JP5263067B2 - Inverter failure detection device - Google Patents
Inverter failure detection device Download PDFInfo
- Publication number
- JP5263067B2 JP5263067B2 JP2009184402A JP2009184402A JP5263067B2 JP 5263067 B2 JP5263067 B2 JP 5263067B2 JP 2009184402 A JP2009184402 A JP 2009184402A JP 2009184402 A JP2009184402 A JP 2009184402A JP 5263067 B2 JP5263067 B2 JP 5263067B2
- Authority
- JP
- Japan
- Prior art keywords
- value
- current
- phase
- filter
- motor
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000001514 detection method Methods 0.000 title claims description 57
- 238000001914 filtration Methods 0.000 claims abstract description 3
- 230000000875 corresponding Effects 0.000 claims description 23
- 230000001276 controlling effect Effects 0.000 claims description 2
- 239000004065 semiconductor Substances 0.000 abstract description 13
- 230000004048 modification Effects 0.000 abstract description 2
- 238000006011 modification reaction Methods 0.000 abstract description 2
- 238000009499 grossing Methods 0.000 description 12
- 239000003990 capacitor Substances 0.000 description 11
- 238000010586 diagram Methods 0.000 description 10
- 238000000034 method Methods 0.000 description 8
- 230000000051 modifying Effects 0.000 description 7
- 230000004044 response Effects 0.000 description 6
- 230000006399 behavior Effects 0.000 description 5
- 239000000969 carrier Substances 0.000 description 4
- 230000001172 regenerating Effects 0.000 description 4
- 230000000717 retained Effects 0.000 description 3
- 238000010187 selection method Methods 0.000 description 2
- HBBGRARXTFLTSG-UHFFFAOYSA-N Lithium Ion Chemical compound   [Li+] HBBGRARXTFLTSG-UHFFFAOYSA-N 0.000 description 1
- 230000001133 acceleration Effects 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 230000005611 electricity Effects 0.000 description 1
- 239000000446 fuel Substances 0.000 description 1
- 238000007562 laser obscuration time method Methods 0.000 description 1
- 229910001416 lithium ion Inorganic materials 0.000 description 1
- 229910052987 metal hydride Inorganic materials 0.000 description 1
- 229910044991 metal oxide Inorganic materials 0.000 description 1
- 150000004706 metal oxides Chemical class 0.000 description 1
- 230000001264 neutralization Effects 0.000 description 1
- 229910052759 nickel Inorganic materials 0.000 description 1
- PXHVJJICTQNCMI-UHFFFAOYSA-N nickel Substances   [Ni] PXHVJJICTQNCMI-UHFFFAOYSA-N 0.000 description 1
- -1 nickel metal hydride Chemical class 0.000 description 1
- 238000010248 power generation Methods 0.000 description 1
- 230000001360 synchronised Effects 0.000 description 1
Images
Abstract
Description
(電動機制御の全体構成)
図1は、本実施の形態に従うインバータの故障検出装置が適用されるモータ駆動システムの構成例を示すブロック図である。 Embodiments of the present invention will be described below in detail with reference to the drawings. In addition, the same code | symbol is attached | subjected to the same or equivalent part in the following figures, and the description shall not be repeated in principle.
(General configuration of motor control)
FIG. 1 is a block diagram showing a configuration example of a motor drive system to which an inverter failure detection apparatus according to the present embodiment is applied.
図1を参照して、モータ駆動システム100は、直流電圧発生部10♯と、平滑コンデンサC0と、インバータ14と、交流モータM1と、制御装置30とを備える。 FIG. 1 is an overall configuration diagram of a motor drive system according to an embodiment of the present invention.
Referring to FIG. 1, motor drive system 100 includes a DC voltage generation unit 10 #, a smoothing capacitor C0, an inverter 14, an AC motor M1, and a control device 30.
電力用MOS(Metal Oxide Semiconductor)トランジスタあるいは、電力用バイポーラ
トランジスタ等を用いることができる。スイッチング素子Q1,Q2に対しては、逆並列ダイオードD1,D2が配置されている。リアクトルL1は、スイッチング素子Q1およびQ2の接続ノードと電力線6の間に接続される。また、平滑コンデンサC0は、電力線7およびアース線5の間に接続される。 In the embodiment of the present invention, as a power semiconductor switching element (hereinafter, simply referred to as “switching element”), an IGBT (Insulated Gate Bipolar Transistor),
A power MOS (Metal Oxide Semiconductor) transistor, a power bipolar transistor, or the like can be used. Anti-parallel diodes D1, D2 are arranged for switching elements Q1, Q2. Reactor L1 is connected between a connection node of switching elements Q1 and Q2 and power line 6. Further, the smoothing capacitor C 0 is connected between the power line 7 and the ground line 5.
(制御モードの説明)
制御装置30による交流モータM1の制御についてさらに詳細に説明する。 The control device 30 includes a CPU (Central Processing Unit) (not shown) and an electronic control unit having a built-in memory, and performs arithmetic processing using detection values from each sensor based on a map and a program stored in the memory. Configured as follows. Alternatively, at least a part of the ECU 80 may be configured to execute predetermined numerical / logical operation processing by hardware such as an electronic circuit.
(Description of control mode)
Control of AC motor M1 by control device 30 will be described in further detail.
図3のフローチャートに示されるように、図示しない上位ECUによって、アクセル開度等に従う車両要求出力に基づき交流モータM1のトルク指令値Trqcomが算出される(ステップS100)のを受けて、制御装置30は、予め設定されたマップ等に基づいて、交流モータM1のトルク指令値Trqcomおよび回転数からモータ必要電圧(誘起電圧)を算出し(ステップS110)、さらに、モータ必要電圧とシステム電圧VHの最大値(VH最大値)との関係に従って、矩形波電圧制御モードおよびPWM制御モードのいずれを適用してモータ制御を行なうか否かを決定する(ステップS120)。基本的には、電圧指令値に対応する変調率が実現できるように制御モードが選択される。PWM制御モードでも、変調率に応じて、正弦波PWM制御および過変調PWM制御の一方が選択される。上記制御フローに従って、交流モータM1の運転条件に従って、図2に示した複数の制御モードのうちから適正な制御モードが適用される。 FIG. 3 is a flowchart illustrating a control mode selection method.
As shown in the flowchart of FIG. 3, upon receiving a torque command value Trqcom of AC motor M <b> 1 (step S <b> 100) calculated by a host ECU (not shown) based on a required vehicle output according to the accelerator opening, etc., control device 30. Calculates the required motor voltage (induced voltage) from the torque command value Trqcom and the rotational speed of AC motor M1 based on a preset map or the like (step S110), and further calculates the maximum required motor voltage and system voltage VH. In accordance with the relationship with the value (VH maximum value), it is determined whether to perform motor control by applying either the rectangular wave voltage control mode or the PWM control mode (step S120). Basically, the control mode is selected so that the modulation factor corresponding to the voltage command value can be realized. Even in the PWM control mode, one of sine wave PWM control and overmodulation PWM control is selected according to the modulation rate. According to the control flow, an appropriate control mode is applied from among the plurality of control modes shown in FIG. 2 according to the operating conditions of AC motor M1.
正常時には、W相電流Iwは、交流モータM1の電気周期に相当する周期の正弦波状電流となる。したがって、W相電流Iwをローパスフィルタ処理して得られるフィルタ電流値Iwfは、モータ電流の1周期の間に0に復帰する。この結果、フィルタ電流値Iwfが継続的に上昇することはなく、開放故障検出のための判定値IJDに対して、|Iwf|<Ijdが維持される。 FIG. 4 shows a waveform of a W-phase current (W-phase current) Iw in a normal state.
At normal time, the W-phase current Iw is a sinusoidal current having a cycle corresponding to the electrical cycle of AC motor M1. Therefore, the filter current value Iwf obtained by low-pass filtering the W-phase current Iw returns to 0 during one cycle of the motor current. As a result, the filter current value Iwf does not continuously increase, and | Iwf | <Ijd is maintained with respect to the determination value IJD for detecting an open failure.
