JP5258597B2 - High frequency amplifier circuit - Google Patents

High frequency amplifier circuit Download PDF

Info

Publication number
JP5258597B2
JP5258597B2 JP2009015507A JP2009015507A JP5258597B2 JP 5258597 B2 JP5258597 B2 JP 5258597B2 JP 2009015507 A JP2009015507 A JP 2009015507A JP 2009015507 A JP2009015507 A JP 2009015507A JP 5258597 B2 JP5258597 B2 JP 5258597B2
Authority
JP
Japan
Prior art keywords
temperature
control value
level
amplifier circuit
amplifying
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009015507A
Other languages
Japanese (ja)
Other versions
JP2010177771A (en
Inventor
正志 石田
環 誉田
山田  明
洋 守田
邦彦 古木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2009015507A priority Critical patent/JP5258597B2/en
Publication of JP2010177771A publication Critical patent/JP2010177771A/en
Application granted granted Critical
Publication of JP5258597B2 publication Critical patent/JP5258597B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Control Of Amplification And Gain Control (AREA)
  • Amplifiers (AREA)
  • Transmitters (AREA)

Description

本発明は、入力された高周波信号を増幅素子によって増幅して出力する高周波増幅回路に関し、特に増幅素子の温度補償が可能な高周波増幅回路に関する。   The present invention relates to a high-frequency amplifier circuit that amplifies an input high-frequency signal by an amplifier element and outputs the amplified high-frequency signal, and more particularly to a high-frequency amplifier circuit capable of temperature compensation of the amplifier element.

従来より、無線通信機の高周波回路では、トランジスタ、FET、MMIC等を用いた高周波増幅回路が一般的であり、特に携帯電話や携帯電話用基地局等に多く用いられている。近年、携帯電話の普及に伴い、基地局の出力、回線数及び通信方式(W−CDMA等)の採用による通信速度の向上が図られ、基地局における高周波増幅回路の高出力化が進められた。   Conventionally, a high-frequency amplifier circuit using a transistor, FET, MMIC, or the like is generally used in a high-frequency circuit of a wireless communication device, and is often used particularly for a mobile phone or a mobile phone base station. In recent years, with the widespread use of mobile phones, the output of base stations, the number of lines, and the communication speed have been improved by adopting communication methods (W-CDMA, etc.), and the output of high-frequency amplifier circuits in base stations has been increased. .

一般的に、高周波増幅回路は、デバイスや回路の個体差により定格レベルの高周波信号を入力しても、出力レベルには個体別に差異が観測される。この為、個体バラツキを補正し、利得を許容範囲に調整する利得調整回路が必要となる。また、高周波増幅回路は広い環境温度範囲(例えば、−20℃〜50℃)での動作を求められる為、増幅素子において温度変化による利得の変動が発生しても増幅回路としては利得を所定の範囲内に抑える必要があり、温度補償が必要となる。   In general, even when a high-frequency amplifier circuit inputs a high-frequency signal of a rated level due to individual differences between devices and circuits, a difference in output level is observed for each individual. Therefore, a gain adjustment circuit that corrects individual variation and adjusts the gain to an allowable range is required. In addition, since the high frequency amplifier circuit is required to operate in a wide environmental temperature range (for example, −20 ° C. to 50 ° C.), even if a gain variation due to temperature change occurs in the amplifier element, the amplifier circuit has a predetermined gain. It is necessary to keep it within the range, and temperature compensation is required.

図8は従来の高周波増幅回路100の一例を示している。高周波増幅回路100には、個体バラツキを調整する為のボリューム102と、温度上昇により低下する利得を補償する為、温度上昇に伴って抵抗値が減少する感温抵抗とが、増幅素子101の入力側に接続されている。しかし、増幅素子の利得温度変化特性には個体バラツキがあり、感温抵抗との組み合わせによっても許容範囲を超える場合があり、この場合は感温抵抗の交換作業が発生していた。   FIG. 8 shows an example of a conventional high-frequency amplifier circuit 100. The high-frequency amplifier circuit 100 includes a volume 102 for adjusting individual variations and a temperature-sensitive resistor whose resistance value decreases as the temperature rises to compensate for a gain that decreases as the temperature rises. Connected to the side. However, there are individual variations in the gain temperature change characteristics of the amplifying element, and the allowable range may be exceeded depending on the combination with the temperature sensitive resistance. In this case, replacement work of the temperature sensitive resistance has occurred.

このような交換を回避する方法として、温度変化と抵抗変化を任意に設定することができるように、感温抵抗の抵抗変化をA/D変換器により検出してD/A変換器により抵抗を変化させる閉ループ制御が望まれていた。   As a method of avoiding such replacement, the temperature change and resistance change can be arbitrarily set, and the resistance change of the temperature sensitive resistance is detected by the A / D converter, and the resistance is reduced by the D / A converter. A variable closed loop control has been desired.

特許文献1には、高周波増幅回路において、A/D変換器によりドレイン電流を測定し、測定した電流値に基づいてD/A変換器によりゲート電圧を調整することでバイアス変動を低減させる技術が開示されている。   Patent Document 1 discloses a technique for reducing bias fluctuation by measuring a drain current with an A / D converter and adjusting a gate voltage with a D / A converter based on the measured current value in a high-frequency amplifier circuit. It is disclosed.

特開平10−290129号公報Japanese Patent Laid-Open No. 10-290129

上述したように、感温抵抗にて温度補正を行う場合には、初期設定として感温抵抗の特性確認とオフセット等のばらつきを調整するボリューム調整と、場合によっては感温抵抗の交換が必要であった。これを解決する目的で、温度変化と抵抗変化を任意に設定することができるように、感温抵抗の抵抗変化をA/D変換器により検出してD/A変換器により抵抗を変化させる閉ループ制御を組み込むことは、高周波増幅回路のコストアップとなる。   As described above, when performing temperature correction with a temperature sensitive resistor, it is necessary to confirm the characteristics of the temperature sensitive resistor as an initial setting, adjust the volume to adjust for variations such as offset, and in some cases, replace the temperature sensitive resistor. there were. In order to solve this, a closed loop in which the resistance change of the temperature-sensitive resistor is detected by the A / D converter and the resistance is changed by the D / A converter so that the temperature change and the resistance change can be arbitrarily set. Incorporating control increases the cost of the high-frequency amplifier circuit.

また、特許文献1では、コンピュータを用いて閉ループ制御によりバイアス変動を低減させることは可能であるが、温度変動における利得調整は制御されておらず、増幅素子の出力レベルのずれに対応できない場合がある。   Further, in Patent Document 1, it is possible to reduce bias fluctuation by closed loop control using a computer, but gain adjustment in temperature fluctuation is not controlled, and it may not be able to cope with a deviation in output level of the amplifying element. is there.

そこで、本発明の高周波増幅回路は増幅素子を単体又は並列接続する構成とした場合でも、温度変動における増幅素子間の特性のばらつきを補正するレベル調整手段を設けることで増幅素子の特性のばらつきと温度補償の精度のばらつきを予め決められた範囲内に調整することのできる高周波増幅回路を提供することを目的とする。   Therefore, even when the high-frequency amplifier circuit of the present invention is configured so that the amplifying elements are connected singly or in parallel, by providing a level adjusting means for correcting variation in characteristics between the amplifying elements due to temperature fluctuations, An object of the present invention is to provide a high-frequency amplifier circuit capable of adjusting the variation in accuracy of temperature compensation within a predetermined range.

本発明は、入力された高周波信号を増幅素子によって増幅して出力する高周波増幅回路において、前記増幅素子の雰囲気温度を検出する温度検出手段と、入力された高周波信号のレベルを調整するレベル調整手段と、前記温度検出手段により検出される検出温度に対応付けて、前記レベル調整手段に対する制御値を記憶する記憶手段と、前記記憶手段を参照し、前記検出温度に対応する制御値を求め、その制御値に基づいて前記レベル調整手段を制御する制御手段と、を有し、前記制御手段は、さらに、前記レベル調整手段を制御する前の初期設定を行う初期設定手段を備え、当該初期設定手段は、複数の異なる雰囲気温度のそれぞれについての制御値であって、前記増幅素子の出力レベルを一定とする制御値に基づいて、前記検出温度と前記増幅素子の出力レベルを一定とする制御値とを対応付ける近似式を求める手段と、前記近似式に基づいて、前記検出温度に対応する制御値を求め、前記記憶手段に記憶させる手段と、を備えることを特徴とする。 The present invention provides a high-frequency amplifier circuit for amplifying and outputting the amplifying element the input high-frequency signal, a temperature detecting means for detecting the ambient temperature of the amplifying element, the level adjusting means for adjusting the level of the input high frequency signal And a storage means for storing a control value for the level adjustment means in association with the detected temperature detected by the temperature detection means , a control value corresponding to the detected temperature is obtained by referring to the storage means, and based on the control value and a control means for controlling said level adjusting means, said control means further comprises initial setting means for performing initial setting before controlling said level adjusting means, the initial setting means Is a control value for each of a plurality of different ambient temperatures, and is based on a control value that makes the output level of the amplifying element constant. The output level of the amplifying element and means for obtaining an approximate expression for associating the control value to be constant, based on the approximate expression, obtains a control value corresponding to the detected temperature, and means for storing in said memory means It is characterized by that.

また、本発明に係る高周波増幅回路は、望ましくは、前記増幅素子は、並列接続された複数の増幅用の素子を有するThe high frequency amplifier circuit according to the present invention desirably, the amplifying element comprises an element for a plurality of amplified connected in parallel.

また、本発明は、高周波信号を並列接続された複数の増幅素子に入力し、各増幅素子からの出力を合成して出力する高周波増幅回路において、前記各増幅素子の雰囲気温度を検出する温度検出手段と、前記複数の増幅素子にそれぞれ対応して設けられ、入力された各高周波信号のレベルを調整するレベル調整手段と、前記複数の増幅素子のそれぞれについて、前記温度検出手段により検出される検出温度に対応付けて、前記レベル調整手段に対する制御値を記憶する記憶手段と、前記記憶手段を参照し、前記検出温度に対応する制御値を前記複数の増幅素子のそれぞれに対して求め、各制御値に基づいて前記各レベル調整手段を制御する制御手段と、を有し、前記制御手段は、さらに、前記各レベル調整手段を制御する前の初期設定を行う初期設定手段を備え、当該初期設定手段は、複数の異なる雰囲気温度のそれぞれについての制御値であって、前記増幅素子の出力レベルを一定とする制御値に基づいて、前記検出温度と前記増幅素子の出力レベルを一定とする制御値とを対応付ける近似式を求める手段と、前記近似式に基づいて、前記検出温度に対応する制御値を求め、前記記憶手段に記憶させる手段と、を前記複数の増幅素子にそれぞれについて備えることを特徴とする。また、本発明は、入力された高周波信号を増幅器によって増幅して出力する高周波増幅回路において、前記増幅器の雰囲気温度を検出する温度検出手段と、入力された高周波信号のレベルを調整するレベル調整手段と、前記温度検出手段により検出される検出温度に対応付けて、前記レベル調整手段に対する制御値であって、前記増幅器の出力レベルを一定とする制御値を記憶する記憶手段と、前記記憶手段を参照し、前記検出温度に対応する制御値を求め、その制御値に基づいて前記レベル調整手段を制御する制御手段と、を有し、前記増幅器は、並列接続された複数の増幅素子を有する増幅素子群であり、前記増幅素子群に対し、1つの前記温度検出手段、1つの前記レベル調整手段、1つの前記記憶手段および1つの前記制御手段が設けられていることを特徴とする。 Further, the present invention inputs a plurality of amplifying elements which are connected in parallel to the high-frequency signal, the radio frequency amplifier circuit for combining and outputting the output from the amplifying element, temperature detection for detecting the ambient temperature of the amplifier element and means, provided corresponding to said plurality of amplifying elements, and level adjusting means for adjusting the level of each high-frequency signal inputted, for each of the plurality of amplifying elements, detected by said temperature detecting means detecting A control unit that stores a control value for the level adjusting unit in association with a temperature, and a control value corresponding to the detected temperature is obtained for each of the plurality of amplifying elements with reference to the storage unit. and a control means for controlling said respective level adjusting means based on the value, the control means further first perform initial settings prior to controlling said respective level adjusting means The initial setting means is a control value for each of a plurality of different ambient temperatures, and based on a control value that makes the output level of the amplification element constant, the detected temperature and the amplification element Means for determining an approximate expression for associating a control value with a constant output level; and means for determining a control value corresponding to the detected temperature based on the approximate expression and storing the control value in the storage means. Each element is provided for each element . The present invention also provides a temperature detecting means for detecting an ambient temperature of the amplifier and a level adjusting means for adjusting the level of the inputted high frequency signal in a high frequency amplifier circuit for amplifying and outputting the inputted high frequency signal by an amplifier. And a storage means for storing a control value for the level adjustment means in association with the detected temperature detected by the temperature detection means, the control value for making the output level of the amplifier constant, and the storage means. And a control unit that obtains a control value corresponding to the detected temperature and controls the level adjusting unit based on the control value, and the amplifier includes a plurality of amplifying elements connected in parallel. One temperature detecting means, one level adjusting means, one storage means and one control means for the amplifying element group. It is characterized in that is.

本発明に係る高周波増幅回路は、コストアップを抑え、増幅素子の特性のばらつきと温度補償の精度のばらつきを補正可能とすると共に、増幅素子に過大入力があった際も、レベル調整手段により増幅素子の保護ができるという効果がある。   The high-frequency amplifier circuit according to the present invention can suppress the increase in cost, correct the variation in characteristics of the amplification element and the variation in accuracy of temperature compensation, and amplify by the level adjusting means even when the amplification element has an excessive input. There is an effect that the element can be protected.

本発明の第1の実施形態に係る高周波増幅回路の構成を示す回路図である。1 is a circuit diagram showing a configuration of a high-frequency amplifier circuit according to a first embodiment of the present invention. 本発明の第1の実施形態における利得特性を示す特性図である。It is a characteristic view which shows the gain characteristic in the 1st Embodiment of this invention. 第1の実施形態に係る高周波増幅回路の制御の処理の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of a control process of the high frequency amplifier circuit which concerns on 1st Embodiment. 第1の実施形態に係る高周波増幅回路の初期設定の処理の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of the process of the initial setting of the high frequency amplifier circuit which concerns on 1st Embodiment. 第1の実施形態に係る高周波増幅回路の実動作の処理の流れを示すフローチャート図である。It is a flowchart figure which shows the flow of a process of the real operation | movement of the high frequency amplifier circuit which concerns on 1st Embodiment. 第2の実施形態に係る高周波増幅回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the high frequency amplifier circuit which concerns on 2nd Embodiment. 第3の実施形態に係る高周波増幅回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the high frequency amplifier circuit which concerns on 3rd Embodiment. 従来の感温抵抗を用いた高周波増幅回路の構成を示す回路図である。It is a circuit diagram which shows the structure of the high frequency amplifier circuit using the conventional temperature sensitive resistor.

以下、本発明を実施するための最良の形態(以下実施形態という)を、図面に従って説明する。
(第1の実施形態)
Hereinafter, the best mode for carrying out the present invention (hereinafter referred to as an embodiment) will be described with reference to the drawings.
(First embodiment)

図1は第1の実施形態に係る高周波増幅回路1の構成を示している。高周波増幅回路1は、基地局の最終段増幅器の回路であり、高周波増幅回路から出力された信号は図示しないアンテナ装置に供給される。高周波増幅回路1は、高周波信号を増幅する増幅素子53と、増幅素子53の前段に接続される電圧可変減衰器36と、増幅素子53の雰囲気温度を検出する温度IC34と、温度IC34で検出された温度と補正テーブル52の補償値とに基づいてD/A変換器11に制御信号を出力させるCPU12と、D/A変換器11からの制御信号を増幅して電圧可変減衰器36に出力する演算増幅器35と、を有する。CPU12は、温度変化によって特性が変化する増幅素子53に対し、増幅素子53への入力レベルを電圧可変減衰器36を用いて調整することで増幅素子53の出力レベルを制御する。   FIG. 1 shows a configuration of a high-frequency amplifier circuit 1 according to the first embodiment. The high frequency amplifier circuit 1 is a circuit of a final stage amplifier of a base station, and a signal output from the high frequency amplifier circuit is supplied to an antenna device (not shown). The high-frequency amplifier circuit 1 is detected by an amplifying element 53 that amplifies a high-frequency signal, a voltage variable attenuator 36 connected to the previous stage of the amplifying element 53, a temperature IC 34 that detects the ambient temperature of the amplifying element 53, and a temperature IC 34. The CPU 12 outputs a control signal to the D / A converter 11 based on the detected temperature and the compensation value of the correction table 52, and amplifies the control signal from the D / A converter 11 and outputs it to the voltage variable attenuator 36. And an operational amplifier 35. The CPU 12 controls the output level of the amplifying element 53 by adjusting the input level to the amplifying element 53 using the voltage variable attenuator 36 with respect to the amplifying element 53 whose characteristics change due to temperature change.

本実施形態に係る高周波増幅回路1は、コストダウンの為に、故障診断等他の目的にも使用しているCPU12に温度制御機能を兼用させている。また、A/D変換器を削除するために本実施形態では従来の感温抵抗の替わりに温度IC34とし、温度補償用の補正テーブル52を作成するための補正用CPU65と電力計66が用いられている。   In the high-frequency amplifier circuit 1 according to the present embodiment, the temperature control function is shared by the CPU 12 that is also used for other purposes such as failure diagnosis for cost reduction. In order to eliminate the A / D converter, in this embodiment, a temperature IC 34 is used instead of the conventional temperature sensitive resistor, and a correction CPU 65 and a wattmeter 66 for creating a temperature compensation correction table 52 are used. ing.

更に、CPU12に接続されている温度IC34は、シリアル通信ポートを有する半導体温度センサであるため、増幅素子53近傍の磁界及び電界に影響されることなく、感温抵抗などの温度センサに比べて正確な温度測定が可能である。   Furthermore, since the temperature IC 34 connected to the CPU 12 is a semiconductor temperature sensor having a serial communication port, it is more accurate than a temperature sensor such as a temperature sensitive resistor without being affected by the magnetic field and electric field in the vicinity of the amplification element 53. Temperature measurement is possible.

なお、本実施形態では、高周波増幅回路1の補正テーブル作成時のみ補正用CPU65とCPU12とをシリアル回線で接続し、電力計66を高周波増幅回路1に接続して補正テーブル52を作成することで、補正テーブル作成時に増幅素子53の特性を把握することが可能となる。   In the present embodiment, the correction CPU 65 and the CPU 12 are connected by a serial line only when the correction table of the high-frequency amplifier circuit 1 is created, and the correction table 52 is created by connecting the wattmeter 66 to the high-frequency amplifier circuit 1. Thus, the characteristics of the amplifying element 53 can be grasped when the correction table is created.

図2には本実施形態の増幅器50の利得特性を示し、図中横軸は基板温度、縦軸は利得を示している。図中点線は補正テーブル作成前の「利得個別ばらつき補償・温度補償無し」の利得の変化を示し、図中実線は補正テーブル作成後の「利得個別ばらつき補償・温度補償有り」の利得の変化を示している。本実施形態では、図1の電圧可変減衰器36により、常温における利得個別ばらつき(オフセット:A)を補正し、温度補償による基板温度変化に対する傾き(傾き:B)を補正して低温から高温までの間において、一定の利得を実現している。   FIG. 2 shows gain characteristics of the amplifier 50 of the present embodiment, in which the horizontal axis represents the substrate temperature and the vertical axis represents the gain. The dotted line in the figure shows the change in gain before “Compensation for Individual Gain Variation / No Temperature Compensation” before the creation of the correction table, and the solid line in the figure shows the change in gain after “Compensation for Individual Gain Variation / With Temperature Compensation” Show. In the present embodiment, the individual variable gain at normal temperature (offset: A) is corrected by the voltage variable attenuator 36 in FIG. 1, and the inclination (inclination: B) with respect to the substrate temperature change due to temperature compensation is corrected to change from low temperature to high temperature. In the meantime, a constant gain is realized.

図3は高周波増幅回路の制御の概要を示し、図中のステップS1の初期設定は、例えば、製造ラインにおける初期設定処理を示す。ステップS2は初期設定で得られた温度補償データをロードする処理であり、ステップS3は電源投入後の温度補償実動作の処理を示している。また、ステップS1とステップS3とは、複数の処理を実行するサブルーチンであり、その詳細を図4(初期設定)と図5(実動作)に示している。   FIG. 3 shows an outline of the control of the high-frequency amplifier circuit, and the initial setting in step S1 in the drawing indicates, for example, an initial setting process in the production line. Step S2 is a process for loading the temperature compensation data obtained by the initial setting, and step S3 shows the process of the temperature compensation actual operation after the power is turned on. Steps S1 and S3 are subroutines for executing a plurality of processes, and details thereof are shown in FIG. 4 (initial setting) and FIG. 5 (actual operation).

図3のステップS1では、増幅器を雰囲気温度を自由に変えることのできる恒温槽に入れて温度補償データを作成する。これらの処理は、図1のCPU12と補正用CPU65とにより実行される。   In step S1 of FIG. 3, the amplifier is placed in a thermostatic chamber in which the ambient temperature can be freely changed to create temperature compensation data. These processes are executed by the CPU 12 and the correction CPU 65 of FIG.

図4には初期設定の処理の流れの詳細が示されている。ステップS10において、操作者が図1の高周波増幅回路1を恒温漕に設置する。ステップS12において、利得個別ばらつき(オフセット)補償を行うため、操作者は、恒温漕を常温状態(例えば25度)にして増幅器50へ定格入力を与え、その際の出力レベルを図1の補正用CPU65を用いて電力計66で測定させ、補正用CPU65を介して高周波増幅回路1のCPU12へ送信させる。CPU12は、増幅器50の定格利得となるように電圧可変減衰器36への制御値を調整してその制御値をCPU12が補正テーブル52に記憶する。以降、増幅器50の電源を投入した際には、増幅器50が定格利得となるよう、電圧可変減衰器36が制御されることになる。   FIG. 4 shows details of the initial setting process flow. In step S10, the operator installs the high-frequency amplifier circuit 1 of FIG. In step S12, in order to perform individual gain variation (offset) compensation, the operator sets the constant temperature chamber to a normal temperature state (for example, 25 degrees), gives a rated input to the amplifier 50, and sets the output level at that time to the correction shown in FIG. The power is measured by the wattmeter 66 using the CPU 65 and transmitted to the CPU 12 of the high-frequency amplifier circuit 1 through the correction CPU 65. The CPU 12 adjusts the control value to the voltage variable attenuator 36 so that the rated gain of the amplifier 50 is obtained, and the CPU 12 stores the control value in the correction table 52. Thereafter, when the power of the amplifier 50 is turned on, the voltage variable attenuator 36 is controlled so that the amplifier 50 has a rated gain.

次に、ステップS14において、操作者は恒温槽内を増幅器50の仕様上の最低温度(例えば−20度)に設定して、ステップS12と同じ要領で図1の増幅器50の利得を規定値に設定する。また、CPU12は、その際の電圧可変減衰器36の制御値と増幅器50の雰囲気温度を温度IC34で検出して補正テーブル52に記憶する。   Next, in step S14, the operator sets the inside of the thermostatic chamber to the lowest temperature (for example, -20 degrees) in the specifications of the amplifier 50, and sets the gain of the amplifier 50 in FIG. 1 to a specified value in the same manner as in step S12. Set. Further, the CPU 12 detects the control value of the voltage variable attenuator 36 and the ambient temperature of the amplifier 50 by the temperature IC 34 and stores them in the correction table 52.

次に、ステップS16において、操作者は恒温槽内を増幅器50の仕様上の最高温度(例えば50度)に設定して、ステップS12と同じ要領で図1の増幅器50の利得を規定値に設定する。また、CPU12は、その際の電圧可変減衰器36の制御値と増幅器50の雰囲気温度を温度IC34で検出して補正テーブル52に記憶する。   Next, in step S16, the operator sets the inside of the thermostatic chamber to the maximum temperature (for example, 50 degrees) in the specifications of the amplifier 50, and sets the gain of the amplifier 50 in FIG. 1 to a specified value in the same manner as in step S12. To do. Further, the CPU 12 detects the control value of the voltage variable attenuator 36 and the ambient temperature of the amplifier 50 by the temperature IC 34 and stores them in the correction table 52.

最後に、ステップS18において、CPU12は、ステップS12〜S16の測定結果から規定の利得となる電圧可変減衰器36の制御値と雰囲気温度との結果から電圧可変減衰器36の制御値の傾きを計算して補正テーブル52を作成する。図4のステップS18では、このようにして得られた温度補償データを統計データとして組み入れ、例えば、最小二乗法を適用して多項式近似式を求めて、代表値を作成する。以上の処理が終了すると図3のステップS2へ移ることになる。また、量産時において生産ロット内で温度補償データが安定した場合には、ステップS2において、完成した温度補償データの代表値のロードのみを行う処理としてもよい。なお、初期設定中にアイドル電流設定値のばらつきを統計的に把握することで、生産ロット毎の特性把握が可能となる。   Finally, in step S18, the CPU 12 calculates the slope of the control value of the voltage variable attenuator 36 from the result of the control value of the voltage variable attenuator 36 and the ambient temperature, which has a specified gain, from the measurement results of steps S12 to S16. Thus, the correction table 52 is created. In step S18 of FIG. 4, the temperature compensation data obtained in this way is incorporated as statistical data, and, for example, a polynomial approximation formula is obtained by applying the least square method to create a representative value. When the above process ends, the process proceeds to step S2 in FIG. In addition, when the temperature compensation data is stabilized in the production lot at the time of mass production, only the representative value of the completed temperature compensation data may be loaded in step S2. It is possible to grasp the characteristics of each production lot by statistically grasping the variation in the idle current set value during the initial setting.

図5は高周波増幅回路1の温度補償実動作におけるサブルーチン処理の流れを示している。実動作(図3のステップS3)の温度取得処理であるステップS20において、温度IC34により雰囲気温度を常時測定する。次に、ステップS22において、CPU12は補正テーブル52を参照して各温度で増幅器50の利得が一定となる制御値を求め、ステップS24にて、制御値をD/A変換器11に出力し、制御信号を電圧可変減衰器36に出力して増幅器50の入力レベルを制御して最初に戻ることになる。このような処理を繰り返すことで、増幅器50の出力レベルの温度補正が可能となる。
(第2の実施形態)
FIG. 5 shows the flow of subroutine processing in the temperature compensation actual operation of the high-frequency amplifier circuit 1. In step S20, which is the temperature acquisition process of the actual operation (step S3 in FIG. 3), the ambient temperature is constantly measured by the temperature IC 34. Next, in step S22, the CPU 12 refers to the correction table 52 to obtain a control value at which the gain of the amplifier 50 becomes constant at each temperature, and outputs the control value to the D / A converter 11 in step S24. A control signal is output to the voltage variable attenuator 36 to control the input level of the amplifier 50 and return to the beginning. By repeating such processing, the temperature correction of the output level of the amplifier 50 becomes possible.
(Second Embodiment)

図6には、高出力化のため二つの増幅素子53を並列接続した高周波増幅回路2の構成が示されている。第2の実施形態に係る高周波増幅回路2は、増幅素子53を並列接続して一群化した増幅素子群(第3段増幅器50)として一つの温度IC34により雰囲気温度を検出し、CPU12が一つの補正テーブル52に基づいて電圧可変減衰器36を制御することで温度補償を行うものである。   FIG. 6 shows a configuration of the high-frequency amplifier circuit 2 in which two amplifier elements 53 are connected in parallel for high output. In the high-frequency amplifier circuit 2 according to the second embodiment, the ambient temperature is detected by one temperature IC 34 as an amplifier element group (third stage amplifier 50) in which the amplifier elements 53 are connected in parallel to form a group, and the CPU 12 has one Temperature compensation is performed by controlling the voltage variable attenuator 36 based on the correction table 52.

本実施形態の高周波増幅回路2では、並列接続された増幅素子53を駆動するための第1段増幅器10及び第2段増幅器20を設け、上流側である第1段増幅器10の入力に電圧可変増幅器36を接続することにより、基板上の雰囲気温度がほぼ等しいと仮定し、第1増幅器10と第2増幅器20とを含めて温度補償を行っている。   In the high frequency amplifier circuit 2 of the present embodiment, the first stage amplifier 10 and the second stage amplifier 20 for driving the amplifier elements 53 connected in parallel are provided, and the voltage is variable at the input of the first stage amplifier 10 on the upstream side. By connecting the amplifier 36, it is assumed that the ambient temperature on the substrate is substantially equal, and the temperature compensation is performed including the first amplifier 10 and the second amplifier 20.

なお、本実施形態では増幅素子53を並列2個接続したが、これに限るものではなく、並列3個以上接続してもよい。また、本実施形態では電圧減衰器が上流側である第1段増幅器の入力に接続したが、第2段増幅器又は第3段増幅器の入力に設けることも可能であり、本発明の及ぶ範囲を限定するものではない。
(第3の実施形態)
In the present embodiment, two amplifying elements 53 are connected in parallel. However, the present invention is not limited to this, and three or more in parallel may be connected. In this embodiment, the voltage attenuator is connected to the input of the first stage amplifier on the upstream side. However, the voltage attenuator can be provided at the input of the second stage amplifier or the third stage amplifier. It is not limited.
(Third embodiment)

次に、複数の増幅素子を個別の温度IC及び補正デーブルにより温度補償を行う第3の実施形態について説明する。図7は、第3段A増幅器と第3段B増幅器を並列接続し、第3段A増幅器と第3段B増幅器とに、増幅素子53と、温度IC34と、電圧可変減衰器36と、演算増幅器35と、対応する補正テーブルと、をそれぞれ設けた高周波増幅回路3の構成を示している。   Next, a description will be given of a third embodiment in which a plurality of amplifying elements are subjected to temperature compensation using individual temperature ICs and correction tables. FIG. 7 shows that a third stage A amplifier and a third stage B amplifier are connected in parallel, the third stage A amplifier and the third stage B amplifier are connected to an amplifying element 53, a temperature IC 34, a voltage variable attenuator 36, The configuration of the high-frequency amplifier circuit 3 provided with the operational amplifier 35 and the corresponding correction table is shown.

入力端子INに入力された入力信号は、第1段増幅器10と第2段増幅器20とで増幅され、第3段増幅器50に入力される。第3段増幅器50に入力された高周波信号は、第3段A増幅器と第3段B増幅器にそれぞれ入力される。CPU12は、各温度IC34にて各増幅素子53の雰囲気温度を測定し、各補正テーブル52の補正値に基づいて、各D/A変換器11及び各演算増幅器35により各電圧可変減衰器36を制御する。各電圧可変減衰器はそれぞれ温度補償が行われた入力を各増幅素子53に供給し、均一な出力レベルとなった出力信号が合成されて第3段増幅器50の出力端子OUTから出力される。   The input signal input to the input terminal IN is amplified by the first stage amplifier 10 and the second stage amplifier 20 and input to the third stage amplifier 50. The high frequency signal input to the third stage amplifier 50 is input to the third stage A amplifier and the third stage B amplifier, respectively. The CPU 12 measures the ambient temperature of each amplification element 53 with each temperature IC 34, and sets each voltage variable attenuator 36 with each D / A converter 11 and each operational amplifier 35 based on the correction value of each correction table 52. Control. Each voltage variable attenuator supplies the temperature-compensated input to each amplifying element 53, and an output signal having a uniform output level is synthesized and output from the output terminal OUT of the third stage amplifier 50.

このような高周波増幅回路3は、高周波信号を並列接続された複数の増幅素子で増幅する。特に、各増幅素子が別基板で実装されるような場合では、雰囲気温度が一様でないため増幅素子毎の利得にばらつきや出力レベルにばらつきが発生し、出力信号に歪みが発生し易くなる。このような場合には、複数増幅素子の入力レベル調整をそれぞれの増幅素子毎に設けられた電圧可変減衰器36を用いて各増幅素子の出力レベルを均一に保つことが好適である。   Such a high-frequency amplifier circuit 3 amplifies a high-frequency signal with a plurality of amplifying elements connected in parallel. In particular, when each amplification element is mounted on a separate substrate, the ambient temperature is not uniform, so that variations in gain and output level for each amplification element occur, and distortion in the output signal is likely to occur. In such a case, it is preferable to adjust the input level of the plurality of amplifying elements by using the voltage variable attenuator 36 provided for each amplifying element to keep the output level of each amplifying element uniform.

並列接続により実現された数百ワット級の高周波増幅回路の場合には、増幅素子の雰囲気温度が、例えば、50度に近づくに従い、増幅素子の性能劣化が顕著となることから、単なる温度補償だけでなく過熱保護をする必要がある。本実施形態では、CPU12が温度IC34にて常時温度検出を行い、過熱を防止すべく各増幅器の出力レベルを均一に保ちながら利得を制御することが可能である。   In the case of a high-frequency amplifier circuit of several hundred watts realized by parallel connection, the performance degradation of the amplifier element becomes significant as the ambient temperature of the amplifier element approaches 50 degrees, for example. It is necessary to protect against overheating. In the present embodiment, the CPU 12 always detects the temperature with the temperature IC 34, and the gain can be controlled while keeping the output level of each amplifier uniform to prevent overheating.

以上、上述したように、本実施形態に係る高周波増幅回路は、コストアップを抑えて閉ループ制御を実現し、増幅素子の利得のばらつきと温度補償の精度のばらつきを補正すると共に、増幅素子に過大入力があった際も、レベル調整手段により増幅素子の保護が可能となる。また、本実施形態で説明した高周波増幅回路では、ケースに組み込まれて基地局アンテナの近傍もしくは直射日光が当たる高所に配置され日照により高温、さらに、放射冷却で低温となり易いため、本発明で示した精度の高い温度補償機能は極めて好適である。   As described above, the high-frequency amplifier circuit according to the present embodiment realizes closed-loop control while suppressing an increase in cost, corrects variations in gain of the amplifying element and variations in accuracy of temperature compensation, and overloads the amplifying element. Even when there is an input, the amplification element can be protected by the level adjusting means. Further, in the high frequency amplifier circuit described in the present embodiment, it is built in a case and placed near the base station antenna or at a high place where it is exposed to direct sunlight. The highly accurate temperature compensation function shown is very suitable.

本発明に係る高周波増幅器は、特に増幅素子の温度補償が可能な高周波増幅回路に関し、入力された高周波信号を増幅素子によって増幅して出力する高周波増幅回路に利用することが可能である。   The high-frequency amplifier according to the present invention particularly relates to a high-frequency amplifier circuit capable of temperature compensation of an amplifier element, and can be used for a high-frequency amplifier circuit that amplifies an input high-frequency signal by an amplifier element and outputs the amplified signal.

1,2,3,100 高周波増幅回路、10 第1段増幅器、11 D/A変換器、12 CPU、20 第2段増幅器、50 第3段増幅器、51 第3段A増幅器、35 演算増幅器、34 温度IC、36 電圧可変減衰器、53,101 増幅素子、61 第3段B増幅器、52 補償テーブル、65 補正用CPU,66 電力計、102 ボリューム、103 感温抵抗。   1, 2, 3, 100 High frequency amplifier circuit, 10 1st stage amplifier, 11 D / A converter, 12 CPU, 20 2nd stage amplifier, 50 3rd stage amplifier, 51 3rd stage A amplifier, 35 operational amplifier, 34 temperature IC, 36 voltage variable attenuator, 53, 101 amplifying element, 61 3rd stage B amplifier, 52 compensation table, 65 CPU for correction, 66 wattmeter, 102 volume, 103 temperature sensitive resistor.

Claims (4)

入力された高周波信号を増幅素子によって増幅して出力する高周波増幅回路において、
前記増幅素子の雰囲気温度を検出する温度検出手段と、
入力された高周波信号のレベルを調整するレベル調整手段と、
前記温度検出手段により検出される検出温度に対応付けて、前記レベル調整手段に対する制御値を記憶する記憶手段と、
前記記憶手段を参照し、前記検出温度に対応する制御値を求め、その制御値に基づいて前記レベル調整手段を制御する制御手段と、
を有し、
前記制御手段は、さらに、前記レベル調整手段を制御する前の初期設定を行う初期設定手段を備え、当該初期設定手段は、
複数の異なる雰囲気温度のそれぞれについての制御値であって、前記増幅素子の出力レベルを一定とする制御値に基づいて、前記検出温度と前記増幅素子の出力レベルを一定とする制御値とを対応付ける近似式を求める手段と、
前記近似式に基づいて、前記検出温度に対応する制御値を求め、前記記憶手段に記憶させる手段と、
を備えることを特徴とする高周波増幅回路。
In a high frequency amplification circuit that amplifies an input high frequency signal by an amplification element and outputs it,
Temperature detecting means for detecting the ambient temperature of the amplifying element,
Level adjusting means for adjusting the level of the input high-frequency signal;
Storage means for storing a control value for the level adjustment means in association with the detected temperature detected by the temperature detection means ;
Control means for referring to said storage means, obtains a control value corresponding to the detected temperature, controls the level adjusting means based on the control value,
Have
The control means further includes initial setting means for performing initial setting before controlling the level adjusting means, and the initial setting means includes:
A control value for each of a plurality of different ambient temperatures, wherein the detected temperature is associated with a control value for making the output level of the amplification element constant based on a control value for making the output level of the amplification element constant. Means for obtaining an approximate expression;
Based on the approximate expression, a control value corresponding to the detected temperature is obtained and stored in the storage means;
High-frequency amplifier circuit comprising: a.
請求項1に記載の高周波増幅回路において、
前記増幅素子は、並列接続された複数の増幅用の素子を有することを特徴とする高周波増幅回路。
The high frequency amplifier circuit according to claim 1,
The amplifying element is a high frequency amplifier circuit, characterized in that it comprises an element for a plurality of amplified connected in parallel.
高周波信号を並列接続された複数の増幅素子に入力し、各増幅素子からの出力を合成して出力する高周波増幅回路において、
前記各増幅素子の雰囲気温度を検出する温度検出手段と、
前記複数の増幅素子にそれぞれ対応して設けられ、入力された各高周波信号のレベルを調整するレベル調整手段と、
前記複数の増幅素子のそれぞれについて、前記温度検出手段により検出される検出温度に対応付けて、前記レベル調整手段に対する制御値を記憶する記憶手段と、
前記記憶手段を参照し、前記検出温度に対応する制御値を前記複数の増幅素子のそれぞれに対して求め、各制御値に基づいて前記各レベル調整手段を制御する制御手段と、
を有し、
前記制御手段は、さらに、前記各レベル調整手段を制御する前の初期設定を行う初期設定手段を備え、当該初期設定手段は、
複数の異なる雰囲気温度のそれぞれについての制御値であって、前記増幅素子の出力レベルを一定とする制御値に基づいて、前記検出温度と前記増幅素子の出力レベルを一定とする制御値とを対応付ける近似式を求める手段と、
前記近似式に基づいて、前記検出温度に対応する制御値を求め、前記記憶手段に記憶させる手段と、
を前記複数の増幅素子にそれぞれについて備えることを特徴とする高周波増幅回路。
In a high-frequency amplifier circuit that inputs a high-frequency signal to a plurality of amplifying elements connected in parallel and synthesizes and outputs the output from each amplifying element,
Temperature detecting means for detecting the ambient temperature of the amplifier element,
Provided corresponding to said plurality of amplifying elements, and level adjusting means for adjusting the level of each high-frequency signal inputted,
Storage means for storing a control value for the level adjustment means in association with the detected temperature detected by the temperature detection means for each of the plurality of amplification elements ;
Control means for referring to said storage means, obtains a control value corresponding to the detected temperature for each of the plurality of amplifying elements, for controlling the respective level adjusting means based on the control value,
Have
The control means further includes initial setting means for performing initial setting before controlling the level adjusting means, and the initial setting means includes:
A control value for each of a plurality of different ambient temperatures, wherein the detected temperature is associated with a control value for making the output level of the amplification element constant based on a control value for making the output level of the amplification element constant. Means for obtaining an approximate expression;
Based on the approximate expression, a control value corresponding to the detected temperature is obtained and stored in the storage means;
Each of the plurality of amplifying elements includes a high-frequency amplifier circuit.
入力された高周波信号を増幅によって増幅して出力する高周波増幅回路において、
前記増幅の雰囲気温度を検出する温度検出手段と、
入力された高周波信号のレベルを調整するレベル調整手段と、
前記温度検出手段により検出される検出温度に対応付けて、前記レベル調整手段に対する制御値であって、前記増幅器の出力レベルを一定とする制御値を記憶する記憶手段と、
前記記憶手段を参照し、前記検出温度に対応する制御値を求め、その制御値に基づいて、前記レベル調整手段を制御する制御手段と、
を有し、
前記増幅器は、並列接続された複数の増幅素子を有する増幅素子群であり、
前記増幅素子群に対し、1つの前記温度検出手段、1つの前記レベル調整手段、1つの前記記憶手段および1つの前記制御手段が設けられていることを特徴とする高周波増幅回路。
In the high frequency amplifier circuit for amplifying and outputting the amplified unit the input high frequency signal,
Temperature detecting means for detecting the ambient temperature of the amplifier circuit,
Level adjusting means for adjusting the level of the input high-frequency signal;
Storage means for storing a control value for the level adjusting means, which is associated with the detected temperature detected by the temperature detecting means, and which makes the output level of the amplifier constant ;
Referring to the storage means, obtains a control value corresponding to the detected temperature, the control means on the basis of the control value, for controlling said level adjusting means,
Have
The amplifier is an amplifying element group having a plurality of amplifying elements connected in parallel,
A high-frequency amplifier circuit comprising: one temperature detecting unit, one level adjusting unit, one storage unit, and one control unit for the amplification element group .
JP2009015507A 2009-01-27 2009-01-27 High frequency amplifier circuit Active JP5258597B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009015507A JP5258597B2 (en) 2009-01-27 2009-01-27 High frequency amplifier circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009015507A JP5258597B2 (en) 2009-01-27 2009-01-27 High frequency amplifier circuit

Publications (2)

Publication Number Publication Date
JP2010177771A JP2010177771A (en) 2010-08-12
JP5258597B2 true JP5258597B2 (en) 2013-08-07

Family

ID=42708328

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009015507A Active JP5258597B2 (en) 2009-01-27 2009-01-27 High frequency amplifier circuit

Country Status (1)

Country Link
JP (1) JP5258597B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101150886B1 (en) * 2010-10-27 2012-05-29 엘아이지넥스원 주식회사 Apparatus for Temperature Compensation having Variable Attenuator and Method using The same
JP5625797B2 (en) * 2010-11-19 2014-11-19 日本電気株式会社 Temperature correction circuit, demodulation circuit, communication device, temperature correction method, and demodulation method
CN110224679A (en) * 2019-05-27 2019-09-10 山东航天电子技术研究所 A kind of automatic gain control circuit with temperature-compensating
KR102480761B1 (en) * 2020-11-18 2022-12-26 (주)성진아이엘 Communication device that adjusts the gain by monitoring the internal temperature of a plurality of power amplifiers

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0652222U (en) * 1992-12-18 1994-07-15 日本無線株式会社 Temperature compensation circuit
JPH11234050A (en) * 1998-02-13 1999-08-27 Mitsubishi Electric Corp Power amplifier
JP2005244461A (en) * 2004-02-25 2005-09-08 Mitsubishi Electric Corp Power synthesizing amplifier
JP2007173982A (en) * 2005-12-19 2007-07-05 Toshiba Corp Temperature compensation amplifier
JP2007263709A (en) * 2006-03-28 2007-10-11 Fujitsu Ltd Temperature characteristic correction method and amplifier circuit for sensor
JP4790652B2 (en) * 2007-03-29 2011-10-12 富士通株式会社 Digitally controlled transmitter and control method thereof
JP2010114793A (en) * 2008-11-10 2010-05-20 Japan Radio Co Ltd Fet bias circuit

Also Published As

Publication number Publication date
JP2010177771A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
US11451205B2 (en) Power amplifier self-heating compensation circuit
US10439562B2 (en) Current mirror bias compensation circuit
US10382147B2 (en) Methods of calibrating a power amplifier system to compensate for envelope amplitude misalignment
US20180262166A1 (en) Positive Temperature Coefficient Bias Compensation Circuit
US8489045B2 (en) Method and system for adjusting transmission power
EP3457564A1 (en) Calibrate output matching for correct output power
US10014886B2 (en) Reducing power amplifier gain drift during a data burst
US8836424B2 (en) Amplifier circuit, method and mobile communication device
JP5258597B2 (en) High frequency amplifier circuit
JP2010114793A (en) Fet bias circuit
US10374556B2 (en) Amplifier biasing circuits and method
US20070096824A1 (en) System and method for controlling transmitter output levels in a wireless communications device
JP2011228774A (en) Power control device and power control method
JP2018142798A (en) Amplifier and communication device
KR20200003528A (en) Power amplifier that can guarantee circuit operation stability
JP2012199716A (en) Amplifier, transmission apparatus and gate voltage decision method
WO2019107264A1 (en) Amplifying device, method for manufacturing amplifying device, and method for correcting bias current
EP2362544A1 (en) A signal amplifying component with gain compensation stages for compensating gain tolerances
JP5370223B2 (en) Wireless terminal and device cooling method
JP2004104582A (en) Input level detection type amplifier circuit
JP2010081568A (en) Agc circuit, radio equipment employing the same, and control method of agc circuit

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120123

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121023

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130416

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130423

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5258597

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150