JP5268102B2 - SPR measurement chip with droplet shape - Google Patents

SPR measurement chip with droplet shape Download PDF

Info

Publication number
JP5268102B2
JP5268102B2 JP2008271101A JP2008271101A JP5268102B2 JP 5268102 B2 JP5268102 B2 JP 5268102B2 JP 2008271101 A JP2008271101 A JP 2008271101A JP 2008271101 A JP2008271101 A JP 2008271101A JP 5268102 B2 JP5268102 B2 JP 5268102B2
Authority
JP
Japan
Prior art keywords
transparent substrate
spr
transparent
sheet
refractive index
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008271101A
Other languages
Japanese (ja)
Other versions
JP2010101646A (en
Inventor
達也 飛田
英夫 宮内
勉 堀内
弦 岩崎
達 三浦
倫子 瀬山
淳一 高橋
恒之 芳賀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Original Assignee
NTT Advanced Technology Corp
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTT Advanced Technology Corp, Nippon Telegraph and Telephone Corp filed Critical NTT Advanced Technology Corp
Priority to JP2008271101A priority Critical patent/JP5268102B2/en
Publication of JP2010101646A publication Critical patent/JP2010101646A/en
Application granted granted Critical
Publication of JP5268102B2 publication Critical patent/JP5268102B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for easily changing SPR measurement chips by optimizing the shape of a refractive index matching sheet integrally formed with a transparent substrate or by optimizing the shape of the transparent substrate to solve existing problems in an SPR optical system wherein air bubbles liable to get in the transparent substrate make measurement difficult when sticking it fast to the matching sheet, the transparent substrate is not stabilized when sticking it fast thereto, and the like. <P>SOLUTION: This chip for SPR measurement is used in an SPR optical system 210. This chip includes a transparent substrate 205 comprising a metallic thin film for SPR measurement, and further, a transparent elastic adhesive sheet 206 on a surface of the transparent substrate 205 on the opposite side of the thin film. The adhesive sheet 206 has a liquid drop shape swelling from the end of the sheet toward the middle. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、光学系を使用して被測定溶液中の特定物質を定量あるいは定性的に測定する表面プラズモン共鳴(Surface Plasmon Resonance:SPR)現象を利用した測定に使用するSPR計測用チップに関する。   The present invention relates to a chip for SPR measurement used for measurement using a surface plasmon resonance (SPR) phenomenon in which a specific substance in a solution to be measured is quantitatively or qualitatively measured using an optical system.

表面プラズモン共鳴計測のためにはプリズムと、金属薄膜を有するプリズムと同じ屈折率を有する透明基板と、プリズムと透明基板を光学的に接着させる接着層とが必要である。接着層には通常、屈折率整合オイルが利用され、測定毎に透明基板を交換する。   For surface plasmon resonance measurement, a prism, a transparent substrate having the same refractive index as that of the prism having a metal thin film, and an adhesive layer for optically bonding the prism and the transparent substrate are required. A refractive index matching oil is usually used for the adhesive layer, and the transparent substrate is replaced for each measurement.

上述した、従来のSPR光学系の構成例の断面図を図1に示す。
図1において、SPR光学系100は、光源101と、レンズ102と、プリズム103と、受光素子104と、マッチングオイル105と、金属薄膜を有する透明基板106とを備える。SPR光学系110は、透明基板106をプリズム103にマッチングオイル105を介して張り合わせた状態を示す。
A cross-sectional view of a configuration example of the conventional SPR optical system described above is shown in FIG.
In FIG. 1, the SPR optical system 100 includes a light source 101, a lens 102, a prism 103, a light receiving element 104, a matching oil 105, and a transparent substrate 106 having a metal thin film. The SPR optical system 110 shows a state where the transparent substrate 106 is bonded to the prism 103 via the matching oil 105.

しかしながら、屈折率整合オイル105はプリズム上に残り、透明基板106を交換するたびにプリズム103を洗浄する手間が必要となる。こうした、手間を省くためにオイルの代わりに、屈折率を整合させたシートが利用されるが、密着時に気泡が入りやすく測定が困難になる。密着時に透明基板が安定しない、透明基板106がプリズム103と強く密着され交換に手間がかかるという欠点が生じる。   However, the refractive index matching oil 105 remains on the prism, and it is necessary to clean the prism 103 every time the transparent substrate 106 is replaced. In order to save time and effort, instead of oil, a sheet whose refractive index is matched is used. However, bubbles are likely to enter during close contact, making measurement difficult. There are disadvantages that the transparent substrate is not stable when in close contact, and the transparent substrate 106 is in close contact with the prism 103, which takes time to replace.

特許文献1には、屈折率整合オイルの代わりに屈折率整合透明フィルムを利用し、ガラス基板の交換時にプリズム上の洗浄の必要がないシステムが紹介されている。しかしながら、屈折率整合透明フィルムをガラス基板とプリズムの間に設置しなければならないことや、その際に気泡が入りやすいなどの問題があった。   Patent Document 1 introduces a system that uses a refractive index matching transparent film instead of refractive index matching oil and does not require cleaning on the prism when replacing the glass substrate. However, there has been a problem that a refractive index matching transparent film has to be installed between the glass substrate and the prism, and bubbles are likely to enter at that time.

また、特許文献2には、プリズムと計測チップの間に光学インターフェースプレートを設置する発明が記載されているが、部品点数が増えるばかりでなく、その形状が複雑であるという問題がある。   Further, Patent Document 2 describes an invention in which an optical interface plate is installed between a prism and a measurement chip. However, there is a problem that not only the number of parts increases but also the shape thereof is complicated.

特許第3356212号公報Japanese Patent No. 3356212 特許第3294605号公報Japanese Patent No. 3294605

本発明は、SPR光学系において、透明基板上に一体形成された屈折率整合シート形状を最適化すること、もしくは透明基板の形状も最適化することによって、上記問題点を解決し、容易にSPR計測チップを交換できる手法を提供することを目的とする。   The present invention solves the above-mentioned problems by optimizing the shape of the refractive index matching sheet integrally formed on the transparent substrate in the SPR optical system, or by optimizing the shape of the transparent substrate. An object is to provide a method capable of exchanging measurement chips.

上記課題を解決するために、本発明の表面プラズモン共鳴計測用チップは、表面プラズモン共鳴計測用の金属薄膜を有する透明基板と、上記透明基板の上記金属薄膜とは反対側の面に、透明な弾性粘着シートをさらに備え、上記透明な弾性粘着シートは、シートの端から中央に向かって盛り上がった液滴形状を有し、かつ前記透明基板とは反対側の面の片面のみ液滴形状とされ、前記透明な弾性粘着シートは、前記透明基板の計測上必要な光路をカバーする複数の部分に分かれて設けられることを特徴とする。 In order to solve the above problems, a surface plasmon resonance measurement chip according to the present invention is transparent on a transparent substrate having a metal thin film for surface plasmon resonance measurement, and on a surface of the transparent substrate opposite to the metal thin film. further comprising an elastic pressure-sensitive adhesive sheet, the transparent elastic adhesive sheet, possess from the edge of the sheet raised drop shape toward the center, and the said transparent substrate is a drop shape only one side of the surface opposite The transparent elastic adhesive sheet is divided into a plurality of portions covering an optical path necessary for measurement of the transparent substrate .

また、上記透明な弾性粘着シートは、上記透明基板の上記金属薄膜とは反対側の面に設けられた窪みに形成されてもよい。   Moreover, the said transparent elastic adhesive sheet may be formed in the hollow provided in the surface on the opposite side to the said metal thin film of the said transparent substrate.

また、上記透明な弾性粘着シートは、上記透明基板を侵食しない自己硬化型材料であってもよい。   The transparent elastic adhesive sheet may be a self-curing material that does not erode the transparent substrate.

また、上記透明基板の上記透明な弾性粘着シート以外の部分に、上記プリズムと上記透明基板の距離を規定するスペーサを設けてもよい。   Moreover, you may provide the spacer which prescribes | regulates the distance of the said prism and the said transparent substrate in parts other than the said transparent elastic adhesive sheet of the said transparent substrate.

また、上記透明な弾性粘着シートには、使用前に保護剥離シートが装着されてもよい。   In addition, a protective release sheet may be attached to the transparent elastic adhesive sheet before use.

本発明によれば、SPR光学系において、透明基板上に一体形成された屈折率整合シート形状を最適化すること、もしくは透明基板の形状も最適化することによって、透明基板が密着時に気泡が入りやすく測定が困難になる、密着時に透明基板が安定しないなどの従来の問題点を解決し、容易にSPR計測チップを交換できる手法を提供することができる。   According to the present invention, in the SPR optical system, by optimizing the shape of the refractive index matching sheet integrally formed on the transparent substrate, or by optimizing the shape of the transparent substrate, air bubbles enter when the transparent substrate is in close contact. It is possible to provide a technique that can easily replace the SPR measurement chip by solving the conventional problems such as easy measurement and difficulty of the measurement, and instability of the transparent substrate when closely attached.

以下、本発明の実施の形態を図面を参照して説明する。
図2に、本発明の屈折率整合シートを使用するSPR光学系の構成例の断面図を示す。
図2において、SPR光学系200は、光源201と、レンズ202と、プリズム203と、受光素子204と、金属薄膜を有する透明基板205と、屈折率整合シート206とを備える。SPR光学系210は、透明基板205をプリズム203に屈折率整合シート206を介して張り合わせた状態を示す。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 2 shows a cross-sectional view of a configuration example of an SPR optical system using the refractive index matching sheet of the present invention.
In FIG. 2, the SPR optical system 200 includes a light source 201, a lens 202, a prism 203, a light receiving element 204, a transparent substrate 205 having a metal thin film, and a refractive index matching sheet 206. The SPR optical system 210 shows a state in which the transparent substrate 205 is bonded to the prism 203 via the refractive index matching sheet 206.

金属薄膜を形成した透明基板205の裏側に、液滴形状をした屈折率整合シート206が形成されている。屈折率整合シート206は透明基板205に直接塗布され、液滴形状を有している。この液滴形状によって、透明基板205をプリズム203に密着するとき屈折率整合シート206の中央部から徐々に密着され、気泡が外部に押し出されるようになる。   A refractive index matching sheet 206 having a droplet shape is formed on the back side of the transparent substrate 205 on which the metal thin film is formed. The refractive index matching sheet 206 is directly applied to the transparent substrate 205 and has a droplet shape. Due to this droplet shape, when the transparent substrate 205 is brought into close contact with the prism 203, it is gradually brought into close contact from the central portion of the refractive index matching sheet 206, and bubbles are pushed out.

さらに、屈折率整合シート206の材料は、シリコン高分子であり、ゴムもしくはゲルのような性状を有しており、密着を解除すると、元の形状に戻ろうとする。そのためにプリズム203との密着面が自然と小さくなり、容易に透明基板205の交換が可能となる。   Furthermore, the material of the refractive index matching sheet 206 is a silicon polymer, and has properties such as rubber or gel. When the close contact is released, the refractive index matching sheet 206 attempts to return to the original shape. Therefore, the contact surface with the prism 203 is naturally reduced, and the transparent substrate 205 can be easily replaced.

屈折率整合シート206は、シートの材料を透明基板205に直接塗布され、その材料の透明基板205との親和性や表面張力、滴下量によって形状が決まる。透明基板205との親和性が低ければ、シート材料をはじくようになるため水玉のようになってしまう。よって、ある程度親和性の高い材料を選定する必要がある。透明基板205がガラスやプラスチック製の場合は、シリコン高分子が適している。   The refractive index matching sheet 206 is formed by directly applying a sheet material to the transparent substrate 205, and the shape is determined by the affinity of the material with the transparent substrate 205, the surface tension, and the dropping amount. If the affinity with the transparent substrate 205 is low, the sheet material will be repelled, resulting in polka dots. Therefore, it is necessary to select a material with high affinity to some extent. When the transparent substrate 205 is made of glass or plastic, a silicon polymer is suitable.

透明基板205にシート材料を滴下する量は、SPR装置の設計に依存する。光源201からの光が透明基板205の表面で焦点を結ぶように設計されるため、焦点位置はプリズム203の上面から上方向に存在している。その距離が透明基板205と屈折率整合シート206の圧着時の厚みでなければならないため、その塗布量は正確に制御する必要がある。   The amount by which the sheet material is dropped on the transparent substrate 205 depends on the design of the SPR device. Since the light from the light source 201 is designed to focus on the surface of the transparent substrate 205, the focal position exists upward from the upper surface of the prism 203. Since the distance must be the thickness when the transparent substrate 205 and the refractive index matching sheet 206 are pressure-bonded, the coating amount needs to be accurately controlled.

また、最適な液滴形状を得るためには、塗布する面積と塗布量を制御しなければならない。塗布面積が小さすぎて、塗布量が多すぎれば半円状の形状となってしまうために、圧着時にプリズム203と接触している面積が小さくなってしまう。その状態で無理に圧着しようとすると、かなりの圧力で圧着しなければならない。ただし、上記の問題は精密ポンプを使用すれば正確な制御が可能であり、重要な問題とならない。   Further, in order to obtain an optimal droplet shape, the area to be applied and the amount to be applied must be controlled. If the application area is too small and the application amount is too large, a semi-circular shape is formed, so that the area in contact with the prism 203 at the time of pressure bonding becomes small. If you try to force the pressure in that state, you will have to press it with a considerable pressure. However, the above problem can be accurately controlled by using a precision pump, and does not become an important problem.

一番簡単な形状は、透明基板205全面に液滴形状を有する屈折率整合シート206が形成されているものである。ただし、この形状では密着時に透明基板205が傾いてしまう可能性がある。そこで、図3に示すSPR光学系300のように塗布する部分を2箇所にする形状が考えられる。   In the simplest shape, a refractive index matching sheet 206 having a droplet shape is formed on the entire surface of the transparent substrate 205. However, in this shape, there is a possibility that the transparent substrate 205 is inclined at the time of close contact. In view of this, a shape in which two portions are applied as in the SPR optical system 300 shown in FIG. 3 can be considered.

図3に示す形状では、プリズム303との密着部は2箇所もしくはそれ以上に分かれており、透明基板305の密着時の傾きを抑えることが可能である。この場合は、屈折率整合シート306を塗布する2箇所は片方が透明基板305への入射光の光路であり、他方が出射光の光路にあたる。よって、塗布する形状は2つの光路をカバーするように設計しなければならない。   In the shape shown in FIG. 3, the close contact portion with the prism 303 is divided into two or more portions, and the tilt at the close contact of the transparent substrate 305 can be suppressed. In this case, one of the two places where the refractive index matching sheet 306 is applied is an optical path of incident light to the transparent substrate 305 and the other is an optical path of outgoing light. Therefore, the shape to be applied must be designed to cover the two optical paths.

上述のような形状を有する屈折率整合シート306を作製するためには、透明基板305にマスクを用いて塗布する方法、スクリーン印刷を用いる方法などの様々な方法が考えられるが、その1つとして、図4に示すSPR計測チップ400のように透明基板401の形状を変更することも考えられる。   In order to fabricate the refractive index matching sheet 306 having the shape as described above, various methods such as a method of applying to the transparent substrate 305 using a mask and a method of using screen printing can be considered. It is also conceivable to change the shape of the transparent substrate 401 as in the SPR measurement chip 400 shown in FIG.

図4において、透明基板401は、予めシート材料が塗布される部分の形状が窪ませてあり、シート材料がそれ以上に広がらない形状となっている。さらにこの形状の凸部は、透明基板401をプリズム303に密着させたときの屈折率整合シート402が圧着されてつぶれる際のスペーサの役目を担い、圧着されたときの厚みを制御する機能を持たせることも可能である。   In FIG. 4, the transparent substrate 401 has a shape in which the portion to which the sheet material is applied is depressed in advance, and the sheet material does not spread further. Further, the convex portion of this shape plays a role of a spacer when the refractive index matching sheet 402 is crimped and crushed when the transparent substrate 401 is closely attached to the prism 303, and has a function of controlling the thickness when the transparent substrate 401 is crimped. It is also possible to

なお、圧着時のシリコンゴムの厚みを制御するために、透明基板の屈折率整合シートがない部分に、別部品のスペーサを設置することも可能であり、また、計測前に屈折率整合シートに傷などが付くことを防止するために、使用前にはシート状の保護テープが貼られ、使用直前に保護テープを剥がすことにより、常に正常で傷のないシートをプリズム303に圧着できるようにすることも可能である。   In addition, in order to control the thickness of the silicon rubber during crimping, it is possible to install a separate spacer on the transparent substrate where there is no refractive index matching sheet. In order to prevent scratches and the like, a sheet-like protective tape is applied before use, and the protective tape is peeled off immediately before use so that a normal and scratch-free sheet can be pressure-bonded to the prism 303 at all times. It is also possible.

SPR光学系においてプリズム材質をBK7(屈折率=1.51)ガラスとし、透明基板には16×16×0.5mmのBK7ガラスを採用した。透明基板の一方の面には蒸着にてチタンを接着層(2〜3nm)として金薄膜(47nm)を形成した。   In the SPR optical system, the prism material is BK7 (refractive index = 1.51) glass, and the transparent substrate is 16 × 16 × 0.5 mm BK7 glass. On one surface of the transparent substrate, a gold thin film (47 nm) was formed by vapor deposition using titanium as an adhesive layer (2 to 3 nm).

金薄膜とは反対側の面に、2液混合タイプで硬化後の屈折率が1.52の透明シリコンゴムをピペットでスポットし、全体に延ばした。この屈折率整合シートの硬化後の厚みは0.5mmとなるように樹脂量を調整した。樹脂は塗布した後は表面張力で液滴形状になっている。   A transparent silicon rubber having a refractive index of 1.52 after curing with a two-component mixed type was spotted with a pipette on the surface opposite to the gold thin film, and extended to the whole. The resin amount was adjusted so that the thickness of the refractive index matching sheet after curing was 0.5 mm. After the resin is applied, it has a droplet shape due to surface tension.

シリコン樹脂塗布後の基板を室温放置もしくは加熱によって硬化させ、屈折率整合シート一体型SPR計測チップを作製した。作製した屈折率整合シート一体型SPR計測チップを図5に示すようなSPR光学系に設置、上から加重をかけることによって、プリズムに密着させ、SPRを計測した。   The substrate after the application of the silicon resin was allowed to stand at room temperature or cured by heating to produce a refractive index matching sheet integrated SPR measurement chip. The prepared SPR measuring chip with integrated refractive index matching sheet was placed in an SPR optical system as shown in FIG. 5 and applied with a weight from above to be brought into close contact with the prism, and SPR was measured.

図5において、SPR光学系500は、光源501と、球面レンズA502と、円筒形レンズA503と、プリズム504と、円筒形レンズB505と、偏光子506と、球面レンズB507と、光検出器508と、屈折率整合シート509と、透明基板510と、金属薄膜511とを備える。   In FIG. 5, the SPR optical system 500 includes a light source 501, a spherical lens A502, a cylindrical lens A503, a prism 504, a cylindrical lens B505, a polarizer 506, a spherical lens B507, and a photodetector 508. , A refractive index matching sheet 509, a transparent substrate 510, and a metal thin film 511.

上述の条件によるSPR計測を確認する画像を図6に示す。金薄膜上にはサンプルとして水を滴下した。図6において、横軸はSPR角度方向に相当し、縦方向はチップ上の焦線方向に相当する。SPR現象による反射光現象のため画像左側に暗線が確認でき、良好な計測が行えることが分かる。   An image for confirming SPR measurement under the above-described conditions is shown in FIG. Water was dropped as a sample on the gold thin film. In FIG. 6, the horizontal axis corresponds to the SPR angle direction, and the vertical direction corresponds to the focal line direction on the chip. It can be seen that because of the reflected light phenomenon due to the SPR phenomenon, a dark line can be confirmed on the left side of the image and good measurement can be performed.

プリズム材質をBK7とし、透明基板に16×16×1mmのBK7ガラスを採用した。透明基板の一方の面にはスパッタにてチタンを接着層(2〜3nm)として金薄膜(47nm)を形成した。   The prism material was BK7, and 16 × 16 × 1 mm BK7 glass was used for the transparent substrate. A gold thin film (47 nm) was formed on one surface of the transparent substrate by sputtering using titanium as an adhesive layer (2 to 3 nm).

金薄膜とは反対側の面に、硬化後の屈折率が1.51の透明シリコンゴムをドクターブレード法にて膜厚が0.1mmになるように塗布した。その後、加熱によって硬化させ、屈折率整合シートを作製した。透明シリコンゲルの塗布形状は、図7に示す塗布形状700のように設定した。   On the surface opposite to the gold thin film, transparent silicon rubber having a refractive index after curing of 1.51 was applied by a doctor blade method so as to have a film thickness of 0.1 mm. Thereafter, it was cured by heating to produce a refractive index matching sheet. The application shape of the transparent silicon gel was set as an application shape 700 shown in FIG.

作製した屈折率整合シート一体型SPR計測チップを実施例1と同じSPR光学系により計測した。この条件で水のSPRを計測した画像を図8に示す。図8から、屈折率整合オイルを使用した場合と遜色なく、本発明のSPR計測用チップが利用できることがわかる。   The manufactured refractive index matching sheet integrated SPR measurement chip was measured by the same SPR optical system as in Example 1. An image obtained by measuring the SPR of water under these conditions is shown in FIG. From FIG. 8, it can be seen that the SPR measurement chip of the present invention can be used in the same manner as when the refractive index matching oil is used.

プリズム材質をBK7とし、透明基板を厚さ1mmの環状ポリオレフィンを材料としたプラスチックを採用した。透明基板の一方の面には蒸着にてチタンを接着層(2〜3nm)として金薄膜(47nm)を形成した。   The prism material was BK7, and the transparent substrate was a plastic made of cyclic polyolefin with a thickness of 1 mm. On one surface of the transparent substrate, a gold thin film (47 nm) was formed by vapor deposition using titanium as an adhesive layer (2 to 3 nm).

金薄膜とは反対側の面に、2液混合タイプで硬化後の屈折率が1.53の透明シリコンゴムをスポットし、全体に延ばした。この屈折率整合シートの硬化後の厚みは0.1mmとなるように樹脂量を調整した。樹脂を塗布した形状は実施例2と同じである。   A transparent silicon rubber having a refractive index of 1.53 after curing was spotted on the surface opposite to the gold thin film and extended to the whole surface. The resin amount was adjusted so that the thickness of the refractive index matching sheet after curing was 0.1 mm. The shape in which the resin is applied is the same as in Example 2.

上記で作製したチップを実施例1と同じ光学系に設置し、SPRの確認を行った画像を図9に、グラフを図10に示す。図9、10から、屈折率整合オイルを使用した場合と遜色なく、本発明のSPR計測用チップが利用できることがわかる。   The chip produced above is installed in the same optical system as in Example 1, and an image in which SPR is confirmed is shown in FIG. 9, and a graph is shown in FIG. 9 and 10, it can be seen that the SPR measurement chip of the present invention can be used as in the case of using the refractive index matching oil.

プリズム材質をBK7とし、透明基板を厚さ1mmの環状ポリオレフィンを材料としたプラスチックを採用した。透明基板の一方の面には蒸着にてチタンを接着層(2〜3nm)として金薄膜(47nm)を形成した。   The prism material was BK7, and the transparent substrate was a plastic made of cyclic polyolefin with a thickness of 1 mm. On one surface of the transparent substrate, a gold thin film (47 nm) was formed by vapor deposition using titanium as an adhesive layer (2 to 3 nm).

金薄膜とは反対側の面に、2液混合タイプで硬化後の屈折率が1.53の透明シリコンゴムを滴下し、塗布した。この屈折率整合シートの硬化後の厚みは0.1mmとなるようにした。作製したSPR計測チップを実施例1と同じSPR光学系に計測した。図11は、水のSPR計測を確認する画像である。   A transparent silicon rubber having a refractive index of 1.53 after curing was dropped onto the surface opposite to the gold thin film and applied. The thickness of the refractive index matching sheet after curing was set to 0.1 mm. The produced SPR measurement chip was measured by the same SPR optical system as in Example 1. FIG. 11 is an image for confirming the SPR measurement of water.

さらに同じように作製された計測チップで抗原抗体反応の確認を行った。作製された屈折率整合シート一体型SPR計測チップに2つのチャンネルを設け、片方にAnti−IgGを固定化・BSAブロッキングし、もう片方には参照チャンネルとして、BSAブロッキングのみを行った。そのチップをSPR光学系に設置し、サンプルとして100ng/mlのIgG溶液を流した。このときの測定結果を図12に示す。図12から、1000secで100ng/mlのIgGを流したところ、抗原抗体反応によって、シグナルの増加が確認された。   Furthermore, the antigen-antibody reaction was confirmed with the measurement chip similarly produced. The prepared refractive index matching sheet-integrated SPR measurement chip was provided with two channels, Anti-IgG was immobilized and BSA blocked on one side, and only the BSA blocking was performed on the other side as a reference channel. The chip was placed in an SPR optical system, and a 100 ng / ml IgG solution was allowed to flow as a sample. The measurement result at this time is shown in FIG. From FIG. 12, when 100 ng / ml IgG was flowed at 1000 sec, an increase in signal was confirmed by the antigen-antibody reaction.

以上のように本発明のSPR計測用チップによれば、光学特性および実際の抗原抗体反応の計測などにおいてガラスとマッチングオイルの組み合わせで利用される方法と同等の性能を得ることができ、かつ、容易に基板を着脱できるものとすることができる。   As described above, according to the SPR measurement chip of the present invention, it is possible to obtain performance equivalent to the method used in combination of glass and matching oil in measurement of optical characteristics and actual antigen-antibody reaction, and the like. The substrate can be easily attached and detached.

従来のSPR測光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the conventional SPR optical measurement system. 本発明の一実施形態によるSPR計測用チップを使用したSPR光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the SPR optical system using the chip | tip for SPR measurement by one Embodiment of this invention. 本発明の別の実施形態によるSPR計測用チップを使用したSPR光学系の構成を示す断面図である。It is sectional drawing which shows the structure of the SPR optical system using the chip | tip for SPR measurement by another embodiment of this invention. 本発明の別の実施形態によるSPR計測用チップの断面図および上面図である。It is sectional drawing and the top view of the chip | tip for SPR measurement by another embodiment of this invention. 本発明の実施例1に係るSPR計測用チップを使用したSPR光学系の構成を示す図である。It is a figure which shows the structure of the SPR optical system using the chip | tip for SPR measurement concerning Example 1 of this invention. 本発明の実施例1に係るSPR計測用チップを使用したSPR計測を確認する画像を示す図である。It is a figure which shows the image which confirms SPR measurement using the chip | tip for SPR measurement which concerns on Example 1 of this invention. 本発明の実施例2に係るSPR計測用チップの透明シリコンゲルの塗布形状を示す図である。It is a figure which shows the application | coating shape of the transparent silicon gel of the chip | tip for SPR measurement which concerns on Example 2 of this invention. 本発明の実施例2に係るSPR計測用チップを使用したSPR計測を確認する画像を示す図である。It is a figure which shows the image which confirms SPR measurement using the chip | tip for SPR measurement which concerns on Example 2 of this invention. 本発明の実施例3に係るSPR計測用チップを使用したSPR計測を確認する画像を示す図である。It is a figure which shows the image which confirms SPR measurement using the chip | tip for SPR measurement which concerns on Example 3 of this invention. 本発明の実施例3に係るSPR計測用チップを使用したSPR計測を確認するグラフを示す図である。It is a figure which shows the graph which confirms SPR measurement using the chip | tip for SPR measurement which concerns on Example 3 of this invention. 本発明の実施例4に係るSPR計測用チップを使用したSPR計測を確認する画像を示す図である。It is a figure which shows the image which confirms SPR measurement using the chip | tip for SPR measurement which concerns on Example 4 of this invention. 本発明の実施例4に係るSPR計測用チップを使用した抗体抗原反応を確認する画像を示す図である。It is a figure which shows the image which confirms the antibody antigen reaction using the chip | tip for SPR measurement which concerns on Example 4 of this invention.

符号の説明Explanation of symbols

200,210,300,310 SPR光学系
201,301,501 光源
202,302 レンズ
203,303,504 プリズム
204,304,508 受光素子
205,305,401,510,701 透明基板
206,306,402,509,702 屈折率整合シート
502 球面レンズA
503 円筒形レンズA
505 円筒形レンズB
506 偏光子
507 球面レンズB
511 金属薄膜
200, 210, 300, 310 SPR optical system 201, 301, 501 Light source 202, 302 Lens 203, 303, 504 Prism 204, 304, 508 Light receiving element 205, 305, 401, 510, 701 Transparent substrate 206, 306, 402, 509, 702 Refractive index matching sheet 502 Spherical lens A
503 Cylindrical lens A
505 Cylindrical lens B
506 Polarizer 507 Spherical lens B
511 Metal thin film

Claims (5)

表面プラズモン共鳴計測用の金属薄膜を有する透明基板と、
前記透明基板の前記金属薄膜とは反対側の面に、透明な弾性粘着シートとを備え、
前記透明な弾性粘着シートは、シートの端から中央に向かって盛り上がった液滴形状を有し、かつ前記透明基板とは反対側の面の片面のみ液滴形状とされ、
前記透明な弾性粘着シートは、前記透明基板の計測上必要な光路をカバーする複数の部分に分かれて設けられること
を特徴とする表面プラズモン共鳴計測用チップ。
A transparent substrate having a metal thin film for surface plasmon resonance measurement;
On the surface of the transparent substrate opposite to the metal thin film, a transparent elastic adhesive sheet is provided,
The transparent elastic pressure-sensitive adhesive sheet has a droplet shape that rises from the edge of the sheet toward the center, and has a droplet shape only on one side of the surface opposite to the transparent substrate,
The surface plasmon resonance measurement chip according to claim 1, wherein the transparent elastic adhesive sheet is divided into a plurality of portions covering an optical path necessary for measurement of the transparent substrate .
前記透明な弾性粘着シートは、前記透明基板の前記金属薄膜とは反対側の面に設けられた窪みに形成されることを特徴とする請求項1に記載の表面プラズモン共鳴計測用チップ。   The surface plasmon resonance measurement chip according to claim 1, wherein the transparent elastic adhesive sheet is formed in a recess provided on a surface of the transparent substrate opposite to the metal thin film. 前記透明な弾性粘着シートは、前記透明基板を侵食しない自己硬化型材料であることを特徴とする請求項1に記載の表面プラズモン共鳴計測用チップ。   2. The surface plasmon resonance measurement chip according to claim 1, wherein the transparent elastic adhesive sheet is a self-curing material that does not erode the transparent substrate. 前記透明基板の前記透明な弾性粘着シート以外の部分に、プリズムと前記透明基板の距離を規定するスペーサを設けることを特徴とする請求項1に記載の表面プラズモン共鳴計測用チップ。   2. The surface plasmon resonance measurement chip according to claim 1, wherein a spacer for defining a distance between the prism and the transparent substrate is provided on a portion of the transparent substrate other than the transparent elastic adhesive sheet. 前記透明な弾性粘着シートには、使用前に保護剥離シートが装着されていることを特徴とする請求項1に記載の表面プラズモン共鳴計測用チップ。   The surface plasmon resonance measurement chip according to claim 1, wherein a protective release sheet is attached to the transparent elastic adhesive sheet before use.
JP2008271101A 2008-10-21 2008-10-21 SPR measurement chip with droplet shape Active JP5268102B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008271101A JP5268102B2 (en) 2008-10-21 2008-10-21 SPR measurement chip with droplet shape

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008271101A JP5268102B2 (en) 2008-10-21 2008-10-21 SPR measurement chip with droplet shape

Publications (2)

Publication Number Publication Date
JP2010101646A JP2010101646A (en) 2010-05-06
JP5268102B2 true JP5268102B2 (en) 2013-08-21

Family

ID=42292424

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008271101A Active JP5268102B2 (en) 2008-10-21 2008-10-21 SPR measurement chip with droplet shape

Country Status (1)

Country Link
JP (1) JP5268102B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106918854B (en) * 2017-05-05 2019-05-24 北京航空航天大学 A kind of oil immersion surface plasma super lens of high-NA

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0658873A (en) * 1992-08-05 1994-03-04 Toto Ltd Optical sensor, detection method using optical sensor, and formation of molecular recognizing film for optical
JP2000065733A (en) * 1998-08-24 2000-03-03 Nippon Laser Denshi Kk Surface plasmon resonance angle detection device and detection method
JP2001272330A (en) * 2000-03-27 2001-10-05 Suzuki Motor Corp Spr sensor cell and immunoreaction measurement device using the same
JP3356213B2 (en) * 2001-01-24 2002-12-16 八戸工業高等専門学校長 Sample cell and cell holder for SPR measurement
JP4076962B2 (en) * 2003-04-23 2008-04-16 独立行政法人科学技術振興機構 Differential surface plasmon resonance phenomenon measuring apparatus and measuring method thereof
JP2006112808A (en) * 2004-10-12 2006-04-27 Fujikura Ltd Surface plasmon sensor

Also Published As

Publication number Publication date
JP2010101646A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
TW553844B (en) Resin lens array and optical writing head
US8064744B2 (en) Planar waveguide lens design
US6917456B2 (en) Light modulator
US20060016995A1 (en) Microstructured infrared sensor and method for its manufacture
US7561340B2 (en) Tunable micro-aspherical lens and manufacturing method thereof
WO2018107881A1 (en) Ambient light detection system
US7760445B2 (en) Compound lens and compound lens array
JP5428805B2 (en) Interference filter, optical sensor, and optical module
US20050195489A1 (en) Lens, transmission screen, and method for manufacturing the lens
US11448849B2 (en) Optical element with stress distributing supporting structure
CN113376850B (en) Alignment film, interference reduction alignment film, laminating alignment film and hole sealing laminating alignment film
CN102007433B (en) Membrane suspended optical elements, and associated methods
CN112753036A (en) Grain image acquisition device, display device and collimation part
US20100060998A1 (en) Microchip
CN108730921A (en) The method of guide-lighting module, total-reflection type display device and the guide-lighting module of manufacture
JP5268102B2 (en) SPR measurement chip with droplet shape
JP4782213B2 (en) Optical waveguide device
KR20150108030A (en) Pattern Image Acquisition Apparatus and Method Comprising Dual Elastic Structure
TW200528909A (en) Lenticular sheet and transmission type screen using the same
JP4468875B2 (en) Prism / liquid reservoir integrated chip for surface plasmon resonance spectrum measurement, manufacturing method thereof, and surface plasmon resonance measurement apparatus using the same
US20120068368A1 (en) Method for manufacturing optical diffraction element
JP5268101B2 (en) Refractive index matching sheet integrated SPR measurement chip
CN218383360U (en) Angular filter
US20190324346A1 (en) Liquid lens
US6771867B2 (en) Optical memory device and method for fabricating optical memory device, and method and apparatus for lamination with filmy member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120713

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130412

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130501

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5268102

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250