(1)式において、Iwf(0)は、フィルタ電流値Iwfの前回値を示す。そして、平滑化係数faは、0〜1.0の範囲の値であり、faが0に近いほどフィルタの時定数は大きくなり、faが1.0に近いほどフィルタの時定数は小さくなる。すなわち、平滑化係数faは、フィルタ処理部110に持たせるべき時定数に応じて定められる。ローパスフィルタ処理の時定数は、基本的には、フィルタ処理部110によってW相電流Iwの電流積分値を求めるのと等価になるように設定されることが好ましい。 Iwf = {Iw−Iwf (0)} · fa + Iwf (0) (1)
In the equation (1), Iwf (0) indicates the previous value of the filter current value Iwf. The smoothing coefficient fa is a value in the range of 0 to 1.0. The closer the fa is to 0, the larger the time constant of the filter, and the closer the fa is to 1.0, the smaller the time constant of the filter. That is, the smoothing coefficient fa is determined according to the time constant that the filter processing unit 110 should have. It is preferable that the time constant of the low-pass filter processing is basically set to be equivalent to that obtained by the filter processing unit 110 to obtain the current integral value of the W-phase current Iw.
U相では、(2)式により演算された相電流Iuに基づいて、フィルタ処理部110がフィルタ電流値(Iuf)を算出する。このように、電流センサ24が配置された相、および非配置の相のいずれについても、図8に示した開放故障検出を共通に適用できる。ただし、演算によって相電流を求めると誤差の影響による誤検出が懸念される。このため、それぞれの制御モードについて、電流センサ24が配置された相における判定値と比較して、非配置の相での判定値を大きくすることが好ましい。 Iu = − (Iv + Iw) (2)
In the U phase, the filter processing unit 110 calculates a filter current value (Iuf) based on the phase current Iu calculated by the equation (2). As described above, the open fault detection shown in FIG. 8 can be commonly applied to both the phase in which the current sensor 24 is arranged and the non-arranged phase. However, if the phase current is obtained by calculation, there is a concern about erroneous detection due to the influence of errors. Therefore, for each control mode, it is preferable to increase the determination value in the non-arranged phase as compared with the determination value in the phase where the current sensor 24 is disposed.
Icr=Ifmax・Nn♯/Nm …(3)
(3)式中において、Ifmaxは、交流モータM1の回転速度が基準速度Nn♯であるときの、最大オフセット量に相当する。この最大オフセット量は、相電流が最大定格電流であるときの半周期経過時点でのフィルタ電流値Iwfに相当する。 The offset correction amount Icr at this time is obtained according to the following equation (3).
Icr = Ifmax · Nn # / Nm (3)
In the equation (3), Ifmax corresponds to the maximum offset amount when the rotational speed of AC motor M1 is reference speed Nn #. This maximum offset amount corresponds to the filter current value Iwf when the half cycle has elapsed when the phase current is the maximum rated current.
図11を参照して、制御装置30は、ステップS141では、交流モータM1の現在のモータ回転速度Nmを取得する。そして、制御装置30は、ステップS142により、所得したモータ回転速度Nmに応じて、オフセット修正量Icrを上述の(3)式に従って決定する。 FIG. 11 shows details of the offset correction processing in step S140 of FIG.
Referring to FIG. 11, in step S141, control device 30 acquires current motor rotation speed Nm of AC motor M1. In step S142, control device 30 determines offset correction amount Icr according to the above-described equation (3) in accordance with the obtained motor rotation speed Nm.
Claims (4)
- 交流電動機を制御するための複数相のインバータの故障検出装置であって、
前記インバータの各相の電流を検出するための電流検出手段と、
前記交流電動機の動作状態に応じて、複数の制御モードのうちの1つを選択するモード選択手段と、
前記電流検出手段によって検出された各相電流をローパスフィルタ処理することによって、各前記制御モードについて別個に各相のフィルタ電流値を算出するためのフィルタ処理手段と、
前記フィルタ処理手段によって算出された前記フィルタ電流値が所定の判定値を超えた場合に、前記インバータの対応する相のスイッチング素子の開放故障を検知するための故障検知手段と、
前記制御モードが切り替わる際に、切替後の前記制御モードに対応する各相の前記フィルタ電流値を、その絶対値が所定範囲内で減少するように修正するための修正手段とを備える、インバータの故障検出装置。 A failure detection device for a multi-phase inverter for controlling an AC motor,
Current detection means for detecting the current of each phase of the inverter;
Mode selection means for selecting one of a plurality of control modes according to the operating state of the AC motor;
Filter processing means for calculating the filter current value of each phase separately for each control mode by low-pass filtering each phase current detected by the current detection means;
A failure detection means for detecting an open failure of a switching element of a corresponding phase of the inverter when the filter current value calculated by the filter processing means exceeds a predetermined determination value;
A correction means for correcting the filter current value of each phase corresponding to the control mode after switching so as to decrease the absolute value within a predetermined range when the control mode is switched. Fault detection device. - 前記修正手段は、前記フィルタ電流値の絶対値が、各相電流の最大定格電流についての半周期の積分値に相当する最大オフセット値よりも大きい場合には、前記絶対値が前記最大オフセット値だけ減少するように前記フィルタ電流値を修正する一方で、前記フィルタ電流値の絶対値が前記最大オフセット値以下のときには、前記フィルタ電流値を零に設定する、請求項1記載のインバータの故障検出装置。 When the absolute value of the filter current value is larger than a maximum offset value corresponding to an integral value of a half cycle for the maximum rated current of each phase current, the correction means is configured such that the absolute value is only the maximum offset value. The inverter failure detection device according to claim 1, wherein the filter current value is corrected so as to decrease, and when the absolute value of the filter current value is equal to or less than the maximum offset value, the filter current value is set to zero. .
- 前記最大オフセット値は、前記交流電動機の回転速度の上昇に従って小さい値となるように、前記交流電動機の回転速度に応じて可変に設定される、請求項1または2に記載のインバータの故障検出装置。 The inverter failure detection device according to claim 1, wherein the maximum offset value is variably set according to the rotational speed of the AC motor so that the maximum offset value becomes a small value as the rotational speed of the AC motor increases. .
- 前記電流検出手段は、
前記複数相のうちの所定の1相を除く各相に配置された電流センサと、
前記電流センサの出力から前記所定の1相の電流を演算する電流演算手段とを含み、
前記フィルタ処理手段は、前記所定の1相では前記電流演算手段による演算値に基づいて前記フィルタ電流値を算出する一方で、前記所定の1相を除く各相では前記電流センサによる検出値に基づいて前記フィルタ電流値を算出し、
前記所定の1相での前記判定値は、前記所定の1相を除く各相での前記判定値よりも大きく設定される、請求項1〜3のいずれか1項に記載のインバータの故障検出装置。 The current detection means includes
A current sensor disposed in each phase excluding a predetermined one of the plurality of phases;
Current calculating means for calculating the predetermined one-phase current from the output of the current sensor,
The filter processing means calculates the filter current value based on a calculated value by the current calculating means in the predetermined one phase, while based on a detected value by the current sensor in each phase except the predetermined one phase. To calculate the filter current value,
The inverter failure detection according to claim 1, wherein the determination value in the predetermined one phase is set to be larger than the determination value in each phase except the predetermined one phase. apparatus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009184402A JP5263067B2 (en) | 2009-08-07 | 2009-08-07 | Inverter failure detection device |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2009184402A JP5263067B2 (en) | 2009-08-07 | 2009-08-07 | Inverter failure detection device |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2011041366A JP2011041366A (en) | 2011-02-24 |
JP5263067B2 true JP5263067B2 (en) | 2013-08-14 |
Family
ID=43768532
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2009184402A Active JP5263067B2 (en) | 2009-08-07 | 2009-08-07 | Inverter failure detection device |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5263067B2 (en) |
Cited By (38)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5616443A (en) | 1993-08-05 | 1997-04-01 | Kimberly-Clark Corporation | Substrate having a mutable colored composition thereon |
US5643356A (en) | 1993-08-05 | 1997-07-01 | Kimberly-Clark Corporation | Ink for ink jet printers |
US5645964A (en) | 1993-08-05 | 1997-07-08 | Kimberly-Clark Corporation | Digital information recording media and method of using same |
US5681380A (en) | 1995-06-05 | 1997-10-28 | Kimberly-Clark Worldwide, Inc. | Ink for ink jet printers |
US5685754A (en) | 1994-06-30 | 1997-11-11 | Kimberly-Clark Corporation | Method of generating a reactive species and polymer coating applications therefor |
US5700850A (en) | 1993-08-05 | 1997-12-23 | Kimberly-Clark Worldwide | Colorant compositions and colorant stabilizers |
US5721287A (en) | 1993-08-05 | 1998-02-24 | Kimberly-Clark Worldwide, Inc. | Method of mutating a colorant by irradiation |
US5733693A (en) | 1993-08-05 | 1998-03-31 | Kimberly-Clark Worldwide, Inc. | Method for improving the readability of data processing forms |
US5739175A (en) | 1995-06-05 | 1998-04-14 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition containing an arylketoalkene wavelength-specific sensitizer |
US5747550A (en) | 1995-06-05 | 1998-05-05 | Kimberly-Clark Worldwide, Inc. | Method of generating a reactive species and polymerizing an unsaturated polymerizable material |
US5773182A (en) | 1993-08-05 | 1998-06-30 | Kimberly-Clark Worldwide, Inc. | Method of light stabilizing a colorant |
US5782963A (en) | 1996-03-29 | 1998-07-21 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US5786132A (en) | 1995-06-05 | 1998-07-28 | Kimberly-Clark Corporation | Pre-dyes, mutable dye compositions, and methods of developing a color |
US5798015A (en) | 1995-06-05 | 1998-08-25 | Kimberly-Clark Worldwide, Inc. | Method of laminating a structure with adhesive containing a photoreactor composition |
US5811199A (en) | 1995-06-05 | 1998-09-22 | Kimberly-Clark Worldwide, Inc. | Adhesive compositions containing a photoreactor composition |
US5837429A (en) | 1995-06-05 | 1998-11-17 | Kimberly-Clark Worldwide | Pre-dyes, pre-dye compositions, and methods of developing a color |
US5849411A (en) | 1995-06-05 | 1998-12-15 | Kimberly-Clark Worldwide, Inc. | Polymer film, nonwoven web and fibers containing a photoreactor composition |
US5855655A (en) | 1996-03-29 | 1999-01-05 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US5865471A (en) | 1993-08-05 | 1999-02-02 | Kimberly-Clark Worldwide, Inc. | Photo-erasable data processing forms |
US5885337A (en) | 1995-11-28 | 1999-03-23 | Nohr; Ronald Sinclair | Colorant stabilizers |
US5891229A (en) | 1996-03-29 | 1999-04-06 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US6008268A (en) | 1994-10-21 | 1999-12-28 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition, method of generating a reactive species, and applications therefor |
US6017471A (en) | 1993-08-05 | 2000-01-25 | Kimberly-Clark Worldwide, Inc. | Colorants and colorant modifiers |
US6017661A (en) | 1994-11-09 | 2000-01-25 | Kimberly-Clark Corporation | Temporary marking using photoerasable colorants |
US6033465A (en) | 1995-06-28 | 2000-03-07 | Kimberly-Clark Worldwide, Inc. | Colorants and colorant modifiers |
US6071979A (en) | 1994-06-30 | 2000-06-06 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition method of generating a reactive species and applications therefor |
US6099628A (en) | 1996-03-29 | 2000-08-08 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US6211383B1 (en) | 1993-08-05 | 2001-04-03 | Kimberly-Clark Worldwide, Inc. | Nohr-McDonald elimination reaction |
US6228157B1 (en) | 1998-07-20 | 2001-05-08 | Ronald S. Nohr | Ink jet ink compositions |
US6265458B1 (en) | 1998-09-28 | 2001-07-24 | Kimberly-Clark Worldwide, Inc. | Photoinitiators and applications therefor |
US6277897B1 (en) | 1998-06-03 | 2001-08-21 | Kimberly-Clark Worldwide, Inc. | Photoinitiators and applications therefor |
US6294698B1 (en) | 1999-04-16 | 2001-09-25 | Kimberly-Clark Worldwide, Inc. | Photoinitiators and applications therefor |
US6331056B1 (en) | 1999-02-25 | 2001-12-18 | Kimberly-Clark Worldwide, Inc. | Printing apparatus and applications therefor |
US6368395B1 (en) | 1999-05-24 | 2002-04-09 | Kimberly-Clark Worldwide, Inc. | Subphthalocyanine colorants, ink compositions, and method of making the same |
US6368396B1 (en) | 1999-01-19 | 2002-04-09 | Kimberly-Clark Worldwide, Inc. | Colorants, colorant stabilizers, ink compositions, and improved methods of making the same |
US6486227B2 (en) | 2000-06-19 | 2002-11-26 | Kimberly-Clark Worldwide, Inc. | Zinc-complex photoinitiators and applications therefor |
US6503559B1 (en) | 1998-06-03 | 2003-01-07 | Kimberly-Clark Worldwide, Inc. | Neonanoplasts and microemulsion technology for inks and ink jet printing |
US6524379B2 (en) | 1997-08-15 | 2003-02-25 | Kimberly-Clark Worldwide, Inc. | Colorants, colorant stabilizers, ink compositions, and improved methods of making the same |
Families Citing this family (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP6024245B2 (en) * | 2012-07-05 | 2016-11-09 | 株式会社豊田自動織機 | Inverter control device |
JP6011261B2 (en) * | 2012-11-14 | 2016-10-19 | 富士電機株式会社 | Three-phase PWM inverter device and motor control device using the same |
WO2019240004A1 (en) * | 2018-06-12 | 2019-12-19 | 日本電産株式会社 | Failure diagnosis method, power conversion device, motor module, and electric power steering device |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP4543781B2 (en) * | 2004-06-25 | 2010-09-15 | トヨタ自動車株式会社 | Power supply |
JP4415832B2 (en) * | 2004-11-18 | 2010-02-17 | パナソニック株式会社 | Motor drive device |
JP5278723B2 (en) * | 2007-06-25 | 2013-09-04 | アイシン精機株式会社 | Motor control device and motor control method |
JP2010239682A (en) * | 2009-03-30 | 2010-10-21 | Toyota Motor Corp | Drive device |
-
2009
- 2009-08-07 JP JP2009184402A patent/JP5263067B2/en active Active
Cited By (56)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6017471A (en) | 1993-08-05 | 2000-01-25 | Kimberly-Clark Worldwide, Inc. | Colorants and colorant modifiers |
US5643356A (en) | 1993-08-05 | 1997-07-01 | Kimberly-Clark Corporation | Ink for ink jet printers |
US5643701A (en) | 1993-08-05 | 1997-07-01 | Kimberly-Clark Corporation | Electrophotgraphic process utilizing mutable colored composition |
US5645964A (en) | 1993-08-05 | 1997-07-08 | Kimberly-Clark Corporation | Digital information recording media and method of using same |
US6211383B1 (en) | 1993-08-05 | 2001-04-03 | Kimberly-Clark Worldwide, Inc. | Nohr-McDonald elimination reaction |
US5683843A (en) | 1993-08-05 | 1997-11-04 | Kimberly-Clark Corporation | Solid colored composition mutable by ultraviolet radiation |
US6127073A (en) | 1993-08-05 | 2000-10-03 | Kimberly-Clark Worldwide, Inc. | Method for concealing information and document for securely communicating concealed information |
US5616443A (en) | 1993-08-05 | 1997-04-01 | Kimberly-Clark Corporation | Substrate having a mutable colored composition thereon |
US5700850A (en) | 1993-08-05 | 1997-12-23 | Kimberly-Clark Worldwide | Colorant compositions and colorant stabilizers |
US6120949A (en) | 1993-08-05 | 2000-09-19 | Kimberly-Clark Worldwide, Inc. | Photoerasable paint and method for using photoerasable paint |
US5721287A (en) | 1993-08-05 | 1998-02-24 | Kimberly-Clark Worldwide, Inc. | Method of mutating a colorant by irradiation |
US5733693A (en) | 1993-08-05 | 1998-03-31 | Kimberly-Clark Worldwide, Inc. | Method for improving the readability of data processing forms |
US6060223A (en) | 1993-08-05 | 2000-05-09 | Kimberly-Clark Worldwide, Inc. | Plastic article for colored printing and method for printing on a colored plastic article |
US6060200A (en) | 1993-08-05 | 2000-05-09 | Kimberly-Clark Worldwide, Inc. | Photo-erasable data processing forms and methods |
US6054256A (en) | 1993-08-05 | 2000-04-25 | Kimberly-Clark Worldwide, Inc. | Method and apparatus for indicating ultraviolet light exposure |
US6066439A (en) | 1993-08-05 | 2000-05-23 | Kimberly-Clark Worldwide, Inc. | Instrument for photoerasable marking |
US5908495A (en) | 1993-08-05 | 1999-06-01 | Nohr; Ronald Sinclair | Ink for ink jet printers |
US5865471A (en) | 1993-08-05 | 1999-02-02 | Kimberly-Clark Worldwide, Inc. | Photo-erasable data processing forms |
US5858586A (en) | 1993-08-05 | 1999-01-12 | Kimberly-Clark Corporation | Digital information recording media and method of using same |
US5773182A (en) | 1993-08-05 | 1998-06-30 | Kimberly-Clark Worldwide, Inc. | Method of light stabilizing a colorant |
US6342305B1 (en) | 1993-09-10 | 2002-01-29 | Kimberly-Clark Corporation | Colorants and colorant modifiers |
US5686503A (en) | 1994-06-30 | 1997-11-11 | Kimberly-Clark Corporation | Method of generating a reactive species and applications therefor |
US5709955A (en) | 1994-06-30 | 1998-01-20 | Kimberly-Clark Corporation | Adhesive composition curable upon exposure to radiation and applications therefor |
US5685754A (en) | 1994-06-30 | 1997-11-11 | Kimberly-Clark Corporation | Method of generating a reactive species and polymer coating applications therefor |
US6090236A (en) | 1994-06-30 | 2000-07-18 | Kimberly-Clark Worldwide, Inc. | Photocuring, articles made by photocuring, and compositions for use in photocuring |
US6071979A (en) | 1994-06-30 | 2000-06-06 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition method of generating a reactive species and applications therefor |
US6008268A (en) | 1994-10-21 | 1999-12-28 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition, method of generating a reactive species, and applications therefor |
US6017661A (en) | 1994-11-09 | 2000-01-25 | Kimberly-Clark Corporation | Temporary marking using photoerasable colorants |
US6235095B1 (en) | 1994-12-20 | 2001-05-22 | Ronald Sinclair Nohr | Ink for inkjet printers |
US5681380A (en) | 1995-06-05 | 1997-10-28 | Kimberly-Clark Worldwide, Inc. | Ink for ink jet printers |
US5798015A (en) | 1995-06-05 | 1998-08-25 | Kimberly-Clark Worldwide, Inc. | Method of laminating a structure with adhesive containing a photoreactor composition |
US5837429A (en) | 1995-06-05 | 1998-11-17 | Kimberly-Clark Worldwide | Pre-dyes, pre-dye compositions, and methods of developing a color |
US5786132A (en) | 1995-06-05 | 1998-07-28 | Kimberly-Clark Corporation | Pre-dyes, mutable dye compositions, and methods of developing a color |
US5739175A (en) | 1995-06-05 | 1998-04-14 | Kimberly-Clark Worldwide, Inc. | Photoreactor composition containing an arylketoalkene wavelength-specific sensitizer |
US6063551A (en) | 1995-06-05 | 2000-05-16 | Kimberly-Clark Worldwide, Inc. | Mutable dye composition and method of developing a color |
US5849411A (en) | 1995-06-05 | 1998-12-15 | Kimberly-Clark Worldwide, Inc. | Polymer film, nonwoven web and fibers containing a photoreactor composition |
US5811199A (en) | 1995-06-05 | 1998-09-22 | Kimberly-Clark Worldwide, Inc. | Adhesive compositions containing a photoreactor composition |
US5747550A (en) | 1995-06-05 | 1998-05-05 | Kimberly-Clark Worldwide, Inc. | Method of generating a reactive species and polymerizing an unsaturated polymerizable material |
US6033465A (en) | 1995-06-28 | 2000-03-07 | Kimberly-Clark Worldwide, Inc. | Colorants and colorant modifiers |
US6168655B1 (en) | 1995-11-28 | 2001-01-02 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US5885337A (en) | 1995-11-28 | 1999-03-23 | Nohr; Ronald Sinclair | Colorant stabilizers |
US5782963A (en) | 1996-03-29 | 1998-07-21 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US5891229A (en) | 1996-03-29 | 1999-04-06 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US6168654B1 (en) | 1996-03-29 | 2001-01-02 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US5855655A (en) | 1996-03-29 | 1999-01-05 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US6099628A (en) | 1996-03-29 | 2000-08-08 | Kimberly-Clark Worldwide, Inc. | Colorant stabilizers |
US6524379B2 (en) | 1997-08-15 | 2003-02-25 | Kimberly-Clark Worldwide, Inc. | Colorants, colorant stabilizers, ink compositions, and improved methods of making the same |
US6277897B1 (en) | 1998-06-03 | 2001-08-21 | Kimberly-Clark Worldwide, Inc. | Photoinitiators and applications therefor |
US6503559B1 (en) | 1998-06-03 | 2003-01-07 | Kimberly-Clark Worldwide, Inc. | Neonanoplasts and microemulsion technology for inks and ink jet printing |
US6228157B1 (en) | 1998-07-20 | 2001-05-08 | Ronald S. Nohr | Ink jet ink compositions |
US6265458B1 (en) | 1998-09-28 | 2001-07-24 | Kimberly-Clark Worldwide, Inc. | Photoinitiators and applications therefor |
US6368396B1 (en) | 1999-01-19 | 2002-04-09 | Kimberly-Clark Worldwide, Inc. | Colorants, colorant stabilizers, ink compositions, and improved methods of making the same |
US6331056B1 (en) | 1999-02-25 | 2001-12-18 | Kimberly-Clark Worldwide, Inc. | Printing apparatus and applications therefor |
US6294698B1 (en) | 1999-04-16 | 2001-09-25 | Kimberly-Clark Worldwide, Inc. | Photoinitiators and applications therefor |
US6368395B1 (en) | 1999-05-24 | 2002-04-09 | Kimberly-Clark Worldwide, Inc. | Subphthalocyanine colorants, ink compositions, and method of making the same |
US6486227B2 (en) | 2000-06-19 | 2002-11-26 | Kimberly-Clark Worldwide, Inc. | Zinc-complex photoinitiators and applications therefor |
Also Published As
Publication number | Publication date |
---|---|
JP2011041366A (en) | 2011-02-24 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP2048774B1 (en) | Rotary electric system with star-connected multiphase stator windings | |
US9013137B2 (en) | Apparatus for calculating rotational position of rotary machine | |
US7723945B2 (en) | Control device for motor drive system and electric vehicle including the same | |
US6978213B2 (en) | Voltage conversion system and method and recording medium | |
EP1958325B1 (en) | Control apparatus and method for motor drive system | |
US9054613B2 (en) | Motor drive apparatus and vehicle with the same mounted thereon | |
US6989641B2 (en) | Methods and apparatus for fault-tolerant control of electric machines | |
US7701156B2 (en) | Electric motor drive control system and control method thereof | |
US8390223B2 (en) | Control device for electric motor drive device | |
JP5429371B2 (en) | Control device and control method for power controller | |
JP5413505B2 (en) | Control device for motor drive system and vehicle equipped with the same | |
EP2380272B1 (en) | Control system for ac motor | |
US8138712B2 (en) | Motor drive system and its control method | |
JP5471259B2 (en) | Control device | |
US8054031B2 (en) | Converter device, rotating electrical machine control device, and drive device | |
EP2594424B1 (en) | Controller for vehicle | |
JP5353867B2 (en) | Rotating machine control device | |
EP2131489B1 (en) | Drive controller and drive control method of motor | |
JP5297953B2 (en) | Electric motor drive system for electric vehicle | |
US8482234B2 (en) | Motor drive control device | |
US8310197B2 (en) | Control device for electric motor drive device | |
JP5368777B2 (en) | AC motor control device | |
US8045301B2 (en) | Motor drive device | |
JP5696700B2 (en) | Rotor position estimation device, motor control system, and rotor position estimation method | |
JP2014072973A (en) | Control device of alternating current motor |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20111018 |
|
TRDD | Decision of grant or rejection written | ||
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20130327 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20130402 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130415 |
|
R151 | Written notification of patent or utility model registration |
Ref document number: 5263067 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R151 |
|
S111 | Request for change of ownership or part of ownership |
Free format text: JAPANESE INTERMEDIATE CODE: R313113 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |