JP5257812B2 - How to measure the air volume in the wind path - Google Patents

How to measure the air volume in the wind path Download PDF

Info

Publication number
JP5257812B2
JP5257812B2 JP2008297305A JP2008297305A JP5257812B2 JP 5257812 B2 JP5257812 B2 JP 5257812B2 JP 2008297305 A JP2008297305 A JP 2008297305A JP 2008297305 A JP2008297305 A JP 2008297305A JP 5257812 B2 JP5257812 B2 JP 5257812B2
Authority
JP
Japan
Prior art keywords
tracer gas
air
air volume
gas
injected
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008297305A
Other languages
Japanese (ja)
Other versions
JP2010101870A (en
Inventor
吉治郎 芝
Original Assignee
株式会社芝田技研
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社芝田技研 filed Critical 株式会社芝田技研
Priority to JP2008297305A priority Critical patent/JP5257812B2/en
Publication of JP2010101870A publication Critical patent/JP2010101870A/en
Application granted granted Critical
Publication of JP5257812B2 publication Critical patent/JP5257812B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、風道内を流れる気体の速度や流量を計測する風量計測方法に関する。  The present invention relates to an air volume measuring method for measuring the velocity and flow rate of gas flowing in an air passage.

従来の風道内の風量計測手段として、様々な測定方法が提案されている。なかでも、混合希釈法は、複雑に組み合わされた風道内の風量を計測する場合、ピトー管やオリフィスなどを用いた他の測定方法と異なり、風道内を整流する必要がなく精度良く測定できる方法である。  Various measurement methods have been proposed as conventional air volume measuring means in an air passage. In particular, the mixed dilution method is a method that can accurately measure the air volume in a complex combined airway, unlike the other measurement methods that use pitot tubes or orifices, without the need to rectify the airway. It is.

例えば特許文献1には、混合希釈法を用いて一時的に測定対象風道の風量を計測しながら、別途その風道上に設けた流体圧力検知装置からの検出差圧を調べることで、両者の関係を一旦明確にし、以降の風量計測を流体圧力検知装置の検出差圧で行う工夫がされている。  For example, in Patent Document 1, while measuring the air volume of the measurement target air passage temporarily using the mixed dilution method, the detected differential pressure from the fluid pressure detection device separately provided on the air passage is examined, The relationship is clarified once, and the device for performing the subsequent air volume measurement with the detection differential pressure of the fluid pressure detection device is devised.

しかしながら、このような混合希釈法の活用においても、次のような問題点を抱えていることから実際に風量計測が必要なフィールドでも採用されていないのが実情である。  However, even in the use of such a mixed dilution method, the fact is that it has not been adopted even in a field that actually requires airflow measurement because it has the following problems.

まず、トレーサガスはガスボンベ内で液化状態からガス化して、風道内に注入するため、ボンベ内のガス温度が気化熱により急激に低下しボンベ内の圧力が低下する。この現象によって、風道内へのガス注入圧が変動し、安定してガスを風道内に注入できない状態となる。これを防ぐ目的で、ヒータをボンベに巻き付けるなどしてボンベ内の内圧を一定に保っている。風量が多くなるとトレーサガスの注入量も多くなるため、大容量のヒータが必要になり、装置そのものが大型化し、実際に風量計測が必要なフィールドでは使い辛い問題が発生する。
特開2008−185515
First, since the tracer gas is gasified from the liquefied state in the gas cylinder and injected into the air passage, the gas temperature in the cylinder is rapidly decreased by the heat of vaporization, and the pressure in the cylinder is decreased. Due to this phenomenon, the gas injection pressure into the air passage fluctuates, and the gas cannot be stably injected into the air passage. In order to prevent this, the internal pressure in the cylinder is kept constant by, for example, winding a heater around the cylinder. As the air volume increases, the amount of tracer gas injected also increases, requiring a large-capacity heater, increasing the size of the apparatus itself, and causing problems that are difficult to use in fields that actually require air volume measurement.
JP2008-185515

上記従来の混合希釈法を用いた風道内風量計測方法の問題点から、大風量を計測する際にトレーサガスを簡単な装置で多量に風道内に注入する方法、またトレーサガスを液状で風道内に注入する際に、その注入量が調整でき、しかも簡便な機構で安定した注入状態が得られる方法が望まれていた。  Due to the problems with the conventional air volume measurement method using the mixed dilution method, a large amount of tracer gas is injected into the air path with a simple device when measuring a large air volume, and the tracer gas is liquid in the air path. Therefore, there has been a demand for a method capable of adjusting the amount of injection when injecting into a tube and obtaining a stable injection state with a simple mechanism.

本発明は、この点に鑑み、大風量を計測する際に簡単な装置でトレーサガスを風道内に多量に注入する方法、及びトレーサガスを液状で風道内に注入する際に一定量を安定して注入できる方法、更に実用上負担となる計測フィールドへのトレーサガスボンベの持ち込み数量を軽減する方法を提供することを目的とする。  In view of this point, the present invention provides a method for injecting a large amount of tracer gas into the air passage with a simple device when measuring a large air volume, and a constant amount when injecting the tracer gas into the air passage in liquid form. Another object of the present invention is to provide a method for reducing the amount of tracer gas cylinders brought into the measurement field, which is a practical burden.

そして、本発明は上記目的を達成するために、請求項1の発明は、風道内の風量計測方法である混合希釈法において、計測対象の風道内へのトレーサガス注入を液化状態で行うことを特徴とする風量計測方法である。  In order to achieve the above object, according to the present invention, in the mixed dilution method, which is a method for measuring the amount of air in an air passage, the tracer gas is injected into the air passage to be measured in a liquefied state. This is a characteristic airflow measurement method.

請求項2の発明は、請求項1において、風道内への注入量をスプレーノズルの孔径とノズルの設置数で調整することを特徴とする風量計測方法である。  A second aspect of the present invention is the air volume measuring method according to the first aspect, wherein the amount of injection into the air passage is adjusted by the hole diameter of the spray nozzle and the number of nozzles installed.

請求項3の発明は、請求項1の液状でトレーサガスを注入する方法において、一般的なガスボンベを倒立使用することで、液化状態での注入が可能となる風量計測方法である。  A third aspect of the invention is a method of measuring the air volume in which the liquid tracer gas is injected according to the first aspect, and the injection in a liquefied state is possible by using a general gas cylinder in an inverted manner.

なお、この発明方法において、風道とはダクト状のものだけでなく、クリーンルームなどのものも含むものである。  In the method of the present invention, the air passage includes not only a duct-like one but also a clean room or the like.

上述したように本発明の風量計測方法は、トレーサガスを液化状態で注入することにより、簡単な装置で多量のトレーサガスを風道内に送ることができる。  As described above, the air volume measuring method of the present invention can send a large amount of tracer gas into the air passage with a simple device by injecting the tracer gas in a liquefied state.

また、液化状態でトレーサガスを注入するに当たり、その注入量をスプレーノズルの孔径とノズルの設置数を請求項2に記載の関係式を基に調整することで安定した注入状態を保つことができる。  In addition, when injecting the tracer gas in the liquefied state, the injection amount can be maintained by adjusting the hole diameter of the spray nozzle and the number of nozzles installed based on the relational expression described in claim 2. .

更に、トレーサガスのボンベを倒立状態で使用することで、より簡単にトレーサガスを液体状態で注入することができる。  Further, by using the tracer gas cylinder in an inverted state, the tracer gas can be injected in a liquid state more easily.

以下、本発明の実施の形態を図1〜図3に基づいて説明する。  Hereinafter, embodiments of the present invention will be described with reference to FIGS.

図1は、風道100内へのトレーサガス注入を液化状態で行っている様子を示している。液化状態にあるトレーサガスは、注入用チューブ11からヘッダー12を経由してスプレーノズル13から風道100内に噴霧注入している。  FIG. 1 shows a state where the tracer gas is injected into the air passage 100 in a liquefied state. The tracer gas in the liquefied state is spray-injected into the air passage 100 from the spray nozzle 13 via the header 12 from the injection tube 11.

また、トレーサガスを注入する地点の上流側に一次側サンプリング管14を設置している。一次側サンプリング管14には、風道内の空気を吸引するための一次側空気吸引孔14aが適切な間隔で複数開けられている。  Further, a primary side sampling pipe 14 is installed upstream of the point where the tracer gas is injected. A plurality of primary side air suction holes 14a for sucking air in the air passage are formed in the primary side sampling tube 14 at appropriate intervals.

この一次側空気吸引孔14aを利用して少量の空気をサンプリングする。このサンプリング空気はガス濃度分析計に送られ、被測定流体の空気中に存在するトレーサガス1と同じガス成分の濃度を計測する。  A small amount of air is sampled using this primary air suction hole 14a. This sampling air is sent to a gas concentration analyzer, and the concentration of the same gas component as the tracer gas 1 existing in the air of the fluid to be measured is measured.

一方、トレーサガス1を注入する地点の下流側にも二次側空気サンプリング管15を設置している。一次側空気サンプリング管14同様、二次側空気吸引孔15aが設けられており、少量の空気をサンプリングする。このサンプリング空気もガス濃度分析計に送られ、被測定流体である空気で混合希釈されたトレーサガス1の濃度を計測する。  On the other hand, the secondary side air sampling pipe 15 is also installed downstream of the point where the tracer gas 1 is injected. Similar to the primary side air sampling pipe 14, a secondary side air suction hole 15a is provided to sample a small amount of air. This sampling air is also sent to the gas concentration analyzer, and the concentration of the tracer gas 1 mixed and diluted with air as the fluid to be measured is measured.

このようにして計測した一次側空気と二次側空気のトレーサガス濃度の相違、及び風道内へのトレーサガス注入量が分かると風道内の風量を求めることができる。  If the difference in the tracer gas concentration between the primary side air and the secondary side air measured in this way and the amount of tracer gas injected into the wind path are known, the air volume in the wind path can be determined.

図1のようにトレーサガスを液化状態で注入することで、多量のトレーサガス1を風道内に安定して注入でき、風量の多い大きな風道の風量計測も容易に行うことが可能となる。  By injecting the tracer gas in a liquefied state as shown in FIG. 1, a large amount of the tracer gas 1 can be stably injected into the air passage, and the air flow measurement of a large air passage with a large air flow can be easily performed.

例えば、トレーサガスとして二酸化炭素を用いた場合、スプレーノズル13から噴霧注入された直後に液化二酸化炭素の大部分は急激な圧力の降下と温度低下により、ドライアイスに変化する。更に、このドライアイスは被測定流体である空気との間で直ちに熱交換をし、二酸化炭素ガスに変化する。このような一連の相変化がスプレーノズル13を用い噴霧注入することで、スムースに促進される。  For example, when carbon dioxide is used as the tracer gas, most of the liquefied carbon dioxide changes to dry ice due to a sudden pressure drop and temperature drop immediately after being sprayed from the spray nozzle 13. Furthermore, this dry ice immediately exchanges heat with air, which is the fluid to be measured, and changes to carbon dioxide gas. Such a series of phase changes is smoothly promoted by spray injection using the spray nozzle 13.

図1において、液化状態で供給したトレーサガスを風道100内に安定して注入するために、トレーサガスの注入量とヘッダー12に配設したスプレーノズル13の孔径とノズル配設数とを次式の関係式で調整する。

Figure 0005257812
ガス液化状態の密度(kg/m)、Pはヘッダーの内圧(Pa)、Nはノズル設置数、kは比例定数とし取り得る範囲は次の通りとする。0.1<k<0.9In FIG. 1, in order to stably inject the tracer gas supplied in a liquefied state into the air passage 100, the amount of the tracer gas injected, the hole diameter of the spray nozzle 13 provided in the header 12, and the number of nozzles provided are as follows. Adjust with the relational expression.
Figure 0005257812
The density in the gas liquefied state (kg / m 3 ), P is the internal pressure (Pa) of the header, N is the number of nozzles installed, k is a proportional constant, and the possible range is as follows. 0.1 <k <0.9

液化状態で注入されるトレーサガスの流量を、仮に、噴霧口とボンベ間の注入用チューブ11上にバルブやオリフィスなどを取付け調整しようとしても、これらの存在が局所的な圧力降下を招き、気化現象を起こすことになる。この気化現象により気化熱を奪われるため、トレーサガスは液化状態から固体状態に相変化し、注入用チューブ11を閉塞させ、安定したトレーサガスの注入ができない問題を引き起こすこともある。  Even if an attempt is made to adjust the flow rate of the tracer gas injected in the liquefied state by installing a valve or an orifice on the injection tube 11 between the spray port and the cylinder, the presence of these causes a local pressure drop, and vaporization occurs. It will cause a phenomenon. Since the heat of vaporization is deprived by this vaporization phenomenon, the tracer gas may change phase from a liquefied state to a solid state, block the injection tube 11 and cause a problem that stable tracer gas cannot be injected.

また、トレーサガス注入量調整の必要性として、次のようなことがあげられる。まず、被測定流体で混合希釈されたトレーサガスの濃度はガス濃度分析計で計測するが、通常、ガス濃度の測定範囲が限られているため、その範囲内の濃度に収める必要が生じる。  Moreover, the following is mentioned as necessity of adjustment of tracer gas injection amount. First, the concentration of the tracer gas mixed and diluted with the fluid to be measured is measured by a gas concentration analyzer. However, since the measurement range of the gas concentration is usually limited, it is necessary to keep the concentration within that range.

更に、例えばトレーサガスとして二酸化炭素を注入する場合、環境への配慮も必要である。人間の二酸化炭素に対する長期安定限界は5000ppmと言われているため、空気により混合希釈された状態でこの限界濃度以下に抑えられるようにトレーサガスの注入量を調整するべきである。  Furthermore, for example, when carbon dioxide is injected as a tracer gas, consideration for the environment is also necessary. Since the long-term stability limit for human carbon dioxide is said to be 5000 ppm, the amount of tracer gas to be injected should be adjusted so as to be kept below this limit concentration in a state of being mixed and diluted with air.

なお、図1に示すスプレーノズル13の向きは上流側に向かって噴霧注入するように設置しているが、どのような方向に向かって噴霧注入しても良い。  In addition, although the direction of the spray nozzle 13 shown in FIG. 1 is installed so that spray injection is performed toward the upstream side, spray injection may be performed in any direction.

また、一次側サンプリング管14及び二次側サンプリング管15はそれぞれ上流と下流に向かって空気吸引孔を設けているがいずれの方向を向いても良い。  In addition, the primary sampling tube 14 and the secondary sampling tube 15 are provided with air suction holes toward the upstream and the downstream, respectively, but may be directed in either direction.

図2は、トレーサガスを液化状態で風道100内に注入するためにトレーサガスボンベ2を倒立使用している様子を示している。ボンベは転倒防止の目的でボンベ倒立架台4に立て掛けられ、重量計3に乗っている。ボンベ2を倒立することで容易にトレーサガスを液化状態で取り出すことができる。  FIG. 2 shows a state in which the tracer gas cylinder 2 is used upside down in order to inject the tracer gas into the air passage 100 in a liquefied state. The cylinder is stood on the cylinder inverted stand 4 for the purpose of preventing the fall, and is on the weight scale 3. By inverting the cylinder 2, the tracer gas can be easily taken out in a liquefied state.

この液化状態のトレーサガスは開閉用コック10、注入用チューブ11を経由して風道100内に送られる。液化状態でのトレーサガス注入量は、重量計3で計測する重量の変化分として表れる。重量計3を用いることで、注入量の多少によらず精度よく注入量を計測できると共に、時間的な重量の変化を逐次データとしてパソコンなどに容易に取り込めるメリットがある。  The liquefied tracer gas is sent into the air passage 100 via the opening / closing cock 10 and the injection tube 11. The tracer gas injection amount in the liquefied state appears as a change in the weight measured by the weigh scale 3. By using the weigh scale 3, there is an advantage that the injection amount can be accurately measured regardless of the amount of injection, and the change in weight over time can be easily taken into a personal computer or the like as sequential data.

測定する風量域が小風量から大風量に亘る場合、小風量ではトレーサガスをガス状態で少量注入し、大風量では液体の状態で大量に風道内に注入することが装置を簡素化する上で好ましいが、ガス状での注入と液状での注入ではガスボンベの内部構造が異なり、通常仕様とサイホン式仕様の2種類のボンベを用意する必要がある。しかしながら本発明によると、小風量ではボンベ2を正置使用、大風量では倒立使用するため1種類で対応できる。これにより、計測フィールドへのボンベの持ち込み数量が軽減できる。  When the air volume to be measured ranges from a small air volume to a large air volume, a small amount of tracer gas is injected in a gas state with a small air volume, and a large amount of liquid is injected into the air passage with a large air volume in order to simplify the device. Although it is preferable, the internal structure of the gas cylinder differs between the gaseous injection and the liquid injection, and it is necessary to prepare two types of cylinders of normal specification and siphon type specification. However, according to the present invention, the cylinder 2 can be used in an upright position with a small air volume, and can be used with one type because it is used upside down with a large air volume. Thereby, the amount of cylinders brought into the measurement field can be reduced.

図3は、クリーンルーム114での適用事例を示している。クリーンルーム114は、リターンエアーと外気がフィルターや熱交換器などによって、洗浄処理や温湿度調整が適切に行われる循環系の空調設備であり、空気洗浄度の高さや室内が均一な気流であることが重要な要素になっている。  FIG. 3 shows an application example in the clean room 114. The clean room 114 is a circulatory air conditioning system in which return air and outside air are appropriately cleaned and adjusted in temperature and humidity by a filter, heat exchanger, etc., and has a high degree of air cleaning and a uniform air flow in the room. Is an important factor.

一般的に、クリーンルーム114に送られる空気は送風機111で押し出され、ダクト110を通りクリーンルーム天井面に達し、風量調整ダンパー112から高性能フィルター113を経由して室内に送られている。  In general, the air sent to the clean room 114 is pushed out by the blower 111, passes through the duct 110, reaches the clean room ceiling surface, and is sent from the air volume adjusting damper 112 to the room via the high performance filter 113.

このような環境で、気流の状態を計測する方法として、まずクリーンルーム114内への送風量とクリーンルーム114内の風量分布を計測する。  In such an environment, as a method of measuring the state of the airflow, first, the amount of air blown into the clean room 114 and the air volume distribution in the clean room 114 are measured.

計測は、送風機111の吐出側に設けた一次側サンプリング管14で被測定流体中にあるトレーサガスと同じガス成分のガス濃度を計測するための空気をサンプリングしながら、その下流域に設けたヘッダー12に配設したスプレーノズル13でトレーサガスを風道110内に噴霧注入し、更に下流側の二次側サンプリング管15でトレーサガスの希釈度合いを計測するため、空気のサンプリングを行い、ガス濃度を計測し風量を求める。  The measurement is performed by sampling the air for measuring the gas concentration of the same gas component as the tracer gas in the fluid to be measured by the primary side sampling pipe 14 provided on the discharge side of the blower 111, and the header provided in the downstream area thereof. The spray nozzle 13 disposed at 12 sprays the tracer gas into the air passage 110, and further samples the air in order to measure the degree of dilution of the tracer gas in the downstream side sampling pipe 15 to measure the gas concentration. Measure the air volume.

また、クリーンルーム114内に設置した複数のガス濃度分析器115で、トレーサガスの到達時間と、濃度を計測することで風量分布を求めることができる。  Further, the air volume distribution can be obtained by measuring the arrival time and concentration of the tracer gas with a plurality of gas concentration analyzers 115 installed in the clean room 114.

この発明の実施形態を示す断面図である。It is sectional drawing which shows embodiment of this invention. この発明の実施形態を示す正面図である。It is a front view which shows embodiment of this invention. クリーンルームにおける適用事例を示す断面図である。It is sectional drawing which shows the application example in a clean room.

符号の説明Explanation of symbols

1トレーサガス
2トレーサガスボンベ
3重量計
4ボンベ倒立用架台
10開閉用コック
11注入用チューブ
12ヘッダー
13スプレーノズル
14一次側サンプリング管
14a一次側空気吸引孔
15二次側サンプリング管
15a二次側空気吸引孔
100風道
110ダクト
111送風機
112風量調整ダンパー
113高性能フィルター
114クリーンルーム
115ガス濃度分析器
116排気用風量調整ダンパー
1 tracer gas 2 tracer gas cylinder 3 weigh scale 4 cylinder inverted base 10 opening / closing cock 11 injection tube 12 header 13 spray nozzle 14 primary side sampling pipe 14a primary side air suction hole 15 secondary side sampling pipe 15a secondary side air suction Hole 100 Airway 110 Duct 111 Blower 112 Airflow adjustment damper 113 High performance filter 114 Clean room 115 Gas concentration analyzer 116 Airflow adjustment damper for exhaust

Claims (3)

風道の風上でトレーサガスを注入し、風道の風下においてトレーサガスの濃度を計測して風道内の風量を計測する混合希釈法により計測するに当り、トレーサガスを液化状態で風道内に注入することを特徴とする風量計測方法。  The tracer gas is liquefied into the wind path when injecting the tracer gas upwind of the wind path and measuring the concentration of the tracer gas down the wind path to measure the air volume in the wind path. An air volume measuring method characterized by injecting. 請求項1において、風道内へのトレーサガス注入量と、注入口として風道内に設けたヘッダーに配設するスプレーノズルのノズル孔径とノズル設置数とを次式(1)の関係にすることを特徴とする風量計測方法。
Figure 0005257812
ここに、Iqはトレーサガス注入量(kg/s)、Dはノズル孔径(m)、ρはトレーサガス液化状態での密度(kg/m)、Pはヘッダーの内圧(Pa)、Nはノズル設置数、kは比例定数とし取り得る範囲は次の通りとする。0.1<k<0.9
In claim 1, the amount of tracer gas injected into the air passage, the nozzle hole diameter of the spray nozzle disposed in the header provided in the air passage as an inlet, and the number of nozzles to be installed are represented by the following equation (1). A characteristic air flow measurement method.
Figure 0005257812
Here, Iq is the tracer gas injection amount (kg / s), D is the nozzle hole diameter (m), ρ is the density in the tracer gas liquefied state (kg / m 3 ), P is the internal pressure (Pa) of the header, N is The number of nozzles installed, k is a proportional constant, and the possible range is as follows. 0.1 <k <0.9
トレーサガスを注入するに当たり、ガスボンベを倒立させた状態で、液化状態のままノズル領域に供給することを特徴とする請求項1又は2に記載した風量計測方法。  3. The air volume measuring method according to claim 1, wherein when the tracer gas is injected, the gas cylinder is inverted and supplied to the nozzle region in a liquefied state.
JP2008297305A 2008-10-27 2008-10-27 How to measure the air volume in the wind path Active JP5257812B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008297305A JP5257812B2 (en) 2008-10-27 2008-10-27 How to measure the air volume in the wind path

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008297305A JP5257812B2 (en) 2008-10-27 2008-10-27 How to measure the air volume in the wind path

Publications (2)

Publication Number Publication Date
JP2010101870A JP2010101870A (en) 2010-05-06
JP5257812B2 true JP5257812B2 (en) 2013-08-07

Family

ID=42292630

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008297305A Active JP5257812B2 (en) 2008-10-27 2008-10-27 How to measure the air volume in the wind path

Country Status (1)

Country Link
JP (1) JP5257812B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109387256B (en) * 2017-08-08 2020-08-04 中国石油化工股份有限公司 Oil pipeline volume accounting method and device
DE102019132587A1 (en) * 2019-12-02 2021-06-02 Ebm-Papst Landshut Gmbh Air delivery device with a transit time measurement
CN113700472B (en) * 2021-08-20 2022-12-06 中国矿业大学(北京) Method for determining air leakage direction and measuring air leakage amount of goaf
CN114487473A (en) * 2021-12-28 2022-05-13 山西晋煤集团技术研究院有限责任公司 Non-contact type wind speed measuring device

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59218918A (en) * 1983-05-28 1984-12-10 Mitsui Eng & Shipbuild Co Ltd Method for measuring flow rate of exhaust gas from incinerator
JPS6141921A (en) * 1984-08-03 1986-02-28 Kawasaki Steel Corp Injecting device for tracer gas used for flow rate measurement of gas in pipe
JPS62298721A (en) * 1986-06-18 1987-12-25 Mazda Motor Corp Measurement of flow rate of exhaust gas from engine
JPH08170798A (en) * 1994-12-16 1996-07-02 Neriki:Kk Device for taking out liquid phase part of liquified gas
JP5015622B2 (en) * 2007-01-31 2012-08-29 株式会社イーズ Flow rate measurement method

Also Published As

Publication number Publication date
JP2010101870A (en) 2010-05-06

Similar Documents

Publication Publication Date Title
Ramsey et al. Interaction of a heated jet with a deflecting stream
US7752929B2 (en) Mass velocity and area weighted averaging fluid compositions sampler and mass flow meter
JP5257812B2 (en) How to measure the air volume in the wind path
JP2007057532A (en) Measurement of aerosol by dilution and particle count
CN103674625B (en) Dual-Phrase Distribution of Gas olid sampler
US10295432B2 (en) Tracer gas airflow measurement system with high turndown ratio
JP2019530862A (en) Passive aerosol dilutor mechanism
US9976916B2 (en) Air sensor with downstream facing ingress to prevent condensation
Davison et al. Development and validation of compact isokinetic total water content probe for wind tunnel characterization
US11346754B2 (en) Pressure reduction system and method for reducing the pressure of high pressure aerosols
CN105784926B (en) High wet gas current water capacity measurement apparatus and method
JP2007024730A (en) Apparatus and method for sampling diluted exhaust gas using laminar exhaust gas flowmeter and heating/cooling surge tube apparatus
CN105319145A (en) Continuous measuring method of humidity of high-speed medium-temperature negative-pressure air
CN209639805U (en) A kind of aerospace automatic calibration unit for gas flowmeters
CN106596365B (en) Dust concentration monitoring device and method for high-humidity flue gas
CN203658110U (en) Gas-solid two-phase flow sampling device
Ham et al. Technique for Measuring Air Flow and Carbon Dioxide Flux in Large, Open‐Top Chambers
Xiong et al. Experimental and numerical simulation investigations on particle sampling for high-pressure natural gas
Riffat Airflow rate through a heat-exchanger coil
Cheong A measurement technique guide on the application of tracer gas techniques for measuring airflow in HVAC systems.
Cheong Tracer gas technology for airflow measurements in HVAC systems
Rønneseth et al. Techniques for airflow measurements to determine the real efficiency of heat recovery in ventilation systems
Caillou Measurement issues of air flow at air terminal devices and perspectives
Clark et al. Multiport averaging Pitot tube to measure airflow rates from exhaust fans.
CN206248150U (en) The anti-blocking air measuring system of multipoint mode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111017

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130314

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130412

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5257812

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250