JP5267898B1 - Method and apparatus for reforming fossil fuel - Google Patents
Method and apparatus for reforming fossil fuel Download PDFInfo
- Publication number
- JP5267898B1 JP5267898B1 JP2012109125A JP2012109125A JP5267898B1 JP 5267898 B1 JP5267898 B1 JP 5267898B1 JP 2012109125 A JP2012109125 A JP 2012109125A JP 2012109125 A JP2012109125 A JP 2012109125A JP 5267898 B1 JP5267898 B1 JP 5267898B1
- Authority
- JP
- Japan
- Prior art keywords
- oil
- raw material
- water
- reaction
- fossil fuel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 239000002803 fossil fuel Substances 0.000 title claims abstract description 28
- 238000000034 method Methods 0.000 title claims abstract description 22
- 238000002407 reforming Methods 0.000 title claims abstract description 18
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims abstract description 58
- 239000002994 raw material Substances 0.000 claims abstract description 46
- 238000013032 photocatalytic reaction Methods 0.000 claims abstract description 38
- 238000006243 chemical reaction Methods 0.000 claims abstract description 37
- 238000012545 processing Methods 0.000 claims abstract description 22
- 238000010438 heat treatment Methods 0.000 claims abstract description 13
- 230000001699 photocatalysis Effects 0.000 claims abstract description 13
- 239000000463 material Substances 0.000 claims abstract description 3
- 239000007788 liquid Substances 0.000 claims description 24
- GWEVSGVZZGPLCZ-UHFFFAOYSA-N Titan oxide Chemical compound O=[Ti]=O GWEVSGVZZGPLCZ-UHFFFAOYSA-N 0.000 claims description 18
- 230000004907 flux Effects 0.000 claims description 15
- 239000011941 photocatalyst Substances 0.000 claims description 15
- 238000007872 degassing Methods 0.000 claims description 12
- 229910052586 apatite Inorganic materials 0.000 claims description 9
- VSIIXMUUUJUKCM-UHFFFAOYSA-D pentacalcium;fluoride;triphosphate Chemical compound [F-].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[Ca+2].[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O.[O-]P([O-])([O-])=O VSIIXMUUUJUKCM-UHFFFAOYSA-D 0.000 claims description 9
- 239000004408 titanium dioxide Substances 0.000 claims description 9
- 230000008569 process Effects 0.000 claims description 8
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 6
- 239000001301 oxygen Substances 0.000 claims description 6
- 229910052760 oxygen Inorganic materials 0.000 claims description 6
- 230000001678 irradiating effect Effects 0.000 claims description 5
- 239000011248 coating agent Substances 0.000 claims description 4
- 238000000576 coating method Methods 0.000 claims description 4
- 230000004048 modification Effects 0.000 claims description 4
- 238000012986 modification Methods 0.000 claims description 4
- 239000010453 quartz Substances 0.000 claims description 4
- VYPSYNLAJGMNEJ-UHFFFAOYSA-N silicon dioxide Inorganic materials O=[Si]=O VYPSYNLAJGMNEJ-UHFFFAOYSA-N 0.000 claims description 4
- 230000003213 activating effect Effects 0.000 abstract description 2
- 230000008859 change Effects 0.000 abstract description 2
- 238000006703 hydration reaction Methods 0.000 abstract description 2
- 238000005984 hydrogenation reaction Methods 0.000 abstract description 2
- 238000006460 hydrolysis reaction Methods 0.000 abstract 1
- 238000006057 reforming reaction Methods 0.000 abstract 1
- 239000003921 oil Substances 0.000 description 77
- 102000004190 Enzymes Human genes 0.000 description 7
- 108090000790 Enzymes Proteins 0.000 description 7
- 239000000295 fuel oil Substances 0.000 description 7
- 239000000446 fuel Substances 0.000 description 6
- 238000003756 stirring Methods 0.000 description 6
- 238000001994 activation Methods 0.000 description 5
- 239000012295 chemical reaction liquid Substances 0.000 description 4
- 238000002485 combustion reaction Methods 0.000 description 4
- 239000000243 solution Substances 0.000 description 4
- 229930195733 hydrocarbon Natural products 0.000 description 3
- 150000002430 hydrocarbons Chemical class 0.000 description 3
- 239000007764 o/w emulsion Substances 0.000 description 3
- 238000010248 power generation Methods 0.000 description 3
- OKTJSMMVPCPJKN-UHFFFAOYSA-N Carbon Chemical group [C] OKTJSMMVPCPJKN-UHFFFAOYSA-N 0.000 description 2
- 239000004215 Carbon black (E152) Substances 0.000 description 2
- 230000000694 effects Effects 0.000 description 2
- 230000005389 magnetism Effects 0.000 description 2
- 239000012528 membrane Substances 0.000 description 2
- VNWKTOKETHGBQD-UHFFFAOYSA-N methane Chemical compound C VNWKTOKETHGBQD-UHFFFAOYSA-N 0.000 description 2
- 239000011259 mixed solution Substances 0.000 description 2
- 239000003973 paint Substances 0.000 description 2
- 239000008399 tap water Substances 0.000 description 2
- 235000020679 tap water Nutrition 0.000 description 2
- 230000005653 Brownian motion process Effects 0.000 description 1
- LFQSCWFLJHTTHZ-UHFFFAOYSA-N Ethanol Chemical compound CCO LFQSCWFLJHTTHZ-UHFFFAOYSA-N 0.000 description 1
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 1
- 229920000297 Rayon Polymers 0.000 description 1
- 230000004913 activation Effects 0.000 description 1
- FFBHFFJDDLITSX-UHFFFAOYSA-N benzyl N-[2-hydroxy-4-(3-oxomorpholin-4-yl)phenyl]carbamate Chemical compound OC1=C(NC(=O)OCC2=CC=CC=C2)C=CC(=C1)N1CCOCC1=O FFBHFFJDDLITSX-UHFFFAOYSA-N 0.000 description 1
- 230000015572 biosynthetic process Effects 0.000 description 1
- 238000005537 brownian motion Methods 0.000 description 1
- 229910052799 carbon Inorganic materials 0.000 description 1
- 125000004432 carbon atom Chemical group C* 0.000 description 1
- 238000001833 catalytic reforming Methods 0.000 description 1
- 239000007809 chemical reaction catalyst Substances 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 238000010586 diagram Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 230000007613 environmental effect Effects 0.000 description 1
- 230000001747 exhibiting effect Effects 0.000 description 1
- 239000005431 greenhouse gas Substances 0.000 description 1
- 230000020169 heat generation Effects 0.000 description 1
- 239000001257 hydrogen Substances 0.000 description 1
- 229910052739 hydrogen Inorganic materials 0.000 description 1
- 238000012432 intermediate storage Methods 0.000 description 1
- 239000003350 kerosene Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 239000003345 natural gas Substances 0.000 description 1
- 229910001172 neodymium magnet Inorganic materials 0.000 description 1
- 230000001737 promoting effect Effects 0.000 description 1
- 230000009467 reduction Effects 0.000 description 1
- 238000001223 reverse osmosis Methods 0.000 description 1
- 238000004062 sedimentation Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
- 238000012360 testing method Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
- 229930195735 unsaturated hydrocarbon Natural products 0.000 description 1
- 239000002569 water oil cream Substances 0.000 description 1
Landscapes
- Liquid Carbonaceous Fuels (AREA)
Abstract
【課題】原料油(化石燃料)と水とを磁気により活性化し、光触媒反応させることによって発熱量が原料油に劣らぬ改質油を原料油の1.2〜2倍量を製造する化石燃料の改質方法及び改質装置を提供する。
【解決手段】脱気、加温並びに磁気処理によって活性化した原料水と、加温および磁気処理によって活性化した原料油とを光触媒反応装置に導き、光触媒作用によって加水分解反応、水素化反応並びに水和反応などの化学反応を行い、発熱量が変わらぬ軽質油を製造することができる。さらに、未反応物を再度、磁気処理装置を通して光触媒反応装置に循環し、改質反応を進めることにより原料油の1.2〜2倍量の収量を得ることができる。
【選択図】図2A fossil fuel that produces 1.2 to 2 times the amount of reformed oil whose calorific value is not inferior to that of the raw material oil by magnetically activating the raw material oil (fossil fuel) and water and causing a photocatalytic reaction. A reforming method and a reforming apparatus are provided.
A raw material water activated by deaeration, heating and magnetic treatment and a raw oil activated by heating and magnetic treatment are led to a photocatalytic reactor, and a hydrolysis reaction, hydrogenation reaction and It is possible to produce a light oil whose calorific value does not change by performing a chemical reaction such as a hydration reaction. Further, the unreacted material is again circulated through the magnetic processing device to the photocatalytic reaction device, and the reforming reaction proceeds to obtain a yield of 1.2 to 2 times the amount of the raw material oil.
[Selection] Figure 2
Description
本発明は、原料となる化石燃料(原料油)と水とを混合し、脱気、加熱、磁気処理並びに光触媒反応によって原料油を改質し、原料油に劣らぬ発熱量を有する改質燃料を得るための化石燃料の改質方法および改質装置に関する。 The present invention mixes fossil fuel (raw material oil) as a raw material and water, reforms the raw material oil by degassing, heating, magnetic treatment and photocatalytic reaction, and has a calorific value comparable to that of the raw material oil. The present invention relates to a fossil fuel reforming method and reforming apparatus for obtaining the same.
エネルギー問題は様々な形で人類に影響を及ぼしている。福島第一原子力発電所の事故以来、電力の原子力依存が抑制され、それに代わるものとして再生可能エネルギーの開発が求められ、その早急な実施が叫ばれている。しかし、その供給電力量は当分の間、原子力発電をカバーするに至らず、その間を火力発電が肩代わりする状況にある。 Energy problems affect mankind in various ways. Since the accident at the Fukushima Daiichi nuclear power plant, the dependence of nuclear power on nuclear power has been restrained, and as an alternative, the development of renewable energy has been called for, and its rapid implementation has been screamed. However, the amount of power supplied has not covered nuclear power generation for the time being, and thermal power generation is taking over in the meantime.
火力発電の燃料源としては石炭、天然ガス、化石燃料等が使用されているが、化石燃料の使用比率は高く、そのため、あらゆる面から化石燃料の使用に係るコストを低減する技術が開発され、実用化されつつある。 Coal, natural gas, fossil fuel, etc. are used as the fuel source for thermal power generation, but the use ratio of fossil fuel is high, so technology to reduce the cost of using fossil fuel from all aspects has been developed, It is being put into practical use.
その一つとして、油中に水を分散した油水エマルジョン燃料があり、一部で実用化されている。さらに近年、酵素を加えた水と油を混合し、特殊な装置により油を加水分解して加水燃料とする方法が提案されている(特許文献1参照)。
この方法は、水が燃料として機能する燃焼効率のよい、安定した燃料油を提供するとある。
One of them is an oil-water emulsion fuel in which water is dispersed in oil, and some of them are put into practical use. Furthermore, in recent years, a method has been proposed in which water and oil to which an enzyme is added are mixed and the oil is hydrolyzed with a special apparatus to obtain a hydrolyzed fuel (see Patent Document 1).
This method provides a stable fuel oil with good combustion efficiency in which water functions as a fuel.
その後、前記特許と異なる酵素種を水および油に加え、さらに、その混合液をマイクロ波または超音波で励起された天然鉱石と接触反応させる方法が提案されている(特許文献2参照)。この方法は発熱量の高い、透明な加水燃料を提供するとある。 Thereafter, a method has been proposed in which an enzyme species different from the above patent is added to water and oil, and the mixed solution is further contacted with natural ore excited by microwaves or ultrasonic waves (see Patent Document 2). This method is said to provide a transparent hydrofuel with a high calorific value.
前述の両先行技術は、いずれも反応触媒として酵素を使用するもので、そのため酵素残渣を除去するための工程を設ける必要があり、また除去された酵素残渣を処分する経費が必要である。さらに酵素が高価であることもあり、製造コストに問題にあった。
本発明は、酵素の代わりに光触媒を用いて化石燃料(原料油)と水とを化学的に反応させて原料油を改質することにより、先行技術のコスト問題を解決し、原料油と変わらぬ発熱量を示す改質油を得ることを目的とする。また、本発明は改質された高粘度の重質油の粘度を低下させ、燃焼性および燃焼効率を著しく向上させた改質油を得ることを目的とする。さらに化学反応によって改質することにより、改質油の収量が原料油の1.2〜2.0倍量となる化石燃料の改質方法および改質装置を提供することを目的とする。
Both of the above-mentioned prior arts use an enzyme as a reaction catalyst. Therefore, it is necessary to provide a process for removing the enzyme residue, and it is necessary to dispose of the removed enzyme residue. Furthermore, since the enzyme is expensive, there is a problem in manufacturing cost.
The present invention solves the cost problem of the prior art by chemically reacting fossil fuel (raw oil) with water using a photocatalyst instead of an enzyme, thereby changing the cost problem of the prior art. An object of the present invention is to obtain a modified oil exhibiting a large amount of heat generation. Another object of the present invention is to obtain a modified oil that has a reduced viscosity of a high viscosity heavy oil that has been modified to significantly improve combustibility and combustion efficiency. It is another object of the present invention to provide a fossil fuel reforming method and reforming apparatus in which the yield of reformed oil is 1.2 to 2.0 times that of the raw material oil by reforming by chemical reaction.
本発明の化石燃料改質方法は、原料水を脱気処理して容存酸素を1ppm以下まで低下させた後に、30〜80℃に加熱し、表面磁束密度は1000〜40000ガウスの磁気処理を施して活性水を得る工程と化石燃料の原料油を40〜80℃に加熱した後に、表面磁束密度が1000〜40000ガウスの磁気処理を施して活性油を得る工程と前記活性水と前記活性油とを混合し、この混合液に対し、アパタイト被覆二酸化チタンを光触媒とし、照射線量10〜300mW・sec/cm2の紫外線を照射して、光触媒により改質処理を行う工程と、
この光触媒反応の未反応液を、前記改質処理を行う工程に戻して、再度光触媒反応に供する循環工程と
を有することを特徴とする。
In the fossil fuel reforming method of the present invention, the raw water is degassed to reduce the existing oxygen to 1 ppm or less, and then heated to 30 to 80 ° C., and the surface magnetic flux density is 1000 to 40000 Gauss. A process of obtaining activated water and heating the raw material oil of fossil fuel to 40 to 80 ° C., and then performing a magnetic treatment with a surface magnetic flux density of 1000 to 40000 gauss to obtain the activated oil, and the activated water and the activated oil A step of performing a modification treatment with the photocatalyst by irradiating the mixed solution with apatite-coated titanium dioxide as a photocatalyst, irradiating ultraviolet rays with an irradiation dose of 10 to 300 mW · sec / cm 2 ,
The unreacted liquid of the photocatalytic reaction is returned to the step of performing the reforming treatment, and has a circulation step that is used again for the photocatalytic reaction.
この方法は、例えば、50〜85重量部の前記原料油と、15〜50重量部の前記原料水とから、原料油の1.2〜2.0倍の改質油を得る方法である。 This method is, for example, a method of obtaining a modified oil 1.2 to 2.0 times the raw material oil from 50 to 85 parts by weight of the raw material oil and 15 to 50 parts by weight of the raw material water.
本発明の化石燃料改質装置は、
原料水中の容存酸素を1ppm以下まで低下させる脱気処理装置と、前記原料水を30〜80℃の温度に加温する温度調整装置と、前記原料水に、表面磁束密度が1000〜40000ガウスの磁気処理を施して、活性水を得る原料水磁気処理装置と、化石燃料の原料油を、原料タンク内で40〜80℃に加温して、粘度調整する加熱装置と、前記原料油に、表面磁束密度が1000〜40000ガウスの磁気処理を施して、活性油を得る原料油磁気処理装置と、前記活性水と前記活性油とを混合し、この混合油に対し、アパタイト被覆二酸化チタンを光触媒とし、照射線量10〜300mW・sec/cm2の紫外線を照射して、光触媒により改質処理を行う第1の光触媒反応装置と、前記第1の光触媒反応装置にて処理した混合油に対し、アパタイト被覆二酸化チタンを光触媒とし、照射線量10〜300mW・sec/cm2の紫外線を照射して、光触媒反応により改質処理を行う第2の光触媒反応装置と、前記第2の光触媒反応装置にて処理した混合油が供給される循環反応タンクと、前記循環反応タンク内の未反応液を取り出し、この反応液に、表面磁束密度が1000〜40000ガウスの磁気処理を施して、活性化する未反応液磁気処理装置と、前記未反応液磁気処理装置で活性化した未反応液を、前記第2の光触媒反応装置に戻して、再度この第2の光触媒反応装置にて処理させる循環経路と、前記循環反応タンク内の反応後の改質油が供給される改質油タンクと、を有することを特徴とする。
The fossil fuel reformer of the present invention is
A degassing apparatus for reducing the oxygen content in the raw material water to 1 ppm or less, a temperature adjusting device for heating the raw water to a temperature of 30 to 80 ° C., and a surface magnetic flux density of 1000 to 40000 gauss To the raw material water magnetic processing device to obtain the active water, the fossil fuel raw material oil is heated to 40 to 80 ° C. in the raw material tank, and the viscosity is adjusted. The raw oil magnetic processing device for obtaining an active oil by applying a magnetic treatment with a surface magnetic flux density of 1000 to 40000 gauss, and the active water and the active oil are mixed, and apatite-coated titanium dioxide is mixed with the mixed oil. A first photocatalyst reactor that performs photo-catalytic reforming treatment by irradiating ultraviolet rays with an irradiation dose of 10 to 300 mW · sec / cm 2 as a photocatalyst, and a mixed oil treated in the first photocatalytic reactor And a second photocatalytic reaction device that uses apatite-coated titanium dioxide as a photocatalyst, irradiates ultraviolet rays with an irradiation dose of 10 to 300 mW · sec / cm 2 , and performs a reforming process by a photocatalytic reaction, and the second photocatalytic reaction device. The recycle reaction tank supplied with the treated mixed oil and the unreacted liquid in the recycle reaction tank are taken out, and the reaction liquid is subjected to magnetic treatment with a surface magnetic flux density of 1000 to 40000 gauss to be activated. A reaction liquid magnetic processing apparatus, a circulation path for returning the unreacted liquid activated by the unreacted liquid magnetic processing apparatus to the second photocatalytic reaction apparatus, and processing again in the second photocatalytic reaction apparatus, And a reforming oil tank to which the reformed oil after the reaction in the circulating reaction tank is supplied.
この場合に、例えば、前記第1及び第2の光触媒反応装置は、石英管の接液部表面に、アパタイト被覆二酸化チタンを含む光触媒塗料を塗布した流水式紫外線殺菌装置である。 In this case, for example, the first and second photocatalytic reactors are flowing water type ultraviolet sterilizers in which a photocatalyst paint containing apatite-coated titanium dioxide is applied to the surface of the liquid contact part of the quartz tube.
本発明においては、磁気処理により、原料水の水分子がマイナスに分極し,ブラウン運動が活発となって活性化し、同様に、原料油もブラウン運動が活発となって活性化し、両者を混合した混合油に対して、光触媒反応を起こさせると、パラフィン系炭化水素の炭素鎖が加水分解されて低分子の炭化水素とアルコールに変化する。これにより、混合油の粘度が低下する。一方、不飽和系炭化水素の二重結合は、水素化反応または水和反応により、二重結合に水素又は原料水が結合することにより、重量を増加し、発熱量も減少せず、原料油に劣らぬ発熱量を有する透明な改質燃料を得ることができる。また、光触媒反応における未反応水は、水中油のエマルジョンとなって循環タンクの底部に沈降、分離するが、この未反応水を含む未反応液を、再度磁気処理して活性化した後に、第2の光触媒反応装置に循環して、改質処理することにより、改質油の収率をあげて、原料油の1.2〜2.0倍の量の改質燃料を得ることができる。 In the present invention, due to the magnetic treatment, the water molecules of the raw material water are negatively polarized and the Brownian motion is activated and activated. Similarly, the raw oil is also activated and activated, and both are mixed. When the photocatalytic reaction is caused to the mixed oil, the carbon chain of the paraffinic hydrocarbon is hydrolyzed to change into a low-molecular hydrocarbon and alcohol. Thereby, the viscosity of mixed oil falls. On the other hand, the double bonds of unsaturated hydrocarbons increase the weight and do not decrease the calorific value by hydrogen or raw water bonding to the double bonds by hydrogenation reaction or hydration reaction. Thus, a transparent reformed fuel having a calorific value not inferior to that can be obtained. In addition, the unreacted water in the photocatalytic reaction becomes an oil-in-water emulsion and settles and separates at the bottom of the circulation tank. After the unreacted liquid containing the unreacted water is magnetically treated again and activated, By circulating to the photocatalytic reactor 2 and reforming, the yield of the reformed oil can be increased, and a reformed fuel in an amount 1.2 to 2.0 times that of the feed oil can be obtained.
本発明の化石燃料改質装置について以下、図面1とともに実施形態を説明する。 Hereinafter, embodiments of the fossil fuel reforming apparatus of the present invention will be described with reference to FIG.
この化石燃料改質装置はタンク群として、原料水タンク1,原料油タンク5,循環反応タンク9並びに改質油タンク11を備えている。 This fossil fuel reformer includes a raw water tank 1, a raw oil tank 5, a circulation reaction tank 9, and a reformed oil tank 11 as a tank group.
原料水タンク1は原料油に混合する水を貯蔵するもので、原料油タンク5は原料の化石燃料を貯蔵するもので、循環反応タンクは改質油と未反応物とを分離し、未反応物を再度、光触媒反応装置に循環し、化学反応を進行させるために備えるものであり、改質油タンク11は改質油(製品)を貯蔵するものである。 The raw water tank 1 stores water to be mixed with the raw oil, and the raw oil tank 5 stores the raw fossil fuel. The circulation reaction tank separates the reformed oil from the unreacted substances and is not reacted. The product is circulated again to the photocatalytic reaction device and prepared for advancing the chemical reaction, and the reformed oil tank 11 stores the reformed oil (product).
本装置の原料水活性化工程100は、脱気処理装置2,温度調整装置3,原料水磁気処理装置4を備えている。 The raw material water activation process 100 of this apparatus includes a deaeration treatment device 2, a temperature adjustment device 3, and a raw material water magnetic treatment device 4.
脱気処理装置2は、原料水中の溶存酸素を脱気するためのものであり、その溶存酸素濃度は水と油との親和性に関係するもので、その濃度は0.10ppmであることが望ましい。脱気処理装置としては、逆浸透膜モジュールを利用した脱気処理装置を使用している。温度調整装置3は、移送配管にコイル状電気ヒーターを取り付けて外部より加熱し、温度調節計により原料水の温度を40℃〜80℃に調節・維持するものである。原料水の制御温度は60℃が望ましい。 The degassing apparatus 2 is for degassing dissolved oxygen in the raw material water, and the dissolved oxygen concentration is related to the affinity between water and oil, and the concentration is 0.10 ppm. desirable. As the degassing apparatus, a degassing apparatus using a reverse osmosis membrane module is used. The temperature adjusting device 3 is provided with a coiled electric heater attached to the transfer pipe and heated from the outside, and the temperature of the raw material water is adjusted and maintained at 40 ° C. to 80 ° C. with a temperature controller. The control temperature of the raw water is preferably 60 ° C.
原料水磁気処理装置4は、図3に示すように角形ネオジウム磁石をパイプに装着し、カバーを付けたもので、その表面磁束密度は1000〜30000ガウスである。表面磁束密度は16000ガウスが望ましい。 As shown in FIG. 3, the raw water magnetic processing apparatus 4 has a square neodymium magnet attached to a pipe and a cover, and has a surface magnetic flux density of 1000 to 30000 gauss. The surface magnetic flux density is preferably 16000 gauss.
本装置の原料油活性化工程200は、原料油タンク5および原料油磁気処理装置6を備えている。 The raw material oil activation process 200 of this apparatus includes a raw material oil tank 5 and a raw material oil magnetic processing device 6.
原料油タンク5は攪拌機と加熱装置とを備え、攪拌機により貯蔵油の温度が一定になるように攪拌しながら、タンク内原料油の温度を所定の温度に維持するよう温度調節装置を備えるものである。原料油の温度は40〜80℃に維持されるが、60℃が望ましい。原料油磁気処理装置6は、磁気により分子運動を活発にして微少凝集体を分散し、活性化するためのものである。 The raw material oil tank 5 is equipped with a stirrer and a heating device, and is equipped with a temperature control device so as to maintain the temperature of the raw material oil in the tank at a predetermined temperature while stirring so that the temperature of the stored oil becomes constant by the stirrer. is there. The temperature of the feedstock is maintained at 40-80 ° C, preferably 60 ° C. The raw material oil magnetic processing device 6 is for activating molecular motion by magnetism to disperse and activate microaggregates.
本装置の光触媒反応工程300は、No.1光触媒反応装置6、No.2光触媒反応装置7並びに循環反応タンク9を備えている。 The photocatalytic reaction process 300 of this apparatus includes a No. 1 photocatalytic reaction device 6, a No. 2 photocatalytic reaction device 7, and a circulation reaction tank 9.
前工程で活性化された原料水と原料油とを直列に配置された2台の光触媒反応装置(6,7)に通して光触媒反応を行わしめ、その反応液は循環反応液タンク9に中間貯留する。 The raw water activated in the previous step and the raw oil are passed through two photocatalytic reactors (6, 7) arranged in series, and the photocatalytic reaction is carried out. Store.
上記2台の光触媒反応装置は同型のもので、流水式紫外線殺菌機を改造したものである。流水式紫外線殺菌機の石英管接液部に光触媒塗料を塗布して、光触媒反応装置として利用するものである。 The two photocatalytic reactors are of the same type and are modified from a flowing water type ultraviolet sterilizer. A photocatalyst coating material is applied to the quartz tube wetted part of a flowing water type ultraviolet sterilizer and used as a photocatalytic reaction device.
光触媒塗料は市販のものでよく、紫外線照射線量は10〜300mW・sec/cm2とするが、好ましくは100mW・sec/cm2である。 Photocatalytic coating may be of a commercially available, ultraviolet irradiation dose is a 10~300mW · sec / cm 2, preferably 100mW · sec / cm 2.
循環反応タンク9は、前工程より受け入れた反応液の中間貯留タンクとしての機能とタンク内を低速攪拌しながら、未反応液の沈降、分離を促進する機能とをもつものである。攪拌機の回転速度が6〜12rpmであるが好ましくは6rpmである。攪拌翼は図4に示すような形状をし、水中油エマルジョンの生成を防止するような構造とする。 The circulation reaction tank 9 has a function as an intermediate storage tank for the reaction liquid received from the previous process and a function for promoting sedimentation and separation of the unreacted liquid while stirring the tank at a low speed. The rotational speed of the stirrer is 6 to 12 rpm, but preferably 6 rpm. The stirring blade is shaped as shown in FIG. 4 and has a structure that prevents the formation of an oil-in-water emulsion.
循環反応工程400は、未反応液磁気処理装置10、No.2光触媒反応装置7(兼用)並びに循環反応タンク9(兼用)を備えている。 The circulation reaction process 400 includes an unreacted liquid magnetic processing apparatus 10, a No. 2 photocatalytic reaction apparatus 7 (also used), and a circulation reaction tank 9 (also used).
反応液は、順に循環反応タンク→未反応液磁気処理装置→No.2光触媒反応装置→循環反応タンクへと循環、通液して光触媒反応を進め、改質油の収量を上げるために備えている。各装置はそれぞれ前記装置と同じ仕様のものである。 In order to increase the yield of reformed oil, the reaction solution is circulated and passed through the circulation reaction tank → unreacted liquid magnetic treatment device → No. 2 photocatalytic reaction device → circulation reaction tank to advance the photocatalytic reaction. Yes. Each device has the same specifications as the device.
水温20℃の水道水100リットルを毎分10リットルの流量で脱気処理装置により溶存酸素濃度を0.1ppmまで脱気し、温度調整装置により60℃に加熱し、原料水磁気処理装置により表面磁束密度16000ガウスの磁気で処理した活性水を、また一方、原料油タンクにおいて60℃に予熱されたA重油(昭和シェル石油社製)100リットルを毎分10リットルの流量で磁気処理装置により表面磁束密度16000ガウスの磁気で処理した活性油とを混合し、No.1光触媒反応装置およびNo.2光触媒反応装置を通して光触媒反応させ、流出してくる反応液を循環反応タンクに中間貯留した。 100 liters of tap water with a water temperature of 20 ° C is degassed to 0.1 ppm by a degassing device at a flow rate of 10 liters per minute, heated to 60 ° C by a temperature adjusting device, and surfaced by a raw water magnetic processing device. On the other hand, 100 liters of A heavy oil (manufactured by Showa Shell Sekiyu Co., Ltd.) preheated to 60 ° C. in the raw material oil tank at a flow rate of 10 liters per minute with a magnetic treatment device. Active oil treated with magnetism having a magnetic flux density of 16000 gauss was mixed and subjected to photocatalytic reaction through No. 1 photocatalytic reaction device and No. 2 photocatalytic reaction device, and the reaction solution flowing out was intermediately stored in a circulation reaction tank.
各活性化工程への通液開始5分後から、未反応液を毎分20リットルの流量で循環反応タンクから未反応液磁気処理装置へ導き、表面磁束密度16000ガウスの磁気処理を施し、No.2光触媒反応装置を通して光触媒反応させ循環反応タンクへ戻す循環反応工程を50分間、循環通液し、終了した。
なお,計算上の紫外線照射線量は80mW・sec/cm2であった。
From 5 minutes after the start of the flow to each activation step, the unreacted liquid is guided from the circulation reaction tank to the unreacted liquid magnetic processing apparatus at a flow rate of 20 liters per minute, subjected to magnetic treatment with a surface magnetic flux density of 16000 gauss, .2 The circulation reaction step of carrying out photocatalytic reaction through the photocatalytic reaction device and returning it to the circulation reaction tank was circulated for 50 minutes and completed.
The calculated ultraviolet irradiation dose was 80 mW · sec / cm 2 .
循環反応終了後、反応液を循環反応タンク内に静置し、4時間後に液量を測定したところ、改質油層は140リットルであり、60リットルの未反応層が残留した。 After the completion of the circulation reaction, the reaction solution was allowed to stand in the circulation reaction tank and the amount of the liquid was measured after 4 hours. As a result, the reformed oil layer was 140 liters and a 60 liter unreacted layer remained.
改質油収量は原料油100リットルに対して改質油140リットルであり、改質油収率(=(改質油/原料油)×100)は140%である。
また、改質油は粘性のない透明な薄茶色で、その総発熱量は45260J/gであった。
The yield of the reformed oil is 140 liters of the reformed oil with respect to 100 liters of the feedstock oil, and the yield of the reformed oil (= (reformed oil / feedstock oil) × 100) is 140%.
The reformed oil was transparent and light brown with no viscosity, and the total calorific value was 45260 J / g.
水温20℃の水道水100リットルを毎分10リットルの流量で脱気処理装置により溶存酸素濃度を0.1ppmまで脱気し、温度調整装置により60℃に加熱し、原料水磁気処理装置により表面磁束密度4000ガウスの磁気で処理した活性水を、また一方、原料油タンクにおいて60℃に予熱されたC重油(昭和シェル石油社製)100リットルを10リットル/分の流速で磁気処理装置により表面磁束密度4000ガウスの磁気処理した活性油とを混合し、No.1光触媒反応装置およびNo.2光触媒反応装置を通して光触媒反応させ、流出してくる反応液を循環反応タンクに中間貯留した。(原料水及び原料油の通液は10分後に終了した。)
原料水及び原料油の通液開始5分後から未反応液の循環を開始し、毎分20リットルの流量で循環反応工程を120分間循環通液し、終了した。
なお,計算上の紫外線照射線量は80mW・sec/cm2であった。
100 liters of tap water with a water temperature of 20 ° C is degassed to 0.1 ppm by a degassing device at a flow rate of 10 liters per minute, heated to 60 ° C by a temperature adjusting device, and surfaced by a raw water magnetic processing device. On the other hand, 100 liters of C heavy oil (manufactured by Showa Shell Sekiyu Co., Ltd.) preheated to 60 ° C. in a raw material oil tank at a flow rate of 10 liters / minute is surfaced by a magnetic treatment device. A magnetically treated activated oil having a magnetic flux density of 4000 gauss was mixed and subjected to a photocatalytic reaction through a No. 1 photocatalytic reactor and a No. 2 photocatalytic reactor, and the flowing out reaction liquid was intermediately stored in a circulation reaction tank. (The feed of raw water and raw oil was finished after 10 minutes.)
Circulation of the unreacted liquid was started 5 minutes after the start of the feed of raw material water and feedstock oil, and the circulation reaction step was circulated for 120 minutes at a flow rate of 20 liters per minute and completed.
The calculated ultraviolet irradiation dose was 80 mW · sec / cm 2 .
循環反応終了後、反応液を循環反応タンク内に静置し、4時間後に液量を測定したところ、改質油層は185リットルであり、薄茶色の未反応層(水中油エマルジョン)は15リットルであった。 After the completion of the circulation reaction, the reaction solution was left in the circulation reaction tank, and the amount of the liquid was measured after 4 hours. The reformed oil layer was 185 liters, and the light brown unreacted layer (oil-in-water emulsion) was 15 liters. Met.
改質油収量は原料油100リットルに対して改質油185リットルであり、改質油収率(=(改質油/原料油)×100)は185%であった。
改質油は粘性のない濃い茶褐色で、総発熱量は42500J/gであった。
The yield of the reformed oil was 185 liters of the reformed oil with respect to 100 liters of the feedstock oil, and the yield of the reformed oil (= (modified oil / feedstock oil) × 100) was 185%.
The modified oil was dark brown with no viscosity, and the total calorific value was 42500 J / g.
なお、実施例1および実施例2ともに同一試験装置を用い、その主な装置は以下の通りである。
脱気処理装置 三菱レイヨン社製脱気膜モジュールMHF1704
真空ポンプ:アルバック機工(株)社製G−25SA
温度調整装置 八光電熱器社製加熱ユニット
各磁気処理装置 自家製装置(図3参照)
原料油タンク 攪拌翼:轟製作所製、
加熱ユニット:八光電熱器社製SFW5060
循環反応タンク 攪拌翼:図4のとおり
No.1及びNo.2光触媒反応装置
環境テクノス社製流水式紫外線殺菌機UV20Wの改造品
改造内容:石英管の接液部表面にアパタイト被覆二酸化チタ ン光触媒塗料を刷毛で一回塗りした。
In addition, the same test apparatus was used for both Example 1 and Example 2, and the main apparatuses are as follows.
Degassing treatment device Degassing membrane module MHF1704 manufactured by Mitsubishi Rayon Co., Ltd.
Vacuum pump: G-25SA manufactured by ULVAC Kiko Co., Ltd.
Temperature control device Heating unit made by Hachiko Heater Co., Ltd. Each magnetic processing device Homemade device
Raw oil tank Stirring blade: Made by Sakai Seisakusho
Heating unit: SFW5060 manufactured by Eight Photoelectric Heater
Circulating reaction tank Stirring blade: As shown in Fig. 4
No.1 and No.2 photocatalytic reactors
A modified version of UV20W, a flowing water type UV sterilizer manufactured by Environmental Technos
Details of modification: Apatite-coated titanium dioxide photocatalyst paint was applied once to the wetted surface of the quartz tube with a brush.
本発明は、各種化石燃料と水とを化学反応させることにより燃料油として増量でき、粘度低下による燃焼効率も向上できるので、その省エネ効果を大きい。炭素数10以上の炭化水素に適した方法であり、炭素数が多い化石燃料ほど本発明の効果は大きくなる(灯油≒軽油<A重油<C重油)。 The present invention can increase the amount of fuel oil by chemically reacting various fossil fuels and water, and can improve the combustion efficiency due to the decrease in viscosity, so that the energy saving effect is great. This method is suitable for hydrocarbons having 10 or more carbon atoms, and the effect of the present invention increases as the fossil fuel has a higher carbon number (kerosene≈light oil <A heavy oil <C heavy oil).
本発明は、大幅な省エネを達成するばかりでなく、化石燃料の燃焼にともなう温室効果ガスの削減にも大きく寄与するものである。 The present invention not only achieves significant energy savings but also greatly contributes to the reduction of greenhouse gases accompanying fossil fuel combustion.
100 原料水活性化工程
200 原料油活性化工程
300 光触媒反応工程
400 未反応液反応工程
1 原料水タンク
2 脱気処理装置
3 温度調整装置
4 原料水磁気処理装置
5 原料油タンク
6 原料油磁気処理装置
7 No.1光触媒反応装置
8 No.2光触媒反応装置
9 循環反応タンク
10 未反応液磁気処理装置
11 改質油タンク
DESCRIPTION OF SYMBOLS 100 Raw material water activation process 200 Raw material oil activation process 300 Photocatalytic reaction process 400 Unreacted liquid reaction process 1 Raw material water tank 2 Deaeration processing device 3 Temperature control device 4 Raw material water magnetic processing device 5 Raw material oil tank 6 Raw material oil magnetic processing Device 7 No. 1 photocatalytic reaction device 8 No. 2 photocatalytic reaction device 9 Circulating reaction tank 10 Unreacted liquid magnetic treatment device 11 Reformed oil tank
Claims (4)
化石燃料の原料油を40〜80℃に加熱した後に、表面磁束密度が1000〜40000ガウスの磁気処理を施して活性油を得る工程と
前記活性水と前記活性油とを混合し、この混合液に対し、アパタイト被覆二酸化チタンを光触媒とし、照射線量10〜300mW・sec/cm2の紫外線を照射して、光触媒により改質処理を行う工程と、
この光触媒反応の未反応液を、前記改質処理を行う工程に戻して、再度光触媒反応に供する循環工程と
を有することを特徴とする化石燃料改質方法 Degassing the raw water to reduce dissolved oxygen to 1 ppm or less, heating to 30-80 ° C., and applying magnetic treatment with a surface magnetic flux density of 1000-40000 gauss to obtain active water;
After heating the raw material oil of fossil fuel to 40 to 80 ° C., the step of applying magnetic treatment with a surface magnetic flux density of 1000 to 40000 gauss to obtain the active oil, the active water and the active oil are mixed, and this mixed liquid On the other hand, using apatite-coated titanium dioxide as a photocatalyst, irradiating ultraviolet rays with an irradiation dose of 10 to 300 mW · sec / cm2, and performing a modification treatment with the photocatalyst;
A fossil fuel reforming method characterized by having a circulation step of returning the unreacted liquid of the photocatalytic reaction to the step of performing the reforming treatment and subjecting it to the photocatalytic reaction again
前記原料水を30〜80℃の温度に加温する温度調整装置と、
前記原料水に、表面磁束密度が1000〜40000ガウスの磁気処理を施して、活性水を得る原料水磁気処理装置と、
化石燃料の原料油を、原料タンク内で40〜80℃に加温して、粘度調整する加熱装置と、
前記原料油に、表面磁束密度が1000〜40000ガウスの磁気処理を施して、
活性油を得る原料油磁気処理装置と、
前記活性水と前記活性油とを混合し、この混合油に対し、アパタイト被覆二酸化チタンを光触媒とし、照射線量10〜300mW・sec/cm2の紫外線を照射して、光触媒反応により改質処理を行う第1の光触媒反応装置と、
前記第1の光触媒反応装置にて処理した混合油に対し、アパタイト被覆二酸化チタンを光触媒とし、照射線量10〜300mW・sec/cm2の紫外線を照射して、光触媒反応により改質処理を行う第2の光触媒反応装置と、
前記第2の光触媒反応装置にて処理した混合油が供給される循環反応タンクと、
前記循環反応タンク内の未反応液を取り出し、この未反応液に、表面磁束密度が1000〜40000ガウスの磁気処理を施して、活性化する未反応液磁気処理装置と、
前記未反応液磁気処理装置で活性化した未反応液を、前記第2の光触媒反応装置に戻して、再度この第2の光触媒反応装置にて処理させる循環経路と、
前記循環反応タンク内の反応後の改質油が供給される改質油タンクと、
を有することを特徴とする化石燃料改質装置 A degassing treatment device for reducing the existing oxygen in the raw material water to 1 ppm or less;
A temperature adjusting device for heating the raw water to a temperature of 30 to 80 ° C .;
A raw material water magnetic treatment device for obtaining active water by subjecting the raw water to a magnetic treatment having a surface magnetic flux density of 1000 to 40000 gauss,
A heating device that adjusts viscosity by heating a raw material oil of fossil fuel to 40 to 80 ° C. in a raw material tank;
The raw oil is subjected to magnetic treatment with a surface magnetic flux density of 1000 to 40000 gauss,
A raw material magnetic processing unit for obtaining an active oil;
The active water and the active oil are mixed, the apatite-coated titanium dioxide is used as a photocatalyst, and an ultraviolet ray with an irradiation dose of 10 to 300 mW · sec / cm 2 is applied to the mixed oil to perform a modification process by a photocatalytic reaction. A first photocatalytic reactor;
Second, the mixed oil treated in the first photocatalytic reactor is subjected to a reforming process by photocatalytic reaction by using apatite-coated titanium dioxide as a photocatalyst and irradiating ultraviolet rays with an irradiation dose of 10 to 300 mW · sec / cm 2. A photocatalytic reaction device,
A circulating reaction tank to which the mixed oil treated in the second photocatalytic reaction device is supplied;
An unreacted liquid magnetic processing device that takes out the unreacted liquid in the circulation reaction tank and activates the unreacted liquid by subjecting the unreacted liquid to magnetic treatment with a surface magnetic flux density of 1000 to 40000 gauss;
A circulation path for returning the unreacted liquid activated in the unreacted liquid magnetic processing apparatus to the second photocatalytic reaction apparatus and processing again in the second photocatalytic reaction apparatus;
A reformed oil tank to which the reformed oil after reaction in the circulating reaction tank is supplied;
A fossil fuel reformer characterized by having
The said 1st and 2nd photocatalyst reaction apparatus is a flowing-water type ultraviolet sterilizer which apply | coated the photocatalyst coating material containing apatite coating titanium dioxide to the liquid-contact part surface of a quartz tube. Fossil fuel reformer
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012109125A JP5267898B1 (en) | 2012-05-11 | 2012-05-11 | Method and apparatus for reforming fossil fuel |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2012109125A JP5267898B1 (en) | 2012-05-11 | 2012-05-11 | Method and apparatus for reforming fossil fuel |
Publications (2)
Publication Number | Publication Date |
---|---|
JP5267898B1 true JP5267898B1 (en) | 2013-08-21 |
JP2013234302A JP2013234302A (en) | 2013-11-21 |
Family
ID=49179130
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012109125A Active JP5267898B1 (en) | 2012-05-11 | 2012-05-11 | Method and apparatus for reforming fossil fuel |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5267898B1 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6128453B1 (en) * | 2016-09-09 | 2017-05-17 | 古山 幹雄 | Hydrolyzed fuel production method and production apparatus |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1047168A (en) * | 1996-07-29 | 1998-02-17 | Mitsubishi Motors Corp | Water injection device |
JP2002248339A (en) * | 2001-02-23 | 2002-09-03 | Shigemi Sawada | Method for manufacturing emulsion fluid being mixture of water with oil, emulsion fluid, apparatus for manufacturing emulsion fluid and method for burning emulsion fuel |
JP2008214546A (en) * | 2007-03-06 | 2008-09-18 | Kuraray Kiko Kk | Method and apparatus for producing emulsion fuel |
JP2011038000A (en) * | 2009-08-12 | 2011-02-24 | Climax-Japan:Kk | Fuel manufacturing method |
-
2012
- 2012-05-11 JP JP2012109125A patent/JP5267898B1/en active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH1047168A (en) * | 1996-07-29 | 1998-02-17 | Mitsubishi Motors Corp | Water injection device |
JP2002248339A (en) * | 2001-02-23 | 2002-09-03 | Shigemi Sawada | Method for manufacturing emulsion fluid being mixture of water with oil, emulsion fluid, apparatus for manufacturing emulsion fluid and method for burning emulsion fuel |
JP2008214546A (en) * | 2007-03-06 | 2008-09-18 | Kuraray Kiko Kk | Method and apparatus for producing emulsion fuel |
JP2011038000A (en) * | 2009-08-12 | 2011-02-24 | Climax-Japan:Kk | Fuel manufacturing method |
Also Published As
Publication number | Publication date |
---|---|
JP2013234302A (en) | 2013-11-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Xu et al. | Revealing* OOH key intermediates and regulating H2O2 photoactivation by surface relaxation of Fenton-like catalysts | |
Bičáková et al. | Production of hydrogen from renewable resources and its effectiveness | |
Chatel et al. | A combined approach using sonochemistry and photocatalysis: how to apply sonophotocatalysis for biomass conversion? | |
CN107473334B (en) | Treatment device and treatment method for high-salt degradation-resistant wastewater | |
Wei et al. | A systematic study of photocatalytic H2 production from propionic acid solution over Pt/TiO2 photocatalyst | |
Xu et al. | Boosting alkaline photocatalytic H2O2 generation by incorporating pyrophosphate on g-C3N4 for effective proton shuttle and oxygen activation | |
CN103108994A (en) | Method for synthesizing ammonia | |
Li et al. | Piezoelectricity activates persulfate for water treatment: A perspective | |
Norouzi et al. | Heavy oil thermal conversion and refinement to the green petroleum: a petrochemical refinement plant using the sustainable formic acid for the process | |
JP5267898B1 (en) | Method and apparatus for reforming fossil fuel | |
CN104370403A (en) | Advanced treatment device and method for landfill leachate | |
JP5512357B2 (en) | Pure water production method and apparatus | |
CN109748894A (en) | A method of producing 2,5- furans dicarbaldehyde | |
JP2011245380A (en) | Method and device for producing pure water | |
Sanoja-López et al. | An overview of photocatalyst eco-design and development for green hydrogen production | |
Shabbir et al. | Enhanced uranium extraction from seawater: from the viewpoint of kinetics and thermodynamics | |
Morales et al. | Water management for Power-to-X offshore platforms: an underestimated item | |
CN205088082U (en) | Sewage sludge treatment device | |
US20130134046A1 (en) | Method of Increasing Hydrogen Production by Infrared Electrolysis | |
CN216890489U (en) | Advanced oxidation treatment device for desulfurization wastewater of oil and gas field | |
AlZohbi | An Overview of Hydrogen Energy Generation | |
CN108328572B (en) | Hydrogen production method, system and solution for use therein | |
JP5512358B2 (en) | Pure water production method and apparatus | |
WO2018062345A1 (en) | Method for producing hydrocarbon-based synthetic fuel by adding water to hydrocarbon-based fuel oil | |
CN113998827A (en) | Advanced oxidation treatment device and treatment method for desulfurization wastewater of oil and gas field |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
TRDD | Decision of grant or rejection written | ||
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130424 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5267898 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |