粒子、1aは粉砕用媒体粒子1の表面に配置された平面部である。   FIG. 1 is a perspective view showing an example of an embodiment of pulverizing medium particles of the present invention. In FIG. 1, reference numeral 1 denotes a pulverizing medium particle, and reference numeral 1 a denotes a flat portion disposed on the surface of the pulverizing medium particle 1.

粉砕用媒体粒子1は、例えば、酸化ジルコニウム質焼結体や酸化アルミニウム質焼結体等の機械的強度の高いセラミック材料からなり、球状である。   The pulverizing medium particles 1 are made of a ceramic material having high mechanical strength such as a zirconium oxide sintered body and an aluminum oxide sintered body, and are spherical.

また、この粉砕用媒体粒子1を、例えば粉砕しようとするセラミック粉末に対して例えば体積比で約2:1〜10:1程度になるように大量に集めたものが、粉砕用媒体(図示せず)としてセラミック粉末の粉砕に用いられる。   Further, a large amount of the pulverizing medium particles 1 collected, for example, in a volume ratio of about 2: 1 to 10: 1 with respect to the ceramic powder to be pulverized is a pulverizing medium (not shown). To be used for grinding ceramic powder.

粉砕用媒体粒子1によるセラミック粉末の粉砕は、振動ミルや回転ミル等の粉砕装置(図示せず)内で粉砕用媒体とセラミック粉末とを混合して、ミルを振動させたり回転させたりして粉砕用媒体を動かしながらセラミック粉末と接触させて行なわれる。例えば、振動ミルの場合であれば、円筒状のミル本体内に粉砕用媒体を充填しておいて、その中にセラミック粉末を投入し、ミル本体を高速で振動させて粉砕用媒体を振動させる。この振動に伴い、粉砕用媒体粒子1の間に挟まれたセラミック粉末に摩擦に伴う剪断応力が生じ、この剪断応力によりセラミック粉末の粉砕が行なわれる。なお、セラミック粉末は、あらかじめ有機溶剤やバインダ等と混練してスラリーとしておいてもよい。   The pulverization of the ceramic powder by the pulverizing medium particles 1 is performed by mixing the pulverizing medium and the ceramic powder in a pulverizer (not shown) such as a vibration mill or a rotary mill, and vibrating or rotating the mill. It is carried out in contact with the ceramic powder while moving the grinding media. For example, in the case of a vibration mill, a pulverizing medium is filled in a cylindrical mill body, ceramic powder is put into the pulverizing medium, and the mill body is vibrated at high speed to vibrate the pulverizing medium. . Along with this vibration, a shearing stress accompanying friction is generated in the ceramic powder sandwiched between the grinding medium particles 1, and the ceramic powder is pulverized by this shearing stress. The ceramic powder may be previously kneaded with an organic solvent, a binder or the like to form a slurry.

粉砕するセラミック粉末としては、作製しようとする電子部品素子に応じた、チタン酸バリウムやチタン酸ストロンチウム,チタン酸ジルコン酸鉛,酸化アルミニウム等の種々のものが挙げられる。   Examples of the ceramic powder to be pulverized include various types such as barium titanate, strontium titanate, lead zirconate titanate, and aluminum oxide according to the electronic component element to be manufactured.

このような粉砕用媒体粒子1および粉砕用媒体は、例えば、以下のようにして製作することができる。すなわち、まず酸化ジルコニウムを95.5〜97.4質量%,酸化イットリウムを2.6〜4.5質量%の割合でそれぞれ含む原料粉末に有機バインダ,溶剤を添加して混練した後、スプレードライヤを用いて乾燥し造粒する。次に、この造粒したものを球状の成型用金型内に充填した後、例えば1トン/cmの荷重を加えてプレス成型体とする。そして、この成型体を約1200〜1550℃で焼成することにより製作することができる。 Such a pulverizing medium particle 1 and a pulverizing medium can be manufactured as follows, for example. That is, first, an organic binder and a solvent are added to a raw material powder containing 95.5 to 97.4% by mass of zirconium oxide and 2.6 to 4.5% by mass of yttrium oxide, kneaded, and then dried and granulated using a spray dryer. . Next, after this granulated material is filled into a spherical molding die, a load of, for example, 1 ton / cm 2 is applied to obtain a press-molded body. And it can manufacture by baking this molded object at about 1200-1550 degreeC.

