JP5263275B2 - Insulated container - Google Patents

Insulated container Download PDF

Info

Publication number
JP5263275B2
JP5263275B2 JP2010269906A JP2010269906A JP5263275B2 JP 5263275 B2 JP5263275 B2 JP 5263275B2 JP 2010269906 A JP2010269906 A JP 2010269906A JP 2010269906 A JP2010269906 A JP 2010269906A JP 5263275 B2 JP5263275 B2 JP 5263275B2
Authority
JP
Japan
Prior art keywords
heat
film
heat insulating
insulating container
temperature reaction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010269906A
Other languages
Japanese (ja)
Other versions
JP2011151004A (en
Inventor
修 中村
雅俊 野村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Casio Computer Co Ltd
Original Assignee
Casio Computer Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Casio Computer Co Ltd filed Critical Casio Computer Co Ltd
Priority to JP2010269906A priority Critical patent/JP5263275B2/en
Publication of JP2011151004A publication Critical patent/JP2011151004A/en
Application granted granted Critical
Publication of JP5263275B2 publication Critical patent/JP5263275B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

本発明は、燃料電池装置等に用いる気化器、改質器、CO除去器等の異なる動作温度が要求される反応器を一体化した反応装置を収容する断熱容器に関する。   The present invention relates to a heat insulating container that accommodates a reactor integrated with a reactor that requires different operating temperatures, such as a vaporizer, a reformer, and a CO remover used in a fuel cell device or the like.

近年では、エネルギー変換効率の高いクリーンな電源として、水素を燃料とする燃料電池が自動車や携帯機器などに応用され始めている。燃料電池は、燃料と大気中の酸素を電気化学的に反応させて、化学エネルギーから電気エネルギーを直接取り出す装置である。   In recent years, fuel cells using hydrogen as fuel as a clean power source with high energy conversion efficiency have begun to be applied to automobiles and portable devices. A fuel cell is a device that directly extracts electric energy from chemical energy by electrochemically reacting fuel and oxygen in the atmosphere.

燃料電池に用いる燃料としては水素が挙げられるが、常温で気体であることによる取り扱い・貯蔵に問題がある。アルコール類及びガソリンといった液体燃料を用いる場合には、液体燃料を気化させる気化器、液体燃料と高温の水蒸気を反応させることによって、発電に必要な水素を取り出す改質器、改質反応の副産物である一酸化炭素を除去するCO除去器等が必要となる。   The fuel used in the fuel cell includes hydrogen, but there is a problem in handling and storage due to being a gas at room temperature. When using liquid fuels such as alcohols and gasoline, a vaporizer that vaporizes the liquid fuel, a reformer that extracts hydrogen necessary for power generation by reacting the liquid fuel with high-temperature steam, and a by-product of the reforming reaction. A CO remover or the like that removes certain carbon monoxide is required.

この気化器やCO除去器の動作温度が高温であるため、これらを断熱容器に収納し、放熱を抑制することが行われている。さらに、断熱容器の内壁面に赤外線(波長が0.7μm〜1mm)を反射する反射膜を形成し、外部への熱エネルギーの損失を低減させることも行われている(例えば、特許文献1参照)。   Since the operating temperature of the vaporizer and the CO remover is high, they are housed in a heat insulating container to suppress heat dissipation. Furthermore, a reflection film that reflects infrared rays (wavelength: 0.7 μm to 1 mm) is formed on the inner wall surface of the heat insulating container to reduce the loss of heat energy to the outside (see, for example, Patent Document 1). ).

特開2004−6265号公報JP 2004-6265 A

ところで、気化器やCO除去器の動作温度が例えば約100〜180℃未満であるのに対し、改質器の動作温度が例えば約300〜400℃以上と温度差が著しいが、改質器の熱が伝搬して気化器及びCO除去器の温度が上昇し、反応装置内の温度差を確保することが困難であった。   By the way, the operating temperature of the vaporizer and the CO remover is, for example, about 100 to less than 180 ° C., whereas the operating temperature of the reformer is, for example, about 300 to 400 ° C. or more. As heat propagates and the temperatures of the vaporizer and the CO remover rise, it is difficult to ensure a temperature difference in the reactor.

本発明の課題は、放熱量を容易に調整することができる断熱容器を提供することである。 The subject of this invention is providing the heat insulation container which can adjust heat dissipation easily .

以上の課題を解決するため、請求項1に記載の発明は、数の反応部からなる反応装置を収容する断熱容器において、前記断熱容器の内壁面には、低温の低温反応部に対応する位置に、前記低温反応部より高温の高温反応部に対応する位置よりも赤外線反射率の低い放熱促進部が設けられ、前記放熱促進部は、前記低温反応部に対応する位置に、分散して設けられていることを特徴とする。 To solve the above problems, the invention according to claim 1, in the adiabatic vessel containing a reactor comprising a reaction portion of the multiple, the inner wall surface of the heat insulating container corresponds to the low temperature reaction unit of the cold The position is provided with a heat radiation promoting part having a lower infrared reflectance than the position corresponding to the high temperature reaction part having a temperature higher than that of the low temperature reaction part, and the heat radiation promotion part is dispersed in a position corresponding to the low temperature reaction part. It is provided.

請求項2に記載の発明は、請求項1に記載の断熱容器において、前記放熱促進部は、
ストライプ状に分散して設けられていることを特徴とする。
The invention according to claim 2 is the heat insulating container according to claim 1, wherein the heat dissipation promoting portion is
It is characterized by being distributed in stripes .

請求項3に記載の発明は、請求項1に記載の断熱容器において、前記放熱促進部は、
市松状に分散して設けられていることを特徴とする。
The invention according to claim 3 is the heat insulating container according to claim 1 , wherein the heat dissipation promoting portion is
It is characterized by being distributed in a checkered pattern .

請求項4に記載の発明は、請求項1〜3のいずれか一項に記載の断熱容器において、記放熱促進部は、前記低温反応部に対応する位置にのみ設けられていることを特徴とする。 Invention according to claim 4, in the heat insulating container according to any one of claims 1 to 3, before Symbol accelerating heat dissipation unit, that only is provided in a position corresponding to the front Stories low temperature reaction unit It is characterized by.

請求項5に記載の発明は、請求項に記載の断熱容器において、記放熱促進部は、
記低温反応部において、前記高温反応部に近い側の面積が、遠い側の面積より広くなるような分布で分散して設けられていることを特徴とする。
The invention according to claim 5, in the heat insulating container according to claim 4, before Symbol accelerating heat dissipation unit,
Prior SL low temperature reaction unit, the area closer to the high temperature reaction unit, characterized in that provided distributed at distribution such that wider than the area farther.

請求項6に記載の発明は、請求項1〜5のいずれか一項に記載の断熱容器において、前記断熱容器の内壁面には、赤外線反射膜が設けられていて、前記放熱促進部は、前記赤外線反射膜に開口を分散して設けることにより、前記開口部に対応する領域の放熱を促進することを特徴とする。
請求項7に記載の発明は、請求項1〜5のいずれか一項に記載の断熱容器において、前記放熱促進部は、前記断熱容器の内壁面に、赤外線吸収膜を分散して設けることにより、前記開赤外線吸収膜の設けられた領域の放熱を促進することを特徴とする。
請求項8に記載の発明は、請求項1〜5のいずれか一項に記載の断熱容器において、前記断熱容器の内壁面には、赤外線吸収膜が設けられるとともに、前記赤外線吸収膜の内側の所定の位置に赤外線反射膜を分散して設けることにより、前記放熱促進部は、前記赤外線反射膜が設けられていない領域の放熱を促進することを特徴とする。
請求項に記載の発明は、請求項7または8に記載の断熱容器において、前記赤外線吸収膜の吸収係数と膜厚の積は2.3以上であることを特徴とする。
Invention of Claim 6 is the heat insulation container as described in any one of Claims 1-5, The infrared reflective film is provided in the inner wall face of the said heat insulation container, The said heat dissipation promotion part is Dispersing the openings in the infrared reflecting film facilitates heat dissipation in a region corresponding to the opening.
Invention of Claim 7 is the heat insulation container as described in any one of Claims 1-5. WHEREIN: The said heat dissipation promotion part disperse | distributes an infrared rays absorption film to the inner wall surface of the said heat insulation container, and provides it. The heat radiation of the region provided with the open infrared absorbing film is promoted.
Invention of Claim 8 is the heat insulation container as described in any one of Claims 1-5, While an infrared rays absorption film is provided in the inner wall face of the said heat insulation container, inside the said infrared absorption film By disperse | distributing and providing an infrared reflective film in a predetermined position, the said heat radiation promotion part accelerates | stimulates the heat radiation of the area | region in which the said infrared reflective film is not provided.
The invention according to claim 9 is the heat insulating container according to claim 7 or 8 , wherein the product of the absorption coefficient and the film thickness of the infrared absorption film is 2.3 or more.

請求項10に記載の発明は、請求項7または8に記載の断熱容器において、前記赤外線吸収膜はC,Fe,Co,Pt,Crのいずれかを含むことを特徴とする。 The invention according to claim 10, in the heat insulating container according to claim 7 or 8, wherein the infrared absorption film is characterized by containing C, Fe, Co, Pt, one of Cr.

請求項11に記載の発明は、請求項7または8に記載の断熱容器において、前記赤外線吸収膜はTa−Si−O−N系のアモルファス半導体で、吸収係数は100000/cm以上であることを特徴とする。 The invention according to claim 11 is the heat insulating container according to claim 7 or 8 , wherein the infrared absorption film is a Ta—Si—O—N based amorphous semiconductor, and the absorption coefficient is 100000 / cm or more. Features.

請求項12に記載の発明は、請求項11に記載の断熱容器において、Ta−Si−O−N系のアモルファス半導体のモル比が0.6<Si/Ta<1.0かつ0.15<N/O<4.1の範囲であることを特徴とする。 According to a twelfth aspect of the present invention, in the heat insulating container according to the eleventh aspect , the molar ratio of the Ta—Si—O—N amorphous semiconductor is 0.6 <Si / Ta <1.0 and 0.15 <. N / O <4.1.

請求項13に記載の発明は、請求項1〜5のいずれか一項に記載の断熱容器において、前記断熱容器の内壁面には、第1反射膜が設けられ、前記第1反射膜の内側の所定の位置に第2反射膜が設けられ、前記第2反射膜が設けられていない領域を分散して設けることにより、前記放熱促進部は、前記第2反射膜が設けられていない領域の放熱を促進することを特徴とする。Invention of Claim 13 is a heat insulation container as described in any one of Claims 1-5, A 1st reflection film is provided in the inner wall face of the said heat insulation container, The inside of a said 1st reflection film The second reflection film is provided at a predetermined position, and the region where the second reflection film is not provided is dispersed, so that the heat dissipation promoting portion is provided in the region where the second reflection film is not provided. It is characterized by promoting heat dissipation.
請求項14に記載の発明は、請求項13に記載の断熱容器において、前記第1反射膜と前記第2反射膜の間には、空隙が設けられていることを特徴とする。The invention according to claim 14 is the heat insulating container according to claim 13, wherein a gap is provided between the first reflective film and the second reflective film.

請求項15に記載の発明は、請求項1〜14のいずれか一項に記載の断熱容器において、前記反応装置は、水素を含む炭素化合物と水を混合した混合物から水素を発生させる改質器を含むことを特徴とする。 The invention described in claim 15 is the heat insulating container according to any one of claims 1 to 14 , wherein the reaction apparatus generates hydrogen from a mixture of a carbon compound containing hydrogen and water. It is characterized by including.

本発明によれば、放熱量を容易に調整することができる。 According to the present invention, the amount of heat release can be easily adjusted .

本発明が適用される発電装置100のブロック図である。It is a block diagram of the electric power generating apparatus 100 with which this invention is applied. 本発明の断熱容器30の断面図である。It is sectional drawing of the heat insulation container 30 of this invention. 放熱促進部40の反射率及び面積と熱リークとの関係を示すグラフである。It is a graph which shows the relationship between the reflectance and area of the heat dissipation promotion part 40, and a heat leak. 吸収膜32に入射、反射、透過する赤外線の関係を示す模式図である。It is a schematic diagram which shows the relationship of the infrared rays which inject, reflect and permeate | transmit the absorption film. tとI(t)/(I−R)との関係を示すグラフである。It is a graph which shows the relationship between t and I (t) / (IR). 黒体輻射の波長と輻射密度の関係を示すグラフである。It is a graph which shows the relationship between the wavelength of black body radiation, and radiation density. Au,Al,Ag,Cu,Rhの波長に対する反射率を示すグラフである。It is a graph which shows the reflectance with respect to the wavelength of Au, Al, Ag, Cu, and Rh. Ta−Si−O−N系膜の吸収係数を測定した結果を示すグラフである。It is a graph which shows the result of having measured the absorption coefficient of the Ta-Si-O-N type film. 断熱容器30の変形例を示す断面図である。6 is a cross-sectional view showing a modification of the heat insulating container 30. FIG. 本発明の断熱容器30の変形例を示す断面図である。It is sectional drawing which shows the modification of the heat insulation container 30 of this invention. 本発明の断熱容器30の変形例を示す断面図である。It is sectional drawing which shows the modification of the heat insulation container 30 of this invention. 断熱容器30の変形例を示す断面図である。6 is a cross-sectional view showing a modification of the heat insulating container 30. FIG. 本発明の断熱容器30の変形例を示す断面図である。It is sectional drawing which shows the modification of the heat insulation container 30 of this invention. (a)〜(d)は放熱促進部40〜43の形状を示す模式図である。(A)-(d) is a schematic diagram which shows the shape of the thermal radiation promotion part 40-43. 本発明の放熱促進部40〜43の形状を示す模式図である。It is a schematic diagram which shows the shape of the heat dissipation promotion part 40-43 of this invention.

以下に、本発明を実施するための最良の形態について図面を用いて説明する。但し、以下に述べる実施形態には、本発明を実施するために技術的に好ましい種々の限定が付されているが、発明の範囲を以下の実施形態及び図示例に限定するものではない。   The best mode for carrying out the present invention will be described below with reference to the drawings. However, although various technically preferable limitations for implementing the present invention are given to the embodiments described below, the scope of the invention is not limited to the following embodiments and illustrated examples.

〔第1の実施の形態〕
図1は、本発明が適用される発電装置100のブロック図である。この発電装置100は、ノート型パーソナルコンピュータ、携帯電話機、PDA(Personal Digital Assistant)、電子手帳、腕時計、デジタルスチルカメラ、デジタルビデオカメラ、ゲーム機器、遊技機、その他の電子機器に備え付けられたものであり、電子機器本体を動作させるための電源として用いられる。
[First Embodiment]
FIG. 1 is a block diagram of a power generator 100 to which the present invention is applied. The power generation apparatus 100 is provided in a notebook personal computer, a mobile phone, a PDA (Personal Digital Assistant), an electronic notebook, a wristwatch, a digital still camera, a digital video camera, a game device, a game machine, and other electronic devices. Yes, it is used as a power source for operating the electronic device main body.

発電装置100は、燃料容器101と、反応装置10と、発電セル102と、を備える。燃料容器101は、メタノール、エタノール、ブタン等の燃料と水を別々に又は混合した状態で貯留し、図示しないマイクロポンプにより燃料及び水の混合液を反応装置10に供給する。なお、以下の説明では燃料としてメタノールを使用する場合について説明する。   The power generation device 100 includes a fuel container 101, a reaction device 10, and a power generation cell 102. The fuel container 101 stores fuel such as methanol, ethanol, or butane and water separately or in a mixed state, and supplies a mixed liquid of fuel and water to the reactor 10 by a micro pump (not shown). In the following description, the case where methanol is used as the fuel will be described.

反応装置10は、高温反応部11と、低温反応部12とを有し、高温反応部11は改質器14、触媒燃焼器16及び図示しない高温ヒータを有し、低温反応部12は気化器13、CO除去器15及び図示しない低温ヒータを有する。   The reaction apparatus 10 includes a high temperature reaction unit 11 and a low temperature reaction unit 12, the high temperature reaction unit 11 includes a reformer 14, a catalytic combustor 16, and a high temperature heater (not shown), and the low temperature reaction unit 12 is a vaporizer. 13. A CO remover 15 and a low-temperature heater (not shown) are included.

気化器13は、燃料容器101から供給された燃料と水を気化させる。改質器14は、気化器13から供給された燃料と水の混合気を化学反応式(1)、(2)のように反応させ、主生成物である水素ガス、二酸化炭素ガス及び副生成物である一酸化炭素の混合気体を生成する。CO除去器15は、一酸化炭素を化学反応式(3)のように酸化させることで混合気体から除去する。以下、この一酸化炭素を除去した混合気体を改質ガスという。改質ガスは発電セル102の燃料極側に供給される。   The vaporizer 13 vaporizes the fuel and water supplied from the fuel container 101. The reformer 14 causes the fuel / water mixture supplied from the vaporizer 13 to react as shown in the chemical reaction formulas (1) and (2) to generate hydrogen gas, carbon dioxide gas, and by-products as main products. This produces a mixed gas of carbon monoxide. The CO remover 15 removes carbon monoxide from the mixed gas by oxidizing it as shown in the chemical reaction formula (3). Hereinafter, the mixed gas from which the carbon monoxide has been removed is referred to as a reformed gas. The reformed gas is supplied to the fuel electrode side of the power generation cell 102.

CH3OH+H2O→3H2+CO2 …(1)
2CH3OH+H2O→5H2+CO+CO2 …(2)
2CO+O2→2CO2 …(3)
CH 3 OH + H 2 O → 3H 2 + CO 2 (1)
2CH 3 OH + H 2 O → 5H 2 + CO + CO 2 (2)
2CO + O 2 → 2CO 2 (3)

発電セル102の燃料極側にはCO除去器15から改質ガスが供給される。改質ガスのうちの水素ガスは電気化学反応式(4)に示すように、燃料極に設けられた触媒により水素イオンと電子とに分離される。水素イオンは電解質膜を通過して酸素極側へ移動し、電子は外部回路を経て酸素極に移動する。酸素極側では、電気化学反応式(5)に示すように、電解質膜を通過した水素イオンと、外部回路を経て酸素極から供給される電子と、外気から供給される酸素ガスとの化学反応により水を生成する。この燃料極と酸素極の電極電位の差から電気エネルギーを取り出すことができる。   The reformed gas is supplied from the CO remover 15 to the fuel electrode side of the power generation cell 102. Hydrogen gas in the reformed gas is separated into hydrogen ions and electrons by a catalyst provided in the fuel electrode as shown in the electrochemical reaction formula (4). Hydrogen ions pass through the electrolyte membrane and move to the oxygen electrode side, and electrons move to the oxygen electrode through an external circuit. On the oxygen electrode side, as shown in the electrochemical reaction formula (5), a chemical reaction between hydrogen ions that have passed through the electrolyte membrane, electrons supplied from the oxygen electrode through an external circuit, and oxygen gas supplied from the outside air To produce water. Electrical energy can be extracted from the difference in electrode potential between the fuel electrode and the oxygen electrode.

2→2H++2e- …(4)
2H++2e-+1/2O2→H2O …(5)
H 2 → 2H + + 2e (4)
2H + + 2e + 1 / 2O 2 → H 2 O (5)

上記電気化学反応せずに残った水素ガス(以下、オフガスという)は、触媒燃焼器16に供給される。   The hydrogen gas remaining after the electrochemical reaction (hereinafter referred to as off-gas) is supplied to the catalytic combustor 16.

触媒燃焼器16は、燃料容器101から供給された燃料と水、または、オフガスに、酸素を混在させて燃焼し高温反応部11を250℃以上、例えば約250〜400℃に加熱する。高温ヒータは起動時に触媒燃焼器16の代わりに高温反応部11を加熱し、低温ヒータは起動時に低温反応部12を約110〜190℃に加熱する。   The catalytic combustor 16 burns with oxygen mixed with fuel and water or off-gas supplied from the fuel container 101, and heats the high temperature reaction section 11 to 250 ° C. or higher, for example, about 250 to 400 ° C. The high-temperature heater heats the high-temperature reaction unit 11 instead of the catalytic combustor 16 at startup, and the low-temperature heater heats the low-temperature reaction unit 12 to about 110 to 190 ° C. at startup.

高温反応部11及び低温反応部12は後述する断熱容器30に収納される。高温反応部11と低温反応部12との間には反応物や生成物の流路となる配管21が設けられている(図2参照)。また、低温反応部12には断熱容器30外から反応物を流入させたり断熱容器30外へ生成物を流出させたりするための配管22が設けられている(図2参照)。   The high temperature reaction part 11 and the low temperature reaction part 12 are accommodated in the heat insulation container 30 mentioned later. Between the high temperature reaction part 11 and the low temperature reaction part 12, the piping 21 used as the flow path of a reaction material or a product is provided (refer FIG. 2). Further, the low temperature reaction section 12 is provided with a pipe 22 for allowing reactants to flow in from outside the heat insulating container 30 and out products from the heat insulating container 30 (see FIG. 2).

高温反応部11、低温反応部12や配管21,22は、例えばステンレス(SUS304)やコバール合金等の金属板を貼り合わせて形成してもよいし、あるいはガラス基板等を貼り合わせて形成してもよい。   The high temperature reaction unit 11, the low temperature reaction unit 12, and the pipes 21 and 22 may be formed by bonding metal plates such as stainless steel (SUS304) or Kovar alloy, or may be formed by bonding glass substrates or the like. Also good.

次に、反応装置10を収納する断熱容器30について説明する。図2は反応装置10を収納する断熱容器30の断面図である。断熱容器30は直方体形状をしており、内部に高温反応部11及び低温反応部12が収納されている。高温反応部11と低温反応部12とは配管21で接続されており、高温反応部11及び低温反応部12は断熱容器30を貫通する配管22により固定されている。   Next, the heat insulation container 30 which accommodates the reaction apparatus 10 is demonstrated. FIG. 2 is a cross-sectional view of the heat insulating container 30 that houses the reaction apparatus 10. The heat insulation container 30 has a rectangular parallelepiped shape, and the high temperature reaction part 11 and the low temperature reaction part 12 are accommodated therein. The high temperature reaction part 11 and the low temperature reaction part 12 are connected by a pipe 21, and the high temperature reaction part 11 and the low temperature reaction part 12 are fixed by a pipe 22 that penetrates the heat insulating container 30.

断熱容器30は、ステンレス(SUS304)やコバール合金等の金属板や、ガラス基板等を貼り合わせて形成することができる。断熱容器30の内部空間は気体分子による熱伝導や対流を防ぐため、低圧(0.03Pa以下)に維持されている。
また、断熱容器30の内壁面には、反応装置10からの輻射による熱損失を抑制するために、赤外線を反射する反射膜31が形成されている。反射膜31には、例えば金(Au)等の赤外線反射率が高い金属を用いることができる。
これらにより、反応装置10から断熱容器30外部への熱損失を抑えることができる。
The heat insulating container 30 can be formed by bonding a metal plate such as stainless steel (SUS304) or Kovar alloy, a glass substrate, or the like. The internal space of the heat insulating container 30 is maintained at a low pressure (0.03 Pa or less) in order to prevent heat conduction and convection due to gas molecules.
In addition, a reflective film 31 that reflects infrared rays is formed on the inner wall surface of the heat insulating container 30 in order to suppress heat loss due to radiation from the reaction apparatus 10. For the reflective film 31, for example, a metal having a high infrared reflectance such as gold (Au) can be used.
By these, the heat loss from the reaction apparatus 10 to the heat insulation container 30 exterior can be suppressed.

低温反応部12には配管21を介して高温反応部11から熱量が伝導するので、配管22を介して断熱容器30に伝導する熱量以上の熱量が伝導すると、温度が適温以上に上昇するおそれがある。そこで、本実施形態の断熱容器30の内壁面には、低温反応部に対応する位置に、放熱促進部40を設けている。   Since the heat quantity is conducted from the high temperature reaction part 11 to the low temperature reaction part 12 through the pipe 21, if the heat quantity more than the heat quantity conducted to the heat insulating container 30 is conducted through the pipe 22, the temperature may rise to an appropriate temperature or more. is there. Therefore, the heat radiation promoting part 40 is provided on the inner wall surface of the heat insulating container 30 of the present embodiment at a position corresponding to the low temperature reaction part.

放熱促進部40は、断熱容器30内壁面の他の領域と比較して、赤外線の吸収率が高い領域であり、低温反応部12から輻射される赤外線を吸収し熱として断熱容器30に熱伝導させる。これにより、低温反応部12からの輻射により逃げる熱(熱リーク)を増大させ、低温反応部12の温度上昇を低減することができる。   The heat radiation promoting unit 40 is a region having a higher infrared absorption rate than other regions of the inner wall surface of the heat insulating container 30, absorbs infrared radiation radiated from the low temperature reaction unit 12, and conducts heat to the heat insulating container 30 as heat. Let Thereby, the heat (heat leak) which escapes by radiation from the low temperature reaction part 12 can be increased, and the temperature rise of the low temperature reaction part 12 can be reduced.

放熱促進部40は、例えば図2に示すように、低温反応部12の配管21,22が設けられていない外壁面と対向する反射膜31の内側に、赤外線を吸収する吸収膜32を設けることで形成することができる。   For example, as shown in FIG. 2, the heat radiation promoting unit 40 is provided with an absorption film 32 that absorbs infrared rays inside the reflective film 31 facing the outer wall surface where the pipes 21 and 22 of the low-temperature reaction unit 12 are not provided. Can be formed.

以下、吸収膜32として用いる材料や膜厚等について検討する。   Hereinafter, the material used for the absorption film 32, the film thickness, and the like will be examined.

〔1〕反射率の検討
まず、放熱促進部40の反射率について検討する。
図3は赤外線に対する放熱促進部40の反射率を10%〜90%の間で10%ずつ変化させた場合の、放熱促進部40の面積と、熱リーク(計算値)との関係を示すグラフである(20%〜90%時のグラフは10%時の値を元に計算)。ここで、吸収膜32の吸収係数を充分大きいと仮定し、吸収膜32を透過し、下地または反射膜31で反射して再び吸収膜32を透過して断熱容器30内に戻る赤外線はないものとした。
[1] Examination of reflectivity First, the reflectivity of the heat dissipation promoting unit 40 is examined.
FIG. 3 is a graph showing the relationship between the area of the heat radiation promoting part 40 and the heat leak (calculated value) when the reflectance of the heat radiation promoting part 40 for infrared rays is changed by 10% between 10% and 90%. (The graph at 20% to 90% is calculated based on the value at 10%). Here, it is assumed that the absorption coefficient of the absorption film 32 is sufficiently large, and there is no infrared ray that passes through the absorption film 32, is reflected by the base or reflection film 31, passes through the absorption film 32 again, and returns into the heat insulating container 30. It was.

なお、低温反応部12の大きさを1.0cm×2.5cm×0.3cmとし、低温反応部12と断熱容器30との距離を0.5cmとした。また、配管21からの熱流入と配管22からの熱流出をともに0.90Wとし、低温反応部12の初期温度を120℃とした。   In addition, the size of the low temperature reaction part 12 was 1.0 cm × 2.5 cm × 0.3 cm, and the distance between the low temperature reaction part 12 and the heat insulating container 30 was 0.5 cm. Further, the heat inflow from the pipe 21 and the heat outflow from the pipe 22 were both 0.90 W, and the initial temperature of the low temperature reaction unit 12 was 120 ° C.

例えば、放熱促進部40の反射率が10%の場合には、放熱促進部40の面積が4.0cm2の場合、熱リークが約0.35Wであり、低温反応部12の温度が約40℃下がり、約80℃になるということがわかる。 For example, when the reflectance of the heat dissipation promoting part 40 is 10%, when the area of the heat dissipation promoting part 40 is 4.0 cm 2 , the heat leak is about 0.35 W, and the temperature of the low temperature reaction part 12 is about 40 It can be seen that the temperature drops to about 80 ° C.

〔2〕吸収係数及び膜厚の検討
次に、放熱促進部40として、断熱容器30の下地または反射膜31に吸収膜32を設ける場合の、吸収膜32の吸収係数及び膜厚について検討する。
[2] Examination of Absorption Coefficient and Film Thickness Next, the absorption coefficient and film thickness of the absorption film 32 when the absorption film 32 is provided on the base of the heat insulating container 30 or the reflection film 31 as the heat radiation promoting part 40 will be examined.

ここで、図4に示すように、吸収膜32に入射する赤外線の強度をI、吸収膜32の表面で反射する赤外線の強度をR、吸収膜32の吸収係数をα、吸収膜32の表面からの距離(深さ)をtとすると、距離(深さ)tの位置での吸収膜32を透過する赤外線の強度I(t)は、以下の式で表される。
I(t)=(I−R)exp(−αt)
Here, as shown in FIG. 4, the intensity of infrared rays incident on the absorption film 32 is I, the intensity of infrared rays reflected on the surface of the absorption film 32 is R, the absorption coefficient of the absorption film 32 is α, and the surface of the absorption film 32 When the distance (depth) from t is t, the intensity I (t) of the infrared ray transmitted through the absorption film 32 at the position of the distance (depth) t is expressed by the following equation.
I (t) = (IR) exp (−αt)

図5にαを10000/cm,30000/cm,60000/cm,100000/cmとしたときの、tとI(t)/(I−R)(=exp(−αt))との関係を示す。
α=100000/cm、t=約230nmの場合、吸収膜32を透過する赤外線の強度は、10%未満となっている。すなわち、αt>約2.3であれば、吸収膜32を透過する赤外線の強度は10%未満となり、さらに下地または反射膜31により反射して再び吸収膜32を透過して断熱容器30内に戻る赤外線は1%未満となる。したがって、膜圧TがαT>約2.3となる膜は吸収膜32として適している。
FIG. 5 shows the relationship between t and I (t) / (IR) (= exp (−αt)) when α is set to 10,000 / cm, 30000 / cm, 60000 / cm, and 100,000 / cm. .
In the case of α = 100000 / cm and t = about 230 nm, the intensity of the infrared light transmitted through the absorption film 32 is less than 10%. That is, if αt> about 2.3, the intensity of infrared light transmitted through the absorption film 32 is less than 10%, and further reflected by the base or the reflection film 31 and transmitted through the absorption film 32 again into the heat insulating container 30. The returning infrared light is less than 1%. Therefore, a film having a film pressure T of αT> about 2.3 is suitable as the absorption film 32.

一方、α=100000/cm、t=25nmの場合、すなわちαt=0.25の場合、吸収膜32を透過する赤外線の強度は、約78%となり、さらに下地または反射膜31により反射して再び吸収膜32を透過して断熱容器30内に戻る赤外線は約61%となるため、吸収膜32として適していない。   On the other hand, when α = 100000 / cm and t = 25 nm, that is, when αt = 0.25, the intensity of infrared light transmitted through the absorption film 32 is about 78%, and is reflected by the base or the reflection film 31 again. Infrared rays that pass through the absorption film 32 and return to the inside of the heat insulating container 30 are about 61%, and thus are not suitable as the absorption film 32.

〔3〕輻射波長の検討
次に、反応装置10から輻射される波長について検討する。図6は、300K(27℃)、600K(327℃)、900K(627℃)における黒体輻射の波長と輻射密度の関係を示すグラフである。600Kでは波長2μm以上(0.6eV以下)で輻射密度が高くなり、900Kでは波長1.24μm以上(1eV以下)で輻射密度が高くなることがわかる。したがって、放熱促進部40は、波長1.24μm以上の赤外線の反射率が低いことが求められる。
[3] Examination of radiation wavelength Next, the wavelength radiated from the reaction apparatus 10 is examined. FIG. 6 is a graph showing the relationship between the wavelength of black body radiation and the radiation density at 300 K (27 ° C.), 600 K (327 ° C.), and 900 K (627 ° C.). It can be seen that the radiation density increases at a wavelength of 2 μm or more (0.6 eV or less) at 600 K, and the radiation density increases at a wavelength of 1.24 μm or more (1 eV or less) at 900 K. Therefore, the heat dissipation promoting unit 40 is required to have a low reflectance of infrared rays having a wavelength of 1.24 μm or more.

〔4〕金属材料、半金属材料の検討
金属材料、半金属材料は一般に反射率が高いが、ほとんどの波長で吸収係数が105/cm以上であり、膜厚を230nmとすることで吸収膜32の候補とすることができる。そこで、金属材料、半金属材料の反射率について検討する。
[4] Examination of metal materials and metalloid materials Metal materials and metalloid materials generally have high reflectivity, but the absorption coefficient is 10 5 / cm or more at most wavelengths and the film thickness is 230 nm. There can be 32 candidates. Therefore, the reflectance of metallic materials and semi-metallic materials is examined.

図7にAu,Al,Ag,Cu,Rhの波長に対する反射率を示す。この中では、1.24μm以上の波長領域でRhの反射率が比較的低く、吸収膜32の材料の候補とすることができる。
この他に1.24μmの波長で反射率が低い金属として、Fe(反射率75%),Co(反射率78%),Pt(反射率78%),Cr(反射率63%)などが吸収膜32の材料とすることができる。
FIG. 7 shows the reflectance with respect to the wavelengths of Au, Al, Ag, Cu, and Rh. Among them, the reflectance of Rh is relatively low in a wavelength region of 1.24 μm or more, and can be a candidate for the material of the absorption film 32.
Besides, Fe (reflectance 75%), Co (reflectance 78%), Pt (reflectance 78%), Cr (reflectivity 63%), etc. are absorbed as metals having a low reflectance at a wavelength of 1.24 μm. The material of the film 32 can be used.

また、半金属で低反射率の材料としては、グラファイト(層状炭素)がある。グラファイトの反射率は、波長1.24μmで42%、2μmで47%と小さく、吸収膜32の材料とすることができる。また、活性炭と呼ばれる炭素材料は、結晶性が悪く、層状構造も乱れているが、これも吸収膜32の材料の候補となる可能性がある。   Further, graphite (layered carbon) is a metalloid and low reflectivity material. The reflectance of graphite is as small as 42% at a wavelength of 1.24 μm and 47% at 2 μm, and can be used as the material of the absorption film 32. In addition, a carbon material called activated carbon has poor crystallinity and a disordered layered structure, which may also be a candidate material for the absorption film 32.

〔5〕非金属材料の検討
半導体の多くは、光の波長1.24μm以上の波長領域で、反射率が10〜20%あるいはそれ以下であり、吸収膜32として適した材料と思えるが、ほとんどの場合、吸収係数が1/cm未満と極端に小さい。
[5] Examination of non-metallic materials Many semiconductors have a reflectance of 10 to 20% or less in the wavelength region of light wavelength of 1.24 μm or more, which seems to be a suitable material for the absorption film 32, but almost all In this case, the absorption coefficient is extremely small as less than 1 / cm.

しかしながら、ダングリングボンドを持つアモルファス半導体は吸収係数が高く、吸収膜32の材料として用いることができると考えられる。例えば、数多くのダングリングボンドを持つアモルファスシリコンでは、吸収係数は1000/cm以上となり、吸収膜32の材料とすることができる。   However, it is considered that an amorphous semiconductor having dangling bonds has a high absorption coefficient and can be used as a material for the absorption film 32. For example, amorphous silicon having many dangling bonds has an absorption coefficient of 1000 / cm or more, and can be used as the material of the absorption film 32.

また、吸収膜32として、よりふさわしいアモルファス半導体材料に、Ta−Si−O−N系の膜がある。図8に抵抗率が1.0mΩ・cm,5.5mΩ・cmのTa−Si−O−N系膜について、0.5〜3.5eV(波長約2.48μm〜350nm)における吸収係数(cm-1)を測定した結果を示す。抵抗率が1.0mΩ・cmの膜は、この測定範囲内で吸収係数が100000/cm以上となっており、吸収膜32の材料とすることができる。 As the absorption film 32, a more suitable amorphous semiconductor material includes a Ta—Si—O—N film. FIG. 8 shows an absorption coefficient (cm) at 0.5 to 3.5 eV (wavelength of about 2.48 μm to 350 nm) for Ta—Si—O—N-based films having resistivity of 1.0 mΩ · cm and 5.5 mΩ · cm. -1 ) shows the measurement results. A film having a resistivity of 1.0 mΩ · cm has an absorption coefficient of 100000 / cm or more within this measurement range, and can be used as a material for the absorption film 32.

さらに、本出願人は、モル比が0.6<Si/Ta<1.0,0.15<N/O<4.1の範囲の組成のTa−Si−O−N系膜について、抵抗率が2.5mΩ・cm以下では、吸収係数が100000/cm以上となることを見出した。したがって、上記材料も吸収膜32の材料とすることができる。   Further, the applicant of the present invention applied resistance to a Ta—Si—O—N-based film having a composition in a molar ratio range of 0.6 <Si / Ta <1.0, 0.15 <N / O <4.1. It was found that when the rate is 2.5 mΩ · cm or less, the absorption coefficient is 100000 / cm or more. Therefore, the above material can also be used as the material of the absorption film 32.

〔変形例1〕
上記実施形態においては、反射膜31の上に吸収膜32を設けることで放熱促進部40を設けたが、図9に示すように、断熱容器30の内壁面の一部に反射膜31を設けないことで、断熱容器の下地が露出する開口部分を形成し、開口部分を放熱促進部41としてもよい。(断熱容器30がガラス基板の場合、赤外線は大部分透過するため、開口部分に対応する断熱容器30の反射率は、開口部分でない断熱容器30と反射膜31が重なる部分の反射率より相対的に低いことになる。)
[Modification 1]
In the above embodiment, the heat radiation promoting part 40 is provided by providing the absorption film 32 on the reflective film 31. However, as shown in FIG. 9, the reflective film 31 is provided on a part of the inner wall surface of the heat insulating container 30. It is good also as forming the opening part which the foundation | substrate of a heat insulation container exposes, and making an opening part into the heat radiation promotion part 41 by not having. (When the heat insulation container 30 is a glass substrate, most of the infrared rays are transmitted. Therefore, the reflectance of the heat insulation container 30 corresponding to the opening is relatively higher than the reflectance of the portion where the heat insulation container 30 and the reflection film 31 that are not the opening overlap. Will be low.)

〔変形例2〕
あるいは、図10に示すように、断熱容器30の内壁面の全面に吸収膜32を設けるとともに、吸収膜32の上に一部を除いて反射膜31を設け、この吸収膜32が露出する開口部分を放熱促進部42としてもよい。
[Modification 2]
Alternatively, as shown in FIG. 10, an absorption film 32 is provided on the entire inner wall surface of the heat insulating container 30, and a reflection film 31 is provided on the absorption film 32 except for a part thereof, and an opening through which the absorption film 32 is exposed. It is good also considering the part as the heat dissipation promotion part 42.

〔変形例3〕
また、図11に示すように、断熱容器30の内壁面の一部に吸収膜32を設けるとともに、断熱容器の内壁面の他の部分に反射膜31を設けることで、吸収膜32が露出する開口部分を放熱促進部43としてもよい。この場合、吸収膜32の外周部と反射膜31とが一部重なってもよい。
[Modification 3]
Moreover, as shown in FIG. 11, while providing the absorption film 32 in a part of inner wall surface of the heat insulation container 30, and providing the reflection film 31 in the other part of the inner wall surface of the heat insulation container, the absorption film 32 is exposed. The opening portion may be used as the heat radiation promoting portion 43. In this case, the outer peripheral portion of the absorption film 32 and the reflection film 31 may partially overlap.

〔変形例4〕
また、反応装置10の反応温度が600℃を超えると、輻射密度の増加が顕著となる(図3参照)。したがって、反射膜31が1重では充分でなくなり、2重にする必要がある。すなわち、図12に示すように、外側の反射膜31の内側に空隙33をあけて第2の反射膜34を設ける必要がある。空隙33は例えば断熱容器30と同じ材料からなる支持部材50により形成される。空隙33をあけることで、第2の反射膜34から第1の反射膜31への熱伝導を防ぎ、断熱効率を高めることができる。
[Modification 4]
Moreover, when the reaction temperature of the reaction apparatus 10 exceeds 600 degreeC, the increase in radiation density will become remarkable (refer FIG. 3). Therefore, a single reflection film 31 is not sufficient and needs to be double. That is, as shown in FIG. 12, it is necessary to provide the second reflective film 34 with a gap 33 inside the external reflective film 31. The gap 33 is formed by a support member 50 made of the same material as the heat insulating container 30, for example. By opening the gap 33, heat conduction from the second reflective film 34 to the first reflective film 31 can be prevented, and the heat insulation efficiency can be increased.

この場合、図13に示すように、第2の反射膜34の低温反応部12に対応する位置に放熱窓35を設けてもよい。放熱窓35があることで、低温反応部12による輻射は外側の反射膜31のみにより防止されるので、2重の反射膜31,34により輻射が防止される高温反応部11と比較して低温反応部12の放熱が促進される。   In this case, as shown in FIG. 13, a heat radiating window 35 may be provided at a position corresponding to the low temperature reaction portion 12 of the second reflective film 34. Since the radiation window 35 is provided, radiation from the low temperature reaction unit 12 is prevented only by the outer reflection film 31, so that the temperature is lower than that of the high temperature reaction unit 11 in which radiation is prevented by the double reflection films 31 and 34. Heat dissipation of the reaction unit 12 is promoted.

〔変形例5〕
上記実施形態においては、低温反応部12の配管21,22が設けられていない外壁面と対向する断熱容器30の内壁面に、放熱促進部40〜43が設けられていたが、放熱促進部40〜43の面積を増減させることで、低温反応部12からの輻射による放熱量を調整してもよい。
[Modification 5]
In the said embodiment, although the heat radiation promotion part 40-43 was provided in the inner wall surface of the heat insulation container 30 facing the outer wall surface in which the piping 21 and 22 of the low temperature reaction part 12 is not provided, the heat radiation promotion part 40 The amount of heat released by radiation from the low temperature reaction unit 12 may be adjusted by increasing or decreasing the area of ~ 43.

ここで、放熱促進部40〜43の低温反応部12の配管21,22が設けられていない外壁面と対向する形状を当該低温反応部12と同じような面積にできれば(図14(a))、低温反応部12の温度が均一になるが、形状や大きさが異なる場合(例えば図14(b))、低温反応部12の温度が不均一となるおそれがある。ここで、図14(a)に実線で示した範囲、図14(b)〜(d)、図15に2点鎖線で示した範囲が、低温反応部12の外壁面と対向しかつ合同な形状である。   Here, if the shape facing the outer wall surface where the pipes 21 and 22 of the low temperature reaction part 12 of the heat radiation promotion parts 40 to 43 are not provided can be made the same area as the low temperature reaction part 12 (FIG. 14A). Although the temperature of the low-temperature reaction part 12 becomes uniform, when the shape and size are different (for example, FIG. 14B), the temperature of the low-temperature reaction part 12 may be non-uniform. Here, the range indicated by the solid line in FIG. 14A, the range indicated by the two-dot chain line in FIGS. 14B to 14D, and 15 are opposed to and congruent to the outer wall surface of the low-temperature reaction section 12. Shape.

そこで、放熱促進部40〜43の面積を減らす場合には、当該範囲に放熱促進部40〜43を均一に分散して設けることが好ましい。例えば、放熱促進部40〜43をストライプ形状に設けたり(図14(c))、市松模様形状に設けたり(図14(d))してもよい。   Therefore, when reducing the area of the heat radiation promoting parts 40 to 43, it is preferable to disperse the heat radiation promoting parts 40 to 43 uniformly in the range. For example, the heat radiation promoting portions 40 to 43 may be provided in a stripe shape (FIG. 14C) or in a checkered pattern shape (FIG. 14D).

また、低温反応部12の温度は高温反応部11から熱を伝導させる配管21が設けられる側ほど高く、断熱容器30に熱を伝導させる配管22が設けられる側ほど低くなりやすい。そこで、例えば図15に示すように、配管21が設けられる側(図15の左側)ほど放熱促進部40〜43の分布が大きく、配管22が設けられる側(図15の右側)ほど放熱促進部40〜43の分布が小さくなるように設けてもよい。このように放熱促進部40〜43を設けることで、配管21が設けられる高温側ほど放熱量が多く、配管22が設けられる低温側ほど放熱量が少なくなるので、温度勾配を低減することができる。   In addition, the temperature of the low temperature reaction unit 12 is higher on the side where the pipe 21 for conducting heat from the high temperature reaction unit 11 is provided, and is likely to be lower on the side where the pipe 22 for conducting heat to the heat insulating container 30 is provided. Therefore, for example, as shown in FIG. 15, the distribution of the heat radiation promoting parts 40 to 43 is larger on the side where the pipe 21 is provided (left side in FIG. 15), and the heat radiation promoting part is located on the side where the pipe 22 is provided (right side in FIG. 15). You may provide so that distribution of 40-43 may become small. By providing the heat radiation promoting portions 40 to 43 in this way, the heat radiation amount is larger on the high temperature side where the pipe 21 is provided, and the heat radiation amount is smaller on the low temperature side where the pipe 22 is provided, so that the temperature gradient can be reduced. .

10 反応装置
11 高温反応部
12 低温反応部
21,22 配管
30 断熱容器
31,34 反射膜
32 吸収膜
35,36 放熱窓
40〜43 放熱促進部
DESCRIPTION OF SYMBOLS 10 Reaction apparatus 11 High temperature reaction part 12 Low temperature reaction part 21,22 Piping 30 Heat insulation container 31,34 Reflection film 32 Absorption film 35,36 Heat radiation window 40-43 Heat radiation promotion part

Claims (15)

数の反応部からなる反応装置を収容する断熱容器において、
前記断熱容器の内壁面には、低温の低温反応部に対応する位置に、前記低温反応部より高温の高温反応部に対応する位置よりも赤外線反射率の低い放熱促進部が設けられ、
前記放熱促進部は、前記低温反応部に対応する位置に、分散して設けられていることを特徴とする断熱容器。
In the heat insulating container housing the reactor consisting of the reaction section of multiple,
The inner wall surface of the heat insulating container is provided with a heat radiation promoting part having a lower infrared reflectance than a position corresponding to a high temperature reaction part having a higher temperature than the low temperature reaction part at a position corresponding to a low temperature low temperature reaction part ,
The heat-dissipation promoting part is provided in a dispersed manner at positions corresponding to the low-temperature reaction part.
前記放熱促進部は、
ストライプ状に分散して設けられていることを特徴とする請求項1に記載の断熱容器。
The heat dissipation promoting part is
The heat insulating container according to claim 1, wherein the heat insulating container is distributed in a stripe shape.
前記放熱促進部は、
市松状に分散して設けられていることを特徴とする請求項1に記載の断熱容器。
The heat dissipation promoting part is
The heat insulating container according to claim 1, wherein the heat insulating container is distributed in a checkered pattern.
記放熱促進部は、
記低温反応部に対応する位置にのみ設けられていることを特徴とする請求項1〜3のいずれか一項に記載の断熱容器。
Before Symbol heat dissipation promoting portion,
Insulated container according to any one of claims 1 to 3, characterized in that is provided only at a position corresponding to the previous SL low temperature reaction unit.
記放熱促進部は、
記低温反応部において、前記高温反応部に近い側の面積が、遠い側の面積より広くなるような分布で分散して設けられていることを特徴とする請求項に記載の断熱容器。
Before Symbol heat dissipation promoting portion,
Prior SL low temperature reaction unit, the heat insulating container according to claim 4, wherein the lateral area close to the high temperature reaction unit, characterized in that provided distributed at more widely made as distribution area farther .
前記断熱容器の内壁面には、赤外線反射膜が設けられていて、
前記放熱促進部は、前記赤外線反射膜に開口を分散して設けることにより、前記開口部に対応する領域の放熱を促進することを特徴とする請求項1〜5のいずれか一項に記載の断熱容器。
An infrared reflecting film is provided on the inner wall surface of the heat insulating container,
The said heat dissipation promotion part accelerates | stimulates the heat dissipation of the area | region corresponding to the said opening part by disperse | distributing an opening in the said infrared reflective film, The Claim 1 characterized by the above-mentioned. Insulated container.
前記放熱促進部は、前記断熱容器の内壁面に、赤外線吸収膜を分散して設けることにより、前記開赤外線吸収膜の設けられた領域の放熱を促進することを特徴とする請求項1〜5のいずれか一項に記載の断熱容器。   The heat dissipation promoting part promotes heat dissipation in a region where the open infrared absorbing film is provided by dispersing and providing an infrared absorbing film on the inner wall surface of the heat insulating container. The heat insulation container as described in any one of. 前記断熱容器の内壁面には、赤外線吸収膜が設けられるとともに、前記赤外線吸収膜の内側の所定の位置に赤外線反射膜を分散して設けることにより、前記放熱促進部は、前記赤外線反射膜が設けられていない領域の放熱を促進することを特徴とする請求項1〜5のいずれか一項に記載の断熱容器。   An infrared absorption film is provided on the inner wall surface of the heat insulating container, and the infrared reflection film is dispersed and provided at a predetermined position inside the infrared absorption film. Heat insulation of the area | region which is not provided is accelerated | stimulated, The heat insulation container as described in any one of Claims 1-5 characterized by the above-mentioned. 前記赤外線吸収膜の吸収係数と膜厚の積は2.3以上であることを特徴とする請求項7または8に記載の断熱容器。   The heat insulation container according to claim 7 or 8, wherein the product of the absorption coefficient and the film thickness of the infrared absorption film is 2.3 or more. 前記赤外線吸収膜はC,Fe,Co,Pt,Crのいずれかを含むことを特徴とする請求項7または8に記載の断熱容器。   The heat insulation container according to claim 7 or 8, wherein the infrared absorption film contains any one of C, Fe, Co, Pt, and Cr. 前記赤外線吸収膜はTa−Si−O−N系のアモルファス半導体で、吸収係数は100000/cm以上であることを特徴とする請求項7または8に記載の断熱容器。   The heat insulating container according to claim 7 or 8, wherein the infrared absorbing film is a Ta-Si-ON-based amorphous semiconductor and has an absorption coefficient of 100,000 / cm or more. Ta−Si−O−N系のアモルファス半導体のモル比が0.6<Si/Ta<1.0かつ0.15<N/O<4.1の範囲であることを特徴とする請求項11に記載の断熱容器。   12. The molar ratio of the Ta—Si—O—N amorphous semiconductor is in the range of 0.6 <Si / Ta <1.0 and 0.15 <N / O <4.1. Insulated container as described in 2. 前記断熱容器の内壁面には、第1反射膜が設けられ、前記第1反射膜の内側の所定の位置に第2反射膜が設けられ、前記第2反射膜が設けられていない領域を分散して設けることにより、前記放熱促進部は、前記第2反射膜が設けられていない領域の放熱を促進することを特徴とする請求項1〜5のいずれか一項に記載の断熱容器。   A first reflective film is provided on the inner wall surface of the heat insulating container, a second reflective film is provided at a predetermined position inside the first reflective film, and a region where the second reflective film is not provided is dispersed. By providing, the said heat radiation acceleration | stimulation part accelerates | stimulates the heat radiation of the area | region where the said 2nd reflective film is not provided, The heat insulation container as described in any one of Claims 1-5 characterized by the above-mentioned. 前記第1反射膜と前記第2反射膜の間には、空隙が設けられていることを特徴とする請求項13に記載の断熱容器。   The heat insulating container according to claim 13, wherein a gap is provided between the first reflective film and the second reflective film. 前記反応装置は、水素を含む炭素化合物と水を混合した混合物から水素を発生させる改質器を含むことを特徴とする請求項1〜14のいずれか一項に記載の断熱容器。   The heat insulation container according to any one of claims 1 to 14, wherein the reactor includes a reformer that generates hydrogen from a mixture of a carbon compound containing hydrogen and water.
JP2010269906A 2010-12-03 2010-12-03 Insulated container Expired - Fee Related JP5263275B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010269906A JP5263275B2 (en) 2010-12-03 2010-12-03 Insulated container

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010269906A JP5263275B2 (en) 2010-12-03 2010-12-03 Insulated container

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005378505A Division JP4687455B2 (en) 2005-12-28 2005-12-28 Insulated container

Publications (2)

Publication Number Publication Date
JP2011151004A JP2011151004A (en) 2011-08-04
JP5263275B2 true JP5263275B2 (en) 2013-08-14

Family

ID=44537795

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010269906A Expired - Fee Related JP5263275B2 (en) 2010-12-03 2010-12-03 Insulated container

Country Status (1)

Country Link
JP (1) JP5263275B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3891131B2 (en) * 2002-03-29 2007-03-14 カシオ計算機株式会社 Chemical reaction apparatus and power supply system
JP2005095829A (en) * 2003-09-26 2005-04-14 Casio Comput Co Ltd Catalytic reactor and producing method therefor

Also Published As

Publication number Publication date
JP2011151004A (en) 2011-08-04

Similar Documents

Publication Publication Date Title
JP4687455B2 (en) Insulated container
JP3941632B2 (en) Reformer, reformer manufacturing method and power generation system
JP4155314B2 (en) REACTOR DEVICE, POWER GENERATION DEVICE USING THE REACTION DEVICE, AND ELECTRONIC DEVICE
KR100948995B1 (en) Reactor
US8177869B2 (en) Reaction device, heat-insulating container, fuel cell device, and electronic apparatus
JP5023716B2 (en) Evaporable getter material, getter pump, decompression structure, reactor, power generator and electronic equipment
US7662349B2 (en) Reactor
JP2007200867A (en) Reaction device, power generation device, and electronic equipment
US7867297B2 (en) Reactor, fuel cell system and electronic equipment
JP4636028B2 (en) FUEL CELL DEVICE AND ELECTRONIC DEVICE
JP5263275B2 (en) Insulated container
JP2004283749A (en) Reaction apparatus
JP4983170B2 (en) Reactor and electronic equipment
KR100879599B1 (en) Reaction device, heat-insulating container, fuel cell device, and electronic apparatus
JP4258554B2 (en) Sealing method for reformer
JP2008238055A (en) Reactor
JP2008171745A (en) Radiation prevention film, reactor, fuel cell device, electronic equipment, heat reflection film, and heat insulated container
Jung Experimental and Numerical Investigation of Micro Catalytic Reactor for Autothermal Reforming Using Methanol and Hydrogen Peroxide with Built-in Chrome Silicide Thermocouple
JP5233410B2 (en) Reaction apparatus and electronic equipment
JP2007070181A (en) Reaction device
JP4586700B2 (en) Reactor
JP2007091499A (en) Reactor
JP2007084404A (en) Reactor
JP5082533B2 (en) Reactor
JP2007091546A (en) Reactor

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130402

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130415

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees