JP5267980B2 - Surface treatment method and apparatus using ozone gas - Google Patents

Surface treatment method and apparatus using ozone gas Download PDF

Info

Publication number
JP5267980B2
JP5267980B2 JP2008165914A JP2008165914A JP5267980B2 JP 5267980 B2 JP5267980 B2 JP 5267980B2 JP 2008165914 A JP2008165914 A JP 2008165914A JP 2008165914 A JP2008165914 A JP 2008165914A JP 5267980 B2 JP5267980 B2 JP 5267980B2
Authority
JP
Japan
Prior art keywords
gas
ozone
surface treatment
ozone gas
ultraviolet light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008165914A
Other languages
Japanese (ja)
Other versions
JP2010010283A (en
Inventor
国彦 小池
浩一 泉
明 黒河
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
National Institute of Advanced Industrial Science and Technology AIST
Iwatani Corp
Original Assignee
National Institute of Advanced Industrial Science and Technology AIST
Iwatani Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by National Institute of Advanced Industrial Science and Technology AIST, Iwatani Corp filed Critical National Institute of Advanced Industrial Science and Technology AIST
Priority to JP2008165914A priority Critical patent/JP5267980B2/en
Publication of JP2010010283A publication Critical patent/JP2010010283A/en
Application granted granted Critical
Publication of JP5267980B2 publication Critical patent/JP5267980B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Drying Of Semiconductors (AREA)
  • Formation Of Insulating Films (AREA)
  • Cleaning Or Drying Semiconductors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a means that improves oxidization efficiency in a surface treatment method by oxidization using both ozone gas and ultraviolet rays. <P>SOLUTION: Mixed gas of ozone gas and rare gas such as xenon gas is applied to a workpiece while the mixed gas is irradiated with ultraviolet light. The oxygen molecule density in the mixed gas is reduced so as to accelerate decomposition of ozone gas, thereby improving oxidization efficiency and allowing atomic oxygen to effectively reach the substrate surface. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、酸化に起因する表面処理技術に関し、特に酸化反応性ガス雰囲気中で被処理物の表面に酸化膜を形成したり、被処理物の表面をレジストアッシングしたりする表面処理技術に関する。   The present invention relates to a surface treatment technique resulting from oxidation, and more particularly to a surface treatment technique for forming an oxide film on the surface of an object to be processed in an oxidation reactive gas atmosphere or resist ashing the surface of the object to be processed.

従来から、オゾンのもつ高い酸化力を利用して、基板等の被処理物の表面を酸化処理したり、レジストアッシング処理したりすることはよく知られている。例えばシリコン基板を酸化する場合に、酸素ガスで酸化処理をしようとすると、基板温度を900から1000℃以上の高温にする必要があったが、オゾンガスを使用する場合、基板温度を数百度下げても酸化することができる。   Conventionally, it is well known that the surface of an object to be processed such as a substrate is oxidized or resist ashed using the high oxidizing power of ozone. For example, in the case of oxidizing a silicon substrate, if it is attempted to oxidize with oxygen gas, the substrate temperature needs to be raised to 900 to 1000 ° C. or higher. However, when ozone gas is used, the substrate temperature is lowered by several hundred degrees. Can also be oxidized.

この場合、オゾンガス中のオゾン濃度は高いほど酸化反応が進むため、オゾン濃度が90 vol%以上のオゾン酸素混合ガスを発生する装置も開発されている。   In this case, since the oxidation reaction proceeds as the ozone concentration in the ozone gas increases, an apparatus for generating an ozone-oxygen mixed gas having an ozone concentration of 90 vol% or more has been developed.

また、オゾンガスを用いて基板温度をさらに下げた低温酸化も応用が進んでいる。この場合、基板温度を下げていくと基板の表面でのオゾンの熱分解速度が次第に減少するため、表面温度が500℃以下になると基板表面の酸化膜形成速度が大きく減少する。そこで、熱分解によるオゾン分解速度の減少を補うために、オゾンを強制的に分解する波長を持つ紫外線をオゾンガスに照射することにより、500℃以下の低温でも酸化膜形成処理を行うことも考えられる。   In addition, low-temperature oxidation in which the substrate temperature is further lowered using ozone gas has been applied. In this case, as the substrate temperature is lowered, the thermal decomposition rate of ozone on the surface of the substrate gradually decreases. Therefore, when the surface temperature becomes 500 ° C. or lower, the oxide film formation rate on the substrate surface is greatly decreased. Therefore, in order to compensate for the decrease in the ozonolysis rate due to thermal decomposition, it may be possible to perform the oxide film formation process even at a low temperature of 500 ° C. or lower by irradiating ozone gas with ultraviolet light having a wavelength for forcibly decomposing ozone. .

一般に、オゾンガスを用いた処理では、オゾンが分解してできる原子状酸素(あるいは酸素ラジカル)が酸化に最も有効に寄与し、原子状酸素が基板表面に多数到達できるほど酸化が進む。そのためには、a)オゾンガスの圧力を大きくするか、b)オゾンガス中のオゾン濃度を大きくするか、c)紫外光+オゾンでの酸化の場合には紫外線強度を高くする等の手法をとる必要がある。   In general, in the treatment using ozone gas, atomic oxygen (or oxygen radicals) generated by decomposing ozone contributes most effectively to the oxidation, and the oxidation proceeds as many atomic oxygens can reach the substrate surface. For that purpose, it is necessary to take a technique such as a) increasing the pressure of ozone gas, b) increasing the ozone concentration in the ozone gas, or c) increasing the ultraviolet intensity in the case of oxidation with ultraviolet light + ozone. There is.

また、原子状酸素は反応性が高い反面、酸素分子と反応して容易に反応性を失活する性質がある。そのため、オゾンガスの反応性を有効に利用するためには、酸素分子の密度を減らすことが有効である。一般にオゾンガスは酸素で希釈したオゾンー酸素混合ガスの形態で供給されるため、オゾン濃度を高くすることが有効である。   Atomic oxygen is highly reactive, but has the property of reacting with oxygen molecules to easily deactivate the oxygen. Therefore, in order to effectively use the reactivity of ozone gas, it is effective to reduce the density of oxygen molecules. In general, since ozone gas is supplied in the form of an ozone-oxygen mixed gas diluted with oxygen, it is effective to increase the ozone concentration.

しかしながら、オゾンガスはそのオゾン濃度を高くした場合、境界圧力よりもガス圧力が高いと、オゾンガスが充満しているある箇所で何らかのきっかけで過剰分解が始まると、その分解がオゾン全体に爆発的に伝搬する性質がある。その境界圧力は例えばオゾン濃度20 vol%では1.5 kPa程度である。   However, if the ozone gas has a higher ozone concentration and the gas pressure is higher than the boundary pressure, if the ozone gas begins to decompose excessively at some point where the ozone gas is filled, the decomposition propagates explosively throughout the ozone. There is a nature to do. The boundary pressure is, for example, about 1.5 kPa at an ozone concentration of 20 vol%.

そのため、高濃度オゾンガスはこの境界圧力以下の減圧領域で用いるか、あるいはオゾン酸素混合ガス中のオゾンガス濃度を小さくする必要があった。
さらに、オゾンガスの酸化反応性を有効に利用するためには、オゾンから生成された原子状酸素を有効に基板表面に到達させることが必要であり、そのためには、酸素分子の密度を下げること、若しくは原子状酸素の生成箇所を基板に近づける必要があった。
Therefore, it is necessary to use high-concentration ozone gas in a reduced pressure region below this boundary pressure, or to reduce the ozone gas concentration in the ozone-oxygen mixed gas.
Furthermore, in order to effectively utilize the oxidation reactivity of ozone gas, it is necessary to effectively make atomic oxygen generated from ozone reach the substrate surface. For this purpose, the density of oxygen molecules must be reduced, Alternatively, it is necessary to bring the generation site of atomic oxygen close to the substrate.

本発明は、このような点に鑑み提案されたもので、オゾンガスと紫外線とを併用する酸化による表面処理方法において、酸化効率を向上させることのできる手段を提供することを目的とする。   The present invention has been proposed in view of such a point, and an object thereof is to provide means capable of improving oxidation efficiency in an oxidation surface treatment method using ozone gas and ultraviolet rays in combination.

上述の目的を達成するために、本発明は、処理ガスとしてオゾンガスと希ガスとの混合ガスを使用し、該処理ガスを構成するオゾンガスを酸素ガスの混合割合が30vol%以下の高濃度オゾンガス、処理ガスでの希ガス混合濃度を33〜66%とし、この処理ガスを被処理物に作用させ、該混合ガスに紫外光を照射作用させて酸化による表面処理をするようにしたことを特徴としている。
In order to achieve the above-mentioned object, the present invention uses a mixed gas of ozone gas and a rare gas as a processing gas, and the ozone gas constituting the processing gas is a high-concentration ozone gas having a mixing ratio of oxygen gas of 30 vol% or less, a rare gas mixture the concentration of the processing gas is 33 to 66%, characterized in that the process gas is applied to the object to be treated was a surface treatment by oxidation by irradiating action of ultraviolet light to be so that the mixture gas It is said.

本発明では、処理ガスとしてオゾンガスと希ガスとの混合ガスを使用し、該処理ガスを構成するオゾンガスを酸素ガスの混合割合が30vol%以下の高濃度オゾンガス、処理ガスでの希ガス混合濃度を33〜66%とし、この処理ガスを被処理物に作用させるとともに、該混合ガスに紫外光を照射作用させているので、混合ガス中の酸素分子密度を減らすものでありながら、酸化効率を向上させることを可能としている。 In the present invention, a mixed gas of ozone gas and a rare gas is used as a processing gas, and the ozone gas constituting the processing gas is a high-concentration ozone gas having a mixing ratio of oxygen gas of 30 vol% or less, and the mixed concentration of the rare gas in the processing gas. 33-66%, this processing gas is applied to the object to be processed, and the mixed gas is irradiated with ultraviolet light, so that the oxidation efficiency is improved while reducing the oxygen molecular density in the mixed gas. It is possible to make it .

図1は本発明の一実施形態を示す酸化膜製造装置の概略構成図を示し、図2は酸化膜形成チャンバーの概略構成図である。
この酸化膜製造装置は、表面に酸化膜を形成するワーク(1)を収容保持する処理チャンバー(2)に酸素で希釈された高濃度オゾンガスとキセノンガスとの混合ガスを供給する処理ガス供給路(3)と、処理ガス排出路(4)とを連通接続してある。
FIG. 1 is a schematic configuration diagram of an oxide film manufacturing apparatus showing an embodiment of the present invention, and FIG. 2 is a schematic configuration diagram of an oxide film forming chamber.
This oxide film manufacturing apparatus is a processing gas supply path for supplying a mixed gas of high-concentration ozone gas and xenon gas diluted with oxygen to a processing chamber (2) that contains and holds a work (1) for forming an oxide film on the surface. (3) and the processing gas discharge path (4) are connected in communication.

処理ガス供給路(3)はオゾン生成装置(5)に連通を接続しているオゾン酸素混合ガス路(6)と、キセノンガス貯蔵容器(7)に連通接続している希ガス通路(8)とからなり、処理チャンバー(2)に入口側オゾン濃度計(9)を介して接続されている。   The processing gas supply path (3) has an ozone-oxygen mixed gas path (6) connected to the ozone generator (5) and a rare gas path (8) connected to the xenon gas storage container (7). And connected to the processing chamber (2) via an inlet ozone concentration meter (9).

処理ガス排出路(4)には、処理チャンバー(2)側から、出口側オゾン濃度計(10)、オゾン分解器(11)、真空ポンプ(12)が順に配置してある。   In the processing gas discharge path (4), an outlet side ozone concentration meter (10), an ozonolysis device (11), and a vacuum pump (12) are arranged in this order from the processing chamber (2) side.

処理チャンバー(2)は、その内部を赤外線透過隔壁(13)で区画してあり、この赤外線透過隔壁(13)の上面をワーク(1)の載置部に形成するとともに、赤外線透過隔壁(13)の下側に位置するチャンバー内空間にワーク加熱用ヒーター(14)が配置してある。また、処理チャンバー(2)のワーク載置部と対向する壁面には紫外線透過窓(15)が形成してあり、この紫外線透過窓(15)に対応して紫外線光源(16)が配置してある。そして、処理チャンバー(2)のワーク(1)の載置部形成空間の一側壁に処理ガス供給路(3)が接続する処理ガス導入口(17)が、また他側壁に処理ガス排出路(4)が接続する処理ガス導出口(18)が開口形成してある。   The inside of the processing chamber (2) is partitioned by an infrared transmitting partition wall (13). The upper surface of the infrared transmitting partition wall (13) is formed on the mounting portion of the work (1) and the infrared transmitting partition wall (13 A heater (14) for heating the workpiece is arranged in the chamber space located below (). In addition, an ultraviolet transmissive window (15) is formed on the wall surface of the processing chamber (2) facing the workpiece mounting portion, and an ultraviolet light source (16) is arranged corresponding to the ultraviolet transmissive window (15). is there. A processing gas inlet (17) connected to the processing gas supply path (3) is connected to one side wall of the mounting portion forming space of the work (1) of the processing chamber (2), and a processing gas discharge path ( A processing gas outlet (18) to which 4) is connected is formed as an opening.

図1中、符号(19)はオゾン生成装置(5)に連通接続している酸素ガス供給源であり、このオゾン生成装置(5)はPSA装置などのオゾン濃縮手段でオゾン濃度10 vol%以上の高濃度オゾンガスを生成して供給できるようにしてある。また、図1中、(20)オゾン酸素混合ガス路(6)に介装した流量調整器、(21)はオゾン酸素混合ガス路(6)に介装した逆止弁、(22)は希ガス通路(8)に介装した流量調整器、(23)は希ガス通路(8)に介装した逆止弁、(24)は処理チャンバー(2)の内圧力を検出する圧力計である。
In FIG. 1, reference numeral (19) denotes an oxygen gas supply source that is connected to the ozone generator (5). The ozone generator (5) is an ozone concentrating means such as a PSA device and has an ozone concentration of 10 vol% or more. The high-concentration ozone gas can be generated and supplied. In addition, in FIG. 1, (20) is a flow regulator installed in the ozone-oxygen mixed gas path (6), (21) is a check valve interposed in the ozone-oxygen mixed gas path (6), and (22) is A flow regulator installed in the rare gas passage (8), (23) is a check valve interposed in the rare gas passage (8), and (24) is a pressure gauge that detects the internal pressure of the processing chamber (2). is there.

上記した酸化膜製造装置では、高濃度オゾンガスと希ガスとを流量調整器(20)(22)で流量調整を行って混合した状態で処理チャンバー(2)内にその混合ガスを供給し、処理チャンバー(2)内に配置されている基板等のワーク(1)に前記高濃度オゾンガスと希ガスとの混合ガスを紫外光を照射させながら作用させる。   In the oxide film manufacturing apparatus described above, the mixed gas is supplied into the processing chamber (2) in a state where the high-concentration ozone gas and the rare gas are mixed by adjusting the flow rate with the flow rate regulators (20) and (22). The mixed gas of the high-concentration ozone gas and the rare gas is allowed to act on the workpiece (1) such as a substrate disposed in the chamber (2) while irradiating with ultraviolet light.

紫外線の光源としては、キセノン−水銀ランプ、誘電体バリア放電ランプ、波長254nmのレーザーを用いることができる。また、基板等のワーク(1)と紫外線透過窓(15)との距離は、1mm程度に設定してあるが、この距離はさらに短くてもよい。   As the ultraviolet light source, a xenon-mercury lamp, a dielectric barrier discharge lamp, or a laser with a wavelength of 254 nm can be used. Further, the distance between the workpiece (1) such as a substrate and the ultraviolet ray transmitting window (15) is set to about 1 mm, but this distance may be further shortened.

図3は、本発明の異なる実施形態を示し、これは、処理チャンバー(2)内に載置固定したワーク(1)に対して紫外線を平行に入射させるようにし、ワーク(1)を回転可能な支持台(25)に保持させ、この支持台(25)を回転駆動源(26)の作動で処理中に回転させるように構成してある。この場合、紫外光のビーム形状はシート状であり、ワーク(1)と紫外光ビーム面との距離は1mmである。そして、ワーク(1)が回転していることから一様な厚さの酸化膜を形成することができることになる。   FIG. 3 shows a different embodiment of the present invention, which allows ultraviolet light to be incident parallel to the work (1) placed and fixed in the processing chamber (2), so that the work (1) can be rotated. A support base (25) is held, and the support base (25) is rotated during processing by the operation of the rotational drive source (26). In this case, the ultraviolet light beam has a sheet shape, and the distance between the workpiece (1) and the ultraviolet light beam surface is 1 mm. Since the workpiece (1) is rotating, an oxide film having a uniform thickness can be formed.

このようにワーク(1)に対して紫外光を平行に照射する場合、紫外光はオゾン−希ガス混合ガス中を通過するため、オゾンガスに吸収されて下流側での強度が小さくなる。そのため、パルス幅がピコ秒からナノ秒のパルス状紫外レーザーを用いて高強度の光を供給するようにしてもよい。また、オゾン密度を減少させることで、紫外光を透過させるようにしてもよい。   Thus, when irradiating a workpiece | work (1) with ultraviolet light in parallel, since ultraviolet light passes in ozone-rare gas mixed gas, it is absorbed by ozone gas and the intensity | strength in the downstream becomes small. Therefore, high-intensity light may be supplied using a pulsed ultraviolet laser having a pulse width of picoseconds to nanoseconds. Further, ultraviolet light may be transmitted by decreasing the ozone density.

なお、上記の各実施形態では、酸素希釈オゾンガスに混合する希ガスとして、キセノンガスを使用したが、この希ガスとしては、前述のキセノンガスのほかに、ヘリウムガス、ネオンガス、アルゴンガス、クリプトンガスを使用することができる。   In each of the above embodiments, xenon gas is used as a rare gas to be mixed with oxygen-diluted ozone gas. As the rare gas, in addition to the above xenon gas, helium gas, neon gas, argon gas, krypton gas are used. Can be used.

図4は、紫外線照射を併用して、オゾンガスを酸素で希釈した場合と、アルゴンガスで希釈した場合での、ガスのトータル流量と酸化膜厚との関係を示す。この場合、紫外線は、水銀キセノンランプ光に含まれる波長254nm、紫外線強度は、仕様上31mW/cm2、実測値で60mW/cm2のものを使用した。 FIG. 4 shows the relationship between the total gas flow rate and the oxide film thickness when ozone gas is diluted with oxygen using ultraviolet irradiation and diluted with argon gas. In this case, ultraviolet rays, wavelength 254 nm, the ultraviolet intensity contained in the mercury-xenon lamp light, specifications on 31 mW / cm 2, was used for 60 mW / cm 2 in actual measurement values.

図4(A)は、直径50mm、厚さ370μmのシリコン基板を使用し、基板温度350℃、オゾン流量100sccmの状態で、希釈ガスとしての酸素ガスまたはアルゴンガスを100sccm添加した場合と、希釈ガスとしての酸素ガスまたはアルゴンガスを200sccm添加した場合での形成された二酸化珪素膜厚とガス流量との関係を示している。   FIG. 4A shows a case where a silicon substrate having a diameter of 50 mm and a thickness of 370 μm is used, oxygen gas or argon gas as a dilution gas is added at 100 sccm at a substrate temperature of 350 ° C. and an ozone flow rate of 100 sccm, and dilution gas. 3 shows the relationship between the formed silicon dioxide film thickness and the gas flow rate when 200 sccm of oxygen gas or argon gas is added.

図4(B)は、直径50mm、厚さ370μmのシリコン基板を使用し、基板温度450℃、オゾン流量150sccmの状態で、希釈ガスとしての酸素ガスまたはアルゴンガス145sccmを添加した場合と、希釈ガスとしての酸素ガスまたはアルゴンガスを290sccm添加した場合での形成された二酸化珪素膜厚とガス流量との関係を示している。   FIG. 4B shows a case where a silicon substrate having a diameter of 50 mm and a thickness of 370 μm is used, and oxygen gas or argon gas 145 sccm as a dilution gas is added at a substrate temperature of 450 ° C. and an ozone flow rate of 150 sccm. 3 shows the relationship between the formed silicon dioxide film thickness and the gas flow rate when 290 sccm of oxygen gas or argon gas is added.

図5は、紫外照射を併用して、オゾンガスを酸素で希釈した場合と、キセノンガスで希釈した場合での、ガスのトータル流量と酸化膜厚との関係を示す。紫外前方式と同様、水銀キセノンランプ光に含まれる波長254nm、紫外線強度は、仕様上31mW/cm2、実測値で60mW/cm2のものを使用した。
FIG. 5 shows the relationship between the total gas flow rate and the oxide film thickness when ozone gas is diluted with oxygen using ultraviolet light irradiation and diluted with xenon gas. As with ultraviolet light forward type, wavelength 254 nm, the ultraviolet intensity contained in the mercury-xenon lamp light, specifications on 31 mW / cm 2, was used for 60 mW / cm 2 in actual measurement values.

図5(A)は、直径50mm、厚さ370μmのシリコン基板を使用し、基板温度350℃、オゾン流量150sccmの状態で、希釈ガスとしての酸素ガスまたはキセノンガス150sccmを添加した場合と、希釈ガスとしての酸素ガスまたはキセノンガスを290sccm添加した場合での形成された二酸化珪素膜厚とガス流量との関係を示している。   FIG. 5A shows a case where a silicon substrate having a diameter of 50 mm and a thickness of 370 μm is used, and oxygen gas or xenon gas 150 sccm as a dilution gas is added at a substrate temperature of 350 ° C. and an ozone flow rate of 150 sccm. 3 shows the relationship between the formed silicon dioxide film thickness and the gas flow rate when 290 sccm of oxygen gas or xenon gas is added.

図5(B)は、直径50mm、厚さ370μmのシリコン基板を使用し、基板温度450℃、オゾン流量300sccmの状態で、希釈ガスとしての酸素ガスまたはキセノンンガスを150sccm添加した場合と、希釈ガスとしての酸素ガスまたはキセノンガスを300sccm添加した場合での形成された二酸化珪素膜厚とガス流量との関係を示している。   FIG. 5B shows a case where a silicon substrate having a diameter of 50 mm and a thickness of 370 μm is used, oxygen gas or xenon gas as a dilution gas is added at 150 sccm with a substrate temperature of 450 ° C. and an ozone flow rate of 300 sccm. The relationship between the formed silicon dioxide film thickness and the gas flow rate when oxygen gas or xenon gas as a gas is added at 300 sccm is shown.

この結果、一般的に流量が大きくなると、冷却効果が大きくなり酸化速度が低下するが(酸素希釈の場合参照)、希ガスでの希釈の場合には、そのような傾向は見られない。   As a result, generally, when the flow rate increases, the cooling effect increases and the oxidation rate decreases (see the case of oxygen dilution), but such a tendency is not observed in the case of dilution with a rare gas.

図6は、紫外線照射の有無による酸化膜厚変化を示す図である。この図は、直径50mm、厚さ370μmのシリコン基板をキセノンガスを5 vol%添加したオゾンガス290sccmを用いて酸化膜を形成する場合に紫外線照射を併用した場合と、併用しない場合での酸化膜厚の変化を示している。
この図によると、紫外照射なしの場合の酸化膜厚は1.6nm程度であるのに対し、紫外照射を伴う場合には、2.1nmまで酸化膜厚は増加していることが分かる。
FIG. 6 is a diagram showing changes in oxide film thickness depending on the presence or absence of ultraviolet irradiation. This figure shows the oxide film thickness with and without UV irradiation when forming an oxide film using 290 sccm of ozone gas with 5 vol% xenon gas added to a silicon substrate having a diameter of 50 mm and a thickness of 370 μm. Shows changes.
According to this figure, the oxide film thickness without ultraviolet light irradiation is about 1.6 nm, while with ultraviolet light irradiation, the oxide film thickness increases to 2.1 nm. .

図7は、キセノンガスを添加したオゾン酸素混合ガスと紫外線照射とを併用した場合のオゾン濃度とアッシング速度との関係を示す図である。
この場合、1cm×1cmのレジスト付きウエハを内容積300ccのチャンバー内に設置し、波長254nmの紫外光を照射した。処理条件としては、圧力27Torr、基板温度55℃であった。
図7から、同じオゾン濃度であっても、キセノンガスで希釈した場合のほうが酸素で希釈した場合よりもアッシング速度を大きくとることができることが分かる。
FIG. 7 is a diagram showing the relationship between the ozone concentration and the ashing rate when the ozone-oxygen mixed gas to which xenon gas is added and ultraviolet irradiation are used in combination.
In this case, a 1 cm × 1 cm resist-coated wafer was placed in a chamber with an internal volume of 300 cc and irradiated with ultraviolet light having a wavelength of 254 nm. The processing conditions were a pressure of 27 Torr and a substrate temperature of 55 ° C.
FIG. 7 shows that even when the ozone concentration is the same, the ashing rate can be increased when diluted with xenon gas than when diluted with oxygen.

図8は、オゾン濃度15 vol%(残り酸素)、流量500sccm(オゾン75sccm+酸素425sccm)、基板温度55℃、圧力27Torrに固定した状態でキセノン添加量を変化させた場合のアッシング速度の変化を示す。このウエハに塗布したレジストは、べーク温度180℃、膜厚1.2μmであった。そしてアッシング速度は、処理前後のレジスト膜厚さを処理時間で除することにより得た。   FIG. 8 shows changes in the ashing rate when the amount of xenon added is changed while the ozone concentration is 15 vol% (remaining oxygen), the flow rate is 500 sccm (ozone 75 sccm + oxygen 425 sccm), the substrate temperature is 55 ° C., and the pressure is 27 Torr. . The resist applied to this wafer had a baking temperature of 180 ° C. and a film thickness of 1.2 μm. The ashing speed was obtained by dividing the resist film thickness before and after the treatment by the treatment time.

図8(A)に示すように、キセノンガスを総流量に対して、0.2%、実流量1sccm添加しただけで、アッシング速度は約30%上昇した。しかし、1%程度以上添加してもアッシング速度はあまり変化せず、飽和する傾向が認められた。さらに、図8(B)に示すように、ガスの流れの多い個所が選択的にアッシングされる様子が確認できた。   As shown in FIG. 8A, the ashing rate was increased by about 30% just by adding 0.2% xenon gas and 1 sccm actual flow rate to the total flow rate. However, the ashing rate did not change much even when added at about 1% or more, and a tendency to saturate was observed. Furthermore, as shown in FIG. 8B, it was confirmed that a portion where the gas flow was large was selectively ashed.

上記処理に使用するキセノンガスを添加したオゾン酸素混合ガス中の酸素ガス成分は30vol%以下、好ましくは、10vol%以下であることが望ましい。また、処理チャンバーでの処理温度としては、ワークがシリコン基板の場合には、室温から1200℃までを使用することができるが、望ましくは500℃以下、さらに望ましくは、400℃以下であることが好ましい。   The oxygen gas component in the ozone-oxygen mixed gas to which the xenon gas used for the treatment is added is 30 vol% or less, preferably 10 vol% or less. In addition, when the workpiece is a silicon substrate, the processing temperature in the processing chamber can be from room temperature to 1200 ° C., preferably 500 ° C. or lower, more preferably 400 ° C. or lower. preferable.

照射する紫外線としては、その波長が200〜300nmの範囲にある光を使用することができる。その紫外光は、連続波長であっても複数波長であってもよく、また、レーザー等を用いる単一波長であってもよい。さらに、紫外線はパルス状でも、連続照射でもよい。   As the ultraviolet rays to be irradiated, light having a wavelength in the range of 200 to 300 nm can be used. The ultraviolet light may be a continuous wavelength, a plurality of wavelengths, or a single wavelength using a laser or the like. Further, the ultraviolet rays may be pulsed or continuously irradiated.

本発明は、半導体製造部門での酸化膜形成処理やレジストアッシング処理等の酸化処理に利用することができる。   The present invention can be used for an oxidation process such as an oxide film formation process or a resist ashing process in a semiconductor manufacturing department.

本発明の一実施形態を示す酸化膜製造装置の概略構成図であるIt is a schematic block diagram of the oxide film manufacturing apparatus which shows one Embodiment of this invention. 酸化膜形成チャンバーの概略構成図である。It is a schematic block diagram of an oxide film formation chamber. 異なる実施形態を示す酸化膜形成チャンバーの概略構成図である。It is a schematic block diagram of the oxide film formation chamber which shows different embodiment. 紫外照射を併用して、オゾンガスを酸素で希釈した場合と、アルゴンガスで希釈した場合での、ガスのトータル流量と酸化膜厚との関係を示す図である。It is a figure which shows the relationship between the total flow volume of gas, and the oxide film thickness in the case where the ozone gas is diluted with oxygen and the case where it is diluted with argon gas in combination with ultraviolet light irradiation. 紫外照射を併用して、オゾンガスを酸素で希釈した場合と、キセノンガスで希釈した場合での、ガスのトータル流量と酸化膜厚との関係を示す図である。It is a figure which shows the relationship between the total flow rate of gas, and the oxide film thickness in the case where the ozone gas is diluted with oxygen in combination with ultraviolet light irradiation and the case where it is diluted with xenon gas. 紫外照射の有無による酸化膜厚の変化を示す図である。It is a figure which shows the change of the oxide film thickness by the presence or absence of ultraviolet light irradiation. キセノンガスを添加したオゾン酸素混合ガスと紫外照射とを併用した場合でのオゾン濃度とアッシング速度との関係を示す図である。It is a figure which shows the relationship between the ozone concentration and the ashing rate at the time of using together the ozone oxygen mixed gas which added xenon gas, and ultraviolet light irradiation. オゾンガスに添加するキセノンガスの添加量を変化させた場合でのアッシング速度の変化を示す図である。It is a figure which shows the change of the ashing rate at the time of changing the addition amount of the xenon gas added to ozone gas.

符号の説明Explanation of symbols

1…被処理物、2…処理チャンバー、15…紫外線透過窓、16…紫外線光源、17…混合ガス導入口、18…混合ガス導出口。   DESCRIPTION OF SYMBOLS 1 ... To-be-processed object, 2 ... Processing chamber, 15 ... Ultraviolet transmission window, 16 ... Ultraviolet light source, 17 ... Mixed gas inlet, 18 ... Mixed gas outlet

Claims (10)

オゾンガスを使用して酸化に起因する表面処理を行う表面処理方法であって、
処理ガスとしてオゾンガスと希ガスとの混合ガスを使用し、該処理ガスを構成するオゾンガスを酸素ガスの混合割合が30vol%以下の高濃度オゾンガス、処理ガスでの希ガス混合濃度を33〜66%とし、
この処理ガスを被処理物に作用させるとともに、該処理ガスに紫外光を照射させることにより、被処理物の表面を酸化処理することを特徴とするオゾンガス利用表面処理方法。
A surface treatment method for performing surface treatment due to oxidation using ozone gas,
A mixed gas of ozone gas and rare gas is used as the processing gas, and the ozone gas constituting the processing gas is a high-concentration ozone gas with a mixing ratio of oxygen gas of 30 vol% or less, and the mixed concentration of the rare gas in the processing gas is 33 to 66%. age,
A surface treatment method using ozone gas, wherein the treatment gas is allowed to act on the object to be treated, and the surface of the object to be treated is oxidized by irradiating the treatment gas with ultraviolet light.
酸化に起因する表面処理がシリコン酸化処理である請求項1に記載のオゾンガス利用表面処理方法。   The surface treatment method using ozone gas according to claim 1, wherein the surface treatment resulting from oxidation is silicon oxidation treatment. 酸化に起因する表面処理がレジストアッシング処理である請求項1に記載のオゾンガス利用表面処理方法。   The surface treatment method using ozone gas according to claim 1, wherein the surface treatment resulting from oxidation is a resist ashing treatment. 希ガスがキセノンである請求項1から2のいずれか1項に記載のオゾンガス利用表面処理方法。 The surface treatment method using ozone gas according to claim 1, wherein the rare gas is xenon. 被処理物が加熱した状態にある請求項1〜4のいずれか1項に記載のオゾンガス利用表面処理方法。   The surface treatment method using ozone gas according to any one of claims 1 to 4, wherein the object to be treated is in a heated state. 酸素ガスの混合割合を30 vol%以下とした高濃度オゾンガスと、混合濃度を33〜66 vol%に設定した希ガスとの混合ガスを処理ガスとし、この処理ガスを導入する処理ガス導入口(17)と、該処理ガスの導出口(18)とを被処理物を収容する処理チャンバー(2)に配置するとともに、この処理チャンバー(2)に紫外線透過窓(15)を配置し、この紫外線透過窓(15)に対応させて紫外線光源(16)を位置させ、処理チャンバー(2)に収容された被処理物(1)の表面を酸化に起因する表面処理するようにしたことを特徴とするオゾンガス利用表面処理装置。   A processing gas introduction port for introducing a processing gas into a processing gas that is a mixed gas of high-concentration ozone gas with a mixing ratio of oxygen gas of 30 vol% or less and a rare gas with a mixing concentration set to 33 to 66 vol% ( 17) and the process gas outlet (18) are disposed in the processing chamber (2) for accommodating the object to be processed, and an ultraviolet transmissive window (15) is disposed in the processing chamber (2). The ultraviolet light source (16) is positioned so as to correspond to the transmission window (15), and the surface of the object (1) accommodated in the processing chamber (2) is subjected to surface treatment caused by oxidation. Ozone gas surface treatment equipment. 高濃度オゾンガスと希ガスとの混合ガスと紫外線光源(16)からの紫外光で被処理物(1)の表面を酸化処理する請求項6に記載のオゾンガス利用表面処理装置。   The surface treatment apparatus using ozone gas according to claim 6, wherein the surface of the object to be treated (1) is oxidized by a mixed gas of high-concentration ozone gas and rare gas and ultraviolet light from an ultraviolet light source (16). 高濃度オゾンガスと希ガスとの混合ガスと紫外線光源(16)からの紫外光で被処理物(1)の表面をレジストアッシング処理する請求項6に記載のオゾンガス利用表面処理装置。   The surface treatment apparatus using ozone gas according to claim 6, wherein the surface of the object to be treated (1) is subjected to resist ashing treatment with a mixed gas of high-concentration ozone gas and rare gas and ultraviolet light from an ultraviolet light source (16). 希ガスがキセノンである請求項6〜8のいずれか1項に記載のオゾンガス利用表面処理装置。 The surface treatment apparatus using ozone gas according to any one of claims 6 to 8, wherein the rare gas is xenon. 処理室内の被処理物を加熱する加熱手段(14)が装備されている請求項6〜9のいずれか1項に記載のオゾンガス利用表面処理装置。   The ozone gas utilization surface treatment apparatus of any one of Claims 6-9 equipped with the heating means (14) which heats the to-be-processed object in a process chamber.
JP2008165914A 2008-06-25 2008-06-25 Surface treatment method and apparatus using ozone gas Active JP5267980B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008165914A JP5267980B2 (en) 2008-06-25 2008-06-25 Surface treatment method and apparatus using ozone gas

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008165914A JP5267980B2 (en) 2008-06-25 2008-06-25 Surface treatment method and apparatus using ozone gas

Publications (2)

Publication Number Publication Date
JP2010010283A JP2010010283A (en) 2010-01-14
JP5267980B2 true JP5267980B2 (en) 2013-08-21

Family

ID=41590441

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008165914A Active JP5267980B2 (en) 2008-06-25 2008-06-25 Surface treatment method and apparatus using ozone gas

Country Status (1)

Country Link
JP (1) JP5267980B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012984B2 (en) * 2012-02-28 2016-10-25 Hoya株式会社 Method for manufacturing transfer mask and method for manufacturing mask blank
JP5895929B2 (en) * 2013-12-25 2016-03-30 ウシオ電機株式会社 Light irradiation device
JP2017163066A (en) * 2016-03-11 2017-09-14 ウシオ電機株式会社 Optical processor, and gap adjustment method of processed object surface and window member
JP7342112B2 (en) * 2018-09-24 2023-09-11 アプライド マテリアルズ インコーポレイテッド Atomic oxygen and ozone equipment for cleaning and surface treatment

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07118522B2 (en) * 1990-10-24 1995-12-18 インターナショナル・ビジネス・マシーンズ・コーポレイション Method and semiconductor structure for oxidizing a substrate surface
JP3484480B2 (en) * 1995-11-06 2004-01-06 富士通株式会社 Method for manufacturing semiconductor device
JP4076638B2 (en) * 1998-10-26 2008-04-16 富士通株式会社 Manufacturing method of semiconductor device
JP4361179B2 (en) * 1999-12-27 2009-11-11 東京エレクトロン株式会社 Ozone treatment apparatus and ozone treatment method
JP2007258096A (en) * 2006-03-24 2007-10-04 Seiko Epson Corp Plasma processing apparatus
JP5193488B2 (en) * 2007-03-30 2013-05-08 株式会社明電舎 Method and apparatus for forming oxide film

Also Published As

Publication number Publication date
JP2010010283A (en) 2010-01-14

Similar Documents

Publication Publication Date Title
CN110323156A (en) Substrate-treating apparatus and method
AU2015282298B2 (en) Method for manufacturing reaction product in which phase interface reaction is employed, phase interface reactor, and method for manufacturing secondary reaction product
JP6948808B2 (en) Systems and methods for vapor phase hydroxyl radical treatment of substrates
JP2001118818A (en) Ultraviolet ray-treating device and method
KR20010051163A (en) Apparatus and method for irradiating ultraviolet light
JP2705023B2 (en) Oxidation method of workpiece
JP5267980B2 (en) Surface treatment method and apparatus using ozone gas
JP2009094503A (en) Semiconductor processing apparatus and method for curing material with uv light
JP6738414B2 (en) Method of treating a substrate with an aqueous liquid medium exposed to ultraviolet light
JP2013154145A (en) Air cleaner
JP4621848B2 (en) Method for making oxide thin film
JP3702850B2 (en) Processing method using dielectric barrier discharge lamp
JP4286158B2 (en) Ozone treatment equipment
JP3291809B2 (en) Processing method using dielectric barrier discharge lamp
JP2002083803A (en) Dry processing device such as etching device and ashing device
Kubodera et al. Subpicosecond vacuum ultraviolet laser system for advanced materials processing
JP3392789B2 (en) Thermal oxidation method and apparatus
JP2005313174A (en) Treatment method using dielectric barrier discharge lamp
JP3778210B2 (en) Processing method using dielectric barrier discharge lamp
JP3815503B2 (en) Processing method using dielectric barrier discharge lamp
JP3702852B2 (en) Processing method using dielectric barrier discharge lamp
JP2004152842A (en) Processing method by ultraviolet irradiation and ultraviolet irradiation device
CN212302327U (en) Light intensity and ozone concentration control device for excimer lamp
JPS6320833A (en) Ashing apparatus
JPH0429220B2 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100913

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100910

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130222

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130319

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130325

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130417

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5267980

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250