JP5258690B2 - Roadside radio equipment - Google Patents

Roadside radio equipment Download PDF

Info

Publication number
JP5258690B2
JP5258690B2 JP2009166287A JP2009166287A JP5258690B2 JP 5258690 B2 JP5258690 B2 JP 5258690B2 JP 2009166287 A JP2009166287 A JP 2009166287A JP 2009166287 A JP2009166287 A JP 2009166287A JP 5258690 B2 JP5258690 B2 JP 5258690B2
Authority
JP
Japan
Prior art keywords
vehicle
rssi
roadside
mounted device
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009166287A
Other languages
Japanese (ja)
Other versions
JP2011023910A (en
Inventor
満澄 大山
正勝 東
操 大島
太司 大久保
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Nippon Highway Engineering Nagoya Co Ltd
Original Assignee
Central Nippon Highway Engineering Nagoya Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Nippon Highway Engineering Nagoya Co Ltd filed Critical Central Nippon Highway Engineering Nagoya Co Ltd
Priority to JP2009166287A priority Critical patent/JP5258690B2/en
Publication of JP2011023910A publication Critical patent/JP2011023910A/en
Application granted granted Critical
Publication of JP5258690B2 publication Critical patent/JP5258690B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、狭域無線通信システム(DSRC:Dedicated Short-Range Communication System)を用いてETC車載器との間で通信を行うための路側無線装置に関するものである。   The present invention relates to a roadside apparatus for performing communication with an ETC on-board unit using a dedicated short-range communication system (DSRC).

従来から、高速道路や駐車場等に応用されているノンストップ料金収受システム(以下、ETC:Electronic Toll Collection System)においては、車両に搭載されたETC車載器と料金所側に設置された路側無線装置の間で、狭域無線通信システム(DSRC)を用いて路車間通信を行っている(特許文献1、2を参照)。
この路側無線装置は、車両が通信範囲内に入ってきた場合に、車両に向け電波を送信するとともに、ETC車載器からの信号をアンテナで受信して両者間でデータ信号の送受信を行うものである。
Conventionally, in the non-stop toll collection system (hereinafter referred to as ETC: Electronic Toll Collection System) applied to expressways and parking lots, ETC on-board equipment installed in vehicles and roadside radio installed on the toll gate side Road-to-vehicle communication is performed between devices using a narrow-area wireless communication system (DSRC) (see Patent Documents 1 and 2).
This roadside wireless device transmits a radio wave to the vehicle when the vehicle enters the communication range, and receives a signal from the ETC on-board unit with an antenna and transmits / receives a data signal between the two. is there.

また、前記ETC車載器は車載器が通信範囲内に入り、路側無線装置から発射された電波が無応答レベル(−70.5dBm)を上回った場合に電波を返信するように構成されている。即ち、前記無応答レベルを閾値として、車載器がこれを超えた電波を受信した場合には、車両が通信範囲内に入ったものとみなし路側無線装置との間で通信を開始するよう構成されている。   The ETC vehicle-mounted device is configured to return a radio wave when the vehicle-mounted device enters the communication range and the radio wave emitted from the roadside radio device exceeds the no response level (−70.5 dBm). That is, when the no-response level is set as a threshold and the vehicle-mounted device receives a radio wave exceeding the threshold, the vehicle is regarded as having entered the communication range, and communication with the roadside apparatus is started. ing.

一方、路側無線装置から発射した電波は、屋外の料金所のように解放された空間内にあれば、電波の反射は路面から空に向けた反射のみでほとんど影響を受けることがないため5〜6mで一気に減衰する傾向があり、車載器の受信電力が前記無応答レベルを超える場合はアンテナの手前約5mの位置であるため、これを通信範囲としておけばよい。
しかしながら、掘割料金所と称されるトンネル内にある料金所やビル内の料金所などにおいては、天井および左右の壁面が存在して断面が矩形の密閉空間を構成しているので、料金所側の天井付近に設置してある路側無線装置のアンテナから発射された電波は四方で1次反射、2次反射、3次反射・・・と何重にも反射しつつ進行することになる。
On the other hand, if the radio wave emitted from the roadside radio device is in a free space like an outdoor toll booth, the reflection of the radio wave is hardly affected by only the reflection from the road surface toward the sky. If the received power of the vehicle-mounted device exceeds the non-response level, the position is about 5 m before the antenna, and this may be set as the communication range.
However, at toll gates in tunnels called digging toll gates and toll gates in buildings, etc., there are ceilings and left and right wall surfaces that form a sealed space with a rectangular cross section. The radio wave emitted from the antenna of the roadside wireless device installed near the ceiling of the road travels while being reflected in multiple directions such as primary reflection, secondary reflection, tertiary reflection,.

この多重反射がある場合について、セル空間法(この方法については後述する)によるシミュレーション技法を用いて測定した結果、例えばアンテナの手前14mの位置であっても、車載器の受信電力は約−57dBmとETC車載器の無応答レベルを大きく超えていることが判明した。このため、本来は14mの位置で通信範囲外のエリアであるにもかかわらず、車載器は料金所エリア内に入ったものと認識して応答を開始することとなり、これが誤った路車間通信につながるという問題点があった。   As a result of measurement using a simulation technique based on the cell space method (this method will be described later) in the case where there is this multiple reflection, the received power of the vehicle-mounted device is about −57 dBm even at a position 14 m before the antenna, for example. It was found that the level of no response of ETC onboard equipment was greatly exceeded. For this reason, even though it is originally an area outside the communication range at a position of 14 m, the vehicle-mounted device recognizes that it has entered the toll gate area and starts a response, which is an incorrect road-to-vehicle communication. There was a problem of being connected.

一方、このような多重反射を防止する方法として、例えば特許文献3に示されるように、天井および左右の壁面に電波吸収体を施工し、この電波吸収体に反射した電波を吸収させることにより多重反射の影響をなくすことが行われている。しかし、この電波吸収体は非常に高価なものであり多額の設置費用が必要になるという問題点があった。また、この電波吸収体を何処に設置するのが最も効率的であるかが十分に解明されておらず、できるだけ少ない枚数の電波吸収体で効率的に施工する技術が確立されておらず、安全をみて多めに設置する必要があるという問題点があった。   On the other hand, as a method for preventing such multiple reflection, for example, as disclosed in Patent Document 3, a radio wave absorber is installed on the ceiling and the left and right wall surfaces, and the radio wave reflected by the radio wave absorber is absorbed. Elimination of the effects of reflection is being done. However, this radio wave absorber has a problem that it is very expensive and requires a large installation cost. In addition, where it is most efficient to install this wave absorber is not fully elucidated, and technology for efficiently constructing with as few wave absorbers as possible has not been established. There was a problem that it was necessary to install a lot.

特開2004−302738号公報JP 2004-302738 A 特開2002−42191号公報JP 2002-42191 A 特開2002−245499号公報JP 2002-245499 A

本発明は上記のような問題点を解決して、トンネル内にある料金所等において多重反射の影響で車載器が応答開始した場合であっても、車両が実際に通信範囲のエリアに入らない限りは路車間通信を行わないように制御することができ、また車載器には一切手を加えることなく路側無線装置だけの改良で済ますことができ、更には極力少ない枚数の電波吸収体により電磁環境改善の施工を行うことができる路側無線装置を提供することを目的として完成されたものである。   The present invention solves the above-described problems, and even if the vehicle-mounted device starts to respond due to the influence of multiple reflection at a toll booth or the like in the tunnel, the vehicle does not actually enter the communication range area. As long as it can be controlled so that road-to-vehicle communication is not performed, it is possible to improve only the roadside wireless device without any changes to the on-vehicle equipment, and furthermore, electromagnetic waves can be reduced by using as few radio wave absorbers as possible. It was completed for the purpose of providing a roadside radio device capable of performing environmental improvement construction.

上記課題を解決するためになされた請求項1に係る発明は、ETCにおける路側無線装置であって、アンテナで受信した各車載器からの受信信号のうち車載器からのアクチベーションチャンネル(ACTC)と称される信号を対象にその信号強度(以下、RSSI)を検出するRSSI検出器と、検出したRSSI値が予め定められた閾値を超えるか否かを判定するRSSI判定器と、RSSI値が閾値を超えた場合のみに受信信号を有効と判断して当該車載器との間で信号送受信を開始する通信制御器を設け、前記予め定められた閾値として、セル空間法によるシミュレーション技法を用いた計算結果から−52dBmを設定したことを特徴とする路側無線装置である。 The invention according to claim 1 to solve the above-mentioned problem is a roadside wireless device in ETC, and is referred to as an activation channel (ACTC) from the vehicle-mounted device among the received signals from each vehicle-mounted device received by the antenna. An RSSI detector that detects the signal strength (hereinafter referred to as RSSI) for the signal to be processed, an RSSI determiner that determines whether or not the detected RSSI value exceeds a predetermined threshold, and the RSSI value has a threshold A calculation result using a simulation technique based on a cell space method as a predetermined threshold is provided as a communication controller that determines that a received signal is valid only when the signal exceeds the threshold and starts signal transmission / reception with the on-vehicle device. To -52 dBm is set as the roadside wireless device.

また、装置本体が電波の多重反射が発生する場所に設置されているものとすることができ、これを請求項2に係る発明とする。   Further, the apparatus main body may be installed in a place where multiple reflection of radio waves occurs, and this is the invention according to claim 2.

更に、装置本体がトンネル内の料金所に設置されているものとすることができ、これを請求項3に係る発明とする。 Furthermore, the apparatus main body can be installed at a toll booth in the tunnel, and this is the invention according to claim 3 .

請求項1にかかる発明では、ETC用路側無線装置において、RSSI検出器と、RSSI判定器と、通信制御器を設け、各車載器からの受信信号強度(RSSI)が閾値を超えた場合のみに受信信号を有効と判断して当該車載器との間で信号送受信を開始するようにしたので、電波の多重反射があっても誤った路車間通信を確実に防ぐことが可能となる。
また、予め定められた閾値として、−52dBmを設定することでトンネル内料金所における誤通信を確実に防止することができるとともに、ETCで必要とされる通信距離を確保することができる。
In the invention according to claim 1, in the ETC roadside radio apparatus, an RSSI detector, an RSSI determiner, and a communication controller are provided, and only when the received signal strength (RSSI) from each vehicle-mounted device exceeds a threshold value. Since it is determined that the received signal is valid and signal transmission / reception is started with the vehicle-mounted device, erroneous road-to-vehicle communication can be reliably prevented even if there is multiple reflection of radio waves.
In addition, by setting -52 dBm as a predetermined threshold value, it is possible to reliably prevent erroneous communication at the toll gate in the tunnel and to secure a communication distance required by ETC.

請求項2に係る発明では、装置本体が、電波の多重反射が発生する場所に設置されており、多重反射の影響を解消して正しい路車間通信を確保することができる。   In the invention which concerns on Claim 2, the apparatus main body is installed in the place where the multiple reflection of an electromagnetic wave generate | occur | produces, The influence of multiple reflection can be eliminated and correct road-to-vehicle communication can be ensured.

請求項3に係る発明では、装置本体が、トンネル内の料金所に設置されており、従来、多重反射の影響で多発した誤通信を確実に防止することが可能となった。   In the invention according to claim 3, the apparatus main body is installed at the toll gate in the tunnel, and it has become possible to reliably prevent erroneous communication that has conventionally occurred frequently due to the influence of multiple reflection.

本発明の実施の形態を示すブロック図である。It is a block diagram which shows embodiment of this invention. 本発明の通信シーケンスを示す説明図である。It is explanatory drawing which shows the communication sequence of this invention. 車載器での路側無線装置からの受信信号強度(dBm)と進入方向距離(m)との関係を示すグラフである。It is a graph which shows the relationship between the received signal strength (dBm) from the roadside apparatus by onboard equipment, and approach direction distance (m). 路側無線装置での車載器からの受信信号強度(dBm)と進入方向距離(m)との関係を示すグラフである。It is a graph which shows the relationship between the received signal strength (dBm) from onboard equipment in a roadside apparatus, and approach direction distance (m). ETCシステムを示す概略図である。It is the schematic which shows an ETC system.

以下に、図面を参照しつつ本発明の好ましい実施の形態を示す。
図5に、ETCシステムの概略図を示す。図示のものは、トンネル内にある掘割料金所に設けたシステムを示しており、路面30、天井31および左右の壁面(図示せず)が存在して断面が矩形の密閉空間を構成している。トンネル諸元の一例を示すと、天井の高さ8.3m、左右側壁間距離14mの空間であり、そこに路面から5mの高さに路側無線装置のアンテナが設置される。
図中、1は料金所側の天井付近に設置されたETC用路側無線装置の装置本体、2はETC用路側無線装置に設けられるアンテナ、20は車両、21はETC車載器である。また、32は車両20が料金所に向け進入してきたことを検出し、それを装置本体1に通信する入口側車両センサ、33は車両20が料金所を通り抜けたことを検出する出口側車両センサである。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 5 shows a schematic diagram of the ETC system. The illustrated one shows a system provided in a digging toll gate in a tunnel, and a road surface 30, a ceiling 31, and left and right wall surfaces (not shown) are present to form a sealed space having a rectangular cross section. . An example of the specifications of the tunnel is a space with a ceiling height of 8.3 m and a distance between the left and right side walls of 14 m, and the antenna of the roadside apparatus is installed at a height of 5 m from the road surface.
In the figure, 1 is a device body of an ETC roadside wireless device installed near the ceiling on the toll gate side, 2 is an antenna provided in the ETC roadside wireless device, 20 is a vehicle, and 21 is an ETC on-board unit. Further, 32 is an entrance-side vehicle sensor that detects that the vehicle 20 has entered the toll gate and communicates it to the apparatus body 1, and 33 is an exit-side vehicle sensor that detects that the vehicle 20 has passed through the toll gate. It is.

このようなETCシステムにおける路車間通信について概略を説明する。
車両20が料金所に向け進入すると、車両センサ32が検知して信号(S1)を装置本体1に通信し、この信号(S1)を受信して装置本体1が3.9msecの周期でフレームコントロールメッセージチャンネル(FCMC)と称される信号(S2)を発射し続ける。次いで、車載器21が無応答レベルを超えた信号(S2)を受信するとアクチベーションチャンネル(ACTC)と称される信号(S3)を発射する。そして、装置本体1がこの信号(S3)を受信すると装置本体1と車両20との間で路車間通信が開始されることとなる。
この場合に掘割料金所のような密閉空間においては、多重反射の影響を受けて通信範囲外のエリアであるにもかかわらず、車載器21が料金所エリア内に入ったものと認識して応答を開始し、これが誤った路車間通信を発生させることは前述した通りである。
An outline of road-to-vehicle communication in such an ETC system will be described.
When the vehicle 20 enters the toll gate, the vehicle sensor 32 detects and communicates a signal (S1) to the apparatus main body 1, receives this signal (S1), and the apparatus main body 1 performs frame control at a cycle of 3.9 msec. Continue to fire a signal (S2) called Message Channel (FCMC). Next, when the vehicle-mounted device 21 receives a signal (S2) exceeding the no-response level, a signal (S3) called an activation channel (ACTC) is emitted. When the apparatus main body 1 receives this signal (S3), road-to-vehicle communication is started between the apparatus main body 1 and the vehicle 20.
In this case, in an enclosed space such as a digging toll booth, the vehicle-mounted device 21 recognizes that the vehicle-mounted device 21 has entered the toll gate area even though it is an area outside the communication range due to the influence of multiple reflection. As described above, this causes erroneous road-to-vehicle communication.

そこで本発明では、アンテナで受信した車載器からの受信信号強度(以下、RSSI)を検出するRSSI検出器と、検出したRSSI値が予め定められた閾値を超えるか否かを判定するRSSI判定器と、RSSI値が閾値を超えた場合のみに受信信号を有効と判断して車載器との間で信号送受信を開始する通信制御器を設けた路側無線装置とした。
図1に、この装置本体1のブロック図を示す。図中、2はアンテナ、3は共用器、4aは送信機、4bは受信機であり、以上の構成は従来のものと同じであるが、本発明ではアンテナ2で受信した車載器21からの受信信号強度(RSSI)を導入するに当り、このRSSI値を検出するRSSI検出器5を設け、また検出したRSSI値が予め定められた所定の閾値を超えるか否かを判定するRSSI判定器6を設け、更にRSSI値が閾値を超えた場合のみに受信信号を有効と判断して車載器21との間で信号送受信を開始し、それ以外の場合は車載器21からのRSSIがあっても無視する通信制御器7を設けた構造となっている。
なお、8は車載器からの情報に基づき料金計算を行うための車線サーバである。
Therefore, in the present invention, an RSSI detector that detects the received signal strength (hereinafter referred to as RSSI) from the vehicle-mounted device received by the antenna, and an RSSI determiner that determines whether or not the detected RSSI value exceeds a predetermined threshold value. The roadside wireless device is provided with a communication controller that determines that the received signal is valid only when the RSSI value exceeds the threshold and starts signal transmission / reception with the vehicle-mounted device.
FIG. 1 shows a block diagram of the apparatus main body 1. In the figure, 2 is an antenna, 3 is a duplexer, 4a is a transmitter, 4b is a receiver, and the above configuration is the same as that of the conventional one. In introducing the received signal strength (RSSI), an RSSI detector 5 for detecting the RSSI value is provided, and an RSSI determiner 6 for determining whether or not the detected RSSI value exceeds a predetermined threshold value. Furthermore, only when the RSSI value exceeds the threshold value, the received signal is determined to be valid and signal transmission / reception is started with the vehicle-mounted device 21. Otherwise, even if RSSI is received from the vehicle-mounted device 21 The communication controller 7 to be ignored is provided.
In addition, 8 is a lane server for calculating a charge based on the information from onboard equipment.

このように構成した本発明のETC用路側無線装置の通信シーケンスにつき、図2を参照しつつ説明する。
先ず、車両20が料金所に向け進入すると、車両センサ32が検出して信号(S1)を装置本体1に通信する。装置本体1はこの信号(S1)を受信すると3.9msecの周期でフレームコントロールメッセージチャンネル(FCMC)と称される信号(S2)を発射し続ける。図2上段部は通信範囲外であり、ここでは車載器21は装置本体1からの信号(S2)を受信してもそのレベルが無応答レベルを超えていないので、これには応答しない。従って、この領域では路車間通信は行われない。
A communication sequence of the ETC roadside apparatus of the present invention configured as described above will be described with reference to FIG.
First, when the vehicle 20 enters the toll gate, the vehicle sensor 32 detects and communicates a signal (S1) to the apparatus main body 1. When receiving this signal (S1), the apparatus body 1 continues to emit a signal (S2) called a frame control message channel (FCMC) at a cycle of 3.9 msec. The upper part of FIG. 2 is out of the communication range. Here, the vehicle-mounted device 21 does not respond to the signal (S2) received from the device body 1 because the level does not exceed the no-response level. Accordingly, road-to-vehicle communication is not performed in this region.

次いで、図2中段部は通信範囲外であるが多重反射の影響を受けており、車載器21は無応答レベルを超えた信号(S2)を受信する領域である。このため車載器21は、アクチベーションチャンネル(ACTC)と称される信号(S3)を発射する。従来は、この信号(S3)の発射により直ぐに装置本体1との間で通信が開始され、誤った路車間通信が生じていた。
これに対し本発明では、装置本体1は、この車載器21からの信号(S3)を受信するとRSSI検出器5を経た後、検出したRSSI値が予め定められた所定の閾値(T)を超えるか否かをRSSI判定器6で判定し、次いで、通信制御器7によりRSSI値が閾値(T)を超えた場合にのみ受信信号を有効と判断して車載器21との間で信号送受信を開始し、それ以外の場合は車載器21からのRSSIがあっても無視することとなる。従って、この領域ではRSSI値が閾値(T)を超えていないので、車載器21からの信号(S3)は無視されることとなり、車両20との間で路車間通信は行われない。この結果、従来のような誤った路車間通信を発生させることがなくなる。
なお、前記過程で、各車載器21からの信号(S3)が発射されるタイミングは通信規約により通信制御器7で予測できるので、RSSI検出器5の検出動作は通信制御器7から指示されたタイミングで実施される。
Next, the middle part in FIG. 2 is outside the communication range, but is affected by multiple reflections, and the vehicle-mounted device 21 is an area for receiving a signal (S2) exceeding the no-response level. For this reason, the vehicle-mounted device 21 emits a signal (S3) called an activation channel (ACTC). Conventionally, communication is immediately started with the apparatus main body 1 by the emission of this signal (S3), and erroneous road-to-vehicle communication has occurred.
On the other hand, in the present invention, when the apparatus body 1 receives the signal (S3) from the vehicle-mounted device 21, it passes through the RSSI detector 5 and then the detected RSSI value exceeds a predetermined threshold value (T). Whether or not the RSSI value exceeds the threshold value (T) by the communication controller 7 and determines that the received signal is valid, and transmits and receives signals to and from the vehicle-mounted device 21. In other cases, the RSSI from the vehicle-mounted device 21 is ignored. Therefore, since the RSSI value does not exceed the threshold value (T) in this region, the signal (S3) from the vehicle-mounted device 21 is ignored, and road-to-vehicle communication with the vehicle 20 is not performed. As a result, erroneous road-to-vehicle communication as in the prior art is not generated.
In the above process, the timing at which the signal (S3) from each vehicle-mounted device 21 is emitted can be predicted by the communication controller 7 according to the communication protocol. Therefore, the detection operation of the RSSI detector 5 is instructed by the communication controller 7. Implemented at the timing.

次いで、図2下段部の通信範囲内に入ると、車載器21は無応答レベルを超えた信号(S2)を受信するため、アクチベーションチャンネル(ACTC)と称される信号(S3)を発射する。
装置本体1は、この車載器21からの信号(S3)を受信するとRSSI検出器5を経た後、検出したRSSI値が予め定められた所定の閾値(T)を超えるか否かをRSSI判定器6で判定するが、この領域ではRSSI値が閾値(T)を超えているので、通信制御器7は受信信号を有効と判断して車両20との間で信号送受信を開始することとなる。
Next, when entering the communication range in the lower part of FIG. 2, the vehicle-mounted device 21 emits a signal (S3) called an activation channel (ACTC) in order to receive the signal (S2) exceeding the non-response level.
When the apparatus body 1 receives the signal (S3) from the vehicle-mounted device 21, it passes through the RSSI detector 5 and then determines whether or not the detected RSSI value exceeds a predetermined threshold value (T). In this region, since the RSSI value exceeds the threshold (T), the communication controller 7 determines that the received signal is valid and starts signal transmission / reception with the vehicle 20.

次に、前記閾値(T)について説明する。
図3は、ダウンリンク、即ち車載器での路側無線装置からの受信信号強度(dBm)と進入方向距離(m)との関係を示すグラフである。進入方向距離0mの地点が路側無線装置のアンテナ直下に対応する。図3において、破線Bは電波の反射を考慮しない直接波のみの推移を示している。一方、実線Aは電波の多重反射を考慮して直接波に多重反射波を加えた場合の推移を示している。
なお、実線Aについては、セル空間法によるシミュレーション技法を用いて計算した結果である。このセル空間法は、12次反射という高次反射まで取り込んで多重反射する電波の推移をシミュレーションする計算方法であり、実測値のグラフと極めて近似していることが確認されている(大山満澄:「道路交通システムにおける電磁環境」、月間EMCNo.210、29−37、2005参照)。
Next, the threshold value (T) will be described.
FIG. 3 is a graph showing the relationship between the received signal strength (dBm) from the roadside apparatus in the downlink, that is, the vehicle-mounted device, and the approach direction distance (m). A point with an approach direction distance of 0 m corresponds to a position directly below the antenna of the roadside apparatus. In FIG. 3, the broken line B shows the transition of only the direct wave that does not consider the reflection of the radio wave. On the other hand, a solid line A shows a transition when a multiple reflected wave is added to a direct wave in consideration of multiple reflection of radio waves.
The solid line A is the result of calculation using a simulation technique based on the cell space method. This cell space method is a calculation method for simulating the transition of radio waves that are reflected by multiple reflections up to a higher-order reflection called 12th-order reflection, and it has been confirmed that it is very close to the graph of the actual measurement values (Matsuumi Oyama). : "Electromagnetic environment in road traffic system", monthly EMC No. 210, 29-37, 2005).

このグラフから明らかなように、車載器は路側無線装置から発射された電波が無応答レベル(−70.5dBm)を上回った場合は電波を返信するように構成されているので、多重反射の影響を受けアンテナの手前約5.5m〜14mの区間においても応答を開始してしまう。本来、この区域は通信範囲外のエリアであり、応答したくない区間である。
一方、図4は、アップリンク、即ち路側無線装置での車載器からの受信信号強度(dBm)と進入方向距離(m)との関係を示すグラフである。前記のように多重反射の影響を受けると、車載器はアンテナの手前約5.5m〜14mの区間においても応答を開始するが、路側無線装置の受信感度は−65dBmであるので、前記車載器からの信号を路側無線装置は受信することとなり、誤った路車間通信の原因となる。
そこで、本発明のようにRSSIを導入し、閾値(T)として−52dBmを設定すると、アンテナの手前約5m〜14mの区間においては閾値(T)を超えないため、車載器との間で信号送受信を開始することがない。この結果、従来のようにこの区間における誤通信を確実に排除することが可能となる。
なお、−52dBmという閾値は、掘割料金所において回線設計上の変動要因が重なった場合でも、有効な通信距離を確保できる閾値として設定されたものである。
As is apparent from this graph, the vehicle-mounted device is configured to return a radio wave when the radio wave emitted from the roadside radio device exceeds the no-response level (−70.5 dBm). The response is started even in the section of about 5.5 m to 14 m before the receiving antenna. Originally, this area is an area outside the communication range, and is a section in which it is not desired to respond.
On the other hand, FIG. 4 is a graph showing the relationship between the received signal strength (dBm) from the vehicle-mounted device in the uplink, that is, the roadside apparatus, and the approach direction distance (m). As described above, when receiving the influence of multiple reflection, the vehicle-mounted device starts a response even in a section of about 5.5 m to 14 m before the antenna, but the reception sensitivity of the roadside wireless device is −65 dBm. The roadside wireless device receives the signal from, which causes erroneous road-to-vehicle communication.
Therefore, when RSSI is introduced as in the present invention and −52 dBm is set as the threshold (T), the threshold (T) is not exceeded in the section of about 5 m to 14 m before the antenna. Does not start transmission / reception. As a result, it is possible to reliably eliminate erroneous communication in this section as in the past.
Note that the threshold value of −52 dBm is set as a threshold value that can secure an effective communication distance even when fluctuation factors in line design overlap at the digging toll gate.

以上の説明は、路側無線装置が掘割料金所のような四方に壁面を有する密閉空間において用いられる場合について説明したが、その他に天井のみを有する料金所や左右壁面だけがある料金所などの電波の多重反射が発生するあらゆる場所に設置して利用できることは勿論である。また、閾値(T)の設定についても、環境に応じて任意に選択することができるものである。
また、以上の説明は、ETC車載器を搭載した1台の車両がETC料金所へ進入してきた場合について説明したが、複数の車両が進入してきた場合についても適用できることは勿論である。
In the above description, the roadside wireless device is used in a sealed space having wall surfaces on all sides, such as a digging toll gate. However, other radio waves such as a toll gate having only a ceiling or a toll gate having only left and right wall surfaces can be used. Of course, it can be installed and used in any place where multiple reflection occurs. Also, the threshold value (T) can be arbitrarily selected according to the environment.
Moreover, although the above description demonstrated the case where one vehicle carrying an ETC onboard equipment entered the ETC toll booth, it is needless to say that it can be applied to the case where a plurality of vehicles enter.

このように、本発明では図2中段部に示す電波の多重反射が生じる区間においても、RSSIを導入することにより多重反射の影響を受けることなく正しい路車間通信を実行可能とし、また車載器には一切手を加えることなく路側無線装置だけの改良で済ませられるため従来通り車載器はそのまま使用することができる利点がある。更には、前記の図2中段部に示す電波の多重反射が生じる区間には電波吸収体を施工する必要がなくなるため、極力少ない枚数の電波吸収体により電磁環境改善の施工を行うことができ、施工費を大幅に削減できるという利点もある。   As described above, in the present invention, even in the section where multiple reflections of radio waves shown in the middle part of FIG. 2 occur, it is possible to execute correct road-to-vehicle communication without being affected by multiple reflections by introducing RSSI. Since there is no need to change anything, only the roadside wireless device can be improved, so that the vehicle-mounted device can be used as it is. Furthermore, since it is not necessary to construct a radio wave absorber in the section where multiple reflections of radio waves shown in the middle part of FIG. 2 described above, it is possible to perform improvement of the electromagnetic environment with as few radio wave absorbers as possible, There is also an advantage that construction costs can be greatly reduced.

1 装置本体
2 アンテナ
3 共用器
4a 送信機
4b 受信機
5 RSSI検出器
6 RSSI判定器
7 通信制御器
8 車線サーバ
20 車両
21 車載器
30 路面
31 天井
32 入口側車両センサ
33 出口側車両センサ
DESCRIPTION OF SYMBOLS 1 Apparatus main body 2 Antenna 3 Duplexer 4a Transmitter 4b Receiver 5 RSSI detector 6 RSSI determination device 7 Communication controller 8 Lane server 20 Vehicle 21 Vehicle-mounted device 30 Road surface 31 Ceiling 32 Entrance side vehicle sensor 33 Exit side vehicle sensor

Claims (3)

ETCにおける路側無線装置であって、アンテナで受信した各車載器からの受信信号のうち車載器からのアクチベーションチャンネル(ACTC)と称される信号を対象にその信号強度(以下、RSSI)を検出するRSSI検出器と、検出したRSSI値が予め定められた閾値を超えるか否かを判定するRSSI判定器と、RSSI値が閾値を超えた場合のみに受信信号を有効と判断して当該車載器との間で信号送受信を開始する通信制御器を設け、前記予め定められた閾値として、セル空間法によるシミュレーション技法を用いた計算結果から−52dBmを設定したことを特徴とする路側無線装置。 A roadside wireless device in ETC, which detects a signal strength (hereinafter referred to as RSSI) for a signal called an activation channel (ACTC) from a vehicle-mounted device among signals received from each vehicle-mounted device received by an antenna. An RSSI detector, an RSSI determiner that determines whether or not the detected RSSI value exceeds a predetermined threshold value, and determines that the received signal is valid only when the RSSI value exceeds the threshold value. A roadside radio apparatus comprising: a communication controller that starts signal transmission / reception between the first and second terminals, and -52 dBm is set as a predetermined threshold value based on a calculation result using a simulation technique based on a cell space method. 装置本体が、電波の多重反射が発生する場所に設置されていることを特徴とする請求項1に記載の路側無線装置。   2. The roadside apparatus according to claim 1, wherein the apparatus main body is installed in a place where multiple reflection of radio waves occurs. 装置本体が、トンネル内の料金所に設置されていることを特徴とする請求項2に記載の路側無線装置。   The roadside radio apparatus according to claim 2, wherein the apparatus main body is installed at a toll gate in the tunnel.
JP2009166287A 2009-07-15 2009-07-15 Roadside radio equipment Active JP5258690B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009166287A JP5258690B2 (en) 2009-07-15 2009-07-15 Roadside radio equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009166287A JP5258690B2 (en) 2009-07-15 2009-07-15 Roadside radio equipment

Publications (2)

Publication Number Publication Date
JP2011023910A JP2011023910A (en) 2011-02-03
JP5258690B2 true JP5258690B2 (en) 2013-08-07

Family

ID=43633605

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009166287A Active JP5258690B2 (en) 2009-07-15 2009-07-15 Roadside radio equipment

Country Status (1)

Country Link
JP (1) JP5258690B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003058921A (en) * 2001-08-22 2003-02-28 Mitsubishi Heavy Ind Ltd Toll collection/reception system
JP4695351B2 (en) * 2003-06-05 2011-06-08 三菱電機株式会社 Wireless communication system and road-to-vehicle communication method
JP2005229300A (en) * 2004-02-12 2005-08-25 Toshiba Corp Radio communication system
JP4574398B2 (en) * 2005-03-07 2010-11-04 八木アンテナ株式会社 Method for determining availability of communication connection between base station apparatus of narrow area communication system and mobile station apparatus thereof

Also Published As

Publication number Publication date
JP2011023910A (en) 2011-02-03

Similar Documents

Publication Publication Date Title
JP3213300B1 (en) Toll collection system
WO2017175395A1 (en) Communication control device
JP6748733B2 (en) Communication control device, charge collection system, communication control method and program
CN109598953B (en) Vehicle guiding method and device
KR20170016140A (en) Management apparatus for communication performance of roadside equipment based on traffic information. and apparatus applied to the same
CN109416882B (en) Determination of laterally remote parking spaces
JP5258690B2 (en) Roadside radio equipment
JP5691972B2 (en) Road-to-vehicle communication system, road-side communication control device, and road-side communication control program
CN210515386U (en) Device for detecting vehicle-mounted label on expressway and lane control system
KR101230606B1 (en) Method and Apparatus for electronic fee collection
JP6424791B2 (en) Wireless communication device, wireless communication system
JP5558330B2 (en) Radio wave emission source detection sensor and roadside device
JP5375722B2 (en) Wireless receiver and road-vehicle communication system
JP2011209867A (en) Road side communication equipment and transmission power adjustment method
JP2009044645A (en) In-vehicle communication unit
Ortega et al. Experimental Evaluation of Adaptive Beaconing for Vehicular Communications
JP2013183330A (en) Radio communication device and radio communication method
JP5743726B2 (en) Radio wave emission source detection sensor and lane identification determination method
JP3304865B2 (en) Automatic toll collection system
JP2002208044A (en) Private narrow band communication system
JPH11202938A (en) Vehicle travel control system and vehicle used for the system
JP2004215197A (en) Radio communication system and etc system using the same
JP3405228B2 (en) Automatic toll collection system
JP2011237943A (en) Automatic toll collection system and its method
JPH06230113A (en) Detecting system for position of vehicle

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110222

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121010

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121012

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121128

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121214

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130204

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130423

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5258690

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250