JP5266874B2 - Manufacturing method of ceramic electronic component - Google Patents

Manufacturing method of ceramic electronic component Download PDF

Info

Publication number
JP5266874B2
JP5266874B2 JP2008135136A JP2008135136A JP5266874B2 JP 5266874 B2 JP5266874 B2 JP 5266874B2 JP 2008135136 A JP2008135136 A JP 2008135136A JP 2008135136 A JP2008135136 A JP 2008135136A JP 5266874 B2 JP5266874 B2 JP 5266874B2
Authority
JP
Japan
Prior art keywords
temperature
ppm
conductive paste
ceramic
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008135136A
Other languages
Japanese (ja)
Other versions
JP2009283744A (en
Inventor
千尋 佐藤
磨人 大宮
文昭 今村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Corp
Panasonic Holdings Corp
Original Assignee
Panasonic Corp
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Corp, Matsushita Electric Industrial Co Ltd filed Critical Panasonic Corp
Priority to JP2008135136A priority Critical patent/JP5266874B2/en
Publication of JP2009283744A publication Critical patent/JP2009283744A/en
Application granted granted Critical
Publication of JP5266874B2 publication Critical patent/JP5266874B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)
  • Ceramic Capacitors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a ceramic electronic component with an external electrode by forming a conductive resin layer in air, which can solve the problem that an insulating resistance of the ceramic blank significantly decreases because of the penetrated moisture from outside through the conductive resin layer in high-temperature and high-humidity environment. <P>SOLUTION: A conductive paste containing metallic powders and a thermo-setting resin is applied to a surface of a ceramic blank 3 connecting to an inner conductor 2 formed in the ceramic blank 3, and the conductive paste are heat-treated and cured. In the method of manufacturing the ceramic component, a maximum temperature for heat-treatment is set in the vicinity of the carbonization initiation temperature of the thermo-setting resin, the oxygen concentration is set to &ge;10<SP>-4</SP>ppm and &ge;2.5&times;10<SP>2</SP>ppm from the glass-transition temperature to the maximum temperature. Accordingly, the ceramic electronic component has excellent insulating resistance, and it is possible to reduce the degradation in the insulting resistance of the ceramic electronic component in the high-temperature and high-humidity environment. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、導電性樹脂の外部電極を有したセラミック電子部品の製造方法に関するものである。   The present invention relates to a method for manufacturing a ceramic electronic component having an external electrode made of a conductive resin.

セラミック電子部品の代表的なものの1つに積層セラミックコンデンサがあり、積層セラミックコンデンサは、内部導体とセラミック層とを交互に積層したセラミック素体を備え、セラミック素体の両端部に露出した内部導体と導通するように外部電極が配設されたものである。   One of the typical ceramic electronic components is a multilayer ceramic capacitor. The multilayer ceramic capacitor includes a ceramic body in which inner conductors and ceramic layers are alternately stacked, and the inner conductor exposed at both ends of the ceramic body. The external electrode is disposed so as to be electrically connected.

このような構造を有するセラミック電子部品の外部電極は、耐たわみ性や耐落下衝撃性等の機械的強度の向上を図るため導電性樹脂層を備えるものがある。   Some external electrodes of ceramic electronic components having such a structure include a conductive resin layer in order to improve mechanical strength such as flexibility and drop impact resistance.

この導電性樹脂層は、銀等の金属粉末とエポキシ樹脂のような耐熱性樹脂とを混合した導電性ペーストをセラミック素体に直接塗布し、大気中で高温の熱処理を行い硬化して形成されている。   This conductive resin layer is formed by directly applying a conductive paste, which is a mixture of a metal powder such as silver, and a heat-resistant resin such as an epoxy resin, to a ceramic body and performing a high-temperature heat treatment in the atmosphere. ing.

なお、この出願の発明に関する先行技術文献情報としては、例えば特許文献1に示すものが知られている。
特開平6−267784号公報
As prior art document information relating to the invention of this application, for example, the one shown in Patent Document 1 is known.
JP-A-6-267784

しかしながら、このような従来のセラミック電子部品の製造方法は、導電性ペーストを硬化する熱処理時に導電性樹脂層が劣化し、高温高湿度環境において外部電極を通じて外部から湿気が侵入しセラミック素体の絶縁抵抗が著しく低下する課題があった。   However, in such a conventional method of manufacturing a ceramic electronic component, the conductive resin layer deteriorates during the heat treatment for curing the conductive paste, and moisture penetrates from the outside through the external electrode in a high temperature and high humidity environment to insulate the ceramic body. There was a problem that the resistance was significantly reduced.

本発明は、このような従来の課題を解決し、セラミック電子部品の絶縁抵抗が良好で、かつ湿気の侵入によるセラミック電子部品の絶縁抵抗の劣化を低減し、信頼性の高いセラミック電子部品の製造方法を提供することを目的とするものである。   The present invention solves such a conventional problem, and the insulation resistance of the ceramic electronic component is good, and the deterioration of the insulation resistance of the ceramic electronic component due to the intrusion of moisture is reduced, so that the highly reliable ceramic electronic component is manufactured. It is intended to provide a method.

上記目的を達成するために本発明は、内部導体を有するセラミック素体に外部電極を設けたセラミック電子部品の製造方法であって、前記外部電極は導電性樹脂層を有し、前記導電性樹脂層を形成する工程は金属粉末と熱硬化性樹脂とを含む導電性ペーストを塗布した後、前記導電性ペーストを熱処理により硬化するものであって、前記熱処理における少なくとも最高温度のとき酸素濃度は10-4ppm以上から2.5×102ppm以下であるセラミック電子部品の製造方法である。 In order to achieve the above object, the present invention provides a method for manufacturing a ceramic electronic component in which an external electrode is provided on a ceramic body having an internal conductor, the external electrode having a conductive resin layer, and the conductive resin In the step of forming a layer, after applying a conductive paste containing a metal powder and a thermosetting resin, the conductive paste is cured by heat treatment, and the oxygen concentration is 10 at least at the highest temperature in the heat treatment. This is a method for producing a ceramic electronic component having a concentration of from −4 ppm to 2.5 × 10 2 ppm.

以上のように本発明のセラミック電子部品の製造方法によれば、導電性ペーストを硬化する熱処理における少なくとも最高温度のとき酸素濃度が10-4ppm以上から2.5×102ppm以下であることにより、導電性樹脂層の熱硬化性樹脂と金属粉末との密着性を損なうことがなく緻密な導電性樹脂層を形成できる。 As described above, according to the method for producing a ceramic electronic component of the present invention, the oxygen concentration is 10 −4 ppm or more to 2.5 × 10 2 ppm or less at least at the highest temperature in the heat treatment for curing the conductive paste. Thus, a dense conductive resin layer can be formed without impairing the adhesion between the thermosetting resin of the conductive resin layer and the metal powder.

これによって、セラミック電子部品の絶縁抵抗が優れ、かつ高温高湿環境において湿気が外部電極を通じてセラミック素体へ侵入することを防止しセラミック電子部品の絶縁抵抗の劣化を低減でき、セラミック電子部品の信頼性を向上することができる。   As a result, the insulation resistance of ceramic electronic parts is excellent, and in high temperature and high humidity environments, moisture can be prevented from entering the ceramic body through external electrodes, and the deterioration of insulation resistance of ceramic electronic parts can be reduced. Can be improved.

(実施の形態)
本発明の実施の形態のセラミック電子部品として、具体的に積層セラミックコンデンサについて説明する。
(Embodiment)
A multilayer ceramic capacitor will be specifically described as the ceramic electronic component according to the embodiment of the present invention.

図1は本発明の実施の形態における積層セラミックコンデンサの断面図である。   FIG. 1 is a cross-sectional view of a multilayer ceramic capacitor according to an embodiment of the present invention.

図1に示すように、積層セラミックコンデンサは内部導体2を有する矩形状のセラミック素体3に外部電極4を設けたものである。   As shown in FIG. 1, the multilayer ceramic capacitor is obtained by providing an external electrode 4 on a rectangular ceramic body 3 having an internal conductor 2.

セラミック素体3は、セラミック層1と内部導体2とが交互に積層されたものであり、セラミック層1はチタン酸バリウム、チタン酸ストロンチウム等を主成分とする誘電体材料のセラミック粒子から構成され、内部導体2はニッケル、パラジウム、白金などの金属を主成分として含有している。   The ceramic body 3 is formed by alternately laminating ceramic layers 1 and internal conductors 2, and the ceramic layer 1 is composed of ceramic particles of a dielectric material mainly composed of barium titanate, strontium titanate, or the like. The inner conductor 2 contains a metal such as nickel, palladium, or platinum as a main component.

保護層8は、交互に積層されたセラミック層1と内部導体2の上下側のセラミック素体3に設けられ、セラミック粒子からなり絶縁性を有している。   The protective layer 8 is provided on the ceramic body 3 on the upper and lower sides of the alternately laminated ceramic layers 1 and the internal conductors 2 and is made of ceramic particles and has insulating properties.

外部電極4は、セラミック素体3の両端部に露出した内部導体2と導通してセラミック素体3の両端部に配設され、外部電極4はセラミック素体3の表面に設けた下地電極6と、この下地電極6の表面に形成された金属層7を備えている。   The external electrode 4 is electrically connected to the internal conductor 2 exposed at both ends of the ceramic body 3 and is disposed at both ends of the ceramic body 3. The external electrode 4 is a base electrode 6 provided on the surface of the ceramic body 3. And a metal layer 7 formed on the surface of the base electrode 6.

下地電極6は、導電性の金属粉末と熱硬化性樹脂とを含有する導電性樹脂層5であり、導電性樹脂層5の厚みは2μm〜80μmとすることが好ましい。   The base electrode 6 is a conductive resin layer 5 containing conductive metal powder and a thermosetting resin, and the thickness of the conductive resin layer 5 is preferably 2 μm to 80 μm.

金属層7は、めっき処理により形成されたニッケル、銅、錫等のめっき層である。   The metal layer 7 is a plating layer made of nickel, copper, tin or the like formed by plating.

また、下地電極6は、セラミック素体3の表面に設けた導電性焼成層(図示せず)の上に導電性樹脂層5を形成したものでもよく、導電性焼成層は銀、銅、ニッケル等の金属粉末とガラスフリットとを有機ビヒクルとともに混合して得られた導電性ペーストをセラミック素体3上に塗布し600℃〜800℃の温度で焼成したものである。   The base electrode 6 may be formed by forming the conductive resin layer 5 on a conductive fired layer (not shown) provided on the surface of the ceramic body 3, and the conductive fired layer is made of silver, copper, nickel. A conductive paste obtained by mixing a metal powder such as glass frit with an organic vehicle is applied onto the ceramic body 3 and fired at a temperature of 600 ° C to 800 ° C.

次に、外部電極4の導電性樹脂層5の製造方法について説明する。   Next, a method for manufacturing the conductive resin layer 5 of the external electrode 4 will be described.

導電性樹脂層5の製造方法は、セラミック素体3の端部に導電性ペーストを浸漬塗布、印刷、転写等により塗布した後、この導電性ペーストを熱処理により硬化させて導電性樹脂層5を形成するものである。   The conductive resin layer 5 is manufactured by applying a conductive paste to the end of the ceramic body 3 by dip coating, printing, transfer, etc., and then curing the conductive paste by heat treatment to form the conductive resin layer 5. To form.

導電性樹脂層5の形成に用いる導電性ペーストは、金属粉末、バインダ樹脂、硬化促進剤、溶剤等を混合したものである。   The conductive paste used for forming the conductive resin layer 5 is a mixture of metal powder, binder resin, curing accelerator, solvent, and the like.

前記導電性ペーストの金属粉末は、銀、パラジウム等の貴金属の導電性粉末、又はニッケル、銅等の卑金属の導電性粉末、これらの金属の合金の導電性粉末から選択することができる。   The metal powder of the conductive paste can be selected from conductive powders of noble metals such as silver and palladium, conductive powders of base metals such as nickel and copper, and conductive powders of alloys of these metals.

また、前記金属粉末は、低融点金属を含有することが好ましく、低融点金属の融点は130℃以上かつ導電性ペーストの熱処理の最高温度Tm以下であり、低融点金属は錫、又は錫に銀、銅、亜鉛、ビスマス等を添加した錫合金等の金属を用いることができる。   Further, the metal powder preferably contains a low melting point metal, the melting point of the low melting point metal is 130 ° C. or higher and the maximum temperature Tm of the heat treatment of the conductive paste, and the low melting point metal is tin or tin and silver. Further, a metal such as a tin alloy to which copper, zinc, bismuth or the like is added can be used.

導電性ペーストに低融点金属を含有することによって、導電性樹脂層5を形成する熱処理の際に、低融点金属と内部導体2に含有する金属との拡散反応が生じ易くなるため、導電性樹脂層5と内部導体2との電気的接合性を良化することができる。   By including a low melting point metal in the conductive paste, a diffusion reaction between the low melting point metal and the metal contained in the internal conductor 2 is likely to occur during the heat treatment for forming the conductive resin layer 5. The electrical bondability between the layer 5 and the inner conductor 2 can be improved.

前記導電性ペーストのバインダ樹脂は、熱硬化性樹脂を主成分として含むものであり、熱硬化性樹脂はビスフェノールA型、ビスフェノールF型、フェノールノボラック型のエポキシ樹脂、又はレゾール型、ノボラック型のフェノール樹脂、シリコーン変性樹脂等から選択され、積層セラミックコンデンサの使用条件から熱硬化性樹脂は炭化開始する温度が300℃以上であることが好ましい。   The binder resin of the conductive paste contains a thermosetting resin as a main component, and the thermosetting resin is a bisphenol A type, bisphenol F type, phenol novolac type epoxy resin, or a resol type or novolac type phenol. Preferably, the thermosetting resin is selected from a resin, a silicone-modified resin, and the like, and the temperature at which the thermosetting resin starts to be carbonized is 300 ° C. or higher from the usage conditions of the multilayer ceramic capacitor.

導電性ペーストの溶剤は、導電性ペーストの金属粉末、樹脂の種類と含有量、塗布方法等により選択される。   The solvent of the conductive paste is selected depending on the metal powder of the conductive paste, the type and content of the resin, the coating method, and the like.

ここで、熱硬化性樹脂が炭化開始する温度は、熱硬化性樹脂の骨格を構成する炭素同士、又はその骨格に付いた官能基が切れる状態が開始する温度である。   Here, the temperature at which the thermosetting resin starts to carbonize is the temperature at which the carbons constituting the skeleton of the thermosetting resin or the functional group attached to the skeleton starts to break.

炭化開始する温度は、熱重量測定による場合は以下のように行う。   The temperature at which carbonization starts is carried out as follows in the case of thermogravimetry.

まず、導電性ペーストを温度150℃の大気雰囲気中で60分間乾燥させ、導電性ペーストに含有する溶剤を揮発させ固形化した導電性ペーストを得る。   First, the conductive paste is dried in an air atmosphere at a temperature of 150 ° C. for 60 minutes, and the solvent contained in the conductive paste is volatilized to obtain a solidified conductive paste.

次に、固形化した導電性ペーストを、後述する熱処理の最高温度Tmで設定される酸素濃度雰囲気のガスを流入させて室温から毎分10±1℃の温度で上昇させて加熱し、固形化した導電性ペーストの質量変化率を温度の関数として測定し、TG曲線を描く。   Next, the solidified conductive paste is heated at a temperature of 10 ± 1 ° C. per minute from room temperature by flowing a gas in an oxygen concentration atmosphere set at the maximum temperature Tm of heat treatment described later, and solidified. The mass change rate of the conductive paste is measured as a function of temperature and a TG curve is drawn.

図3は本発明の実施の形態における導電性ペーストの熱重量測定のTG曲線である。   FIG. 3 is a TG curve of thermogravimetry of the conductive paste in the embodiment of the present invention.

図3に示すように縦軸は固形化した導電性ペーストの室温を基準とした質量変化率、横軸は温度を示す。   As shown in FIG. 3, the vertical axis represents the rate of mass change based on room temperature of the solidified conductive paste, and the horizontal axis represents the temperature.

TG曲線の屈曲点の温度は、接線の勾配が極大値を有する接線Aの接点を接点a、極小値を有する接線Bの接点を接点bとし、隣接する接点aと接点b間にあり、接線Aと接線Bとの交点に対応する温度である。   The temperature at the inflection point of the TG curve is defined as a contact a of a tangent A having a maximum tangent slope, a contact b of a tangent B having a minimum value, and a contact b of a tangent B having a minimum value. A temperature corresponding to the intersection of A and tangent line B.

続いて、TG曲線から炭化開始する温度を算出する。   Subsequently, the temperature at which carbonization starts is calculated from the TG curve.

炭化開始する温度は、温度が250℃以上の屈曲点の温度であり、屈曲点の低温側の接線Aと高温側の接線Bとが交わる交点に対応する温度Tcである。さらに炭化開始する温度の接線の勾配は、−0.010wt%/℃以下の値である。この条件を満たす屈曲点が複数ある場合、最も低い温度が炭化開始する温度である。   The temperature at which carbonization starts is the temperature at the bending point where the temperature is 250 ° C. or higher, and is the temperature Tc corresponding to the intersection point where the tangent line A on the low temperature side and the tangent line B on the high temperature side intersect. Furthermore, the gradient of the tangent of the temperature at which carbonization starts is a value of −0.010 wt% / ° C. or less. When there are a plurality of bending points that satisfy this condition, the lowest temperature is the temperature at which carbonization starts.

図2は本発明の実施の形態における導電性ペーストを硬化する熱処理の時間と温度、酸素濃度を示す図である。   FIG. 2 is a diagram showing the time and temperature of heat treatment for curing the conductive paste and the oxygen concentration in the embodiment of the present invention.

図2に示すように、導電性ペーストを硬化する熱処理における温度パターンは、常温から最高温度Tmまでは時間当たり所定の上昇温度を有して昇温させ、最高温度Tmに達したときに最高温度Tmに一定時間保持し、導電性ペーストの硬化を行うものである。   As shown in FIG. 2, the temperature pattern in the heat treatment for curing the conductive paste is such that the temperature is increased from room temperature to the maximum temperature Tm with a predetermined rising temperature per hour, and when the temperature reaches the maximum temperature Tm, the maximum temperature is reached. The conductive paste is cured by holding at Tm for a certain period of time.

その後、最高温度Tmから常温まで時間当たり所定の下降温度を有して降温させ冷却するものである。   Thereafter, the temperature is lowered and cooled from the maximum temperature Tm to a normal temperature with a predetermined lowering temperature per hour.

昇温の温度勾配は、導電性ペーストの硬化反応の進行を制御するため適宜調整する。   The temperature gradient of the temperature rise is adjusted as appropriate in order to control the progress of the curing reaction of the conductive paste.

導電性ペーストの熱処理における酸素濃度パターンは、昇温に従ってアルゴン、窒素等の不活性ガス中で酸素濃度を小さくしていき、少なくとも最高温度Tmにおける酸素濃度が10-4ppm以上から2.5×102ppm以下の範囲に入るようにする。また降温に従って酸素濃度を大きくするものである。 The oxygen concentration pattern in the heat treatment of the conductive paste decreases the oxygen concentration in an inert gas such as argon or nitrogen as the temperature rises, and the oxygen concentration at least at the maximum temperature Tm is 10 −4 ppm or more to 2.5 ×. It shall be in the range of 10 2 ppm or less. Further, the oxygen concentration is increased as the temperature falls.

最高温度Tmにおける酸素濃度が2.5×102ppmより高いと、熱硬化性樹脂が酸化劣化して導電性樹脂層5に含有する金属粉末と熱硬化性樹脂間の密着性が悪くなり、導電性樹脂層5の緻密性が低下し、高温高湿環境において湿気が外部電極を通じてセラミック素体3へ侵入し易くなり積層セラミックコンデンサの絶縁抵抗が低下する。 When the oxygen concentration at the maximum temperature Tm is higher than 2.5 × 10 2 ppm, the thermosetting resin is oxidized and deteriorated, and the adhesion between the metal powder contained in the conductive resin layer 5 and the thermosetting resin is deteriorated. The denseness of the conductive resin layer 5 decreases, and moisture easily enters the ceramic body 3 through the external electrode in a high temperature and high humidity environment, and the insulation resistance of the multilayer ceramic capacitor decreases.

最高温度Tmにおける酸素濃度が10-4ppmより小さいと、セラミック層1の還元反応が生じ、積層セラミックコンデンサの初期の絶縁抵抗が低下してしまう。 When the oxygen concentration at the maximum temperature Tm is smaller than 10 −4 ppm, the reduction reaction of the ceramic layer 1 occurs, and the initial insulation resistance of the multilayer ceramic capacitor is lowered.

導電性ペーストの熱処理の最高温度Tmは、熱硬化性樹脂のガラス転移温度Tg以上であり、かつ熱硬化性樹脂が炭化開始する温度近傍以下である。   The maximum temperature Tm for the heat treatment of the conductive paste is not less than the glass transition temperature Tg of the thermosetting resin and not more than the vicinity of the temperature at which the thermosetting resin starts to be carbonized.

導電性ペーストの熱硬化性樹脂が、エポキシ樹脂と硬化剤のフェノール樹脂とを混合したものを主成分とする場合は、熱硬化性樹脂のガラス転移温度は150℃〜250℃であり、炭化開始の温度は300℃〜450℃を有している。   When the thermosetting resin of the conductive paste is mainly composed of a mixture of an epoxy resin and a phenolic resin as a curing agent, the glass transition temperature of the thermosetting resin is 150 ° C. to 250 ° C., and carbonization starts Has a temperature of 300 ° C. to 450 ° C.

熱処理の最高温度Tmをガラス転移温度以上とすることにより、導電性樹脂層5の熱硬化性樹脂の構造を安定にさせることができ導電性樹脂層5と内部導体2との密着強度が向上し、プリント基板へ実装する際のリフロー温度等の高温環境において導電性樹脂層5と内部導体2との電気的接続を確実にすることができる。   By setting the maximum heat treatment temperature Tm to the glass transition temperature or higher, the structure of the thermosetting resin of the conductive resin layer 5 can be stabilized, and the adhesion strength between the conductive resin layer 5 and the internal conductor 2 is improved. The electrical connection between the conductive resin layer 5 and the internal conductor 2 can be ensured in a high temperature environment such as a reflow temperature when mounted on a printed circuit board.

また、熱処理の最高温度Tmは、導電性樹脂層5の熱硬化性樹脂が炭化開始する温度近傍であることが好ましく、これによって導電性樹脂層5の緻密性を保ちながら、導電性樹脂層5の金属粉末と内部導体2の金属との金属拡散が生じ易くなり導電性樹脂層5と内部導体2の電気的接続を確実にすることができ、高温高湿環境における絶縁抵抗の劣化を低減しかつ静電容量のバラツキを小さくすることができる。   The maximum temperature Tm for the heat treatment is preferably in the vicinity of the temperature at which the thermosetting resin of the conductive resin layer 5 starts to be carbonized, thereby maintaining the denseness of the conductive resin layer 5 and the conductive resin layer 5. Metal diffusion between the metal powder and the metal of the inner conductor 2 is likely to occur, and the electrical connection between the conductive resin layer 5 and the inner conductor 2 can be ensured, and deterioration of insulation resistance in a high temperature and high humidity environment can be reduced. In addition, variation in capacitance can be reduced.

熱硬化性樹脂が炭化開始する温度近傍は、具体的には炭化開始する温度より30℃低い温度から20℃高い温度の範囲である。   More specifically, the vicinity of the temperature at which the thermosetting resin starts to carbonize is a temperature range from 30 ° C. to 20 ° C. higher than the temperature at which carbonization starts.

また、酸素濃度が10-4ppm以上、2.5×102ppm以下である温度が、少なくとも導電性樹脂層5の熱硬化性樹脂のガラス転移温度以下の温度から最高温度Tmであることが好ましく、これによって、熱処理において熱硬化性樹脂の酸化劣化がより生じ難くなり、高温高湿環境で湿気がセラミック素体3に侵入することを防止する効果が大きくなり、より長時間の高温高湿環境においても積層セラミックコンデンサの絶縁抵抗劣化を低減でき、信頼性を向上させることができる。 Further, the temperature at which the oxygen concentration is 10 −4 ppm or more and 2.5 × 10 2 ppm or less is at least the temperature below the glass transition temperature of the thermosetting resin of the conductive resin layer 5 and the maximum temperature Tm. Preferably, this makes it easier for the thermosetting resin to undergo oxidative deterioration during heat treatment, and increases the effect of preventing moisture from entering the ceramic body 3 in a high-temperature and high-humidity environment. Even in the environment, deterioration of insulation resistance of the multilayer ceramic capacitor can be reduced, and reliability can be improved.

また、導電性ペーストの熱処理の降温においても最高温度Tmから少なくとも熱硬化性樹脂のガラス転移温度まで本発明の実施の形態の酸素濃度にすることがより好ましい。   In addition, it is more preferable that the oxygen concentration in the embodiment of the present invention is set from the maximum temperature Tm to at least the glass transition temperature of the thermosetting resin even in the temperature drop during the heat treatment of the conductive paste.

以下、具体的な実施例について説明する。   Specific examples will be described below.

(実施例1)
実施例1の積層セラミックコンデンサは、セラミック素体はチタン酸バリウムを主成分とするセラミック層とニッケルを主成分とする内部導体を交互に積層したものであり、外部電極はセラミック素体の両端部に形成され導電性樹脂層と金属層からなるものである。
Example 1
In the multilayer ceramic capacitor of Example 1, the ceramic body is obtained by alternately laminating ceramic layers mainly composed of barium titanate and internal conductors mainly composed of nickel, and external electrodes are formed at both ends of the ceramic body. Formed of a conductive resin layer and a metal layer.

まず、セラミックスラリーとニッケル金属ペーストを用意する。   First, a ceramic slurry and a nickel metal paste are prepared.

セラミックスラリーは、ポリビニルブチラールを主成分とする有機ビヒクルにセラミック粉末を分散させたものであり、セラミック粉末は平均粒径が0.1〜1.0μmの主成分となるチタン酸バリウムの誘電体粉末にマンガン化合物、シリカ、希土類元素の酸化物等の微量添加物を0.1〜5wt%を加えたものである。   The ceramic slurry is obtained by dispersing ceramic powder in an organic vehicle whose main component is polyvinyl butyral, and the ceramic powder is a dielectric powder of barium titanate whose main particle size is 0.1 to 1.0 μm. In addition, 0.1 to 5 wt% of a trace amount additive such as a manganese compound, silica, or an oxide of a rare earth element is added.

ニッケル金属ペーストは、ニッケルを主成分とする金属粉末、アクリルの有機バインダ、溶剤、可塑剤等を混合したものであり、金属粉末は平均粒径が0.01〜2μmでありニッケル金属ペーストに20〜70wt%含有される。   The nickel metal paste is a mixture of a metal powder mainly composed of nickel, an acrylic organic binder, a solvent, a plasticizer, and the like. The metal powder has an average particle size of 0.01 to 2 μm and is 20% in the nickel metal paste. -70 wt% is contained.

次に、セラミックスラリーを基体上に塗布、乾燥して厚み1〜3μmのグリーンシートを形成した。   Next, the ceramic slurry was applied on the substrate and dried to form a green sheet having a thickness of 1 to 3 μm.

さらに、このグリーンシート上にスクリーン印刷によりニッケル金属ペーストを印刷し厚み1〜2μmの内部導体を形成し内部導体を設けたグリーンシートを形成した。   Further, a nickel metal paste was printed on the green sheet by screen printing to form an internal conductor having a thickness of 1 to 2 μm, and a green sheet provided with the internal conductor was formed.

続いて、前記グリーンシートからなる保護層シートを複数枚積層し圧着し、この上に前記内部導体を設けたグリーンシートを160枚、積層圧着させ、さらにこのシート上に前記保護層シートを複数枚積層し圧着させて積層体を形成した。   Subsequently, a plurality of protective layer sheets made of the green sheets are laminated and pressure-bonded, and 160 green sheets provided with the internal conductors are laminated and pressure-bonded thereon, and a plurality of the protective layer sheets are further formed on the sheets. Lamination and pressure bonding were performed to form a laminate.

次に、この積層体を切断し個片とした後、1100〜1300℃の還元雰囲気中で焼成しセラミック素体を得た。   Next, this laminate was cut into individual pieces, and then fired in a reducing atmosphere at 1100 to 1300 ° C. to obtain a ceramic body.

さらに、セラミック素体の表面に外部電極の導電性樹脂層を形成する。   Further, a conductive resin layer of the external electrode is formed on the surface of the ceramic body.

導電性樹脂層の形成は、まず導電性樹脂層用の導電性ペーストを基板に塗布しブレードでかき取り、一定の厚みの導電性ペーストの薄膜を形成する。次に前記薄膜にセラミック素体の端部を浸漬して、セラミック素体の両端部に導電性ペーストを塗布した。さらに導電性ペーストを熱処理により硬化し導電性樹脂層を形成した。   For forming the conductive resin layer, first, a conductive paste for the conductive resin layer is applied to the substrate and scraped off with a blade to form a thin film of the conductive paste having a certain thickness. Next, the end of the ceramic body was immersed in the thin film, and a conductive paste was applied to both ends of the ceramic body. Further, the conductive paste was cured by heat treatment to form a conductive resin layer.

導電性樹脂層用の導電性ペーストは、金属粉末と熱硬化性樹脂を含有したものである。   The conductive paste for the conductive resin layer contains metal powder and a thermosetting resin.

導電性ペーストの金属粉末は平均粒径1〜10μmの銀粉末と平均粒径1〜10μmの錫粉末を混合したものであり、金属粉末は導電性ペーストに60wt%〜90wt%含有している。   The metal powder of the conductive paste is a mixture of silver powder having an average particle diameter of 1 to 10 μm and tin powder having an average particle diameter of 1 to 10 μm, and the metal powder is contained in the conductive paste in an amount of 60 wt% to 90 wt%.

導電性ペーストの熱硬化性樹脂はビスフェノールA型のエポキシ樹脂と硬化剤のレゾール型のフェノール樹脂を混合したものであり、熱硬化性樹脂は導電性ペーストに5wt%〜40wt%含有している。   The thermosetting resin of the conductive paste is a mixture of a bisphenol A type epoxy resin and a resol type phenol resin of a curing agent, and the thermosetting resin is contained in the conductive paste in an amount of 5 wt% to 40 wt%.

この導電性ペーストは、酸素濃度が8.0×10-1ppmの窒素ガスを流入させ熱重量測定により測定したときの熱硬化性樹脂の炭化開始する温度は330℃、ガラス転移温度は210℃である。 This conductive paste has a temperature at which carbonization of the thermosetting resin starts at 330 ° C. and a glass transition temperature of 210 ° C. when nitrogen gas having an oxygen concentration of 8.0 × 10 −1 ppm is flowed in and measured by thermogravimetry. It is.

熱処理の温度パターンは、最高温度は炭化開始する温度の330℃であり、常温から毎分7℃〜60℃の温度勾配で最高温度まで昇温した後、最高温度を10分〜60分保持し、毎分7℃〜60℃の温度勾配で常温まで降温し冷却したものである。   The temperature pattern of the heat treatment is that the maximum temperature is 330 ° C., the temperature at which carbonization starts, and after the temperature is raised from room temperature to the maximum temperature with a temperature gradient of 7 ° C. to 60 ° C. per minute, the maximum temperature is held for 10 minutes to 60 minutes. The temperature is lowered to room temperature with a temperature gradient of 7 ° C. to 60 ° C. per minute and cooled.

熱処理の酸素濃度は、常温からの昇温及び降温中に窒素ガスと酸素ガスの注入量を調整して制御した。   The oxygen concentration in the heat treatment was controlled by adjusting the injection amounts of nitrogen gas and oxygen gas during temperature rise and fall from room temperature.

熱処理の昇温時の酸素濃度パターンは、常温の大気雰囲気から指数的に小さくしていき、210℃で酸素濃度が1.0×104ppm、270℃で2.5×102ppm、330℃で8.0×10-1ppmとなるようにしたものである。 The oxygen concentration pattern at the time of temperature increase in the heat treatment is decreased exponentially from the atmospheric atmosphere at room temperature, the oxygen concentration is 210 × 10 4 ppm at 210 ° C., 2.5 × 10 2 ppm at 270 ° C., 330 It was made to be 8.0 × 10 −1 ppm at a temperature.

熱処理の降温時の酸素濃度パターンは、熱処理の温度に対する酸素濃度が昇温時と同じであるようにした。   The oxygen concentration pattern when the temperature of the heat treatment was lowered was set so that the oxygen concentration with respect to the temperature of the heat treatment was the same as when the temperature was raised.

次に、ニッケル、錫の電解めっきを順次行い導電性樹脂層の上に金属層を形成し外部電極を設け、6.3V1μFの積層セラミックコンデンサを作製した。   Next, electrolytic plating of nickel and tin was sequentially performed to form a metal layer on the conductive resin layer, an external electrode was provided, and a 6.3 V 1 μF multilayer ceramic capacitor was fabricated.

(実施例2〜実施例5)
実施例2〜実施例5は、導電性ペーストの熱処理の酸素濃度パターンが実施例1と異なる以外は、実施例1と同様に作製した。
(Example 2 to Example 5)
Examples 2 to 5 were produced in the same manner as Example 1 except that the oxygen concentration pattern of the heat treatment of the conductive paste was different from Example 1.

熱処理の最高温度は実施例1と同じ330℃である。   The maximum temperature of the heat treatment is 330 ° C., which is the same as in Example 1.

実施例2〜実施例5は、酸素濃度パターンは温度270℃の昇温まで実施例1と同じであり、温度270℃より高い温度では夫々異なるようにした。   In Examples 2 to 5, the oxygen concentration pattern was the same as that in Example 1 until the temperature was raised to 270 ° C., and the oxygen concentration pattern was made different at temperatures higher than 270 ° C.

実施例2の酸素濃度は、270℃より高い温度において2.5×102ppmの一定に保った。 The oxygen concentration of Example 2 was kept constant at 2.5 × 10 2 ppm at a temperature higher than 270 ° C.

実施例3は、270℃より高い温度では緩やかに酸素濃度を小さくしていき、330℃において1.0×102ppmとした。実施例4、実施例5は、330℃において夫々2.1×10-3ppm、1.0×10-4ppmとした。 In Example 3, the oxygen concentration was gradually decreased at a temperature higher than 270 ° C., and was set to 1.0 × 10 2 ppm at 330 ° C. Examples 4 and 5 were set to 2.1 × 10 −3 ppm and 1.0 × 10 −4 ppm at 330 ° C., respectively.

(実施例6、実施例7)
実施例6、実施例7は、導電性ペーストの熱処理の温度パターン、酸素濃度パターンが実施例1と異なる以外は、実施例1と同様に作製した。
(Example 6, Example 7)
Example 6 and Example 7 were produced in the same manner as Example 1 except that the temperature pattern and oxygen concentration pattern of the heat treatment of the conductive paste were different from Example 1.

実施例6、実施例7の熱処理の温度パターンは、最高温度は実施例1より低い270℃であり、常温から毎分3℃〜60℃の温度勾配で最高温度まで昇温した後、最高温度を60分〜180分保持し、毎分3℃〜60℃の温度勾配で常温まで降温し冷却したものである。   In the temperature pattern of the heat treatment of Example 6 and Example 7, the maximum temperature is 270 ° C. lower than that of Example 1, and after the temperature is increased from room temperature to the maximum temperature with a temperature gradient of 3 ° C. to 60 ° C. per minute, the maximum temperature Is kept for 60 minutes to 180 minutes, cooled to room temperature with a temperature gradient of 3 ° C. to 60 ° C. per minute, and cooled.

酸素濃度パターンは、実施例6は、常温の大気雰囲気から指数的に小さくしていき210℃で2.5×102ppm、270℃で1.0×10-4ppmになるようにした。実施例7は、210℃で1.0×104ppm、270℃で2.5×102ppmになるようにした。 In Example 6, the oxygen concentration pattern was exponentially reduced from the ambient air atmosphere at room temperature to 2.5 × 10 2 ppm at 210 ° C. and 1.0 × 10 −4 ppm at 270 ° C. In Example 7, 1.0 × 10 4 ppm at 210 ° C. and 2.5 × 10 2 ppm at 270 ° C. were set.

(比較例1〜比較例5)
比較例1、比較例2は、実施例6と導電性ペーストの熱処理における酸素濃度パターンが異なる以外は実施例6と同様に作製した。
(Comparative Examples 1 to 5)
Comparative Example 1 and Comparative Example 2 were produced in the same manner as Example 6 except that Example 6 and the oxygen concentration pattern in the heat treatment of the conductive paste were different.

比較例1、比較例2の酸素濃度パターンは、常温から210℃まで実施例6と同じであり210℃で2.5×102ppmとして、さらに比較例1は270℃で4×10-6ppm、比較例2は3.0×10-5ppmとなるようにした。 The oxygen concentration patterns of Comparative Example 1 and Comparative Example 2 are the same as those of Example 6 from room temperature to 210 ° C., and are 2.5 × 10 2 ppm at 210 ° C., and Comparative Example 1 is 4 × 10 −6 at 270 ° C. ppm and Comparative Example 2 were set to 3.0 × 10 −5 ppm.

比較例3〜比較例5は、実施例7と導電性ペーストの熱処理における酸素濃度パターンが異なる以外は実施例7と同様に作製した。   Comparative Examples 3 to 5 were produced in the same manner as Example 7 except that Example 7 and the oxygen concentration pattern in the heat treatment of the conductive paste were different.

比較例3、比較例4の酸素濃度パターンは、常温から210℃まで実施例7と同じであり、210℃で1.0×104ppmとして、さらに比較例3は270℃で5.0×102ppm、比較例4は1.0×103ppmとなるようにした。比較例5は大気雰囲気で熱処理をした。 The oxygen concentration patterns of Comparative Example 3 and Comparative Example 4 are the same as those of Example 7 from room temperature to 210 ° C., and are set to 1.0 × 10 4 ppm at 210 ° C., and Comparative Example 3 is 5.0 × at 270 ° C. 10 2 ppm and Comparative Example 4 were set to 1.0 × 10 3 ppm. In Comparative Example 5, heat treatment was performed in an air atmosphere.

次に、実施例1〜実施例7及び比較例1〜比較例5の積層セラミックコンデンサについて、夫々300個の試料を測定し、初期の絶縁抵抗値の平均値を算出した。   Next, 300 samples were measured for each of the multilayer ceramic capacitors of Examples 1 to 7 and Comparative Examples 1 to 5, and the average value of the initial insulation resistance values was calculated.

さらに、初期の絶縁抵抗値が1.0×108Ω以上となるものを選別し、夫々500個の試料について温度85℃湿度85%、定格電圧6.3V印加の高温高湿負荷試験を1000時間行い、試験後の絶縁抵抗値が5.0×106Ωより小さいものを異常とし絶縁抵抗値の不具合率を算出した。 Further, those having an initial insulation resistance value of 1.0 × 10 8 Ω or more were selected, and a high-temperature and high-humidity load test with a temperature of 85 ° C. and a humidity of 85% and a rated voltage of 6.3 V applied to 500 samples was performed. After a period of time, an insulation resistance value after the test of less than 5.0 × 10 6 Ω was regarded as abnormal, and the failure rate of the insulation resistance value was calculated.

その結果を表1に示す。   The results are shown in Table 1.

Figure 0005266874
Figure 0005266874

この表1に示されるように、実施例1〜実施例7は、初期の絶縁抵抗値は1.8×109Ω〜2.2×109Ωであり、高温高湿負荷試験の不具合率は0.0%であり、良好なものであった。 As shown in Table 1, Examples 1 to 7, the initial insulation resistance value was 1.8 × 10 9 Ω~2.2 × 10 9 Ω, failure rate of the high-temperature high-humidity load test Was 0.0%, which was good.

一方、比較例1、比較例2は、初期の絶縁抵抗値は夫々6.4×107Ω、7.9×108Ωであり実施例1〜実施例7に比べると低くなっている。このように導電性ペーストを硬化する熱処理における最高温度のときに酸素濃度が1.0×10-4ppmより小さくなると、積層セラミックコンデンサの初期の絶縁抵抗の劣化が生じ、酸素濃度が小さいほど絶縁抵抗の劣化が大きくなっている。 On the other hand, Comparative Example 1 and Comparative Example 2 have initial insulation resistance values of 6.4 × 10 7 Ω and 7.9 × 10 8 Ω, respectively, which are lower than those of Examples 1 to 7. As described above, when the oxygen concentration is lower than 1.0 × 10 −4 ppm at the maximum temperature in the heat treatment for curing the conductive paste, the initial insulation resistance of the multilayer ceramic capacitor is deteriorated. The resistance is getting worse.

また、比較例3〜比較例5は、高温高湿負荷試験の不具合率が夫々3.0%、8.4%、25.0%であり実施例1〜実施例7に比べると大きくなっている。このように導電性ペーストを硬化する熱処理における最高温度のときに酸素濃度が2.5×102ppmより大きくなると、高温高湿負荷試験の不具合率が高くなり、酸素濃度が大きくなるほど不具合率が悪化している。 In Comparative Examples 3 to 5, the failure rate of the high-temperature and high-humidity load test is 3.0%, 8.4%, and 25.0%, respectively, which are larger than those of Examples 1 to 7. Yes. Thus, when the oxygen concentration is higher than 2.5 × 10 2 ppm at the maximum temperature in the heat treatment for curing the conductive paste, the failure rate of the high-temperature and high-humidity load test increases, and the failure rate increases as the oxygen concentration increases. It is getting worse.

以上のように、導電性ペーストを硬化する熱処理における最高温度のとき酸素濃度が10-4ppm以上から2.5×102ppm以下であることにより、積層セラミックコンデンサの初期の絶縁抵抗が高く、かつ高温高湿負荷試験での絶縁抵抗の不具合発生を低減することができる。 As described above, when the oxygen concentration is 10 −4 ppm or more and 2.5 × 10 2 ppm or less at the highest temperature in the heat treatment for curing the conductive paste, the initial insulation resistance of the multilayer ceramic capacitor is high, In addition, it is possible to reduce the occurrence of defects in insulation resistance in the high temperature and high humidity load test.

(実施例8)
実施例8は、導電性ペーストの熱処理の酸素濃度パターンが実施例1と異なる以外は、実施例1と同様に作製した。
(Example 8)
Example 8 was produced in the same manner as in Example 1 except that the oxygen concentration pattern of the heat treatment of the conductive paste was different from that in Example 1.

実施例8の熱処理の温度パターンは、実施例1と同じであり最高温度は330℃である。   The temperature pattern of the heat treatment in Example 8 is the same as that in Example 1, and the maximum temperature is 330 ° C.

熱処理の昇温時の酸素濃度パターンは、常温の大気雰囲気から指数的に小さくしていき210℃で8.0×10-1ppmになるようにし、これより高い温度では酸素濃度を8.0×10-1ppmの一定にした。 The oxygen concentration pattern at the time of temperature increase in the heat treatment is decreased exponentially from a normal temperature air atmosphere to 8.0 × 10 −1 ppm at 210 ° C., and at a temperature higher than this, the oxygen concentration is 8.0. The constant was set to × 10 -1 ppm.

次に、実施例8について実施例1と同様に温度85℃、湿度85%、定格電圧6.3V印加の高温高湿負荷試験を1000時間行った。さらに実施例1、実施例8について高温高湿負荷試験の試験時間を2000時間行い絶縁抵抗値の不具合率を算出した。   Next, as in Example 1, a high temperature and high humidity load test with a temperature of 85 ° C., a humidity of 85%, and a rated voltage of 6.3 V was performed for Example 8 for 1000 hours. Furthermore, about Example 1 and Example 8, the test time of the high-temperature, high-humidity load test was 2000 hours, and the defect rate of the insulation resistance value was calculated.

その結果を表2に示す。   The results are shown in Table 2.

Figure 0005266874
Figure 0005266874

表2に示されるように、実施例1と実施例8は、高温高湿負荷試験を2000時間行った後の不具合率は夫々0.3%、0.0%であった。   As shown in Table 2, in Example 1 and Example 8, the failure rates after 2000 hours of the high temperature and high humidity load test were 0.3% and 0.0%, respectively.

実施例1と実施例8は、熱処理の最高温度での酸素濃度は8.0×10-1ppmで同じであるが、実施例8は、酸素濃度が8.0×10-1ppmである温度をガラス転移温度から最高温度の範囲にしたものであり、これによって高温高湿負荷試験における絶縁抵抗劣化が長時間において生じ難くできている。 In Example 1 and Example 8, the oxygen concentration at the maximum temperature of the heat treatment is the same at 8.0 × 10 −1 ppm, but in Example 8, the oxygen concentration is 8.0 × 10 −1 ppm. The temperature is in the range from the glass transition temperature to the maximum temperature, which makes it difficult for the insulation resistance deterioration in the high temperature and high humidity load test to occur for a long time.

(実施例9〜実施例12)
実施例9〜実施例12は、導電性ペーストの熱処理の温度パターンと酸素濃度パターンが実施例1と異なる以外は、実施例1と同様に作製した。
(Example 9 to Example 12)
Examples 9 to 12 were produced in the same manner as in Example 1 except that the temperature pattern and oxygen concentration pattern of the heat treatment of the conductive paste were different from those in Example 1.

実施例9〜実施例12の最高温度は夫々300℃、330℃、350℃、270℃であり、最高温度における酸素濃度は実施例1と同じ8.0×10-1ppmである。 The maximum temperatures of Examples 9 to 12 are 300 ° C., 330 ° C., 350 ° C., and 270 ° C., respectively, and the oxygen concentration at the maximum temperature is 8.0 × 10 −1 ppm, which is the same as that of Example 1.

熱処理の温度パターンは、常温から毎分7℃〜60℃の温度勾配で最高温度まで昇温した後、最高温度を10分〜60分保持し、毎分7℃〜60℃の温度勾配で常温まで降温し冷却したものである。   The temperature pattern of the heat treatment is that the temperature is raised from room temperature to a maximum temperature with a temperature gradient of 7 ° C. to 60 ° C. per minute, then the maximum temperature is maintained for 10 minutes to 60 minutes, and the temperature gradient of 7 ° C. to 60 ° C. per minute The temperature is lowered and cooled.

酸素濃度パターンは、実施例9〜実施例11は、常温で大気雰囲気から210℃で1.0×104ppm、270℃で2.5×102ppm、300℃で8.0×10-1ppmになるようにし、300℃以上で8.0×10-1ppmに一定に保った。 Oxygen concentration pattern, Examples 9 11, 1.0 × 10 4 ppm at 210 ° C. from the atmosphere at normal temperature, 270 ° C. at 2.5 × 10 2 ppm, 300 ℃ at 8.0 × 10 - 1 ppm, and kept constant at 8.0 × 10 −1 ppm above 300 ° C.

実施例12は、210℃で2.5×102ppmにして270℃で8.0×10-1ppmとした。 In Example 12, it was 2.5 × 10 2 ppm at 210 ° C. and 8.0 × 10 −1 ppm at 270 ° C.

実施例9〜実施例12はいずれも、初期の絶縁抵抗値の平均値は1.9×109Ω以上であり、また温度85℃、湿度85%、定格電圧6.3V印加の高温高湿負荷試験を1000時間の不具合率は0.0%で良好であった。 In all of Examples 9 to 12, the average value of the initial insulation resistance value is 1.9 × 10 9 Ω or more, and the temperature and humidity are 85 ° C., humidity 85%, and rated voltage 6.3 V applied. The failure rate of 1000 hours in the load test was good at 0.0%.

次に、実施例9〜実施例12、比較例6の夫々500個の試料について、初期の静電容量を測定し静電容量のバラツキを算出した。静電容量のバラツキは静電容量の標準偏差値σを静電容量の平均値で割ったものである。   Next, with respect to 500 samples of each of Examples 9 to 12 and Comparative Example 6, the initial capacitance was measured, and the variation in capacitance was calculated. The variation in capacitance is obtained by dividing the standard deviation value σ of capacitance by the average value of capacitance.

その結果を表3に示す。   The results are shown in Table 3.

Figure 0005266874
Figure 0005266874

表3に示されるように、実施例9〜実施例12、比較例6の静電容量のバラツキは夫々0.019、0.012、0.011、0.055、0.056であった。   As shown in Table 3, the variations in the capacitances of Examples 9 to 12 and Comparative Example 6 were 0.019, 0.012, 0.011, 0.055, and 0.056, respectively.

熱処理の最高温度は、実施例12、比較例6は270℃であることに対し、実施例9〜実施例11は炭化開始する温度の近傍の温度300℃〜350℃であり、このように熱処理の最高温度を炭化開始する温度の近傍に設けることにより、高温高湿負荷試験における絶縁抵抗劣化を低減しながら、内部導体の各層と導電性樹脂層との電気的接合を向上でき静電容量のバラツキを小さくできる。   The maximum temperature of the heat treatment is 270 ° C. in Example 12 and Comparative Example 6, whereas in Examples 9 to 11, the temperature is 300 ° C. to 350 ° C. near the temperature at which carbonization starts. By setting the maximum temperature near the temperature at which carbonization starts, it is possible to improve the electrical connection between each layer of the inner conductor and the conductive resin layer while reducing the insulation resistance deterioration in the high temperature and high humidity load test. The variation can be reduced.

本発明にかかるセラミック電子部品の製造方法によれば、導電性ペーストを硬化する熱処理の際に、導電性樹脂層の熱硬化性樹脂と金属粉末との密着性を損なうことがないので、セラミック電子部品として絶縁抵抗が優れ、高い信頼性を得ることができるので、各種電子機器や電気回路において、極めて有用なものである。   According to the method for manufacturing a ceramic electronic component according to the present invention, the adhesiveness between the thermosetting resin of the conductive resin layer and the metal powder is not impaired during the heat treatment for curing the conductive paste. Since the component has excellent insulation resistance and high reliability, it is extremely useful in various electronic devices and electric circuits.

本発明の実施の形態における積層セラミックコンデンサの断面図Sectional drawing of the multilayer ceramic capacitor in embodiment of this invention 本発明の実施の形態における導電性ペーストを硬化する熱処理の時間と温度、酸素濃度を示す図The figure which shows the time and temperature of heat processing which harden the electrically conductive paste in embodiment of this invention, and oxygen concentration 本発明の実施の形態における導電性ペーストの熱重量測定のTG曲線を示す図The figure which shows the TG curve of the thermogravimetry of the electrically conductive paste in embodiment of this invention

符号の説明Explanation of symbols

1 セラミック層
2 内部導体
3 セラミック素体
4 外部電極
5 導電性樹脂層
6 下地電極
7 金属層
8 保護層
DESCRIPTION OF SYMBOLS 1 Ceramic layer 2 Internal conductor 3 Ceramic body 4 External electrode 5 Conductive resin layer 6 Base electrode 7 Metal layer 8 Protective layer

Claims (2)

内部導体を有するセラミック素体に外部電極を設けたセラミック電子部品の製造方法であって、前記外部電極は導電性樹脂層を有し、前記導電性樹脂層を形成する工程は金属粉末と熱硬化性樹脂とを含む導電性ペーストを塗布した後、前記導電性ペーストを熱処理により硬化するものであって、前記熱処理における少なくとも最高温度のとき酸素濃度は10-4ppm以上から2.5×102ppm以下であり、前記最高温度は、前記熱硬化性樹脂が炭化開始する温度近傍であるセラミック電子部品の製造方法。 A method of manufacturing a ceramic electronic component in which an external electrode is provided on a ceramic body having an internal conductor, wherein the external electrode has a conductive resin layer, and the step of forming the conductive resin layer includes metal powder and thermosetting After applying a conductive paste containing a conductive resin, the conductive paste is cured by heat treatment, and the oxygen concentration is 10 −4 ppm or more to 2.5 × 10 2 at least at the highest temperature in the heat treatment. The method for producing a ceramic electronic component , wherein the maximum temperature is not more than ppm and the maximum temperature is in the vicinity of a temperature at which the thermosetting resin starts to be carbonized . 前記酸素濃度が10-4ppm以上から2.5×102ppm以下である温度は、少なくとも前記熱硬化性樹脂のガラス転移温度から前記最高温度である請求項1に記載のセラミック電子部品の製造方法。 2. The production of a ceramic electronic component according to claim 1, wherein the temperature at which the oxygen concentration is 10 −4 ppm or more and 2.5 × 10 2 ppm or less is at least the glass transition temperature of the thermosetting resin to the maximum temperature. Method.
JP2008135136A 2008-05-23 2008-05-23 Manufacturing method of ceramic electronic component Active JP5266874B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008135136A JP5266874B2 (en) 2008-05-23 2008-05-23 Manufacturing method of ceramic electronic component

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008135136A JP5266874B2 (en) 2008-05-23 2008-05-23 Manufacturing method of ceramic electronic component

Publications (2)

Publication Number Publication Date
JP2009283744A JP2009283744A (en) 2009-12-03
JP5266874B2 true JP5266874B2 (en) 2013-08-21

Family

ID=41453880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008135136A Active JP5266874B2 (en) 2008-05-23 2008-05-23 Manufacturing method of ceramic electronic component

Country Status (1)

Country Link
JP (1) JP5266874B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8988855B2 (en) 2011-10-31 2015-03-24 Murata Manufacturing Co., Ltd. Method of manufacturing ceramic electronic component including heating an electrode layer to form a conductive layer including an alloy particle
US9202640B2 (en) 2011-10-31 2015-12-01 Murata Manufacturing Co., Ltd. Ceramic electronic component and manufacturing method thereof
US9490055B2 (en) 2011-10-31 2016-11-08 Murata Manufacturing Co., Ltd. Ceramic electronic component and manufacturing method thereof
KR20140106175A (en) 2013-02-26 2014-09-03 삼성전기주식회사 Multilayer ceramic device
KR102558658B1 (en) 2019-03-28 2023-07-24 가부시키가이샤 무라타 세이사쿠쇼 Method for manufacturing chip-type ceramic electronic components
CN113632187B (en) * 2019-03-28 2023-06-27 株式会社村田制作所 Chip type ceramic electronic component and method for manufacturing the same
JP7494925B2 (en) 2020-09-25 2024-06-04 株式会社村田製作所 Chip-type ceramic electronic component and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0836915A (en) * 1994-07-26 1996-02-06 Taiyo Yuden Co Ltd Baking type conductive paste for ceramic electronic part, and ceramic electronic part
JP3359522B2 (en) * 1996-12-26 2002-12-24 京セラ株式会社 Manufacturing method of multilayer ceramic capacitor
JP2002367859A (en) * 2001-06-12 2002-12-20 Taiyo Yuden Co Ltd Method for manufacturing multi-terminal lamination ceramic electronic component
JP4359919B2 (en) * 2003-12-25 2009-11-11 京セラ株式会社 Conductive paste for external electrode formation and multilayer ceramic electronic component using the same

Also Published As

Publication number Publication date
JP2009283744A (en) 2009-12-03

Similar Documents

Publication Publication Date Title
JP5266874B2 (en) Manufacturing method of ceramic electronic component
JP4952723B2 (en) Multilayer ceramic capacitor and manufacturing method thereof
JP3918851B2 (en) Multilayer electronic component and method of manufacturing multilayer electronic component
TWI686825B (en) Multilayer ceramic electronic component and printed circuit board having the same
US7558047B2 (en) Electronic component and method for producing the same
WO2006022060A1 (en) Multilayer ceramic capacitor and method for adjusting equivalent series resistance thereof
JP2010123865A (en) Ceramic electronic component and component built-in substrate
JP2001035739A (en) Laminated ceramic electronic component and manufacture of the same
JP2008085280A (en) Surface-mounting electronic component and manufacturing method thereof
WO2006022258A1 (en) Multilayer ceramic capacitor and method for controlling equivalent series resistance
JPH0837127A (en) Monolithic ceramic capacitor and its production
JP2012033291A (en) Paste for electrode formation, terminal electrode and ceramic electronic part
JP4561574B2 (en) Conductive paste for multilayer ceramic component terminal electrode
JP2007234774A (en) Ceramic electronic component and manufacturing method thereof
JP4501143B2 (en) Electronic device and manufacturing method thereof
JP4333594B2 (en) Conductive paste and ceramic electronic components
JP4973546B2 (en) Conductive paste, multilayer ceramic electronic component and multilayer ceramic substrate
JP4816202B2 (en) Conductive paste and method for manufacturing ceramic electronic component
JP2003217969A (en) Manufacturing method of laminated ceramic capacitor
JP2002203736A (en) Method of manufacturing laminated ceramic capacitor
TW202000618A (en) Thick film aluminum electrode paste composition and chip resistor prepared by pretreatment before metal plating process capable of overcoming problems caused by vulcanization of chip resistors
CN102522169A (en) Termination electrode for multilayer sheet-type temperature-sensitive ceramic resistor and preparation method thereof
JP7494925B2 (en) Chip-type ceramic electronic component and its manufacturing method
JP3831537B2 (en) Electronic device and manufacturing method thereof
JP2003243249A (en) Laminated ceramic capacitor and its manufacturing method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110517

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20110614

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20121213

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130409

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130422

R151 Written notification of patent or utility model registration

Ref document number: 5266874

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151