この粉砕用媒体粒子1は、表面に円形状の平面部1aが、1つの大円A上にほぼ等間隔に並んだ6箇所と、この大円Aで区分された両側の半球部(符号なし)のそれぞれの中程に位置する大円Aと平行な2つの小円B上にそれぞれほぼ等間隔に並んだ6箇所ずつとに配置されている。つまり、球状の粉砕用媒体粒子1は、例えば図2(a)および(b)に示すように、粉砕用媒体として振動ミル等の粉砕装置内に入れたときに、一つの粉砕用媒体粒子1の横方向に6箇所と、上下それぞれ斜め(小円B)方向に6箇所ずつとに平面部1aが位置する。そのため、横方向および上下斜め方向でそれぞれ接し合う粉砕用媒体粒子1同士の間で、平面部1a同士が効率よく接し合うことができる。なお、図2(a)および(b)は、それぞれ本発明の粉砕用媒体粒子1を粉砕用媒体として振動ミル等の粉砕装置内に入れた状態を模式的に示す平面図(透視図)および側面図である。図2において図1と同様の部位には同様の符号を付している。   This pulverizing medium particle 1 has six portions in which a circular flat surface portion 1a is arranged on the surface of a large circle A at almost equal intervals, and hemispherical portions on both sides divided by the large circle A (no symbol). ) On two small circles B parallel to the great circle A located in the middle of each of them, respectively, at six locations arranged at almost equal intervals. That is, when the spherical pulverizing medium particles 1 are placed in a pulverizing apparatus such as a vibration mill as a pulverizing medium, for example, as shown in FIGS. The plane portions 1a are located at six locations in the horizontal direction and six locations in the diagonal direction (small circle B). Therefore, the flat portions 1a can efficiently contact each other between the pulverizing medium particles 1 that are in contact with each other in the lateral direction and the oblique direction. 2A and 2B are a plan view (perspective view) schematically showing a state in which the pulverizing medium particles 1 of the present invention are put in a pulverizing apparatus such as a vibration mill as a pulverizing medium, respectively. It is a side view. In FIG. 2, the same parts as those in FIG.

ここで、一般に球状の物体を密度を高くして配置しようとするときには、通常は1つの球状の物体に対して横方向および上下斜め方向に他の球状の物体が位置する。そして、このような位置に、本発明の粉砕用媒体粒子1の平面部1aが位置することになる。そのため、粉砕用媒体粒子1の平面部1a同士の間で、効果的にセラミック粉末(符号なし)を挟んで、摩擦に伴う剪断応力等の応力を加えてセラミック粉末を粉砕することができる。   Here, in general, when a spherical object is to be arranged with a high density, normally, another spherical object is positioned laterally and vertically obliquely with respect to one spherical object. And the plane part 1a of the medium particle 1 for grinding | pulverization of this invention is located in such a position. Therefore, the ceramic powder can be pulverized by applying a stress such as a shearing stress associated with friction between the flat portions 1a of the pulverizing medium particles 1 by effectively sandwiching the ceramic powder (no symbol).

また、この粉砕用媒体粒子1は、平面部1aを有しているものの全体が球状であり、平面部1a以外の部分の表面は球面状であるため、多面体であるような場合に比べて、粉砕用媒体粒子1同士の間に一定の隙間が確保され、この隙間を通してセラミック粉末のスラリーを移動させることもできる。そのため、例えば振動ミル内に粉砕用媒体粒子1を粉砕用媒体として充填したときに、その中に上側からセラミック粉末(スラリー等)を投入した際に、上側の粉砕用媒体から下側の粉砕用媒体に向けて重力によりスムーズにセラミック粉末を移動させて、次々に粉砕を行なわせることができる。   Further, since the pulverizing medium particles 1 having the flat portion 1a are spherical in shape, and the surface of the portion other than the flat portion 1a is spherical, compared to a case where it is a polyhedron, A certain gap is secured between the pulverizing medium particles 1, and the slurry of the ceramic powder can be moved through the gap. Therefore, for example, when the pulverizing medium particles 1 are filled in the vibration mill as a pulverizing medium, when the ceramic powder (slurry or the like) is charged into the pulverizing medium from the upper side, The ceramic powder can be moved smoothly toward the medium by gravity, and pulverized one after another.

このような平面部1aは、例えば振動ミル中に粉砕用媒体粒子1を粉砕用媒体として充填しておいて、これを高速で振動させて粉砕用媒体粒子1同士の接触面を研削することにより、粉砕用媒体粒子1の表面に前述の配置で形成することができる。この場合、ミル中に充填された粉砕用媒体粒子1同士の接触面は、1つの粉砕用媒体粒子1において水平な1つの大円A上に並んだ6箇所と、大円Aで区分された両側の半球部のそれぞれの中程に位置する大円Aと平行な2つの小円B上にそれぞれほぼ等間隔に並んだ3箇所ずつとであり、この接触面が研削されて平面部1aとなる。また、振動に伴う粉砕溶媒体粒子1の回転等の移動により、小円B上の3箇所の接触面同士の間も研削されて、平面部1aが形成される。そのため、小円B上に平面部1aを6箇所ずつ形成することができる。   Such a flat portion 1a is formed by, for example, filling the grinding media particles 1 as grinding media in a vibration mill and grinding the contact surfaces of the grinding media particles 1 by vibrating them at high speed. And can be formed on the surface of the pulverizing medium particles 1 in the above-described arrangement. In this case, the contact surfaces of the pulverizing medium particles 1 filled in the mill were divided by six large circles A and six locations arranged on one horizontal large circle A in one pulverizing medium particle 1. Three points are arranged on the two small circles B parallel to the great circle A located in the middle of each of the hemispherical portions on both sides, and are arranged at almost equal intervals, and the contact surface is ground to obtain the flat portion 1a. Become. Also, the three contact surfaces on the small circle B are ground by the movement such as rotation of the pulverized solvent body particles 1 accompanying the vibration, and the plane portion 1a is formed. Therefore, six plane portions 1a can be formed on the small circle B.

また、このような粉砕用媒体粒子1において、小円B上の平面部1aが、大円A上の隣り合う平面部1aの間と半球部の頂点とを結ぶ円弧上に配置されている場合には、このような球状の粉砕用媒体粒子1を、互いにいわゆる体心立方または面心立方の格子を構成するように配置したときに、ちょうど互いの平面部1a同士が対向し合うような位置になる。複数個の球状の物体を、密度を高めて配置したときの位置が、上記の体心立方格子または面心立方格子の格子点に相当する。そのため、粉砕用媒体粒子1の粉砕装置内における充填の密度をより高める上で有効であり、平面部1a同士の間でセラミック粉末をより一層効率よく粉砕することができる。したがって、この場合には、セラミック粉末をより一層効率よく、粒径の分布範囲を抑制して粉砕することが可能な粉砕用媒体粒子1とすることができる。   Further, in such a pulverizing medium particle 1, the flat surface portion 1 a on the small circle B is arranged on an arc connecting between the adjacent flat surface portions 1 a on the large circle A and the apex of the hemispherical portion. In such a case, when the spherical pulverizing medium particles 1 are arranged so as to constitute a so-called body-centered cubic or face-centered cubic lattice, the plane portions 1a are just facing each other. become. The position when a plurality of spherical objects are arranged with increased density corresponds to the lattice points of the above-mentioned body-centered cubic lattice or face-centered cubic lattice. Therefore, it is effective in increasing the packing density of the pulverizing medium particles 1 in the pulverizing apparatus, and the ceramic powder can be pulverized more efficiently between the flat portions 1a. Therefore, in this case, it is possible to obtain the pulverizing medium particles 1 that can pulverize the ceramic powder more efficiently while suppressing the particle size distribution range.

また、粉砕用媒体粒子1の外形寸法は、粉砕しようとするセラミック粉末の外形寸法に対して500〜50000倍程度の十分に大きなものとすることが好ましい。この程度の寸法であれば、粉砕用媒体粒子1の寸法が粉砕しようとするセラミック粉末の寸法に比べて十分に大きいので、粉砕用媒体粒子1同士の間にセラミック粉末を挟んで容易に粉砕することができる。   Moreover, it is preferable that the external dimensions of the pulverizing medium particles 1 be sufficiently large, about 500 to 50000 times the external dimensions of the ceramic powder to be pulverized. If the size is such a size, the size of the pulverizing medium particles 1 is sufficiently larger than the size of the ceramic powder to be pulverized. be able to.

また、例えば、セラミック粉末がチタン酸バリウム等の、積層セラミックコンデンサに使用されるような誘電率の高い材料の場合であれば、粉砕用媒体粒子1の外形寸法を約3〜7mm程度として、外形寸法が約0.2〜2μm程度のセラミック(チタン酸バリウム)粉末の粉砕を行なうようにすればよい。これは、このような条件に設定すれば、例えばチタン酸バリウムの粉末を、約0.1〜0.7μm程度の範囲で、ほぼ粒径が正規分布するように良好に粉砕することができるからである。そして、この粉砕したチタン酸バリウムの粉末を用いて、焼結性が良好で、絶縁性の高い絶縁基体(積層セラミックコンデンサの誘電体層)を作製することができる。   Further, for example, if the ceramic powder is a material having a high dielectric constant such as barium titanate used for a multilayer ceramic capacitor, the external dimensions of the grinding medium particles 1 are set to about 3 to 7 mm. What is necessary is just to grind | pulverize the ceramic (barium titanate) powder whose dimension is about 0.2-2 micrometers. This is because, for example, barium titanate powder can be pulverized satisfactorily in a range of about 0.1 to 0.7 [mu] m so that the particle size is normally distributed. The pulverized barium titanate powder can be used to produce an insulating base (dielectric layer of a multilayer ceramic capacitor) having good sinterability and high insulating properties.

また、平面部1aは、大円Aや小円B上にほぼ等間隔で並んでいるものであり、各平面部1aにおいて同様に粉砕の効果を得るためには、それぞれの面積および形状が同程度のものであることが好ましい。大円Aや小円Bにおけるそれぞれ6個の平面部1aの面積および形状(円形等)が同程度の場合であれば、それぞれの平面部1aは、互いに中心角で60度程度の間隔で配置すればよい。なお、平面部1aは、円形状に限らず、楕円形状や円周の一部に凹凸があるようなものでもよい。   The plane portions 1a are arranged on the great circle A and the small circle B at almost equal intervals. In order to obtain the same pulverization effect in each plane portion 1a, the areas and shapes of the plane portions 1a are the same. It is preferable that it is a thing of a grade. If the area and shape (circularity etc.) of the six plane portions 1a in the great circle A and the small circle B are approximately the same, the plane portions 1a are arranged at intervals of about 60 degrees with respect to each other at the central angle. do it. In addition, the plane part 1a is not limited to a circular shape, and may be an elliptical shape or a portion having a concavity and convexity on a part of the circumference.

本発明の粉砕用媒体は、上記構成の粉砕用媒体粒子1を10体積以上含むものである。すなわち、前述した本発明の粉砕用媒体粒子1を用いてなる本発明の粉砕用媒体は、必ずしも全部が上記のような構成の平面部1aを有するものである必要はないが、粉砕の効率を効果的に向上させるために、上記構成の平面部1aを有する粉砕用媒体粒子1を10体積%以上含むものとしておく必要がある。この場合、平面部1aを有する粉砕用媒体粒子1以外の粉砕用媒体は球状(表面の一部に凹凸があるもの等を含む)である。   The pulverizing medium of the present invention contains 10 or more volumes of the pulverizing medium particles 1 configured as described above. That is, the pulverization medium of the present invention using the pulverization medium particles 1 of the present invention described above does not necessarily have to have the flat portion 1a having the above-described configuration, but the pulverization efficiency is improved. In order to improve effectively, it is necessary to contain 10 volume% or more of the grinding | pulverization medium particle | grains 1 which have the plane part 1a of the said structure. In this case, the pulverization medium other than the pulverization medium particles 1 having the flat surface portion 1a is spherical (including one having irregularities on a part of the surface).

なお、このような粉砕用媒体は、粉砕用媒体粒子1の平面部1a同士が隣接すると振動装置内における占有空間が小さくなる。つまり位置エネルギー的に安定した状態になるので、一度隣接するとその隣接を保持する傾向がある。そして、この振動用媒体に振動等の運動エネルギーを加えることによって、本発明の粉砕用媒体粒子1を含む粉砕用媒体粒子全体の再配列が起こり、振動を加える時間の経過と共に、本発明の粉砕用媒体粒子1が多く集まった集合部(図示せず)が形成されて来る。例えば縦型の振動タイプ(上下方向に振動するタイプ)の振動ミルの場合は、ミル本体の中に本発明の粉砕用媒体粒子1の層が形成される。そして、この層によりセラミック粉末を効率よく粉砕することができる。   Note that, in such a pulverizing medium, when the flat portions 1a of the pulverizing medium particles 1 are adjacent to each other, the occupied space in the vibration device is reduced. In other words, since the position energy is stable, once adjacent, there is a tendency to maintain the adjacent. Then, by adding kinetic energy such as vibration to the vibration medium, rearrangement of the entire grinding medium particles including the grinding medium particles 1 of the present invention occurs, and the grinding of the present invention is performed as time passes for applying the vibration. A gathering portion (not shown) in which many medium particles 1 are gathered is formed. For example, in the case of a vibration mill of a vertical vibration type (a type that vibrates in the vertical direction), the layer of the pulverizing medium particles 1 of the present invention is formed in the mill body. The ceramic powder can be efficiently pulverized by this layer.

また、セラミック粉末(スラリー)は、例えば、ミル本体の上部から投入して下部から取り出すが、この操作を繰り返す(循環させる)と、スラリーが上記の本発明の粉砕用媒体粒子1の層を複数回通過するので、より均一な粒度に粉砕することができる。また、このような本発明の粉砕用媒体粒子1の層を形成する上では、粉砕用媒体において粉砕用媒体粒子1が10体積%以上含まれていれば十分であるが、20%体積以上含まれていればなお望ましい。   The ceramic powder (slurry) is, for example, introduced from the upper part of the mill body and taken out from the lower part. When this operation is repeated (circulated), the slurry forms a plurality of layers of the above-mentioned grinding media particles 1 of the present invention. Since it passes through once, it can grind | pulverize to a more uniform particle size. Further, in forming such a layer of the pulverizing medium particles 1 of the present invention, it is sufficient that the pulverizing medium particles 1 are contained in an amount of 10% by volume or more. It is still desirable if it is.

また、この粉砕用媒体において、粉砕用媒体粒子1以外の球状のものとして、例えば図3に示すような、円形状の平面部2aが、1つの大円A上にほぼ等間隔に並んだ6箇所と、大円Aで区分された両側の半球部(符号なし)のそれぞれの中程に位置する大円Aと平行な2つの小円B上にそれぞれほぼ等間隔に並んだ3箇所ずつとに配置された粉砕用媒体粒子2を含む場合には、次のような効果を得ることができる。なお、図3は、本発明の粉砕用媒体において粉砕用媒体粒子1とともに使用される粉砕用媒体粒子2の一例を示す斜視図である。   Further, in this pulverizing medium, as a spherical shape other than the pulverizing medium particles 1, circular flat portions 2a as shown in FIG. 3, for example, are arranged on one great circle A at approximately equal intervals. 3 points each arranged at approximately equal intervals on two small circles B parallel to the large circle A located in the middle of each portion and the hemispherical part (not indicated) on both sides divided by the large circle A The following effects can be obtained when the pulverizing medium particles 2 are included. FIG. 3 is a perspective view showing an example of pulverizing medium particles 2 used together with the pulverizing medium particles 1 in the pulverizing medium of the present invention.

すなわち、このように、平面部2aが12箇所配置された粉砕用媒体粒子2は、前述した粉砕用媒体粒子1と同様に、粉砕装置内で粉砕用媒体として用いられるときに、横方向および斜め上下方向で他の粉砕用媒体粒子2とそれぞれの平面部2a同士が対向し合うため、球形の粉砕用媒体粒子に比べてセラミック粉末の粉砕を効率よく行なうことができる。   That is, in this way, the pulverizing medium particles 2 in which the planar portions 2a are arranged at twelve locations are laterally and obliquely used when used as a pulverizing medium in the pulverizing apparatus, similarly to the pulverizing medium particles 1 described above. Since the other pulverizing medium particles 2 and the respective flat portions 2a face each other in the vertical direction, the ceramic powder can be pulverized more efficiently than the spherical pulverizing medium particles.

また、小円B上にほぼ等間隔に並んで配置された平面部2a同士の間に、粉砕用媒体粒子2同士の接触(摩擦)に伴って新たに平面部(図3では図示せず)が形成されることがある。そして、この場合には、このような12個の平面部2aが配置された(配置されていた)粉砕用媒体粒子2を、新たに前述の構成の粉砕用媒体粒子(小円上に平面部1aが6箇所ずつ配置されたもの)1として機能させることができる。そのため、粉砕用媒体を、より長期にわたり安定して、効率よくセラミック粉末の粉砕を行なうことが可能なものとすることができる。   Further, between the flat portions 2a arranged on the small circle B at approximately equal intervals, a new flat portion (not shown in FIG. 3) is brought into contact with the pulverizing medium particles 2 (friction). May be formed. In this case, the pulverizing medium particles 2 in which the twelve planar portions 2a are arranged (arranged) are newly replaced with the pulverizing medium particles having the above-described configuration (the planar portion on the small circle). 1a can be made to function as 1). Therefore, the pulverizing medium can be stably and efficiently pulverized ceramic powder for a longer period of time.

本発明のセラミック粉末の粉砕方法は、粉砕装置内でセラミック粉末を上記いずれかの構成の本発明の粉砕用媒体と接触させて粉砕するものである。このような粉砕方法によれば、上記構成の本発明の粉砕用媒体を使用することから、セラミック粉末を、効率よく、粒度分布を抑制して粉砕することが可能となる。   The method for pulverizing ceramic powder of the present invention is to pulverize ceramic powder by bringing it into contact with the pulverizing medium of the present invention having any one of the above structures in a pulverizer. According to such a pulverizing method, since the pulverizing medium of the present invention having the above-described configuration is used, the ceramic powder can be efficiently pulverized while suppressing the particle size distribution.

例えば、セラミック粉末が積層セラミックコンデンサに使用するチタン酸バリウムの粉末であり、振動ミルを用いて粉砕する場合であれば、以下のようにすればよい。   For example, when the ceramic powder is a barium titanate powder used for a multilayer ceramic capacitor and is pulverized using a vibration mill, the following may be performed.

粉砕用媒体として、酸化ジルコニウム質焼結体からなる、平面部1aが配置された粉砕用媒体粒子1を10体積%以上含む球状の粉砕用媒体粒子からなる粉砕用媒体を用い、これを、円筒状のミル本体の内部がほぼ埋まる程度に入れる。そして、ミル本体を高速で振動させて粉砕用媒体粒子1同士が互いに摩擦し合うようにしながら、セラミック粉末を有機溶剤,バインダとともに混練して作製したスラリーを、ミル本体の上部からミル内に入れる。この際に、粉砕用媒体粒子1同士の間にセラミック粉末が挟まれて接触し、粉砕用媒体粒子1との摩擦により生じた剪断応力によってセラミック粉末が粉砕される。粉砕されたセラミック粒子は、ミル本体の下側に設けた取り出し口から順次取り出され、これを用いて例えばテープ成形法によってセラミックグリーンシートに成形される。   As a grinding medium, a grinding medium comprising spherical grinding media particles comprising 10% by volume or more of grinding media particles 1 having a plane portion 1a made of a zirconium oxide sintered body is used. The inside of the shaped mill body is filled so that it is almost filled. Then, the slurry produced by kneading the ceramic powder together with the organic solvent and the binder is put into the mill from the upper part of the mill body while vibrating the mill body at high speed so that the grinding media particles 1 are rubbed with each other. . At this time, the ceramic powder is sandwiched and brought into contact with the pulverizing medium particles 1, and the ceramic powder is pulverized by the shear stress generated by friction with the pulverizing medium particles 1. The pulverized ceramic particles are sequentially taken out from a take-out port provided on the lower side of the mill main body, and are formed into a ceramic green sheet by using, for example, a tape forming method.

なお、この場合、粉砕用媒体粒子1の外形寸法は直径で約5mm程度であり、セラミック粉末は粉砕前の直径が例えば約0.1〜5μm程度である。粉砕に要する時間は、例えば上記の条件であれば約10〜15時間程度である。   In this case, the external dimensions of the grinding medium particles 1 are about 5 mm in diameter, and the ceramic powder has a diameter before grinding of about 0.1 to 5 μm, for example. The time required for pulverization is, for example, about 10 to 15 hours under the above conditions.

本発明の粉砕用媒体の効果を確認するために、以下の実験を行なった。なお、セラミック粉末としてはチタン酸バリウム粉末を用い、粉砕用媒体粒子としては酸化ジルコニウムからなる球状のものを用い、粉砕装置としては振動ミル(縦振動タイプ)を用いた。粉砕用媒体は、本発明の平面部が配置された粉砕用媒体粒子が30体積%含まれているものとした。   In order to confirm the effect of the grinding medium of the present invention, the following experiment was conducted. In addition, barium titanate powder was used as the ceramic powder, spherical particles made of zirconium oxide were used as the grinding media particles, and a vibration mill (longitudinal vibration type) was used as the grinding device. The pulverizing medium contains 30% by volume of pulverizing medium particles on which the flat portion of the present invention is arranged.

まず、振動ミルに粉砕用媒体を約65kg入れた後、振動ミルを振動させて粉砕用媒体粒子同士が互いに、より密に接し合うようにした。また、チタン酸バリウムの粉末(粒径が約1〜2μm程度)については、有機溶剤およびバインダと混練してスラリーとして、このスラリーをミル中に16kg上側から投入した。そして、振動ミルを加速度5m/sおよび変位0.1mmの条件で約15時間振動させてセラミック粉末を粉砕し、粉砕後のセラミック粉末の粒度分布をレーザ回折散乱粒度計にて測定した。 First, about 65 kg of the grinding medium was put in a vibration mill, and then the vibration mill was vibrated so that the grinding medium particles were in closer contact with each other. Moreover, about the barium titanate powder (a particle size is about 1-2 micrometers), it knead | mixed with the organic solvent and the binder as a slurry, and this slurry was supplied into the mill from 16 kg upper side. Then, the vibration mill was vibrated for about 15 hours under conditions of an acceleration of 5 m / s 2 and a displacement of 0.1 mm to grind the ceramic powder, and the particle size distribution of the ground ceramic powder was measured with a laser diffraction scattering particle size meter.

また、比較例として、平面部を有しない球形の粉砕用媒体のみを用いて、他の条件を上記と同様にして粉砕を行なった。測定結果を表1に示す。   Further, as a comparative example, pulverization was performed in the same manner as described above using only a spherical pulverizing medium having no flat portion. The measurement results are shown in Table 1.

Figure 0005268565
Figure 0005268565

粒径のばらつきの比較は、セラミック粉末の粒度分布において粒径の小さいものから10%の位置にあるものの粒径をD10(μm)、50%(つまり中央値)の位置にあるものの粒径をD50(μm)、90%の位置にあるものの粒径をD90(μm)とする方法により行なった。   The comparison of the particle size variation is based on the particle size distribution of the ceramic powder from the smallest particle size of 10% to the particle size of D10 (μm), 50% (that is, the median). D50 (μm) was carried out by a method in which the particle diameter of the 90% position was D90 (μm).

表1に示す結果から分かるように、セラミック粉末の分布の微粉部分を示すD10および粗粉部分を示すD90ともに、分布の中央を示すD50に対して粒径の差が0.12μm〜0.17μmであり、差が小さい。つまり分布の範囲が狭い。これに対し、比較例では、D50が実施例と同様の0.50μmであったのに対し、D10が0.29μm、D90が0.96μmであり、粒径の差が0.21〜0.46μmと大きく(実施例に比べて約1.2〜3.8倍程度)なった。つまり、実施例では、比較例に比べて、粒度分布の中間の値の粒径のものに対して、微粉および粗粉ともに近い粒径に分布したのであって、本発明の粉砕用媒体を用いた場合には、比較例に比べて微粉および粗粉がともに少なく、シャープな粒度分布であった。これに対して、比較例では、微粉および粗粉ともに中央値との差が大きく、粒径が広い範囲に分散しており、セラミック粉末の粒径の分散を抑えて(粒度分布をシャープにして)粉砕することが難しいことが分かった。   As can be seen from the results shown in Table 1, the difference in particle diameter is 0.12 μm to 0.17 μm with respect to D50 indicating the center of the distribution of both D10 indicating the fine powder portion and D90 indicating the coarse powder portion of the ceramic powder distribution. The difference is small. In other words, the distribution range is narrow. On the other hand, in the comparative example, D50 was 0.50 μm, which was the same as the example, whereas D10 was 0.29 μm, D90 was 0.96 μm, and the difference in particle size was as large as 0.21 to 0.46 μm (Example) Compared to about 1.2 to 3.8 times). That is, in the examples, compared to the comparative example, both fine powder and coarse powder were distributed in a particle size close to that of the intermediate particle size distribution, and the grinding medium of the present invention was used. In this case, both fine powder and coarse powder were less than in the comparative example, and the particle size distribution was sharp. On the other hand, in the comparative example, both the fine powder and the coarse powder have a large difference from the median, and the particle size is dispersed in a wide range, and the dispersion of the particle size of the ceramic powder is suppressed (the particle size distribution is sharpened). ) I found it difficult to grind.

また、上記の粉砕したセラミック粉末を用いて作製した電子部品素子の絶縁基体について、誘電損失値の測定および高温負荷試験を行なった。その結果、誘電損失値(tanδ(%))については、実施例によるセラミック粉末を用いた場合においては約2.0%であったのに対し、比較例によるセラミック粉末を用いた場合では約3.6%となった。これにより、本発明の粉砕用媒体を用いて粉砕したセラミック粉末を用いた場合には、従来よりも誘電損失値の低い絶縁基体を作製することが可能であることが分かった。   Further, dielectric loss values were measured and high-temperature load tests were performed on the insulating bases of electronic component elements manufactured using the pulverized ceramic powder. As a result, the dielectric loss value (tan δ (%)) was about 2.0% when the ceramic powder according to the example was used, whereas it was about 3.6% when the ceramic powder according to the comparative example was used. became. Thus, it was found that when the ceramic powder pulverized using the pulverizing medium of the present invention is used, it is possible to produce an insulating substrate having a dielectric loss value lower than that of the conventional one.

また、高温負荷試験は、上記の絶縁基体を厚さ約3μmの絶縁層の積層体で構成するとともに、その絶縁層の上下両面にニッケルの焼結材料からなる四角形状の導体をそれぞれ絶縁基体との同時焼成により被着させ、125℃,バイアス電圧12.5Vで1000時間の高温負荷試験を実施した後、隣り合う導体同士の間の電気的短絡の有無を確認することにより行なった。その結果、実施例の粉砕用媒体を用いて粉砕したセラミック粉末を用いた場合には導体間で絶縁破壊が発生しなかったのに対し、比較例によるセラミック粉末を用いた場合では隣り合う導体間に絶縁破壊が発生していた。   In the high temperature load test, the insulating base is composed of a laminate of insulating layers having a thickness of about 3 μm, and rectangular conductors made of a nickel sintered material are respectively formed on the upper and lower surfaces of the insulating layer. This was carried out by confirming the presence or absence of an electrical short circuit between adjacent conductors after performing a high-temperature load test for 1000 hours at 125 ° C. and a bias voltage of 12.5 V. As a result, dielectric breakdown did not occur between the conductors when using the ceramic powder pulverized using the pulverizing medium of the example, whereas between the adjacent conductors when using the ceramic powder according to the comparative example Insulation breakdown occurred.

以上のように、本発明の粉砕用媒体によれば、例えば近年の電子部品素子に要求される特性の向上に対応できる程度に、セラミック粉末を効率よく、粒径の分布範囲を抑制して粉砕することができた。   As described above, according to the pulverizing medium of the present invention, ceramic powder is efficiently pulverized to a degree that can cope with, for example, improvement in characteristics required for recent electronic component elements, while suppressing the particle size distribution range. We were able to.

本発明の粉砕用媒体粒子の実施の形態の一例を示す斜視図である。It is a perspective view which shows an example of embodiment of the medium particle for grinding | pulverization of this invention. (a)は図1に示す粉砕用媒体粒子を粉砕装置に入れた状態を模式的に示す平面図であり、(b)はその側面図である。(A) is a top view which shows typically the state which put the medium particle for grinding | pulverization shown in FIG. 1 in the grinding | pulverization apparatus, (b) is the side view. 本発明の粉砕用媒体を構成する粉砕用媒体粒子の一例を示す斜視図である。It is a perspective view which shows an example of the pulverization medium particle which comprises the pulverization medium of this invention.

符号の説明Explanation of symbols

1,2・・・・粉砕用媒体粒子
1a,2a・・平面部
1, 2... Medium particles for grinding 1a, 2a,.

Claims (5)

セラミック粉末を粉砕するための球状の粉砕用媒体粒子であって、表面に円形状の平面部が、1つの大円上にほぼ等間隔に並んだ6箇所と、前記大円で区分された両側の半球部のそれぞれの中程に位置する前記大円と平行な2つの小円上にそれぞれほぼ等間隔に並んだ6箇所ずつとに配置されていることを特徴とする粉砕用媒体粒子。 Spherical pulverizing medium particles for pulverizing ceramic powder, and having a circular plane portion on the surface arranged at approximately equal intervals on one great circle, and both sides divided by the great circle A pulverizing medium particle, characterized in that it is arranged at six places arranged at approximately equal intervals on two small circles parallel to the great circle located in the middle of each hemispherical portion. 前記小円上の前記平面部が、前記大円上の隣り合う前記平面部の間と前記半球部の頂点とを結ぶ円弧上に配置されていることを特徴とする請求項1記載の粉砕用媒体粒子。 2. The pulverizing apparatus according to claim 1, wherein the planar portion on the small circle is disposed on an arc connecting between the planar portions adjacent to each other on the great circle and an apex of the hemispherical portion. Medium particles. セラミック粉末を粉砕するための球状の粉砕用媒体粒子からなる粉砕用媒体であって、請求項1または請求項2記載の粉砕用媒体粒子を10体積%以上含むことを特徴とする粉砕用媒体。 A pulverizing medium comprising spherical pulverizing medium particles for pulverizing ceramic powder, the pulverizing medium comprising 10% by volume or more of the pulverizing medium particles according to claim 1 or 2. 前記球状の粉砕用媒体粒子として、円形状の平面部が、1つの大円上にほぼ等間隔に並んだ6箇所と、前記大円で区分された両側の半球部のそれぞれの中程に位置する前記大円と平行な2つの小円上にそれぞれほぼ等間隔に並んだ3箇所ずつとに配置された粉砕用媒体粒子を含むことを特徴とする請求項3記載の粉砕用媒体。 As the spherical pulverizing medium particles, circular plane portions are located in the middle of each of six locations arranged on a single great circle at approximately equal intervals and the hemispherical portions on both sides divided by the great circle. The pulverizing medium according to claim 3, comprising pulverizing medium particles arranged at three points arranged at approximately equal intervals on two small circles parallel to the great circle. 粉砕装置内でセラミック粉末を請求項3または請求項4に記載の粉砕用媒体と接触させて粉砕することを特徴とするセラミック粉末の粉砕方法。 A method for pulverizing ceramic powder, wherein the ceramic powder is pulverized in contact with the pulverizing medium according to claim 3 or 4 in a pulverizer.
JP2008278121A 2008-10-29 2008-10-29 Grinding media particles, grinding media and ceramic powder grinding method Expired - Fee Related JP5268565B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008278121A JP5268565B2 (en) 2008-10-29 2008-10-29 Grinding media particles, grinding media and ceramic powder grinding method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008278121A JP5268565B2 (en) 2008-10-29 2008-10-29 Grinding media particles, grinding media and ceramic powder grinding method

Publications (2)

Publication Number Publication Date
JP2010104882A JP2010104882A (en) 2010-05-13
JP5268565B2 true JP5268565B2 (en) 2013-08-21

Family

ID=42294863

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008278121A Expired - Fee Related JP5268565B2 (en) 2008-10-29 2008-10-29 Grinding media particles, grinding media and ceramic powder grinding method

Country Status (1)

Country Link
JP (1) JP5268565B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105268518A (en) * 2014-05-29 2016-01-27 河北首鼎金属制品有限公司 Multifunctional multi-edge grinding ball

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104096619B (en) * 2014-07-09 2017-03-15 宁国东方碾磨材料股份有限公司 A kind of face coat formula abrasion-proof steel ball
CN106179638B (en) * 2016-08-10 2018-04-13 山东天汇研磨耐磨技术开发有限公司 A kind of Ceramic Balls of built-in pure titanium or alpha titanium alloy skeleton and preparation method thereof

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US1431475A (en) * 1920-10-30 1922-10-10 William T Macdonald Means for crushing and grinding ore and rock
GB261664A (en) * 1926-08-04 1926-11-25 Otto Kordt Improvements in grinding bodies for ball-, drum- and tubular mills
GB284580A (en) * 1927-12-12 1928-02-02 Otto Kordt Improvements in hollow grinding bodies for ball-, drum- and tubular mills
FR663729A (en) * 1928-10-18 1929-08-24 Kordt Et Rosch Ag Grinding body for drum, ball and combination mills
US1864542A (en) * 1929-06-11 1932-06-28 Krupp Fried Grusonwerk Ag Grinding body
US2558327A (en) * 1947-04-02 1951-06-26 Weston David Grinding ball for ball mills
JPS6010779B2 (en) * 1978-12-27 1985-03-20 株式会社高松電気製作所 Cobblestone for ball mill
JP2001205123A (en) * 2000-01-28 2001-07-31 Kyocera Corp Method for pulverizing ceramic powder
JP2004314039A (en) * 2003-03-28 2004-11-11 Tatsushi Aihara Continuous grinding device for crushed sand and continuous production plant of crushed sand as well as massive operating member used for the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105268518A (en) * 2014-05-29 2016-01-27 河北首鼎金属制品有限公司 Multifunctional multi-edge grinding ball

Also Published As

Publication number Publication date
JP2010104882A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
JP2011105589A (en) Method for producing scandia-stabilized zirconia sheet, scandia-stabilized zirconia sheet obtained by the method, and scandia-stabilized zirconia sintered powder
JP5268565B2 (en) Grinding media particles, grinding media and ceramic powder grinding method
TWI504047B (en) Materials and manufacture method for a battery
CN102686535A (en) Nanoscale barium titanate particles and a production method therefor
US6643118B2 (en) Method for making barium titanate powder, barium titanate powder prepared by the method, dielectric ceramic compact, and monolithic ceramic capacitor
KR100376084B1 (en) Method of producing ceramic slurry, ceramic slurry composition, ceramic green sheet and multilayer ceramic electronic part
CN105706201A (en) All-solid-state capacitor
JP2003012377A (en) Method of manufacturing fine particles and manufacturing device for the same
JP2014229567A (en) Method of manufacturing positive electrode active material
KR101681386B1 (en) Lead-free piezoelectric ceramic composition and Preparation method thereof
Im et al. Preparation of Ni paste using binary powder mixture for thick film electrodes
JP2001205123A (en) Method for pulverizing ceramic powder
JP2012142541A (en) Nanocomposite powder for inner electrodes of multilayer ceramic electronic components and manufacturing method thereof
JP5026242B2 (en) Method for manufacturing dielectric material
JP6903538B2 (en) Dielectric composite
JP7416285B2 (en) Electrolyte sheet for solid oxide fuel cells, method for manufacturing electrolyte sheets for solid oxide fuel cells, and single cell for solid oxide fuel cells
JP2010228993A (en) Production method of dielectric particle aggregate
TW201605735A (en) Oxide sintered body, method for producing the same, sputtering target and film
Hill et al. Using Micromilling to Develop Optimized Ceramic Nanoparticulate Materials
JPH0729770B2 (en) Oxide powder and method for producing the same
JP2004203626A (en) Dielectric composition
JP2008239420A (en) Method for manufacturing ceramic green sheet, ceramic green sheet, and ceramic capacitor using the same
JP7301087B2 (en) Electrode plate manufacturing method
JP2007080950A (en) Method of manufacturing paste for varistor sheet, laminated chip varistor and manufacturing method thereof
US20220399568A1 (en) Solid electrolyte layer and all-solid-state battery using same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110615

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130315

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130507

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5268565

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees