JP5260977B2 - Method for producing fiber-reinforced composite material and fiber-reinforced composite material - Google Patents

Method for producing fiber-reinforced composite material and fiber-reinforced composite material Download PDF

Info

Publication number
JP5260977B2
JP5260977B2 JP2008031338A JP2008031338A JP5260977B2 JP 5260977 B2 JP5260977 B2 JP 5260977B2 JP 2008031338 A JP2008031338 A JP 2008031338A JP 2008031338 A JP2008031338 A JP 2008031338A JP 5260977 B2 JP5260977 B2 JP 5260977B2
Authority
JP
Japan
Prior art keywords
fiber
reinforced composite
composite material
carbon fiber
sizing agent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008031338A
Other languages
Japanese (ja)
Other versions
JP2009191115A (en
Inventor
聡志 平脇
和美 小川
正義 郷家
浩司 白木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Honda Motor Co Ltd
Toho Rayon Co Ltd
Original Assignee
Honda Motor Co Ltd
Toho Rayon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honda Motor Co Ltd, Toho Rayon Co Ltd filed Critical Honda Motor Co Ltd
Priority to JP2008031338A priority Critical patent/JP5260977B2/en
Publication of JP2009191115A publication Critical patent/JP2009191115A/en
Application granted granted Critical
Publication of JP5260977B2 publication Critical patent/JP5260977B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Reinforced Plastic Materials (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fiber-reinforced composite material whose cured resin includes a carbon fiber, the fiber-reinforced composite material being excellent in surface smoothness. <P>SOLUTION: The process of making a fiber-reinforced composite material has a step of applying to a preopened carbon fiber a sizing agent with a mass average molecular weight of 1,000-10,000 so as to be contained in 3-10 mass%, a step of obtaining a prepreg by impregnating a curable resin to the carbon fiber to which the sizing agent has been applied, and a step of curing the prepreg. <P>COPYRIGHT: (C)2009,JPO&amp;INPIT

Description

本発明は、硬化した樹脂に炭素繊維を含む繊維強化複合材料の製造方法および繊維強化複合材料に関する。   The present invention relates to a method for producing a fiber reinforced composite material containing carbon fibers in a cured resin and a fiber reinforced composite material.

従来、硬化した樹脂にガラス繊維を含む繊維強化複合材料の製造方法であって、表面平滑性に優れた成形品を得ることができるものとして、繊維強化複合材料の表面にゲルコート層を形成するものが提案されている(例えば、特許文献1参照)。この繊維強化複合材料の製造方法は、含フッ素重合体と硬化剤とを含む樹脂組成物を型に塗布し、ガラス繊維からなるマットで裏打ちした後に、樹脂組成物を硬化するものである。
この製造方法では、ゲルコート層を繊維強化複合材料の表面に形成することによって、繊維強化複合材料の表面平滑性を向上させている。
このような繊維強化複合材料は、その強度および弾性率が高いことから自動車のフェンダ、ドア、トランク等の外板として使用されている。
Conventionally, a method for producing a fiber reinforced composite material containing glass fibers in a cured resin, which is capable of obtaining a molded article having excellent surface smoothness, and forming a gel coat layer on the surface of the fiber reinforced composite material Has been proposed (see, for example, Patent Document 1). In this method for producing a fiber-reinforced composite material, a resin composition containing a fluoropolymer and a curing agent is applied to a mold and backed with a mat made of glass fibers, and then the resin composition is cured.
In this manufacturing method, the surface smoothness of the fiber reinforced composite material is improved by forming the gel coat layer on the surface of the fiber reinforced composite material.
Such fiber reinforced composite materials are used as outer plates for automobile fenders, doors, trunks and the like because of their high strength and elastic modulus.

しかしながら、従来のガラス繊維を含む繊維強化複合材料では、ガラス繊維の密度が高いために、比強度および比弾性率が金属材料と同じ程度に止まっている。そこで、ガラス繊維よりも密度が低い炭素繊維を含む繊維強化複合材料を自動車の外板に使用することができれば、車体の軽量化を図ることができるので、燃費向上、エミッションの低減、ハンドリングの向上を図ることができる。
特開平2−173128号公報
However, in the fiber reinforced composite material containing the conventional glass fiber, since the density of the glass fiber is high, the specific strength and the specific elastic modulus remain at the same level as the metal material. Therefore, if a fiber reinforced composite material containing carbon fiber, which has a lower density than glass fiber, can be used for the outer panel of an automobile, the weight of the vehicle body can be reduced, improving fuel efficiency, reducing emissions, and improving handling. Can be achieved.
JP-A-2-173128

しかしながら、硬化した樹脂に炭素繊維を含む従来の繊維強化複合材料は、表面平滑性が不充分であった。さらに詳しく説明すると、樹脂に含ませる炭素繊維は、たとえ予め開繊処理したものであっても、成形時の材料の流動距離が長いと炭素繊維の均一な分散が阻害される場合があった。そして、炭素繊維の分散が阻害されると、樹脂リッチとなった部分で繊維強化複合材料にひけを生じて表面平滑性を損ねることとなる。
また、成形時の材料の流動によって、炭素繊維が繊維強化複合材料の厚さ方向にうねることによって繊維強化複合材料の表面平滑性を損ねることとなる。
However, the conventional fiber-reinforced composite material containing carbon fiber in the cured resin has insufficient surface smoothness. More specifically, even if the carbon fibers included in the resin are pre-opened, if the flow distance of the material during molding is long, uniform dispersion of the carbon fibers may be hindered. If the dispersion of the carbon fibers is inhibited, the fiber-reinforced composite material is sinked at the resin-rich portion, and the surface smoothness is impaired.
Further, the surface smoothness of the fiber reinforced composite material is impaired by the flow of the material at the time of molding, and the carbon fibers undulate in the thickness direction of the fiber reinforced composite material.

そこで、本発明の課題は、硬化した樹脂に炭素繊維を含む繊維強化複合材料であって、表面平滑性に優れた繊維強化複合材料を提供することにある。   Then, the subject of this invention is a fiber reinforced composite material which contains carbon fiber in the hardened resin, Comprising: It is providing the fiber reinforced composite material excellent in surface smoothness.

前記課題を解決する本発明の繊維強化複合材料の製造方法は、予め開繊した炭素繊維に、質量平均分子量が1000〜10000の収束剤を含有率が3〜10質量%となるように塗布する工程と、前記収束剤を塗布した前記炭素繊維に硬化性樹脂を含ませてプリプレグを得る工程と、前記プリプレグを所定の型内で型締めし、この型締め時の前記硬化性樹脂の流動により前記炭素繊維を分繊化し硬化する工程と、を有することを特徴とする。
また、このような製造方法においては、前記収束剤は、エポキシ系樹脂またはビニルエステル系樹脂であることが望ましい。
そして、前記課題を解決する本発明の繊維強化複合材料は、予め開繊した炭素繊維に、質量平均分子量が1000〜10000の収束剤を3〜10質量%となるように塗布した炭素繊維と、硬化性樹脂とを含むプリプレグを所定の型内で型締めし、この型締め時の前記硬化性樹脂の流動により前記炭素繊維を分繊化し硬化させたことを特徴とする。
In the method for producing a fiber-reinforced composite material of the present invention that solves the above problems, a sizing agent having a mass average molecular weight of 1000 to 10000 is applied to carbon fibers that have been opened beforehand so that the content is 3 to 10% by mass. A step of obtaining a prepreg by adding a curable resin to the carbon fiber coated with the sizing agent, and clamping the prepreg in a predetermined mold, and by the flow of the curable resin at the time of clamping And a step of separating and curing the carbon fiber .
Moreover, in such a manufacturing method, it is desirable that the sizing agent is an epoxy resin or a vinyl ester resin.
And the fiber reinforced composite material of the present invention that solves the above problems is a carbon fiber obtained by applying a sizing agent having a mass average molecular weight of 1000 to 10000 to 3 to 10% by mass on a previously opened carbon fiber, A prepreg containing a curable resin is clamped in a predetermined mold, and the carbon fibers are separated and cured by the flow of the curable resin during the mold clamping .

本発明によれば、硬化した樹脂に炭素繊維を含む繊維強化複合材料であって、表面平滑性に優れた繊維強化複合材料を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, it is a fiber reinforced composite material which contains carbon fiber in the hardened resin, Comprising: The fiber reinforced composite material excellent in surface smoothness can be provided.

以下に、本発明の実施形態について適宜図面を参照しながら詳細に説明する。ここで参照する図面において、図1は、実施形態に係る繊維強化複合材料の製造方法の工程説明図である。
本発明に係る製造方法で得られる繊維強化複合材料は、予め開繊した炭素繊維に、質量平均分子量が1000〜10000の収束剤を含有率が3〜10質量%となるように塗布したことを主な特徴としている。以下に、本発明に係る製造方法を説明しつつ、この製造方法で得られる繊維強化複合材料について説明する。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings as appropriate. In the drawings referred to here, FIG. 1 is a process explanatory diagram of a method for manufacturing a fiber-reinforced composite material according to an embodiment.
The fiber-reinforced composite material obtained by the production method according to the present invention is obtained by applying a sizing agent having a mass average molecular weight of 1000 to 10000 to a carbon fiber that has been opened beforehand so that the content is 3 to 10% by mass. Main features. Below, the fiber reinforced composite material obtained by this manufacturing method is demonstrated, explaining the manufacturing method which concerns on this invention.

本実施形態に係る繊維強化複合材料の製造方法は、図1に示すように、炭素繊維を開繊する開繊工程と、開繊された炭素繊維に収束剤を塗布する収束剤塗布工程と、収束剤を塗布した炭素繊維に硬化性樹脂を含ませてプリプレグを得るプリプレグ作製工程と、このプリプレグを積層する積層工程と、このプリプレグを所定の型内で型締め・硬化する成形工程とを有している。   As shown in FIG. 1, the method for producing a fiber-reinforced composite material according to the present embodiment includes a fiber-opening step for opening carbon fibers, a sizing agent application step for applying a sizing agent to the opened carbon fibers, There are a prepreg manufacturing process for obtaining a prepreg by adding a curable resin to a carbon fiber coated with a sizing agent, a laminating process for laminating the prepreg, and a molding process for clamping and curing the prepreg in a predetermined mold. doing.

前記した開繊工程で使用される炭素繊維としては、例えば、ポリアクリロニトリル系炭素繊維、レーヨン系炭素繊維、ピッチ系炭素繊維等が挙げられる。本実施形態での炭素繊維は、1000〜24000本程度のフィラメントが束ねられて形成されている。
この開繊工程では、炭素繊維の幅が広げられると共に、炭素繊維の厚さが低減される。炭素繊維に開繊を施す方法としては、例えば、炭素繊維にエアを吹き付ける方法が挙げられる。この開繊には、公知のエア開繊装置(例えば、特開平11−172562号公報参照)が使用されてもよい。
Examples of the carbon fiber used in the opening process described above include polyacrylonitrile-based carbon fiber, rayon-based carbon fiber, and pitch-based carbon fiber. The carbon fiber in this embodiment is formed by bundling about 1000 to 24000 filaments.
In this opening process, the width of the carbon fiber is widened and the thickness of the carbon fiber is reduced. Examples of the method for opening the carbon fiber include a method of blowing air to the carbon fiber. For this opening, a known air opening device (for example, see JP-A-11-172562) may be used.

前記した収束剤塗布工程で使用される収束剤は、後記する硬化性樹脂に含まれるモノマ(例えば、スチレンモノマ)に不可溶な成分からなるものが望ましく、その表面エネルギが硬化性樹脂の表面エネルギと近いことが望ましい。また、収束剤は、硬化性樹脂の含浸から成形流動までの間、炭素繊維の収束形態を保持できることが必要である。具体的には、エポキシ系樹脂またはビニルエステル系樹脂を主成分とするものが望ましい。
このような収束剤は、硬化性樹脂のモノマに可溶なものと比較して、炭素繊維が軟化するのを防止して型締め時に硬化性樹脂中で炭素繊維同士をほぐれやすくする。
エポキシ系樹脂としては、ビスフェノールA型のエポキシ樹脂が挙げられる。また、エポキシ系樹脂は、市販品を好適に使用することができ、市販品としては、例えば、ジャパンエポキシレジン社製のEP1001、DIC社製のEPICLON840、ADEKA社製のアデカレジンEP4500等が挙げられる。
ビニルエステル系樹脂としては、1分子中にアクリル基またはメタクリル基を有するエポキシアクリレート樹脂であって、ビスフェノールA型のビニルエステル樹脂、ノボラック型のビニルエステル樹脂、臭素化ビニルエステル樹脂等が挙げられる。
また、本実施形態での収束剤は、前記したエポキシ系樹脂やビニルエステル系樹脂のウレタン変性樹脂であってもよい。
そして、このような収束剤の質量平均分子量は、1000〜10000である。なお、質量平均分子量が1000以上の収束剤は、後記するように、炭素繊維を型締め工程での型締め圧力で効果的に分繊化することができる。また、質量平均分子量が10000以下の収束剤は、後記するプリプレグ作製工程で、樹脂中の炭素繊維が剛直になることを抑制することができる。
The sizing agent used in the above-described sizing agent coating step is preferably made of a component insoluble in a monomer (for example, styrene monomer) contained in the curable resin described later, and its surface energy is the surface energy of the curable resin. It is desirable to be close. Further, the sizing agent needs to be able to maintain the carbon fiber convergence form from the impregnation of the curable resin to the molding flow. Specifically, those having an epoxy resin or vinyl ester resin as a main component are desirable.
Such a sizing agent prevents the carbon fibers from softening and makes it easier to loosen the carbon fibers in the curable resin at the time of mold clamping, as compared with those soluble in the curable resin monomer.
Examples of the epoxy resin include bisphenol A type epoxy resins. As the epoxy resin, commercially available products can be suitably used. Examples of commercially available products include EP1001 manufactured by Japan Epoxy Resin, EPICLON 840 manufactured by DIC, and Adeka Resin EP4500 manufactured by ADEKA.
Examples of the vinyl ester resin include epoxy acrylate resins having an acrylic group or a methacryl group in one molecule, and include bisphenol A type vinyl ester resins, novolac type vinyl ester resins, brominated vinyl ester resins and the like.
Further, the sizing agent in this embodiment may be a urethane-modified resin such as an epoxy resin or a vinyl ester resin as described above.
And the mass mean molecular weight of such a sizing agent is 1000-10000. In addition, the sizing agent having a mass average molecular weight of 1000 or more can effectively separate the carbon fiber with the clamping pressure in the clamping process, as will be described later. Moreover, the sizing agent having a mass average molecular weight of 10,000 or less can suppress the carbon fiber in the resin from becoming rigid in the prepreg manufacturing process described later.

開繊した炭素繊維に塗布する収束剤は、水溶性エマルジョンとなったものが望ましい。このような収束剤は、炭素繊維に塗布する際に、その濃度管理が容易で後記する所定の塗布量の制御を容易にすることができると共に、有機溶剤を使用しないので環境負荷を小さくすることができる。
このような収束剤を開繊した炭素繊維に塗布する方法としては、特に制限はないが、ディッピング法が望ましい。具体的には、炭素繊維を送出しリール側から収束剤を貯留した槽を経由して巻取りリール側に巻き取る方法が挙げられる。
収束剤の塗布量は、収束剤を塗布し、乾燥した後の炭素繊維中の収束剤の含有率で、3〜10質量%、望ましくは5〜10質量%である。
The sizing agent applied to the opened carbon fiber is preferably a water-soluble emulsion. When such a sizing agent is applied to the carbon fiber, its concentration control is easy and control of a predetermined application amount described later can be facilitated, and an organic solvent is not used, so the environmental load is reduced. Can do.
Although there is no restriction | limiting in particular as a method of apply | coating such a sizing agent to the opened carbon fiber, A dipping method is desirable. Specifically, a method of winding the carbon fiber and winding it from the reel side to the winding reel side through a tank in which the sizing agent is stored can be mentioned.
The coating amount of the sizing agent is 3 to 10% by mass, preferably 5 to 10% by mass, based on the content of the sizing agent in the carbon fiber after the sizing agent is applied and dried.

前記したプリプレグ作製工程では、複数の炭素繊維を適切な長さにカットし、これに硬化性樹脂を含ませることでプリプレグが作製される。カットする炭素繊維の長さとしては、12mm〜50mm程度が望ましい。このように炭素繊維の長さを、12mm以上とすることによって成形品(繊維強化複合材料)に引張り強度などといった機械的物性を充分に発揮させることができる。そして、炭素繊維の長さを、50mm以下とすることによって、硬化性樹脂中に炭素繊維をより確実に均一に分散させることができ、得られる成形品(繊維強化複合材料)に良好な表面平滑性を付与することができる。
硬化性樹脂としては、例えば、エポキシ樹脂、ビニルエステル樹脂、不飽和ポリエステル樹脂、ウレタン樹脂等の熱硬化性樹脂が挙げられる。
ちなみに、プリプレグを作製する際に、炭素繊維には、本発明の課題を阻害しないかぎり、前記した熱硬化性樹脂の他に、充填材、熱可塑性樹脂、その他の添加物等を含ませることができる。
In the above-described prepreg production step, a plurality of carbon fibers are cut into an appropriate length, and a prepreg is produced by including a curable resin therein. The length of the carbon fiber to be cut is preferably about 12 mm to 50 mm. Thus, by setting the length of the carbon fiber to 12 mm or more, the molded product (fiber reinforced composite material) can sufficiently exhibit mechanical properties such as tensile strength. By making the length of the carbon fiber 50 mm or less, the carbon fiber can be more surely and uniformly dispersed in the curable resin, and the resulting molded product (fiber reinforced composite material) has a good surface smoothness. Sex can be imparted.
Examples of the curable resin include thermosetting resins such as epoxy resins, vinyl ester resins, unsaturated polyester resins, and urethane resins.
Incidentally, when preparing the prepreg, the carbon fiber may contain a filler, a thermoplastic resin, other additives, etc. in addition to the above-described thermosetting resin, as long as the problems of the present invention are not impaired. it can.

このように作製されたプリプレグは、前記した積層工程で複数積層されるとともに、成形工程で型締め・硬化される。この際、型内には、硬化性樹脂が更に加えられてもよい。
型締め圧力は、炭素繊維がより効果的に分繊化する圧力であって、5MPa以上が望ましい。
A plurality of the prepregs thus produced are laminated in the above-described lamination process, and are clamped and cured in the molding process. At this time, a curable resin may be further added into the mold.
The mold clamping pressure is a pressure at which the carbon fibers are more effectively separated, and is preferably 5 MPa or more.

ここで「炭素繊維の分繊化」について、図2(a)および(b)を参照しながら説明する。図2(a)は、分繊化した炭素繊維の様子を示す図面代用写真である。図2(b)は、分繊化していない炭素繊維が成形工程で樹脂流動に伴って樹脂リッチ部分を形成した様子を比較例として示す図面代用写真である。   Here, “dividing the carbon fiber” will be described with reference to FIGS. 2 (a) and 2 (b). FIG. 2A is a drawing-substituting photograph showing the state of the carbon fiber that has been divided. FIG. 2B is a drawing-substituting photograph showing, as a comparative example, a state in which a carbon fiber that has not been separated is formed with a resin-rich portion in accordance with the resin flow in the molding process.

図2(a)に示すように、炭素繊維1の分繊化とは、硬化性樹脂2中で、炭素繊維1を扇の骨状(フカヒレ状)となるように複数のフィラメント束1aに分けて広げることであって、複数のフィラメント束1aが炭素繊維1の端部側になるほど相互の間隔が広く分かれた状態にすることをいう。このような炭素繊維1の分繊化は、前記した所定の質量平均分子量を有する収束剤が含有率3〜10質量%で炭素繊維に含まれることによって生じる。   As shown in FIG. 2 (a), the separation of the carbon fiber 1 is to divide the carbon fiber 1 into a plurality of bundles of filaments 1a in the curable resin 2 so as to form a fan-shaped (shark fin) shape. It means that the interval between the plurality of filament bundles 1a becomes wider as the end of the carbon fiber 1 becomes closer. Such splitting of the carbon fiber 1 occurs when the sizing agent having the above-described predetermined mass average molecular weight is contained in the carbon fiber at a content of 3 to 10% by mass.

これに対して、分繊化していない比較例として示す炭素繊維は、図2(b)に示すように、型締めされた後も開繊された炭素繊維1の幅を維持している。そして、例えば、硬化性樹脂2中で、重なった炭素繊維1同士は、開繊された炭素繊維1の幅を維持するように互いに拘束し合いながら硬化性樹脂2の流動に伴って型内で移動する。その結果、型締めされたプリプレグには、硬化性樹脂が偏在して樹脂リッチ部分3を形成することとなる。   On the other hand, as shown in FIG. 2 (b), the carbon fiber shown as a comparative example that has not been fiber-divided maintains the width of the opened carbon fiber 1 after being clamped. And, for example, in the curable resin 2, the overlapping carbon fibers 1 are in the mold with the flow of the curable resin 2 while restraining each other so as to maintain the width of the opened carbon fiber 1. Moving. As a result, the curable resin is unevenly distributed in the clamped prepreg to form the resin rich portion 3.

前記した成形工程で、型内のプリプレグを硬化することによって炭素繊維を含む本実施形態に係る繊維強化複合材料が得られる。プリプレグの硬化は、使用する硬化性樹脂の種類に応じて行えばよく、例えば、熱硬化性樹脂を含むプリプレグは、温調金型によるプレスマシンにて所定の圧力下に加熱硬化すればよい。   The fiber-reinforced composite material according to the present embodiment including carbon fibers is obtained by curing the prepreg in the mold in the molding step described above. The prepreg may be cured according to the type of curable resin to be used. For example, the prepreg containing the thermosetting resin may be heat-cured under a predetermined pressure with a press machine using a temperature control die.

次に、本実施形態に係る繊維強化複合材料およびその製造方法の作用効果について説明する。
本実施形態に係る製造方法では、前記した収束剤が、予め開繊された炭素繊維に前記した所定の量で塗布されるので、型締め時の樹脂流動で炭素繊維がプリプレグの厚さ方向にうねるように湾曲することが防止される。そして、型締め時の樹脂流動で炭素繊維がうねることが防止されてその直線性が確保されるので、プリプレグの表面近傍で樹脂のひけの原因となる樹脂リッチ部分の形成が抑制される。
その結果、この製造方法で得られる繊維強化複合材料は、前記したように、炭素繊維の湾曲が防止されると共に、樹脂のひけの原因となる樹脂リッチ部分の形成が抑制されるので、その表面平滑性に優れたものとなる。
Next, functions and effects of the fiber-reinforced composite material and the manufacturing method thereof according to the present embodiment will be described.
In the manufacturing method according to the present embodiment, the above-described sizing agent is applied to the carbon fiber that has been previously opened in the above-described predetermined amount, so that the carbon fiber is aligned in the thickness direction of the prepreg by resin flow during mold clamping. It is prevented from bending in a undulating manner. And since the carbon fiber is prevented from swelling due to the resin flow at the time of mold clamping and its linearity is secured, the formation of the resin rich portion that causes the resin sink near the surface of the prepreg is suppressed.
As a result, the fiber-reinforced composite material obtained by this manufacturing method is prevented from forming the resin-rich portion that causes the resin sink while preventing the bending of the carbon fiber as described above. Excellent smoothness.

また、炭素繊維を含む繊維強化複合材料の従来の製造方法では、前記したように、型締め時の樹脂流動で炭素繊維のフィラメントがその間隔を維持しながら型内で広がるために型締めされたプリプレグ内で樹脂リッチ部分が形成される。特に、炭素繊維同士がプリプレグの厚さ方向(積層方向)に重なった部分では、フィラメント同士の間隔が拘束される傾向が顕著となる。
これに対して、本実施形態に係る製造方法では、前記した収束剤が、予め開繊された炭素繊維(フィラメントの束)に前記した所定の量で塗布されるので、型締め時の樹脂流動で炭素繊維が分繊化する。つまり、炭素繊維のフィラメントが炭素繊維の端部側になるほど相互の間隔が広く分かれる。その結果、本実施形態に係る製造方法は、従来の製造方法と比較して、型締めされたプリプレグ内で樹脂リッチ部分が形成されることがより効果的に抑制される。したがって、本実施形態に係る製造方法で得られる繊維強化複合材料は、その表面平滑性に優れたものとなる。
Moreover, in the conventional manufacturing method of the fiber reinforced composite material containing carbon fiber, as mentioned above, the mold was clamped so that the filament of carbon fiber spreads in the mold while maintaining the interval by the resin flow at the time of mold clamping. A resin rich portion is formed in the prepreg. In particular, in the portion where the carbon fibers overlap each other in the thickness direction (stacking direction) of the prepreg, the tendency that the interval between the filaments is constrained becomes significant.
On the other hand, in the manufacturing method according to the present embodiment, the sizing agent described above is applied to the carbon fiber (filament bundle) that has been previously opened in the predetermined amount, so that the resin flow during clamping With this, the carbon fiber is separated. That is, the interval between the carbon fibers becomes wider as the carbon fiber filaments are closer to the end of the carbon fibers. As a result, in the manufacturing method according to the present embodiment, the resin-rich portion is more effectively suppressed from being formed in the clamped prepreg as compared with the conventional manufacturing method. Therefore, the fiber reinforced composite material obtained by the manufacturing method according to the present embodiment has excellent surface smoothness.

また、本実施形態に係る製造方法で得られた繊維強化複合材料は、前記したように、優れた表面平滑性を有しながらも、ガラス繊維よりも密度が低い炭素繊維を含むので、従来のガラス繊維を含む繊維強化複合材料と比較して軽量となる。   In addition, as described above, the fiber-reinforced composite material obtained by the manufacturing method according to the present embodiment includes carbon fibers having a lower density than glass fibers while having excellent surface smoothness. It is lighter than a fiber reinforced composite material containing glass fibers.

以上のように、本実施形態に係る繊維強化複合材料およびその製造方法によれば、予め開繊した炭素繊維に塗布する収束剤の組成、分子量、および塗布量を前記したように設定することによって、得られる繊維強化複合材料の軽量化を図りつつ、表面平滑性を優れたものとすることができる。   As described above, according to the fiber-reinforced composite material and the manufacturing method thereof according to the present embodiment, by setting the composition, molecular weight, and coating amount of the sizing agent applied to the previously opened carbon fiber as described above. The surface smoothness can be made excellent while reducing the weight of the obtained fiber-reinforced composite material.

次に、実施例を示しながら本発明をさらに具体的に説明する。
(実施例1から実施例3)
実施例1から実施例3では、炭素繊維として、ポリアクリロニトリル系炭素繊維(東邦テナックス社製、HTA−12K−E30、収束幅6mm、収束厚さ0.15mm)を使用した繊維強化複合材料を製造した。この炭素繊維には、予め開繊が施された。ちなみに、開繊は、特開平11−172562号公報に記載された開繊装置に準じた開繊装置を使用して行われた。開繊後の炭素繊維の幅は16mmであり、厚さは0.06mmであった。
Next, the present invention will be described more specifically with reference to examples.
(Example 1 to Example 3)
In Example 1 to Example 3, a fiber-reinforced composite material using polyacrylonitrile-based carbon fiber (manufactured by Toho Tenax Co., Ltd., HTA-12K-E30, convergence width 6 mm, convergence thickness 0.15 mm) as a carbon fiber is manufactured. did. This carbon fiber was previously opened. Incidentally, the fiber opening was performed using a fiber opening device according to the fiber opening device described in JP-A-11-172562. The width of the carbon fiber after opening was 16 mm, and the thickness was 0.06 mm.

次に、開繊を施した炭素繊維には収束剤が塗布された。この収束剤としては、ビスフェノールA型のエポキシ樹脂(HEXION社製、水溶性エポキシ樹脂 エピレッツ(登録商標)3540WY−55(質量平均分子量2000))が使用された。
なお、収束剤の塗布は、炭素繊維を送出しリール側から前記した開繊装置および前記した収束剤の水溶性エマルジョンを貯留した槽をそれぞれ経由して巻取りリール側に巻き取ることによって行われた。
実施例1から実施例3のそれぞれでは、収束剤の塗布量を表1に示すように設定した。なお、この塗布量は、収束剤の水溶性エマルジョンを塗布し乾燥させた後の炭素繊維(以下、単に「収束剤を含む炭素繊維」ということがある)中の収束剤の含有率(質量%)で示す。
Next, a sizing agent was applied to the opened carbon fiber. As the sizing agent, a bisphenol A type epoxy resin (manufactured by HEXION, water-soluble epoxy resin Epiletz (registered trademark) 3540WY-55 (mass average molecular weight 2000)) was used.
The sizing agent is applied by feeding the carbon fiber from the reel side to the take-up reel side through the opening device and the tank storing the water-soluble emulsion of the sizing agent. It was.
In each of Examples 1 to 3, the application amount of the sizing agent was set as shown in Table 1. This coating amount is the content (% by mass) of the sizing agent in the carbon fiber (hereinafter sometimes simply referred to as “carbon fiber containing the sizing agent”) after the water-soluble emulsion of the sizing agent is applied and dried. ).

次に、収束剤を含む炭素繊維の曲げ荷重を測定した。この曲げ荷重の測定は、図3に示すように行われた。ここで参照する図3は、収束剤を含む炭素繊維の曲げ荷重を測定する様子を示す概念図である。なお、この測定で使用された収束剤を含む炭素繊維(幅16mm)の測定片は、その長さが30mmに切断されたものである。   Next, the bending load of the carbon fiber containing the sizing agent was measured. The bending load was measured as shown in FIG. FIG. 3 referred to here is a conceptual diagram showing how the bending load of the carbon fiber containing the sizing agent is measured. In addition, the measurement piece of the carbon fiber (16 mm in width) containing the sizing agent used in this measurement was cut to a length of 30 mm.

図3に示すように、この測定片10を使用した曲げ荷重の測定は、測定片10の端部を10mmの長さで挟持する治具11で片持ち支持されたものについて行われた。そして、この測定は、治具11から20mmの長さで延出する測定片10の先端に分銅12を載置し、分銅12の重さに応じて撓む測定片10から滑り落ちた分銅12の最小重さを曲げ荷重(g)として求めた。その結果を表1および図4に示す。ここで図4は、収束剤の塗布量と収束剤を含む炭素繊維の曲げ荷重との関係を示すグラフであり、縦軸は炭素繊維の曲げ荷重(g)を示し、横軸は炭素繊維に含む収束剤の塗布量(質量%)を示す。   As shown in FIG. 3, the measurement of the bending load using this measurement piece 10 was performed about what was cantilevered by the jig | tool 11 which clamps the edge part of the measurement piece 10 by the length of 10 mm. In this measurement, the weight 12 is placed on the tip of the measuring piece 10 extending from the jig 11 with a length of 20 mm, and the weight 12 is slid down from the measuring piece 10 bent according to the weight of the weight 12. Was determined as a bending load (g). The results are shown in Table 1 and FIG. Here, FIG. 4 is a graph showing the relationship between the application amount of the sizing agent and the bending load of the carbon fiber containing the sizing agent. The vertical axis shows the bending load (g) of the carbon fiber, and the horizontal axis shows the carbon fiber. The coating amount (mass%) of the sizing agent is shown.

次に、実施例1から実施例3のそれぞれで得られた収束剤を含む炭素繊維に、樹脂液を含浸させてプリプレグが作製された。樹脂液は、不飽和ポリエステル(熱硬化性樹脂)100質量部、炭酸カルシウム120質量部、および酢酸ビニル系エラストマ6質量部を混合して調製された。炭素繊維に対する樹脂液の含浸は、月島機械(株)製のSMC含浸機に炭素繊維を5m/分の速度で供給して行われた。なお、この含浸機に供給される炭素繊維の状態が次に説明する判断基準で目視によって評価された。その結果を表1に示す。   Next, a carbon fiber containing a sizing agent obtained in each of Examples 1 to 3 was impregnated with a resin solution to prepare a prepreg. The resin liquid was prepared by mixing 100 parts by weight of unsaturated polyester (thermosetting resin), 120 parts by weight of calcium carbonate, and 6 parts by weight of vinyl acetate elastomer. The impregnation of the resin liquid into the carbon fiber was performed by supplying the carbon fiber to the SMC impregnation machine manufactured by Tsukishima Kikai Co., Ltd. at a speed of 5 m / min. In addition, the state of the carbon fiber supplied to this impregnation machine was visually evaluated according to the judgment criteria described below. The results are shown in Table 1.

前記した炭素繊維の状態は、毛羽立ちが無かったものを良好と評価して「○」と表1に記し、毛羽立ちが発生したものを悪いと評価して「△」と表1に記し、著しく毛羽立ちが発生したもの(フィラメントの破断が著しいもの)を最も悪いと評価して「×」と表1に記した。   The condition of the above-mentioned carbon fiber was evaluated as good when no fluff was evaluated and marked as “◯” in Table 1, and when fluff was evaluated as bad, it was marked as “Δ” in Table 1 and markedly fluffed. In Table 1, “×” was evaluated as the worst and the case in which the occurrence of rupture occurred (the filament breakage was remarkable) was evaluated as the worst.

次に、得られたプリプレグを金型面積に対して20%の大きさとなるように100mm×150mm×20mmの大きさでセットした。ちなみに、金型としては、表面が所定の曲率で湾曲する曲面を有するものであって、自動車の外板を模擬した擬似金型を使用した。そして、川崎油工(株)製のプレス機(200t)を使用して型締め圧力が10MPaとなるようにプリプレグを加圧して硬化させて繊維強化複合材料を得た。なお、このときの型締め時間は、4分であり、プリプレグを硬化させるための金型温度は、140℃に設定された。   Next, the obtained prepreg was set to a size of 100 mm × 150 mm × 20 mm so as to be 20% of the mold area. Incidentally, as the mold, a pseudo mold having a curved surface whose surface is curved with a predetermined curvature and simulating the outer plate of an automobile was used. Then, using a press machine (200t) manufactured by Kawasaki Oil Works Co., Ltd., the prepreg was pressurized and cured so that the clamping pressure was 10 MPa, to obtain a fiber-reinforced composite material. The mold clamping time at this time was 4 minutes, and the mold temperature for curing the prepreg was set to 140 ° C.

得られた繊維強化複合材料について、繊維強化複合材料中の炭素繊維の体積分率(Vf:%)、および密度(g/cm)が測定されると共に、繊維強化複合材料の断面を目視で観察して炭素繊維の状態、および硬化性樹脂の含浸状態が次に説明する判断基準で評価された。その結果を表1に示す。なお、密度(g/cm)の測定には、MIRGE社製の密度測定機(SD−120L)が使用された。 About the obtained fiber reinforced composite material, the volume fraction (Vf:%) and density (g / cm 3 ) of carbon fibers in the fiber reinforced composite material are measured, and the cross section of the fiber reinforced composite material is visually observed. The state of carbon fiber and the impregnation state of the curable resin were observed and evaluated according to the criteria described below. The results are shown in Table 1. In addition, the density measuring machine (SD-120L) made from MIRGE was used for the measurement of density (g / cm < 3 >).

繊維強化複合材料の前記した炭素繊維の状態は、炭素繊維が湾曲していないものを良好と評価して「○」と表1に記し、炭素繊維が湾曲しているものを悪いと評価して「×」と表1に記した。   The above-described carbon fiber state of the fiber reinforced composite material is evaluated as good when the carbon fiber is not curved and is marked as “◯” in Table 1, and when the carbon fiber is curved as bad. “X” is shown in Table 1.

繊維強化複合材料の硬化性樹脂の含浸状態は、炭素繊維同士の間に硬化性樹脂が充分に含浸しているものを良好と評価して「○」と表1に記し、炭素繊維同士の間に硬化性樹脂が充分に含浸せずに、その空隙部分によって生じた膨れで繊維強化複合材料の表面に凹凸が発生したものを悪いと評価して「×」と表1に記した。   The impregnation state of the curable resin of the fiber reinforced composite material is evaluated as good when the curable resin is sufficiently impregnated between the carbon fibers and is marked as “◯” in Table 1, and between the carbon fibers. In Table 1, “x” was evaluated as bad if the surface of the fiber-reinforced composite material was not sufficiently impregnated with the curable resin and the surface of the fiber-reinforced composite material was uneven due to the swelling caused by the voids.

(比較例1)
この比較例1では、収束剤を含む炭素繊維に含浸させる樹脂液中の炭酸カルシウムの配合量を「実施例1から実施例3」での120質量部に代えて180質量部とした以外は、「実施例1から実施例3」と同様に収束剤を含む炭素繊維を作製するとともに、この炭素繊維を使用して繊維強化複合材料を得た。収束剤の塗布量を表1に示す。
(Comparative Example 1)
In Comparative Example 1, except that the amount of calcium carbonate in the resin liquid impregnated in the carbon fiber containing the sizing agent was 180 parts by mass instead of 120 parts by mass in “Example 1 to Example 3,” Carbon fibers containing a sizing agent were produced in the same manner as in “Example 1 to Example 3”, and fiber reinforced composite materials were obtained using the carbon fibers. Table 1 shows the application amount of the sizing agent.

そして、収束剤を含む炭素繊維の曲げ荷重、繊維強化複合材料中の炭素繊維の体積分率(Vf:%)、および密度(g/cm)が「実施例1から実施例3」と同様に測定されると共に、含浸機に供給される炭素繊維の状態、繊維強化複合材料の炭素繊維の状態、および繊維強化複合材料の硬化性樹脂の含浸状態が「実施例1から実施例3」と同様の判断基準で評価された。その結果を表1に示すと共に、収束剤を含む炭素繊維の曲げ荷重の測定結果については図4に併記する。 And the bending load of the carbon fiber containing a sizing agent, the volume fraction (Vf:%) of the carbon fiber in the fiber-reinforced composite material, and the density (g / cm 3 ) are the same as those in “Example 1 to Example 3”. The state of the carbon fibers supplied to the impregnation machine, the state of the carbon fibers of the fiber reinforced composite material, and the state of impregnation of the curable resin of the fiber reinforced composite material are “Example 1 to Example 3”. Evaluation was made based on the same criteria. The results are shown in Table 1, and the measurement results of the bending load of the carbon fiber containing the sizing agent are also shown in FIG.

(比較例2および比較例3)
この比較例2および比較例3では、収束剤の塗布量を表1に示すように変更した以外は、「実施例1から実施例3」と同様に収束剤を含む炭素繊維を作製するとともに、この炭素繊維を使用して繊維強化複合材料を得た。
(Comparative Example 2 and Comparative Example 3)
In Comparative Example 2 and Comparative Example 3, except that the application amount of the sizing agent was changed as shown in Table 1, carbon fibers containing the sizing agent were produced in the same manner as in "Example 1 to Example 3," This carbon fiber was used to obtain a fiber reinforced composite material.

そして、収束剤を含む炭素繊維の曲げ荷重、繊維強化複合材料中の炭素繊維の体積分率(Vf:%)、および密度(g/cm)が「実施例1から実施例3」と同様に測定されると共に、含浸機に供給される炭素繊維の状態、繊維強化複合材料の炭素繊維の状態、および繊維強化複合材料の硬化性樹脂の含浸状態が「実施例1から実施例3」と同様の判断基準で評価された。その結果を表1に示すと共に、収束剤を含む炭素繊維の曲げ荷重の測定結果については図4に併記する。 And the bending load of the carbon fiber containing a sizing agent, the volume fraction (Vf:%) of the carbon fiber in the fiber-reinforced composite material, and the density (g / cm 3 ) are the same as those in “Example 1 to Example 3”. The state of the carbon fibers supplied to the impregnation machine, the state of the carbon fibers of the fiber reinforced composite material, and the state of impregnation of the curable resin of the fiber reinforced composite material are “Example 1 to Example 3”. Evaluation was made based on the same criteria. The results are shown in Table 1, and the measurement results of the bending load of the carbon fiber containing the sizing agent are also shown in FIG.

(実施例1〜3、比較例2〜3での繊維強化複合材料等の評価)
表1に示すように、収束剤の塗布量が3質量%〜10質量%の炭素繊維を使用して作製された繊維強化複合材料(実施例1から実施例3)は、炭素繊維の湾曲がなく、硬化性樹脂の含浸状態も良好であった。また、プリプレグを作製するために含浸機に送出す炭素繊維には、毛羽立ちが認められなかった。これに対し、収束剤の塗布量が3質量%未満の炭素繊維(比較例1および比較例2)には、毛羽立ちが認められた。そして、収束剤の塗布量が最も少ない炭素繊維を使用して作製された繊維強化複合材料(比較例1)は、炭素繊維が湾曲していた。
また、収束剤の塗布量が10質量%を超える炭素繊維を使用して作製された繊維強化複 合材料(比較例3)は、炭素繊維に対する硬化性樹脂の含浸が不充分となって、繊維強化複合材料の表面に凹凸が生じた。
(Evaluation of fiber reinforced composite materials in Examples 1 to 3 and Comparative Examples 2 to 3)
As shown in Table 1, the fiber-reinforced composite materials (Example 1 to Example 3) prepared using carbon fibers having a sizing agent coating amount of 3% by mass to 10% by mass have a carbon fiber curvature. In addition, the impregnation state of the curable resin was also good. In addition, no fuzz was observed in the carbon fiber delivered to the impregnation machine for producing the prepreg. On the other hand, fuzz was recognized in the carbon fiber (Comparative Example 1 and Comparative Example 2) in which the application amount of the sizing agent was less than 3 mass%. And the fiber reinforced composite material (Comparative Example 1) produced using the carbon fiber with the least amount of application | coating of a sizing agent had the carbon fiber curved.
In addition, the fiber reinforced composite material (Comparative Example 3) produced using carbon fibers in which the coating amount of the sizing agent exceeds 10% by mass is insufficient for impregnation of the curable resin into the carbon fibers. Unevenness occurred on the surface of the reinforced composite material.

そして、図4に示すように。収束剤の塗布量が5質量%以上の炭素繊維を使用して作製された繊維強化複合材料(実施例2および実施例3)は、炭素繊維の曲げ荷重が5gを超えると共に、収束剤の塗布量が10質量%を超えても炭素繊維の曲げ荷重が横ばいとなることが判明した。つまり、前記したように、収束剤の塗布量が15質量%の炭素繊維を使用した繊維強化複合材料(比較例3)の表面に凹凸が生じたことを考慮すると、収束剤の塗布量が3質量%〜10質量%、望ましくは5質量%〜10質量%の炭素繊維を使用した繊維強化複合材料が好適であることが確認された。   And as shown in FIG. The fiber-reinforced composite materials (Example 2 and Example 3) produced using carbon fibers having a sizing agent coating amount of 5% by mass or more have a bending load of the carbon fiber exceeding 5 g and the sizing agent coating. It has been found that the bending load of the carbon fiber remains flat even when the amount exceeds 10% by mass. That is, as described above, in consideration of the occurrence of irregularities on the surface of the fiber reinforced composite material (Comparative Example 3) using carbon fibers having a coating amount of 15 mass%, the application amount of the sizing agent is 3 It has been confirmed that a fiber reinforced composite material using carbon fibers of 10% by mass to 10% by mass, preferably 5% by mass to 10% by mass is preferable.

(実施例4から実施例11、および比較例4から比較例6)
ここでの実施例および比較例では、表2に示す質量平均分子量の収束剤を使用し、収束剤の塗布量を表2に示すように設定した以外は、「実施例1から実施例3」と同様に収束剤を含む炭素繊維を作製するとともに、この炭素繊維を使用して自動車の外板を模擬した繊維強化複合材料を得た。
(Examples 4 to 11 and Comparative Examples 4 to 6)
In Examples and Comparative Examples herein, “Example 1 to Example 3” except that the sizing agent having the mass average molecular weight shown in Table 2 was used and the coating amount of the sizing agent was set as shown in Table 2. In the same manner as above, a carbon fiber containing a sizing agent was produced, and a fiber-reinforced composite material simulating an automobile outer plate was obtained using the carbon fiber.

なお、実施例4から実施例11、および比較例4から比較例6の収束剤は、DIC社製のEPICLON(液状エポキシ樹脂)より表2に示す質量平均分子量のものを選択して使用した。   In addition, the convergence agents of Examples 4 to 11 and Comparative Examples 4 to 6 were selected from EPICLON (liquid epoxy resin) manufactured by DIC and those having a mass average molecular weight shown in Table 2.

そして、得られた繊維強化複合材料について、繊維強化複合材料中の炭素繊維の体積分率(Vf:%)、表面粗さRa(μm)、および表面のうねり(μm)が測定されると共に、繊維強化複合材料の表面の状態が次に説明する判断基準で評価された。その結果を表2に示す。なお、表面粗さRa(μm)の測定には、ミツトヨ(株)製の表面粗さ測定機(SV3000CNC)が使用された。そして、表面のうねり(μm)は、得られた繊維強化複合材料の表面を直線で30mmにわたって測定した凹凸の最大高さと最小高さとの差(絶対値)として求めた。   And about the obtained fiber reinforced composite material, while measuring the volume fraction (Vf:%) of carbon fiber in a fiber reinforced composite material, surface roughness Ra (micrometer), and surface waviness (micrometer), The condition of the surface of the fiber reinforced composite material was evaluated according to the criteria described below. The results are shown in Table 2. A surface roughness measuring machine (SV3000CNC) manufactured by Mitutoyo Corporation was used for measuring the surface roughness Ra (μm). The surface waviness (μm) was determined as the difference (absolute value) between the maximum height and the minimum height of the irregularities measured on the surface of the obtained fiber-reinforced composite material over a straight line of 30 mm.

繊維強化複合材料の前記した表面の状態は、目視で凹凸が認められないものを良好と評価して「○」と表2に記し、目視で凹凸が認められたものを悪いと評価して「×」と表2に記した。   The above-mentioned surface state of the fiber reinforced composite material is evaluated as good when the irregularities are not visually recognized as “◯” and described in Table 2, and when the irregularities are visually observed as bad. X "and described in Table 2.

そして、実施例5および比較例4のそれぞれで得られた繊維強化複合材料の表面の凹凸高さを測定してグラフ化した。この凹凸高さは、繊維強化複合材料の前記した表面のほぼ中央部で、直線で30mmにわたって測定した。図5(a)は、実施例5で得られた繊維強化複合材料の表面における凹凸高さを示すグラフであり、図5(b)は、比較例4で得られた繊維強化複合材料の表面における凹凸高さを示すグラフである。縦軸は、凹凸高さ(μm)を示し、横軸は測定長さ(mm)を示す。なお、縦軸の凹凸高さ(μm)は、測定開始位置の高さを基準(0μm)とした相対値で示した。そして、これらの測定位置に対応する金型の凹凸高さを破線で併記した。   And the uneven | corrugated height of the surface of the fiber reinforced composite material obtained in each of Example 5 and Comparative Example 4 was measured, and it graphed. This unevenness height was measured over 30 mm in a straight line at approximately the center of the surface of the fiber-reinforced composite material. FIG. 5A is a graph showing the uneven height on the surface of the fiber-reinforced composite material obtained in Example 5, and FIG. 5B is the surface of the fiber-reinforced composite material obtained in Comparative Example 4. It is a graph which shows the uneven | corrugated height in. The vertical axis represents the uneven height (μm), and the horizontal axis represents the measurement length (mm). In addition, the uneven | corrugated height (micrometer) of a vertical axis | shaft was shown with the relative value on the basis of the height of a measurement start position (0 micrometer). And the uneven | corrugated height of the metal mold | die corresponding to these measurement positions was written together with the broken line.

(実施例4〜11、比較例4〜6での繊維強化複合材料等の評価)
表2に示すように、質量平均分子量が1000以上、10000以下の収束剤を含む炭素繊維を使用した繊維強化複合材料(実施例4から実施例11)は、その表面の状態が良好で凹凸が認められず、表面粗さRaおよび表面のうねりが小さいことが確認された。
(Evaluation of fiber reinforced composite materials in Examples 4 to 11 and Comparative Examples 4 to 6)
As shown in Table 2, the fiber reinforced composite material (Example 4 to Example 11) using carbon fibers containing a sizing agent having a mass average molecular weight of 1000 or more and 10,000 or less has a good surface condition and unevenness. It was not recognized, and it was confirmed that the surface roughness Ra and the surface waviness were small.

これに対して、質量平均分子量が1000未満の収束剤を含む炭素繊維を使用した繊維強化複合材料(比較例4)、および質量平均分子量が10000を超える収束剤を含む炭素繊維を使用した繊維強化複合材料(比較例5および比較例6)は、表面のうねりが大きく、目視によっても表面に凹凸が認められた。特に、比較例4および比較例6では、収束剤の塗布量が前記した範囲内(5質量%)であっても、収束剤の質量平均分子量が1000以上、10000以下の範囲を外れると、繊維強化複合材料の表面に凹凸が形成されることが確認された。
そして、質量平均分子量が1000以上、10000以下の収束剤を含む炭素繊維を使用した繊維強化複合材料(実施例4から実施例11)は、表面平滑性に優れることが確認された。
また、図5(a)に示すように、実施例5で得られた繊維強化複合材料の表面は、その凹凸高さが金型での対応した凹凸高さとほぼ同じであった。
これに対し、比較例4で得られた繊維強化複合材料の表面は、図5(b)に示すように、樹脂リッチ部分でひけを形成したと考えられる凹みが形成されていた。
以上のことから、実施例に係る繊維強化複合材料の表面平滑性は、比較例に係る繊維強化複合材料の表面平滑性よりも優れていることが確認された。
In contrast, a fiber reinforced composite material using a carbon fiber containing a sizing agent having a mass average molecular weight of less than 1000 (Comparative Example 4), and a fiber reinforced using a carbon fiber containing a sizing agent having a mass average molecular weight exceeding 10,000. The composite materials (Comparative Example 5 and Comparative Example 6) had large surface waviness, and irregularities were observed on the surface by visual observation. In particular, in Comparative Example 4 and Comparative Example 6, even if the application amount of the sizing agent is within the above-described range (5% by mass), if the mass average molecular weight of the sizing agent is out of the range of 1000 to 10,000, It was confirmed that irregularities were formed on the surface of the reinforced composite material.
And it was confirmed that the fiber reinforced composite material (Example 4 to Example 11) using the carbon fiber containing the sizing agent having a mass average molecular weight of 1000 or more and 10,000 or less is excellent in surface smoothness.
Moreover, as shown to Fig.5 (a), the uneven | corrugated height of the surface of the fiber reinforced composite material obtained in Example 5 was substantially the same as the corresponding uneven | corrugated height in a metal mold | die.
On the other hand, the surface of the fiber-reinforced composite material obtained in Comparative Example 4 was formed with a dent that was thought to have formed sink marks at the resin-rich portion, as shown in FIG.
From the above, it was confirmed that the surface smoothness of the fiber-reinforced composite material according to the example is superior to the surface smoothness of the fiber-reinforced composite material according to the comparative example.

実施形態に係る繊維強化複合材料の製造方法の工程説明図である。It is process explanatory drawing of the manufacturing method of the fiber reinforced composite material which concerns on embodiment. (a)は、分繊化した炭素繊維の様子を示す図面代用写真である。(b)は、分繊化していない炭素繊維が型締め工程で樹脂流動に伴って樹脂リッチ部分を形成した様子を比較例として示す図面代用写真である。(A) is a drawing-substituting photograph showing a state of a carbon fiber that has been divided. (B) is a drawing-substituting photograph showing, as a comparative example, a state in which a carbon fiber that has not been divided is formed with a resin-rich portion in accordance with the resin flow in the mold clamping step. 収束剤を含む炭素繊維の曲げ荷重を測定する様子を示す概念図である。It is a conceptual diagram which shows a mode that the bending load of carbon fiber containing a sizing agent is measured. 収束剤の塗布量と収束剤を含む炭素繊維の曲げ荷重との関係を示すグラフであり、縦軸は炭素繊維の曲げ荷重(g)を示し、横軸は炭素繊維に含む収束剤の塗布量(質量%)を示す。It is a graph which shows the relationship between the application amount of a sizing agent, and the bending load of the carbon fiber containing a sizing agent, a vertical axis | shaft shows the bending load (g) of carbon fiber, and a horizontal axis shows the application amount of the sizing agent contained in carbon fiber. (Mass%) is shown. (a)は、実施例5で得られた繊維強化複合材料の表面における凹凸高さを示すグラフであり、(b)は、比較例4で得られた繊維強化複合材料の表面における凹凸高さを示すグラフである。(A) is a graph which shows the uneven | corrugated height in the surface of the fiber reinforced composite material obtained in Example 5, (b) is uneven | corrugated height in the surface of the fiber reinforced composite material obtained in Comparative Example 4. It is a graph which shows.

符号の説明Explanation of symbols

10 測定片(繊維強化複合材料)
11 治具
10 Measurement piece (fiber reinforced composite material)
11 Jig

Claims (3)

予め開繊した炭素繊維に、質量平均分子量が1000〜10000の収束剤を含有率が3〜10質量%となるように塗布する工程と、
前記収束剤を塗布した前記炭素繊維に硬化性樹脂を含ませてプリプレグを得る工程と、
前記プリプレグを所定の型内で型締めし、この型締め時の前記硬化性樹脂の流動により前記炭素繊維を分繊化し硬化する工程と、
を有することを特徴とする繊維強化複合材料の製造方法。
A step of applying a sizing agent having a mass average molecular weight of 1000 to 10000 to a carbon fiber that has been opened in advance so that the content is 3 to 10% by mass;
Including a curable resin in the carbon fiber coated with the sizing agent to obtain a prepreg;
A step of clamping the prepreg in a predetermined mold, and separating and curing the carbon fibers by the flow of the curable resin at the time of clamping ;
A method for producing a fiber-reinforced composite material, comprising:
前記収束剤は、エポキシ系樹脂またはビニルエステル系樹脂であることを特徴とする請求項1に記載の繊維強化複合材料の製造方法。   The method for producing a fiber-reinforced composite material according to claim 1, wherein the sizing agent is an epoxy resin or a vinyl ester resin. 予め開繊した炭素繊維に、質量平均分子量が1000〜10000の収束剤を3〜10質量%となるように塗布した炭素繊維と、硬化性樹脂とを含むプリプレグを所定の型内で型締めし、この型締め時の前記硬化性樹脂の流動により前記炭素繊維を分繊化し硬化させたことを特徴とする繊維強化複合材料。 A prepreg containing carbon fiber coated with 3 to 10% by mass of a sizing agent having a mass average molecular weight of 1000 to 10000 on carbon fiber that has been opened in advance and a curable resin is clamped in a predetermined mold. A fiber-reinforced composite material, wherein the carbon fiber is separated and cured by the flow of the curable resin during clamping .
JP2008031338A 2008-02-13 2008-02-13 Method for producing fiber-reinforced composite material and fiber-reinforced composite material Expired - Fee Related JP5260977B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008031338A JP5260977B2 (en) 2008-02-13 2008-02-13 Method for producing fiber-reinforced composite material and fiber-reinforced composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008031338A JP5260977B2 (en) 2008-02-13 2008-02-13 Method for producing fiber-reinforced composite material and fiber-reinforced composite material

Publications (2)

Publication Number Publication Date
JP2009191115A JP2009191115A (en) 2009-08-27
JP5260977B2 true JP5260977B2 (en) 2013-08-14

Family

ID=41073428

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008031338A Expired - Fee Related JP5260977B2 (en) 2008-02-13 2008-02-13 Method for producing fiber-reinforced composite material and fiber-reinforced composite material

Country Status (1)

Country Link
JP (1) JP5260977B2 (en)

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008002046A (en) * 2006-06-23 2008-01-10 Matsumoto Yushi Seiyaku Co Ltd Sizing agent and method for producing carbon fiber strand using the same
JP2008274520A (en) * 2007-04-04 2008-11-13 Toray Ind Inc Sizing agent for carbon fiber and carbon fiber bundle

Also Published As

Publication number Publication date
JP2009191115A (en) 2009-08-27

Similar Documents

Publication Publication Date Title
JP5572947B2 (en) Molding material, fiber reinforced plastic, and production method thereof
KR102292011B1 (en) Fiber-reinforced resin material and fiber-reinforced resin compact using same
JP2009114612A (en) Method for producing chopped fiber bundle and molding material, molding material, and fiber-reinforced plastic
JPWO2005083002A1 (en) Epoxy resin composition for fiber-reinforced composite material, prepreg, and fiber-reinforced composite material
JP2009114611A (en) Method for producing chopped fiber bundle and molding material, molding material, and fiber-reinforced plastic
CN111098427A (en) Filament bundle prepreg, composite material high-pressure hydrogen storage tank and preparation process thereof
JP6895682B2 (en) Manufacturing method of unidirectional prepreg, fiber reinforced thermoplastic resin sheet, unidirectional prepreg and fiber reinforced thermoplastic resin sheet, and molded article
JP6003224B2 (en) Composite reinforcing fiber bundle, method for producing the same, and molding material
WO2020040287A1 (en) Carbon fiber sheet material, prepreg, molded article, carbon fiber sheet material production method, prepreg production method, and molded article production method
JP2009191116A (en) Process of making fiber-reinforced composite material and fiber-reinforced composite material
KR101913494B1 (en) Manufacturing method and device of carbon fiber sheet molding compound
JP6384121B2 (en) Prepreg, method for producing the same, and carbon fiber reinforced composite material
US11926073B2 (en) Methods for producing sheet molding compound and for producing molded product
JP5260977B2 (en) Method for producing fiber-reinforced composite material and fiber-reinforced composite material
JP6798199B2 (en) Fiber reinforced plastic molding
JP6094792B2 (en) Manufacturing method of prepreg
US7896991B2 (en) Method for manufacturing resin mats
CN111527135A (en) Fiber-reinforced thermoplastic resin sheet, molded article of fiber-reinforced thermoplastic resin sheet, and method for producing fiber-reinforced thermoplastic resin sheet
US11873590B1 (en) Carbon fiber—carbon nanotube tow hybrid reinforcement with enhanced toughness
JP2006328292A (en) Prepreg for honeycomb cocuring and its manufacturing method
JP2005290614A (en) Carbon fiber strand
KR102507539B1 (en) Towpreg for dry filament winding and manufacturing method thereof
US11603439B2 (en) Prepreg and producing method thereof
KR102461792B1 (en) Tow prepreg having high impact strength for the filament winding
JP2004149721A (en) Carbon fiber strand

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120821

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130426

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5260977

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313115

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees