JP2007024730A - Apparatus and method for sampling diluted exhaust gas using laminar exhaust gas flowmeter and heating/cooling surge tube apparatus - Google Patents

Apparatus and method for sampling diluted exhaust gas using laminar exhaust gas flowmeter and heating/cooling surge tube apparatus Download PDF

Info

Publication number
JP2007024730A
JP2007024730A JP2005209052A JP2005209052A JP2007024730A JP 2007024730 A JP2007024730 A JP 2007024730A JP 2005209052 A JP2005209052 A JP 2005209052A JP 2005209052 A JP2005209052 A JP 2005209052A JP 2007024730 A JP2007024730 A JP 2007024730A
Authority
JP
Japan
Prior art keywords
exhaust gas
flow rate
exhaust
flow
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005209052A
Other languages
Japanese (ja)
Inventor
Shigeru Yanagihara
茂 柳原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsukasa Sokken Co Ltd
Original Assignee
Tsukasa Sokken Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsukasa Sokken Co Ltd filed Critical Tsukasa Sokken Co Ltd
Priority to JP2005209052A priority Critical patent/JP2007024730A/en
Publication of JP2007024730A publication Critical patent/JP2007024730A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an exhaust gas proportionate sampling apparatus for accurately measuring and extracting a required exhaust sample flow rate with a total exhaust gas flow rate over a wide range of flow rates and diluting it with a clean gas. <P>SOLUTION: The total flow rate of exhaust gases is measured through the use of a laminar flowmeter immediately in the back of an exhaust pipe. An exhaust gas sample flow rate at a specific ratio to this flow rate value at all times is measured and collected in a bag while being controlled by a control valve in the sampling apparatus. The flow rate is controlled through the use of a sample exhaust gas flow of a specific flow rate using CFO or CFV and clean dry air or gaseous nitrogen of a flow rate at a specific ratio to this as a dilution gas and each CFO or CFV, drawn by suction by a dry pump, mixed, and applied with pressure to adjust a diluted exhaust gas sample of specific pressure. Part of it is collected in a bag as a controlled and diluted exhaust gas sample proportional to the total exhaust gas flow rate by a variable cross-sectional-area orifice type flow rate measuring and controlling device. <P>COPYRIGHT: (C)2007,JPO&INPIT

Description

本発明は自動車など内燃エンジンの排気ガス測定において汚染物質の質量排出値を求める排気ガスサンプリング技術に関係するもので、自動車産業や環境対策の産業に係わる。   The present invention relates to an exhaust gas sampling technique for obtaining a mass emission value of a pollutant in an exhaust gas measurement of an internal combustion engine such as an automobile, and relates to the automobile industry and the environment countermeasure industry.

内燃エンジンの自動車排気ガスについてその質量排出値を測定するためにCVS(Constant Volume Sampler)装置と呼ばれる全排気ガス流を清浄希釈ガスと混合して一定流量の希釈排気ガスを試料ガスとして作成してその中の成分濃度が当該成分の質量排出値に比例するように構成し、試料ガスの一部を一定流量でバッグサンプリングした集積試料ガスをガス分析してある運転時間における排気ガス成分の質量排出値を求める方式の装置が広く用いられてきた。また別な装置として全排気ガス流量を超音波流量計などラミナー型流量計以外の流量測定装置で測定し、一部の排気ガスと清浄な希釈空気を混合し排気ガス流量に比例した希釈排気ガスサンプル流量を熱式のマスフローコントローラで制御して希釈排気ガスサンプル流としてバッグサンプリングし質量排出値を求める方法例えばBag Mini-Diluterなども提案されている。(非特許文献1参照)。   In order to measure the mass emission value of automobile exhaust gas of an internal combustion engine, a total exhaust gas flow called a CVS (Constant Volume Sampler) device is mixed with a clean dilution gas, and a diluted exhaust gas having a constant flow rate is prepared as a sample gas. The exhaust gas component is discharged in mass during a certain operating time by analyzing the collected sample gas obtained by bag sampling a part of the sample gas at a constant flow rate. An apparatus for obtaining a value has been widely used. As another device, the total exhaust gas flow rate is measured with a flow measurement device other than a laminar type flow meter such as an ultrasonic flow meter, and a part of the exhaust gas and clean diluted air are mixed to make a diluted exhaust gas proportional to the exhaust gas flow rate. For example, Bag Mini-Diluter has been proposed in which the sample flow rate is controlled by a thermal mass flow controller and bag sampling is performed as a diluted exhaust gas sample flow to obtain a mass emission value. (Refer nonpatent literature 1).

D.J.Luzenski, et al; Evaluation of Improved Bag Mini-Diluter System for Low Level Emission Measurements, SAE paper 2002-01-0047D.J.Luzenski, et al; Evaluation of Improved Bag Mini-Diluter System for Low Level Emission Measurements, SAE paper 2002-01-0047 特表2001−507458号Special table 2001-507458

従来の全排気ガス流を希釈する装置では、希釈に用いる清浄空気や不活性ガスは排気ガス流量よりも遥かに大流量を必要とするが、その中に含まれる汚染成分の濃度が極めて低いことが要求され、コスト的にも問題があるだけでなく、消費エネルギーや装置の大型化などから難点があり、とくに排出値の低レベル化とともに汚染成分のバックグランドや分析精度が大きな難題となっている。また、排気ガス全流量を超音波流量計などで測定する方式では排気ガスの広い流量範囲の全流量について大型の熱交換器などを用いて測定可能な温度に冷却する必要があるなど設備や資源に問題がある。とくにエンジンのアイドリング時のように流量が小さく脈動が比較的に大きい場合正確な測定が困難であるなどの大きな問題もある。また、流量制御に用いる熱式マスフローコントローラでは必要な流量範囲にわたって精度よく測定・制御することが困難で、さらに温度と応答性などに関しては必ずしも満足されない特性であった。とくに低速回転域における排気ガス流の脈動現象はガス成分の前後の混合だけでなく、従来の流量測定方式では1:50にも及ぶ広い流量範囲において少流量のとき許容し難い誤差を生じる原因となることが大きな問題点であった。   In the conventional apparatus for diluting the entire exhaust gas flow, the clean air and inert gas used for dilution require a flow rate much higher than the exhaust gas flow rate, but the concentration of the pollutant component contained therein is extremely low. Not only is there a problem in terms of cost, but there are also problems in terms of energy consumption and the increase in size of the equipment. Yes. Also, in the method of measuring the total exhaust gas flow rate with an ultrasonic flow meter etc., it is necessary to cool the total exhaust gas flow rate to a measurable temperature using a large heat exchanger etc. There is a problem. In particular, there is a serious problem that accurate measurement is difficult when the flow rate is small and the pulsation is relatively large, such as when the engine is idling. In addition, it is difficult to accurately measure and control the thermal mass flow controller used for flow rate control over a necessary flow rate range, and the temperature and responsiveness are not necessarily satisfied. In particular, the pulsation phenomenon of the exhaust gas flow in the low-speed rotation range is not only due to the mixing of the gas components before and after, but also causes the unacceptable error at a low flow rate in a wide flow range as long as 1:50 in the conventional flow measurement method. It was a big problem.

前記のように従来技術では装置の大型化やエネルギー、コストに難点があるが、とくにエンジンの運転負荷範囲が拡大し排気ガス流量の範囲が1:50にも達するような場合において脈動のある排気流量やサンプル流量が比較的少ないときの測定と制御の精度に大きな難点があり、これらを解決することが主な課題である。さらに希釈排気ガスが温度60℃以上である場合、流量制御を0.3秒以内の速い応答性で行うことと、運転条件変化に伴う抽出排気成分変化との同時性を確保することも重要な課題である。   As described above, the conventional technology has difficulty in increasing the size, energy and cost of the apparatus, but particularly when the engine operating load range is expanded and the exhaust gas flow rate reaches 1:50, the exhaust gas has pulsation. There are major difficulties in the accuracy of measurement and control when the flow rate and sample flow rate are relatively small, and solving these problems is the main issue. Furthermore, when the diluted exhaust gas has a temperature of 60 ° C. or higher, it is also important to control the flow rate with a quick response within 0.3 seconds and to ensure the synchronism between the extracted exhaust component change accompanying the change in operating conditions. It is a problem.

本発明は従来広い流量範囲にわたる内燃エンジンの適切な排気ガス流量測定装置がなかったことに対して、新たに開発されたラミナー流量計が広い流量範囲の排気ガスに適用でき得るようになったことから、こうしたラミナー型流量計を排気ガスの全流量やサンプルガス流量の測定に用い、適切な応答性をもってサンプル流量制御のできる排気比例サンプリング装置を提供することである。ラミナー型流量計は広い流量範囲にわたり流量と測定差圧の間にほぼ直線的な比例関係があり、脈動の大きな流れに対しても精度よく流量測定ができる特徴がある。従来のラミナー型流量計では350℃を超えるような高温度では気体の粘性変化や熱膨張、熱変形などから使用困難であったし、排気ガスに含まれる凝縮成分や粒子などの堆積が大きな難点であった。しかし、近年ではガソリンエンジンなどでは排気ガスが堆積を生じるような汚染物を殆ど含まなくなったことからもラミナー流量計の適用が可能となった。さらに、排気比例サンプリング装置で重要な応答性についてラミナー型流量計では差圧測定系の応答速度と同程度すなわちmsレベルの応答も可能である。しかし全体のシステムとしてはエンジン排気系のデッドボリュームなどの要因もあり、流量測定以外にも制御系や配管流速などが応答性の制約となることもある。排気ガス測定・制御システムとしては運転状態の変化への追随に必要と考えられる全般的な応答速度を0.1〜0.3秒以下とすることに対してラミナー型流量計は充分な性能がある。   According to the present invention, a newly developed laminar flow meter can be applied to exhaust gas in a wide flow range, whereas there has been no appropriate exhaust gas flow measurement device for an internal combustion engine over a wide flow range. Therefore, it is an object of the present invention to provide an exhaust proportional sampling apparatus capable of controlling the sample flow rate with an appropriate response by using such a laminar type flow meter for measuring the total flow rate of the exhaust gas and the sample gas flow rate. The laminar flow meter has a substantially linear proportional relationship between the flow rate and the measured differential pressure over a wide flow rate range, and has a feature that the flow rate can be accurately measured even for a flow with a large pulsation. Conventional laminar flowmeters are difficult to use at high temperatures exceeding 350 ° C due to changes in gas viscosity, thermal expansion, thermal deformation, etc., and the accumulation of condensed components and particles contained in exhaust gas is a major difficulty. Met. However, in recent years, laminar flow meters can be applied because gasoline engines and the like are almost free of contaminants that cause exhaust gas accumulation. Furthermore, with respect to the responsiveness important in the exhaust proportional sampling device, the laminar type flow meter can respond to the same level as the response speed of the differential pressure measurement system, that is, the ms level. However, there are factors such as dead volume of the engine exhaust system as a whole system, and in addition to the flow rate measurement, the control system and the pipe flow rate may also limit responsiveness. As an exhaust gas measurement and control system, the laminar flow meter has sufficient performance for reducing the overall response speed, which is considered necessary for following changes in operating conditions, to 0.1 to 0.3 seconds or less. is there.

さらに、排気ガスサンプルと希釈ガスの流量を一定比率に保つために、信頼性のある二つのCFO(クリティカル フロー オリフィス、critical flow orifice、以下この特許請求の範囲及び明細書において同じ)またはCFV(クリティカル フロー ベンチュリ、critical flow venturi、以下この特許請求の範囲及び明細書において同じ)を用いてその入り口温度と圧力を一定に制御する方式とした。そして清浄で十分な圧力比が確保できるドライポンプを利用して適当なゲージ圧力を確保して希釈排気ガスサンプル流を調整する。希釈排気ガスサンプル流のうち全排気ガス流量に比例して流量測定制御しバッグにサンプリングする装置として、速い応答性と広い流量範囲をもつ可変断面積式オリフィスを利用した。とくにこの場合の可変断面積オリフィスは差圧がほぼ一定であり流量がオリフィス断面積により変化する特性があり、応答性が速くて精度が高く、流量範囲が広い特徴がある。   In addition, two reliable CFOs (critical flow orifices, hereinafter the same in this claim and specification) or CFVs (critical) are used to maintain a constant ratio between the exhaust gas sample and diluent gas flow rates. The inlet temperature and pressure were controlled to be constant using a flow venturi (critical flow venturi, hereinafter the same in claims and specification). Then, the diluted exhaust gas sample flow is adjusted by securing an appropriate gauge pressure by using a dry pump capable of ensuring a clean and sufficient pressure ratio. As a device for measuring the flow rate in proportion to the total exhaust gas flow rate in the diluted exhaust gas sample flow and sampling it into a bag, a variable cross-sectional area type orifice having a quick response and a wide flow rate range was used. In particular, the variable cross-sectional area orifice in this case has a characteristic that the differential pressure is substantially constant and the flow rate varies depending on the cross-sectional area of the orifice, and is characterized by high response, high accuracy, and a wide flow rate range.

通常、排気ガスと希釈ガスとの流量比は1:1程度で、混合ガスは露点40℃程度であるが、ポンプや弁など流路・圧力の変化があり、管路では60℃以上に保つことが望ましい。ガス分析の精度その他の考慮から本発明の装置では流量比を1:1±20%程度と想定している。CFOまたはCFV流量がポンプ能力とともに最大希釈排気ガスサンプル流量を定めることになる。全排気ガス流量のうち排気ガスサンプルは通常1/50〜1/200である。測定運転時間にもよるが多くの場合サンプルバッグ容量は100L程度とする。   Normally, the flow rate ratio between exhaust gas and dilution gas is about 1: 1, and the mixed gas has a dew point of about 40 ° C. However, there are changes in the flow path and pressure of pumps and valves, and the pipe is kept at 60 ° C or higher. It is desirable. From the accuracy of gas analysis and other considerations, the apparatus of the present invention assumes a flow rate ratio of about 1: 1 ± 20%. The CFO or CFV flow rate will determine the maximum diluted exhaust gas sample flow rate along with the pump capacity. Of the total exhaust gas flow rate, the exhaust gas sample is usually 1/50 to 1/200. Although it depends on the measurement operation time, in many cases the sample bag capacity is about 100L.

エンジン排気ガスの流量測定には、加熱・冷却サージチューブを上流側に配置したラミナー流量計を用いることにより、始動時を含めアイドルなど小流量のときもラミナー入り口温度を100℃以上に保持することができる。とくにエンジンの冷間始動直後に凝縮水など流出することが多いが加熱サージチューブを予熱しておくことによりラミナー流量計への流入を防止できる。また排気ガスが高温度な時には効果的な冷却をして排気ガス温度をほぼ300℃以下に抑制できる。こうした加熱・冷却サージチューブの利用によりラミナー流量計の流量測定範囲を1:50以上にすると共に、低沸点成分の凝縮を防止して確実な流量測定をする。またラミナーエレメントにおいて半径方向に圧力と温度の分布の偏りがある場合を考慮して半径方向面積平均の複数位置に複数の温度測定端を配置する。これによりラミナーエレメントに流れる排気ガスの面積平均的な差圧と温度が測定でき、より正確な流量測定ができる。とくに排気系ではアイドルなどで流量が少なく脈動の割合が大きい場合もラミナー流量計では正確な測定が可能である。   To measure the flow rate of engine exhaust gas, use a laminar flow meter with a heating / cooling surge tube on the upstream side to maintain the laminar inlet temperature at 100 ° C or higher even at low flow rates such as when idling. Can do. In particular, condensed water or the like often flows out immediately after the cold start of the engine, but preheating the heating surge tube can prevent inflow into the laminar flow meter. Further, when the exhaust gas is at a high temperature, effective cooling can be performed to suppress the exhaust gas temperature to about 300 ° C. or less. By using such a heating / cooling surge tube, the laminar flow meter has a flow rate measurement range of 1:50 or more, and the low-boiling point components are prevented from condensing and reliably measured. In consideration of the case where pressure and temperature distribution is uneven in the radial direction in the laminar element, a plurality of temperature measuring ends are arranged at a plurality of positions in the radial direction area average. Thereby, the area average differential pressure and temperature of the exhaust gas flowing in the laminar element can be measured, and more accurate flow rate measurement can be performed. In particular, the laminar flow meter can accurately measure the exhaust system even when the flow rate is small and the pulsation rate is large due to idling or the like.

希釈排気ガスサンプル流の流量制御は例えば熱式マスフローコントローラなど各種のものが適用できるが、流量制御範囲と高温における応答性では問題がある。ここで用いる可変断面積オリフィス式流量測定制御装置は広い制御範囲と速い応答性をもち制御系は0.1〜0.2sec程度の速度で可動でき、温度60℃以上に適用できる。流量と制御バルブ位置すなわち位置パルスの関係が一定な差圧10kPa(ゲージ圧)程度において広い流量範囲で直線的な比例関係となることから希釈排気ガスサンプルの圧力を制御弁で適当に保つとき流量制御は極めて容易になる。   Various controls such as a thermal mass flow controller can be applied to the flow control of the diluted exhaust gas sample flow, but there are problems with the flow control range and responsiveness at high temperatures. The variable cross-sectional area orifice type flow measurement control device used here has a wide control range and fast response, the control system can be moved at a speed of about 0.1 to 0.2 sec, and can be applied to a temperature of 60 ° C. or higher. Since the relationship between the flow rate and the position of the control valve, that is, the position pulse, is a linear proportional relationship over a wide flow rate range at a constant differential pressure of about 10 kPa (gauge pressure), the flow rate is maintained when the pressure of the diluted exhaust gas sample is appropriately maintained by the control valve. Control becomes extremely easy.

サージチューブの利用は、小さな流量域で大きな脈動がある場合に圧力測定にも利点があるが、さらに大きな利点はエンジンの排気管を出た以降の排気ガスについて排気ガス成分の前後での混合を抑制できる点にある。排気管出口以降でサンプリングまでの排気測定系における成分の前後排気ガスの混合はできるだけ避けるべきで、容量の大きなサージタンクよりも実容積が1/100以下で効果のあるサージチューブが適している。   The use of a surge tube also has an advantage in pressure measurement when there is a large pulsation in a small flow rate range, but a larger advantage is that the exhaust gas after leaving the engine exhaust pipe is mixed before and after the exhaust gas components. It is in the point which can be suppressed. Mixing of exhaust gas before and after the components in the exhaust measurement system after the exhaust pipe outlet until sampling should be avoided as much as possible, and a surge tube that is effective at an actual volume of 1/100 or less is more suitable than a surge tank with a large capacity.

本装置ではラミナー流量計で流量測定された排気ガスの一部が運転条件に関係なく一定流量で抽出され排気サンプルガスとして、サンプルプローブで冷却され、一定温度(65℃程度)の恒温槽で同温度に制御される。一方希釈ガスは恒温槽入り口で減圧され、排気ガス側圧力と同一になるように排気側圧力をパイロット圧とする制御弁で同一圧に制御され、恒温槽内で適当な管路長を経由して温度も恒温槽と同一に制御される。排気サンプルガスのCFOまたはCFVと希釈ガスのCFOまたはCFVは入り口温度・圧力を同一に制御され、出口側では混合されて、臨界圧力以下で吸引され、その吸引圧力はモニタリングされる。清浄なスクロールポンプなどドライポンプで絶対圧50kPa以下で吸引圧縮され、大気圧力以上の圧で希釈排気ガスサンプル流として吐出される。この圧力はゲージ圧として例えば10kPaでリリーフ付き制御弁により一定に保たれる。   In this device, a part of the exhaust gas measured with a laminar flow meter is extracted at a constant flow rate regardless of the operating conditions, and is cooled as a sample gas by a sample probe, and the same in a constant temperature bath (about 65 ° C). Controlled by temperature. On the other hand, the dilution gas is depressurized at the thermostatic chamber inlet, and is controlled to the same pressure by a control valve using the exhaust side pressure as a pilot pressure so as to be the same as the exhaust gas side pressure, and passes through an appropriate pipe length in the thermostatic chamber. The temperature is also controlled in the same way as the thermostatic chamber. The exhaust sample gas CFO or CFV and the dilution gas CFO or CFV are controlled to have the same inlet temperature and pressure, mixed on the outlet side, sucked below the critical pressure, and the suction pressure is monitored. It is sucked and compressed by a dry pump such as a clean scroll pump at an absolute pressure of 50 kPa or less, and discharged as a diluted exhaust gas sample stream at a pressure higher than the atmospheric pressure. This pressure is, for example, 10 kPa as a gauge pressure, and is kept constant by a control valve with a relief.

希釈排気ガスサンプル流は可変断面積オリフィス式流量測定制御装置によって全排気ガス流量に比例した流量に制御された部分がサンプルバッグに送入される。サンプルバッグは運転モードなどを勘案して4組程度用意され、流路を切り替えて使用する。   A portion of the diluted exhaust gas sample flow that is controlled to a flow rate proportional to the total exhaust gas flow rate by the variable cross-sectional area orifice type flow rate measurement control device is fed into the sample bag. About 4 sets of sample bags are prepared in consideration of the operation mode and the like, and the flow paths are switched.

可変断面積オリフィス式流量測定制御装置の制御信号は全排気ガス流量計の出力よりもある時間例えば0.8秒ないし5.5秒程度全排気ガス流量やその推定平均温度を考慮した計算遅延回路により遅れ時間をもって入力され、可変断面積オリフィス式流量測定制御装置における排気ガス成分の変化時刻をエンジン運転条件変化時にほぼ合致させるように時間補正することができる。   The control signal of the variable cross-section orifice type flow rate measurement control device is a calculation delay circuit that takes into account the total exhaust gas flow rate and its estimated average temperature for a certain time, for example, about 0.8 seconds to 5.5 seconds, than the output of the total exhaust gas flow meter Is input with a delay time, and the time can be corrected so that the change time of the exhaust gas component in the variable cross-sectional area orifice type flow measurement control device substantially matches the change in the engine operating conditions.

以上のことをまとめると、本発明のラミナー型排気ガス流量計を用いた希釈排気サンプリング装置及び希釈排気サンプリング方法並びに加熱・冷却サージチューブ装置は、具体的には特許請求の範囲に記載した構成をなす。   In summary, the diluted exhaust sampling device, the diluted exhaust sampling method, and the heating / cooling surge tube device using the laminar exhaust gas flowmeter of the present invention have the configuration described in the claims. Eggplant.

この発明によれば内燃エンジンの排気ガスの比例サンプリング装置として排気ガス全流量を1:50以上の広い流量範囲に亘って信頼性と応答性に優れたラミナー型流量計で精度よく測定し、その一部を一定圧力・温度においてCFOまたはCFVで一定流量に制御して吸引する。排気ガスサンプル流量と常に一定比率になるように温度を制御し圧力も排気ガス側に一致するようにパイロット付きの減圧弁で入り口圧を制御したCFOまたはCFVを用いて一定流量として吸引して、二つのCFOまたはCFVの出口で混合し、希釈排気ガスサンプル流として吸引圧力をモニターしながら脈動の少ないスクロールポンプで吸引し加圧する。このスクロールポンプの吐出圧力は脈動振幅も小さくバッファータンクの必要は無く、リリーフ付きの圧力制御弁で例えば10kPa(ゲージ圧)に精度よく制御される。この圧力と温度条件で可変断面積オリフィスによりほぼ0.2秒の高速応答と0.1%以下の高精度な流量制御が可能になる。この流量制御は排気ガス成分がオリフィスに到着する時点に合致しているので、エンジン運転条件の変化に適切に対応するもので、時間補正を講じない他の排気ガス比例サンプリング装置では得られない正確な希釈排気ガスサンプルの積算成分が捕集でき、積算流量もきわめて精度高く測定できる。比例サンプリング装置で重要な排気ガス流量の測定が精度と応答性において優れ、希釈排気ガスの流量制御が排気ガス成分変化の同時性を確保しながら流量制御の精度と応答速度をも高くできる装置を実現する。バックグランド汚染の影響を全く受けない希釈ガスとして清浄乾燥空気を用いることや希釈排気ガスサンプル流から適切な流量比でサンプルバッグに送入すれば、1/50〜1/200程度の範囲で排気ガスサンプルを捕集あるいは積算流量値として得ることができる。なお、加熱・冷却サージチューブを用いることにより排気系の脈動影響を防止して、始動時の凝縮水の影響を防ぎ、流量測定や排気ガスの前後成分の混合抑制など好ましい効果が期待できる。   According to the present invention, as a proportional sampling device for exhaust gas of an internal combustion engine, the exhaust gas total flow rate is accurately measured with a laminar flow meter excellent in reliability and responsiveness over a wide flow range of 1:50 or more. A part is sucked at a constant pressure and temperature with a constant flow rate controlled by CFO or CFV. The temperature is controlled so that it always becomes a constant ratio with the exhaust gas sample flow rate, and suction is performed as a constant flow rate using CFO or CFV in which the inlet pressure is controlled by a pressure reducing valve with a pilot so that the pressure also matches the exhaust gas side, Mix at the outlet of two CFO or CFV, and suck and pressurize with a scroll pump with few pulsations while monitoring the suction pressure as a diluted exhaust gas sample stream. The discharge pressure of the scroll pump has a small pulsation amplitude and does not require a buffer tank, and is accurately controlled to, for example, 10 kPa (gauge pressure) by a pressure control valve with a relief. Under this pressure and temperature conditions, the variable cross-sectional area orifice enables a high-speed response of approximately 0.2 seconds and a highly accurate flow rate control of 0.1% or less. This flow rate control matches the time when the exhaust gas component arrives at the orifice, so it responds appropriately to changes in engine operating conditions, and is not possible with other exhaust gas proportional sampling devices that do not provide time correction. Accumulated components of a diluted exhaust gas sample can be collected, and the integrated flow rate can be measured with extremely high accuracy. A device that can improve the accuracy and response speed of flow control while maintaining the synchronism of exhaust gas component change while the flow control of diluted exhaust gas is excellent in accuracy and responsiveness, which is important for the proportional sampling device. Realize. If clean dry air is used as a diluent gas that is completely unaffected by background contamination, or if it is sent from the diluted exhaust gas sample stream to the sample bag at an appropriate flow rate ratio, the exhaust will be in the range of about 1/50 to 1/200. A gas sample can be collected or obtained as an integrated flow rate value. By using a heating / cooling surge tube, it is possible to prevent the influence of pulsation of the exhaust system, to prevent the influence of condensed water at the start, and to expect favorable effects such as flow rate measurement and suppression of mixing of components before and after the exhaust gas.

本発明によれば必要な排気サンプル流量を全排気ガス流量とともに広い流量範囲に亘り正確に計測して、抽出し希釈する排気ガスの比例サンプリング装置を構成することが可能である。さらに適切な応答性と成分変化の同時性を確保し、排気ガスや希釈サンプルガスの露点に対応した温度設定ができ、排気ガス流量比率や希釈比率をガス分析など必要サンプル流量に対応して設定できる特徴がある。小型、小容量、高精度、高応答性やバックグランド汚染の影響を受けないなど、従来のCVS装置に代えて低エミッションエンジンに適用できる排気ラミナー流量計を利用した排出値を測定できる排気比例サンプリング装置を可能にする効果がある。   According to the present invention, it is possible to configure an exhaust gas proportional sampling device that accurately measures the required exhaust sample flow rate over a wide flow rate range together with the total exhaust gas flow rate, and extracts and dilutes the exhaust gas flow rate. In addition, it ensures proper responsiveness and simultaneous change of components, can set the temperature corresponding to the dew point of exhaust gas and diluted sample gas, and set the exhaust gas flow rate ratio and dilution ratio according to the required sample flow rate such as gas analysis There are features that can be done. Exhaust proportional sampling that can measure emission values using an exhaust laminar flow meter that can be applied to low emission engines instead of conventional CVS devices, such as small size, small capacity, high accuracy, high response and not affected by background contamination There is an effect that enables the device.

以下、この発明の詳細を図1に示す実施例のシステム図と図2、図3に示す主な要素の構成図により説明する。図1において11は内燃エンジンの自動車で排気管12の出口に接続したサージチューブ(実用新案登録第3085960号、特許願2002−65771)を改良した加熱・冷却サージチューブ30を経由して全排気ガス流4が排気ラミナー流量計20に導入される。加熱・冷却サージチューブ30は図2に詳細を示すように中心の管路32の内周に表面がステンレスで作られた700W以上の容量をもつシーズヒータコイル33を配備して加熱できるようにし、管路温度200℃程度において加熱を停止制御するための温度センサ34を近傍に配置する。加熱・冷却サージチューブ30の主な構成要素であるO−リング付ゴム薄膜チューブ35は例えばシリコーンゴム製で両側のフランジ36、37に気密に保持され内部圧力に応じて伸縮するが、外部の円筒状保護管39が熱伝導の良いアルミなどで構成されるとともにその通気孔38が表面積を大きくできるようにきわめて多数設けられて開口面積率が35%以上にしてある。こうした構造により排気ガス流量が0または0.18m/min以下のときには100℃以上に加熱され、エンジン始動時やアイドル時に排気ガス温度を150℃以上にすることができる。また排気ガス入り口温度が250℃以上のときには円筒状保護管39が効果的に冷却されるので、排気ガス温度をかなり低下させることができる。この加熱・冷却サージチューブにより水分などの液滴が下流側のラミナー流量計20に入ることを防止でき、高温の排気ガスを冷却する効果がある。なお、温度設定表示器31は排気ガス温度を測定しシーズヒータコイル33を断続制御する。 The details of the present invention will be described below with reference to the system diagram of the embodiment shown in FIG. 1 and the configuration diagram of the main elements shown in FIGS. In FIG. 1, reference numeral 11 denotes an internal combustion engine automobile, which is a total exhaust gas via a heating / cooling surge tube 30 improved from a surge tube (utility model registration No. 3085960, patent application 2002-65771) connected to the outlet of the exhaust pipe 12. Stream 4 is introduced into the exhaust laminar flow meter 20. As shown in detail in FIG. 2, the heating / cooling surge tube 30 can be heated by disposing a sheathed heater coil 33 having a capacity of 700 W or more made of stainless steel on the inner periphery of a central pipe line 32, A temperature sensor 34 for stopping and controlling heating at a pipe temperature of about 200 ° C. is disposed in the vicinity. A rubber thin-film tube 35 with an O-ring, which is a main component of the heating / cooling surge tube 30, is made of, for example, silicone rubber and is hermetically held by flanges 36 and 37 on both sides and expands and contracts according to internal pressure. The protective tube 39 is made of aluminum or the like having good heat conductivity, and its vent holes 38 are provided in large numbers so that the surface area can be increased, so that the opening area ratio is 35% or more. With such a structure, when the exhaust gas flow rate is 0 or 0.18 m 3 / min or less, the exhaust gas is heated to 100 ° C. or higher, and the exhaust gas temperature can be 150 ° C. or higher when the engine is started or idle. Further, when the exhaust gas inlet temperature is 250 ° C. or higher, the cylindrical protective tube 39 is effectively cooled, so that the exhaust gas temperature can be considerably lowered. This heating / cooling surge tube can prevent droplets of moisture and the like from entering the laminar flow meter 20 on the downstream side, and has an effect of cooling the high-temperature exhaust gas. The temperature setting indicator 31 measures the exhaust gas temperature and controls the sheathed heater coil 33 intermittently.

排気ラミナー流量計20は排気ガス温度が100℃以上で使用されるので常温で使用される通常ラミナー型流量計の場合よりも内部の温度分布には留意する必要がある。加熱・冷却サージチューブ30からテーパー管21で管路をラミナーエレメント25の径まで滑らかに拡大され、温度圧力測定部よりも上流側に整流と異物の影響防止のために整流格子23が配置される。ラミナーエレメント25は耐熱性と強度・形状安定性があり、排気ガスや温度変化に充分耐えられる構成である。流量演算に必要な絶対圧、差圧、温度の測定が重要でラミナーエレメント25の面積平均が検出できるように、特願2002−212938に準じて検出端を配置する。とくに温度は面積平均値が重要で測定点の分布として少なくとも4象限のそれぞれの面積平均値に熱伝対24の複数本の測定端を配置して平均温度を検出する。   Since the exhaust gas laminar flow meter 20 is used at an exhaust gas temperature of 100 ° C. or higher, it is necessary to pay more attention to the internal temperature distribution than in the case of a normal laminar flow meter used at room temperature. The pipeline is smoothly expanded from the heating / cooling surge tube 30 to the diameter of the laminar element 25 by the tapered tube 21, and a rectifying grid 23 is arranged upstream of the temperature / pressure measuring unit to prevent the influence of rectification and foreign matter. . The laminar element 25 has heat resistance, strength and shape stability, and can withstand exhaust gas and temperature changes. The detection end is arranged according to Japanese Patent Application No. 2002-212938 so that measurement of absolute pressure, differential pressure, and temperature necessary for flow rate calculation is important and the average area of the laminar element 25 can be detected. In particular, the area average value is important for the temperature, and a plurality of measurement ends of the thermocouple 24 are arranged in each area average value of at least four quadrants as a distribution of measurement points to detect the average temperature.

排気ガスの密度は空燃比により僅かに変わるが、理論混合比においても空気の密度の1.0046程度で空気に極めて近い。ある燃料では排気ガスの密度は温度と圧力だけの関数で使用燃料に応じた空燃比の値から求めることができる。粘性は空気とほぼ同様に温度で変化し、300℃では0℃の時の1.8倍程度に増大する。密度と粘性係数の変化はラミナー流量計にとって極めて重要な因子で、これを基礎とした流量演算を行うように計算処理する。差圧は高感度でしかも応答性も必要で圧力センサの選択が重要になる。温度測定はラミナーエレメント25入り口側の4象限の面積平均値が得られる。この場合は圧力測定の応答は10ms程度で充分とも考えられるのでこの実施例では圧力導管26、27を介して少し離れた流量演算回路28に内蔵された絶対圧センサと差圧センサに連結する。平均の温度の信号も入れて流量演算回路28により全排気ガス流量が10msごとに演算され、ケーブルを介して流量信号5を制御システム装置に出力する。この流量信号5が本装置の基本的な情報となる。排気ガスサンプル抽出の残余の排気ガスは排出管29を経由して大気圧に開放された部分を持つダクト13で排出される。   The density of the exhaust gas slightly changes depending on the air-fuel ratio, but even in the theoretical mixing ratio, it is very close to air at about 1.0046 of the air density. For some fuels, the exhaust gas density can be determined from the value of the air / fuel ratio according to the fuel used, as a function of temperature and pressure alone. Viscosity changes with temperature in much the same way as air, and increases to about 1.8 times that at 0 ° C. at 300 ° C. Changes in density and viscosity coefficient are extremely important factors for laminar flowmeters, and calculation processing is performed to perform flow rate calculations based on these factors. The differential pressure is highly sensitive and responsive, and the selection of the pressure sensor is important. For the temperature measurement, the area average value of the four quadrants on the entrance side of the laminar element 25 is obtained. In this case, since it is considered that the response of the pressure measurement is about 10 ms, in this embodiment, the pressure sensor is connected to the absolute pressure sensor and the differential pressure sensor built in the flow rate calculation circuit 28 a little apart via the pressure conduits 26 and 27. The total exhaust gas flow rate is calculated every 10 ms by the flow rate calculation circuit 28 including the average temperature signal, and the flow rate signal 5 is output to the control system apparatus via the cable. This flow rate signal 5 becomes basic information of this apparatus. The remaining exhaust gas from the exhaust gas sample extraction is discharged through the discharge pipe 29 through the duct 13 having a portion opened to the atmospheric pressure.

この装置では基本的にサンプル排気ガスの分岐抽出量は一定で清浄なガスで希釈した後に比例流量制御される。排気ガスサンプルの分岐は排気ラミナー流量計20の直後41の位置で排気ガスプローブ42から排気ガス流量が例えば20L/minまたは25L/min一定に流量制御されオーブン50に導管43を経由して吸引される。導管43にはフレキシブル管路と保温された管路が含まれるが、温度はほぼ70℃以上に保たれる。抽出された排気ガスサンプル流45は導管43からコネクタ44を経由して温度制御されたオーブン50に入り、その内部の管路46でオーブン50の温度と完全に同一になるよう熱交換される。管路46の入り口部47の圧力は希釈空気の減圧弁63の外部パイロット圧力として利用される。一方、清浄な希釈ガス60は通常200kPa以上の圧力で供給を受け、排気ガスの希釈とサンプルバッグのパージとに用いられるが、排気ガス希釈にはオーブン50のコネクタ61から電磁弁62を経由してオーブン50の内部で外部パイロット付き圧力制御弁である減圧弁63で排気サンプル流のオーブン内部の管路46と同一になるよう減圧され圧力制御される。電磁弁62の入り口圧力は圧力計64でモニタされる。希釈ガスの温度は希釈ガスCFOまたはCFV66までの管路65を熱交換器として利用し、オーブン50の温度と同じにされる。排気ガスサンプル流45は入り口温度をオーブン温度に合わせられてCFOまたはCFV48により正確に一定流量に規制される。希釈ガスは圧力制御弁である減圧弁63で排気側と同一圧力に制御され温度は熱交換の管路65を経由してオーブン50と同一温度にして希釈ガスのCFOまたはCFV66により一定流量に規制される。CFOまたはCFV48と希釈ガスのCFOまたはCFV66とは入り口側の温度圧力条件を同一にし、さらに下流側は流路49で合体され2つのガス流は混合されて希釈排気ガス流7を形成する。各CFOまたはCFVの出口圧力は圧力計67でモニタされ臨界流の形成が確認される。希釈排気ガス流7は例えば脈動が小さく清浄なドライポンプ68で吸引しCFOまたはCFV48、66の出口圧力を臨界圧以下にできるようにし、ゲージ圧20kPa以上に加圧吐出し、その圧力は圧力計69で表示される。ドライポンプ68の吐出する希釈排気ガス流量はCFOまたはCFV48、66の合計流量でその圧力はゲージ圧力としてリリーフ弁73で制御される。ドライポンプ68がスクロール型のように脈動の少ない場合には吐出側もリリーフ弁制御だけで圧力平滑の必要が無く、希釈排気ガス流を可変断面積オリフィス式流量測定制御装置70により排気ラミナー流量計20からの全排気ガス流量5の信号に基づき分流して、制御希釈排気ガス流量6として測定し制御し、バッグサンプル試料ガスとしてサンプルバッグ架台80にコネクタ81、サンプル管82を通じて送出される。サンプルバッグ架台80ではコネクタ83、電磁弁84などを経由して分配管85からそれぞれのバッグ86に送入される。電磁弁84で設定されたバッグ86に測定時間だけ制御希釈排気ガス流量6が送入され捕集、蓄積される。バッグの試料ガスは電磁弁84と87、95の連携により管路を切り替えて電磁弁58を経由しコネクタ59からガス分析計に連結され、バッグ試料ガスが分析計の内蔵ポンプにより吸引され、分析に供される。全排気ガス流量の積算値QIと制御希釈排気ガス流量(バッグサンプリング流量)の積算値qIはガス分析値とともに測定結果として極めて重要で、本装置の性能を決定づけるものである。サンプルバッグ架台80の内部温度は攪拌ファンを含む温度制御装置付きの加熱器91で設定温度に制御され温度表示器92で表示される。サンプルバッグは測定前にパージ洗浄とリークチェックをする必要があり、希釈に用いる清浄空気を分流してサンプルバッグ架台80のコネクタ93から受け入れ、減圧弁94で調圧され圧力計99でモニタされ、さらに電磁弁95を経由して各バッグに逐次送入できるように構成されている。またバッグの充填圧力は正負の連成圧力計96で負圧も含めてモニタされ、バッグのリークチェックには連成圧力計96に備えられたリレー発信などにより負圧にしてリーク検査し、必要な警報を発するようにしてある。バッグのパージにはシステム制御パネル90のシーケンサ9により制御され、各バッグの電磁弁88や排出ポンプ98その他関係電磁弁58、87、84等が自動的に定められた時間経過で逐次稼動される。   In this apparatus, the sample exhaust gas branch extraction amount is basically controlled by a proportional flow rate after being diluted with a constant and clean gas. The branch of the exhaust gas sample is suctioned to the oven 50 through the conduit 43 at a position 41 immediately after the exhaust laminar flow meter 20 and the exhaust gas flow rate is controlled at a constant 20 L / min or 25 L / min from the exhaust gas probe 42. The The conduit 43 includes a flexible conduit and a insulated conduit, but the temperature is maintained at approximately 70 ° C. or higher. The extracted exhaust gas sample stream 45 enters the temperature-controlled oven 50 from the conduit 43 via the connector 44, and is heat-exchanged in the pipe 46 inside thereof so as to be completely equal to the temperature of the oven 50. The pressure at the inlet 47 of the pipe 46 is used as the external pilot pressure of the pressure reducing valve 63 for dilution air. On the other hand, the clean dilution gas 60 is normally supplied at a pressure of 200 kPa or more and is used for exhaust gas dilution and sample bag purge. The exhaust gas dilution is conducted from the connector 61 of the oven 50 through the solenoid valve 62. In the oven 50, the pressure is reduced and the pressure is controlled by the pressure reducing valve 63, which is a pressure control valve with an external pilot, so as to be the same as the pipe line 46 in the oven of the exhaust sample flow. The inlet pressure of the electromagnetic valve 62 is monitored by a pressure gauge 64. The temperature of the dilution gas is made the same as the temperature of the oven 50 by using the pipe 65 to the dilution gas CFO or CFV 66 as a heat exchanger. The exhaust gas sample stream 45 is regulated at a constant flow rate by the CFO or CFV 48 by adjusting the inlet temperature to the oven temperature. The dilution gas is controlled to the same pressure as the exhaust side by the pressure reducing valve 63, which is a pressure control valve, and the temperature is set to the same temperature as the oven 50 via the heat exchange pipe 65, and is regulated to a constant flow rate by the dilution gas CFO or CFV 66. Is done. The CFO or CFV 48 and the dilution gas CFO or CFV 66 have the same temperature and pressure conditions on the inlet side, and further, the downstream side is joined by the flow path 49 so that the two gas flows are mixed to form a diluted exhaust gas flow 7. The outlet pressure of each CFO or CFV is monitored by a pressure gauge 67 to confirm the formation of a critical flow. The diluted exhaust gas flow 7 is sucked by a clean dry pump 68 having small pulsation, for example, so that the outlet pressure of the CFO or CFV 48, 66 can be made lower than the critical pressure, and pressurized and discharged to a gauge pressure of 20 kPa or more. 69. The flow rate of the diluted exhaust gas discharged from the dry pump 68 is the total flow rate of the CFO or CFV 48, 66, and the pressure is controlled by the relief valve 73 as a gauge pressure. When the dry pump 68 has a small pulsation such as a scroll type, the discharge side does not need pressure smoothing only by the relief valve control, and the exhaust gas laminar flow meter is operated by the variable cross-sectional area orifice type flow rate measurement control device 70. Based on the signal of the total exhaust gas flow rate 5 from 20, the flow is measured and controlled as a control diluted exhaust gas flow rate 6, and is sent as a bag sample sample gas to the sample bag mount 80 through the connector 81 and the sample tube 82. In the sample bag gantry 80, it is sent into each bag 86 from the distribution pipe 85 via the connector 83, the electromagnetic valve 84, and the like. The control diluted exhaust gas flow rate 6 is fed into the bag 86 set by the electromagnetic valve 84 for the measurement time, and is collected and accumulated. The sample gas of the bag is connected to the gas analyzer through the electromagnetic valve 58 through the solenoid valve 58 by switching the pipe line by the cooperation of the electromagnetic valves 84, 87, and 95, and the bag sample gas is sucked by the built-in pump of the analyzer and analyzed. To be served. The integrated value QI of the total exhaust gas flow rate and the integrated value qI of the control dilution exhaust gas flow rate (bag sampling flow rate) are extremely important as a measurement result together with the gas analysis value, and determine the performance of this apparatus. The internal temperature of the sample bag base 80 is controlled to a set temperature by a heater 91 with a temperature control device including a stirring fan, and is displayed by a temperature display 92. Before the measurement, the sample bag needs to be purged and leak-checked. The clean air used for dilution is diverted and received from the connector 93 of the sample bag mount 80, and the pressure is adjusted by the pressure reducing valve 94 and monitored by the pressure gauge 99. Furthermore, it is comprised so that it can send in to each bag sequentially via the electromagnetic valve 95. FIG. The bag filling pressure is monitored by a positive / negative coupled pressure gauge 96, including negative pressure, and the bag leak check is performed by checking the leak by making a negative pressure by relay transmission provided in the coupled pressure gauge 96, etc. A special alarm is issued. The purging of the bag is controlled by the sequencer 9 of the system control panel 90, and the electromagnetic valve 88, the discharge pump 98 and other related electromagnetic valves 58, 87, 84, etc. of each bag are automatically operated sequentially after a predetermined time. .

エンジンの運転条件変化と排気ガス成分変化との同時性を確保するためのサンプル流量制御遅延回路8は変化する全排気ガス流量に応じて変わるτ1と本装置内部で一定流量のサンプリングのために生じる一定遅れ時間τ2とに分けて計算するが、エンジン排気系から排気ラミナー流量計までの容積V0を体積流量Q`で除したτ1は排気系の平均温度も影響する。概略的には流量計入り口で測定される温度の関数として平均温度を仮定し、体積流量Q`を推定することもできる。τ2は本測定装置の使用条件から決められる数値ではほぼ0.4〜0.5sec程度になる。τ1+τ2の値は通常のモード運転では0.6〜5.0sec程度になり、加速や高速・高負荷運転時に小さくなるが、減速時には大きくなる。この遅延時間はシステム制御パネル90のサンプル流量制御遅延回路8で排気ガスの流量信号5と平均排気ガス温度推定値に基づき排気系デッドボリュームなど定数をいれて計算し出力され、可変断面積オリフィス式流量測定制御装置70の流量制御信号であり、測定流量信号でもある信号10となる。   The sample flow rate control delay circuit 8 for ensuring the synchronism between the engine operating condition change and the exhaust gas component change is generated for sampling at a constant flow rate τ1 that changes in accordance with the changing total exhaust gas flow rate. The calculation is performed separately for a certain delay time τ2, but τ1 obtained by dividing the volume V0 from the engine exhaust system to the exhaust laminar flow meter by the volume flow rate Q ` also affects the average temperature of the exhaust system. In general, assuming a mean temperature as a function of the temperature measured at the inlet of the flow meter, the volumetric flow rate Q can also be estimated. τ2 is about 0.4 to 0.5 sec in a numerical value determined from the use conditions of the measuring apparatus. The value of τ1 + τ2 is about 0.6 to 5.0 sec in normal mode operation, and becomes smaller during acceleration and high speed / high load operation, but becomes larger during deceleration. This delay time is calculated and output by the sample flow rate control delay circuit 8 of the system control panel 90 with a constant such as an exhaust system dead volume based on the exhaust gas flow signal 5 and the average exhaust gas temperature estimated value, and is output. It is a flow rate control signal of the flow rate measurement control device 70 and becomes a signal 10 that is also a measured flow rate signal.

図3に示す可変断面積オリフィス式流量測定制御装置70はオリフィス71の中に可動コァー72を配置してリニァーアクチュエータ74で流量信号5に応じて可動コァー72の軸方向位置をリニァーアクチュエータ74の内部パルスモータのパルス数により変位させ、オリフィス断面積75を変えて出口側の管路76からの制御希釈排気ガス流量6を制御する。流量測定は環状のオリフィス断面積75をパルス数から定め、入り口側の管路77からの希釈排気ガス流は圧力、差圧を圧力導管78、79で圧力センサや流量演算を含む制御回路53に導いて温度をも合わせて校正に基づき出口側の管路76からの制御希釈排気ガス流量6を計算し、積算値QIの基礎とする。可動コァー72の変位速度は全範囲で0.2sec以下に設定してあり、排気ガスの流量信号5の速い変化に十分追随できる。しかもオリフィスにおける圧力変化は基本的には無視できる程度であり、差圧も10kPa程度で安定した小さな差圧範囲で使用できる特徴がある。さらにオリフィス断面積75は可動コァー72の移動距離に対して直線的な比例関係になるように断面形状が構成されている。制御希釈排気ガス流量6は校正に基づきアクチュエータの位置信号パルス(断面積)、絶対圧、差圧センサの出力、温度計出力を含む制御回路53おいて求められ、制御希釈排気ガス流量の信号10となり、本装置では排気ガスサンプル流量として最も重要な結果であり、システム制御パネル90の内部でサンプル積算回路であるシーケンサ9によりバッグ86への送入積算値として表示される。ドライポンプ68の出口圧力はリリーフ弁73で設定圧力(ゲージ圧)に制御され、制御希釈排気ガス流量6以外はリリーフ弁73から系外に排出される。     The variable cross-sectional area orifice type flow measurement control device 70 shown in FIG. 3 has a movable core 72 disposed in the orifice 71 and the linear actuator 74 determines the axial position of the movable core 72 according to the flow signal 5. The control dilution exhaust gas flow rate 6 from the outlet side pipe 76 is controlled by changing the orifice cross-sectional area 75 by changing the number of pulses of the internal pulse motor. In the flow rate measurement, an annular orifice cross-sectional area 75 is determined from the number of pulses, the diluted exhaust gas flow from the inlet-side pipe line 77 is sent to a control circuit 53 including a pressure sensor and a flow rate calculation through pressure conduits 78 and 79. The control dilution exhaust gas flow rate 6 from the outlet side pipe 76 is calculated based on the calibration with the temperature adjusted, and this is used as the basis of the integrated value QI. The displacement speed of the movable core 72 is set to 0.2 sec or less over the entire range, and can sufficiently follow the rapid change in the flow signal 5 of the exhaust gas. In addition, the pressure change at the orifice is basically negligible, and the differential pressure is about 10 kPa and can be used in a stable small differential pressure range. Further, the cross-sectional shape of the orifice cross-sectional area 75 is configured so as to be linearly proportional to the moving distance of the movable core 72. The control dilution exhaust gas flow rate 6 is obtained in the control circuit 53 including the actuator position signal pulse (cross-sectional area), the absolute pressure, the output of the differential pressure sensor, and the thermometer output based on the calibration. Thus, in the present apparatus, this is the most important result as the exhaust gas sample flow rate, and is displayed as an integrated value sent to the bag 86 by the sequencer 9 which is a sample integration circuit inside the system control panel 90. The outlet pressure of the dry pump 68 is controlled to a set pressure (gauge pressure) by the relief valve 73, and other than the control dilution exhaust gas flow rate 6 is discharged out of the system from the relief valve 73.

オーブン50の温度は攪拌装置付き加熱器51で設定温度に制御され、温度表示器52で表示される。制御希釈排気ガス流量6はオーブン50からサンプルバッグ架台80に送られてその一つのバッグ86にはいる。サンプルバッグ架台80には少なくとも4組のバッグが配置され、逐次切り替えて使用できるように各電磁弁やコネクターなどがある。また測定前に各バッグを洗浄・排気する排出ポンプ98やリークチェックのための連成圧力計96などが備えられている。通常は洗浄用には希釈ガスを減圧弁94を介して適切な圧力で各バッグに送入できるようにしてあり、各電磁弁の制御はシステム制御パネル90内の回路56で自動的にシーケンサ的に行われる。システム制御パネル90には起動や安全、表示を含むシステム制御装置55とバッグ操作の回路56、サンプル流量の積算・表示などのシーケンサ9、サンプル流量制御遅延回路8、モニター回路57などが収容されて、全体システムを統括制御できるようにしてある。     The temperature of the oven 50 is controlled to a set temperature by a heater 51 with a stirrer and is displayed by a temperature display 52. The control dilution exhaust gas flow rate 6 is sent from the oven 50 to the sample bag frame 80 and enters one of the bags 86. At least four sets of bags are arranged on the sample bag pedestal 80, and there are electromagnetic valves, connectors, and the like so that they can be switched and used sequentially. Further, a discharge pump 98 for cleaning and exhausting each bag before measurement, a coupled pressure gauge 96 for checking a leak, and the like are provided. Normally, for cleaning, a dilution gas can be sent to each bag through a pressure reducing valve 94 at an appropriate pressure, and each solenoid valve is automatically controlled by a circuit 56 in the system control panel 90 as a sequencer. To be done. The system control panel 90 accommodates a system controller 55 including activation, safety, and display, a circuit 56 for bag operation, a sequencer 9 for integrating and displaying the sample flow rate, a sample flow rate control delay circuit 8, a monitor circuit 57, and the like. The overall system can be controlled centrally.

この排気比例サンプリング装置では、排気ガス流量の変化よりも排気ガス成分の変化が希釈排気ガスを分流して流量制御する位置で遅れる点が問題になる。その主な遅れ時間τ1は排気ガス流量が関係するエンジン排気系と排気ガスサンプルを分流する位置までの遅れ時間である。さらに本装置の内部で排気ガスサンプル抽出してから希釈ガスと混合希釈して分流し流量制御するまでの時間τ2がある。τ1は全排気ガス体積流量Qe(Te/T0)でデッドボリュームVdを割った値と見なされる。エンジン排気系のデッドボリュームはエンジン諸元でそのエンジンの固有値として決められるが、流量と平均排気ガス温度は変化する。流量は排気ガス流量計の測定値をそのまま用い、温度は極めて概略的に推定して、たとえば排気ガス流量計の入り口温度と仮定排気マニホールド温度を600℃としてその平均値を用いることも可能であろう。排気ガス温度Teは測定している全排気ガス流量計の入り口温度T1と1/2(600℃)を加えたものと大胆な仮定をする。すなわち、τ1=cl・(T0/Te)・(1/Qe)と計算できる。τ2はほぼ一定な時間でこの装置では多くの場合サンプル排気ガスCFOまたはCFV流量20L/minの場合0.5sec程度である。図1において排気ガスサンプル流の流量制御の信号は全排気ガス流量測定値よりもこのように計算されたτだけ遅れて制御するように構成される。     In this exhaust proportional sampling device, the problem is that the change of the exhaust gas component is delayed from the change of the exhaust gas flow rate at the position where the diluted exhaust gas is diverted and the flow rate is controlled. The main delay time τ1 is the delay time to the position where the exhaust gas sample is separated from the engine exhaust system related to the exhaust gas flow rate. Furthermore, there is a time τ2 from the extraction of the exhaust gas sample inside the apparatus to the mixing and dilution with the dilution gas to divert and control the flow rate. τ1 is regarded as a value obtained by dividing the dead volume Vd by the total exhaust gas volume flow rate Qe (Te / T0). The dead volume of the engine exhaust system is determined by the engine specifications as a characteristic value of the engine, but the flow rate and the average exhaust gas temperature change. For the flow rate, the measured value of the exhaust gas flow meter is used as it is, the temperature is estimated very roughly, and the average value can be used by setting the inlet temperature of the exhaust gas flow meter and the assumed exhaust manifold temperature to 600 ° C., for example. Let's go. The exhaust gas temperature Te is boldly assumed to be the sum of the inlet temperature T1 and 1/2 (600 ° C.) of the total exhaust gas flowmeter being measured. That is, it can be calculated as τ1 = cl · (T0 / Te) · (1 / Qe). τ2 is a substantially constant time, and is often about 0.5 sec in this apparatus when the sample exhaust gas CFO or the CFV flow rate is 20 L / min. In FIG. 1, the flow rate control signal of the exhaust gas sample flow is configured to be controlled by τ thus calculated from the total exhaust gas flow rate measurement value.

本発明の排気比例サンプリング装置の実施例を示すシステム図である。It is a system diagram which shows the Example of the exhaust proportional sampling apparatus of this invention. 本発明の排気比例サンプリング装置に用いるラミナー流量計の測定部と上流側に配置する加熱・冷却サージチューブを示す構成図である。It is a block diagram which shows the heating / cooling surge tube arrange | positioned in the measurement part and upstream of the laminar flowmeter used for the exhaust proportional sampling device of this invention. 本発明の排気比例サンプリング装置に用いる可変断面積オリフィス式流量測定制御装置の構造を示す解説図である。It is explanatory drawing which shows the structure of the variable cross-sectional area orifice type flow measurement control apparatus used for the exhaust proportional sampling apparatus of this invention.

符号の説明Explanation of symbols

4 全排気ガス流量
5 流量信号
6 制御希釈排気ガス流量
7 希釈排気ガス流
8 サンプル流量制御遅延回路
9 シーケンサ
10 信号
11 自動車
12 排気管
13 ダクト
20 排気ラミナー流量計
21 テーパー管
23 整流格子
24 熱電対
25 ラミナーエレメント
26 圧力導管
27 圧力導管
28 流量演算回路
29 排出管
30 加熱・冷却サージチューブ
31 温度設定表示器
32 管路
33 シーズヒータコイル
34 温度センサ
35 O−リング付ゴム薄膜チューブ
36 フランジ
37 フランジ
38 通気孔
39 円筒状保護管
41 直後
42 排気ガスプローブ
43 導管
44 コネクタ
45 排気ガスサンプル流
46 管路
47 入り口部
48 CFOまたはCFV
49 流路
50 オーブン
51 加熱器
52 温度表示器
53 制御回路
55 システム制御装置
56 回路
57 モニター回路
58 電磁弁
59 コネクタ
60 希釈ガス
61 コネクタ
62 電磁弁
63 減圧弁
64 圧力計
65 管路
66 希釈ガスCFOまたはCFV
67 圧力計
68 ドライポンプ
69 圧力計
70 可変断面積オリフィス式流量測定制御装置
71 オリフィス
72 可動コァー
73 リリーフ弁
74 リニアーアクチュエータ
75 オリフィス断面積
76 出口側の管路
77 入り口側の管路
78 導管
80 サンプルバッグ架台
81 コネクタ
82 サンプル管
83 コネクタ
84 電磁弁
85 分配管
86 バッグ
87 電磁弁
88 電磁弁
89 電磁弁コネクタ
90 システム制御パネル
91 加熱器
92 温度表示器
93 コネクタ
94 減圧弁
95 電磁弁
96 連成圧力計
98 排出ポンプ
99 圧力計
4 Total exhaust gas flow rate 5 Flow rate signal 6 Control dilution exhaust gas flow rate 7 Dilution exhaust gas flow 8 Sample flow rate control delay circuit 9 Sequencer 10 Signal 11 Automobile 12 Exhaust pipe 13 Duct 20 Exhaust laminar flow meter 21 Taper pipe 23 Rectifier grid 24 Thermocouple 25 Laminar element 26 Pressure conduit 27 Pressure conduit 28 Flow rate calculation circuit 29 Discharge tube 30 Heating / cooling surge tube 31 Temperature setting indicator 32 Pipe line 33 Sheathed heater coil 34 Temperature sensor 35 Rubber thin film tube with O-ring 36 Flange 37 Flange 38 Ventilation hole 39 Cylindrical protective tube 41 Immediately after 42 Exhaust gas probe 43 Conduit 44 Connector 45 Exhaust gas sample flow 46 Pipe line 47 Entrance 48 CFO or CFV
49 Flow path 50 Oven 51 Heater 52 Temperature indicator 53 Control circuit 55 System controller 56 Circuit 57 Monitor circuit 58 Solenoid valve 59 Connector 60 Diluting gas 61 Connector 62 Solenoid valve 63 Pressure reducing valve 64 Pressure gauge 65 Pipe line 66 Diluting gas CFO Or CFV
67 Pressure gauge 68 Dry pump 69 Pressure gauge 70 Variable cross-sectional area orifice type flow measurement control device 71 Orifice 72 Movable core 73 Relief valve 74 Linear actuator 75 Orifice cross-sectional area 76 Outlet side pipe line 77 Inlet side pipe line 78 Conduit 80 Sample Bag mount 81 Connector 82 Sample tube 83 Connector 84 Solenoid valve 85 Minute piping 86 Bag 87 Solenoid valve 88 Solenoid valve 89 Solenoid valve connector 90 System control panel 91 Heater 92 Temperature indicator 93 Connector 94 Pressure reducing valve 95 Solenoid valve 96 Compound pressure Total 98 Discharge pump 99 Pressure gauge

Claims (9)

内燃エンジン排気ガスに含まれる単数または複数の成分について、排気ガスサンプルを試料ガスとして抽出し、希釈して、流量制御した一部流量をバッグサンプリングして平均排出値の濃度と量の代表ガスを得る排気比例サンプリング装置の一つであって、排気管の直後に配置して200℃以上の排気ガスについても正確な流量測定ができるラミナー型流量計を用いて排気ガスの全流量を広い流量範囲にわたって適切な応答性をもって測定し、この流量値と常に一定比率となる排気ガスサンプル流量を適切な応答性をもって測定し、かつ速い応答性を持つ制御弁で制御しながらバッグに採取するサンプリング装置において、CFOまたはCFVを用いて一定流量のサンプル排気ガス流とこれに一定な比率の流量となる清浄な乾燥空気または窒素ガスを希釈ガスとしてそれぞれのCFOまたはCFVを用いて流量制御し、ドライポンプで吸引・混合・加圧し、一定圧力の希釈排気ガスサンプルを調整して、その一部を全排気ガス流量に比例した制御希釈排気ガスサンプルとして可変断面積オリフィス式流量測定制御装置により広い流量範囲と速い応答速度で60℃以上の温度雰囲気において制御し、適当な温度に保たれたバッグに捕集し、この補集された制御希釈排気ガスサンプルの濃度と量がその運転時間内での当該成分の質量排出値に比例するように構成した装置で、ラミナー流量計で測定した全排気ガス流量値に比例して制御希釈排気ガスの流量を制御してバッグにサンプリングし、あるサンプリング時間または当該時間の走行距離における平均的な排気ガス試料を採取し、その試料の分析値と、全排気ガス流量値とサンプル流量値との比率などからエンジン排気ガスの各成分の質量排出値を求めるようにしたラミナー型排気ガス流量計を用いた希釈排気サンプリング装置。   For one or more components contained in the internal combustion engine exhaust gas, an exhaust gas sample is extracted as a sample gas, diluted, and part of the flow rate controlled is bag-sampled to obtain the average gas concentration and amount of representative gas One of the proportional exhaust sampling devices to be obtained, it is arranged immediately after the exhaust pipe, and the exhaust gas total flow rate is set to a wide flow range using a laminar type flow meter that can accurately measure the flow rate of exhaust gas at 200 ° C or higher. In a sampling device that measures the exhaust gas sample flow rate that is always in a constant ratio with this flow rate value, measures it with appropriate responsiveness, and collects it in a bag while controlling it with a control valve with fast response Using CFO or CFV, a sample exhaust gas flow with a constant flow rate and clean dry air or nitrogen with a constant flow rate The flow rate is controlled using each CFO or CFV as a dilution gas, and suction, mixing, and pressurization are performed by a dry pump, a diluted exhaust gas sample having a constant pressure is adjusted, and a part thereof is proportional to the total exhaust gas flow rate. Control dilution exhaust gas sample is controlled in a variable flow area orifice type flow measurement control device in a wide flow range and fast response speed in a temperature atmosphere of 60 ° C or higher and collected in a bag maintained at an appropriate temperature, and this collection Controlled in proportion to the total exhaust gas flow rate value measured with a laminar flow meter, with the device configured so that the concentration and amount of the controlled diluted exhaust gas sample are proportional to the mass emission value of the component within its operating time The flow rate of the diluted exhaust gas is controlled and sampled in a bag, and an average exhaust gas sample is taken at a certain sampling time or the mileage of that time, and the sample is taken. And analysis of the sample, the total exhaust gas flow rate and sample flow rate value and the dilution exhaust sampling apparatus using a laminar type exhaust gas flowmeter and the like to obtain the mass emission values of the components of the engine exhaust gas ratio of. 請求項1の希釈ガス排気サンプリング装置において、希釈排気ガスサンプル流の一部を全排気ガス流量に比例した流量に測定制御する装置として可変断面積オリフィス式流量測定制御装置を利用して、60℃以上の高温度雰囲気においても0.3秒以下の速い応答速度と1:50以上の広い流量制御範囲をもって希釈排気ガスサンプル装置を制御することを特徴とする希釈排気サンプリング装置。   2. A dilution gas exhaust sampling apparatus according to claim 1, wherein a variable cross-sectional area orifice type flow rate measurement control device is used as a device for measuring and controlling a part of the diluted exhaust gas sample flow to a flow rate proportional to the total exhaust gas flow rate. A diluted exhaust gas sampling apparatus that controls a diluted exhaust gas sample apparatus with a fast response speed of 0.3 seconds or less and a wide flow rate control range of 1:50 or higher even in the above high temperature atmosphere. 請求項1および2の希釈排気サンプリング装置において、エンジン排気ガス流量と成分濃度が変化する場合に排気ガス流量変化と試料ガス成分のサンプリング時刻の同時性を確保するために、流量測定値の時間変化に対する排気ガスサンプル抽出分岐点までのガス成分の遅れに関係して、排気系における流速や容積(デッドボリューム)に由来するガス試料の成分濃度変化が排気ガスサンプリング点(抽出分岐点)において本来のエンジンからの排出時刻(流量変化時刻)よりも遅れる時間について、排気系と排気ガスサンプリング点までのデッドボリュームと平均的な温度および流量とから推定出来る時間ずれを求め、さらにサンプリング装置内部で生じる排気ガスサンプル分岐点から希釈混合を経過して制御希釈排気ガスを分流制御するまでのほぼ一定な時間ずれについても適正に補正できるようにした制御回路を設けて、制御希釈排気ガスサンプルの分流点における流量制御を排気ガス成分の変化時刻に合わせ得るようにした時間ずれ補正回路をもった希釈排気サンプリング装置。   3. The dilution exhaust sampling apparatus according to claim 1 or 2, wherein when the engine exhaust gas flow rate and the component concentration change, the time change of the flow rate measurement value is ensured in order to ensure the synchronism between the exhaust gas flow rate change and the sampling time of the sample gas component. In relation to the delay of the gas component to the exhaust gas sample extraction branch point with respect to the exhaust gas sampling point (extraction branch point), the component concentration change of the gas sample due to the flow velocity and volume (dead volume) in the exhaust system For the time delayed from the exhaust time (flow rate change time) from the engine, a time lag that can be estimated from the exhaust system and dead volume to the exhaust gas sampling point and the average temperature and flow rate is obtained, and the exhaust generated inside the sampling device Control dilute exhaust gas after diluting and mixing from gas sample branch point A time lag correction circuit that can control the flow rate at the diversion point of the control diluted exhaust gas sample according to the change time of the exhaust gas component by providing a control circuit that can properly correct even a substantially constant time lag at Diluted exhaust sampling device. 請求項1および2の希釈排気サンプリング装置においてエンジン始動時および希釈排気ガスサンプルの露点が室温よりも高い条件においても水分など低沸点成分の凝縮を防ぐために、排気ガス流量計の内部温度を100℃以上に維持できる加熱装置を有し、さらに希釈混合部から下流の各部温度を60℃以上、バッグ保持温度を37℃(水分6.2%相当)以上に維持できるようにした希釈排気サンプリング装置。   In order to prevent condensation of low-boiling components such as moisture at the time of starting the engine and in a condition where the dew point of the diluted exhaust gas sample is higher than room temperature, the internal temperature of the exhaust gas flow meter is set to 100 ° C. A dilution exhaust sampling apparatus having a heating apparatus capable of maintaining the above, and further capable of maintaining the temperature of each part downstream from the dilution mixing section at 60 ° C. or higher and the bag holding temperature at 37 ° C. (corresponding to 6.2% moisture) or higher. 請求項1および2の希釈排気サンプリング装置において、エンジンの低回転数領域における排気管系の流れの脈動が排気ガス成分の前後変化の混合や流量測定に不適当な影響を与えることを防止して、しかも排気ガス成分の遅れや混合を実車と同程度に保つために、エンジンの排気管の出口直後でラミナー型流量計の入り口側に小さな容積で脈動減衰効果の大きいサージチューブを装着して、このサージチューブの内部に排気ガス温度が200℃以下のときに加熱し始動時など低温における低沸点成分の凝縮を防止する表面材質がステンレスのヒータを配置し、また一方サージチューブの外部保護管に排気ガス温度が250℃以上高温なときに排気ガスおよびシリコーンゴム膜の冷却に効果のある熱伝導の良い材質で表面積の大きい多孔な金属板を用いた、加熱・冷却サージチューブを排気ガス流量計の上流に配置した希釈排気サンプリング装置。   3. The diluted exhaust sampling system according to claim 1 or 2, wherein the pulsation of the flow in the exhaust pipe system in the low engine speed range prevents an unfavorable influence on the mixing of the front and rear changes of exhaust gas components and the flow rate measurement. In addition, in order to keep the delay and mixing of exhaust gas components at the same level as the actual vehicle, a surge tube with a small volume and a large pulsation damping effect is attached to the inlet side of the laminar flow meter immediately after the outlet of the engine exhaust pipe, A stainless steel heater is installed inside the surge tube to prevent condensation of low-boiling components at low temperatures such as when starting up when the exhaust gas temperature is below 200 ° C. Porous gold with a large surface area made of a material with good thermal conductivity that is effective for cooling the exhaust gas and silicone rubber film when the exhaust gas temperature is higher than 250 ° C. Using the plate, diluted exhaust sampling system the heating and cooling surge tube arranged upstream of the exhaust gas flowmeter. 内燃エンジンの排気ガスの全量が通過する加熱・冷却サージチューブ装置と、前記加熱・冷却サージチューブ装置の下流において前記排気ガスを流量計測する排気ラミナー流量計と、前記排気ラミナー流量計の直後の位置で排気ガスサンプル流の分岐をする排気ガスプローブと、前記排気ガスサンプル流を一定流量に規制するCFOまたはCFVと、系外から系内に導いた希釈ガスを一定流量に規制する他のCFOまたはCFVと、排気ガスサンプル流と希釈ガス流のそれぞれのCFOまたはCFVの入り口側の温度圧力条件を同一にするオーブン装置と、前記両CFOまたはCFVの下流側で前記排気ガスサンプル流と前記希釈ガス流とを混合して希釈排気ガス流を形成する流路と、前記希釈排気ガス流を前記排気ラミナー流量計からの全排気ガス流量計の信号に基づいて分流して制御希釈排気ガス流を形成する可変断面積オリフィス式流量測定制御装置と、および前記制御希釈排気ガス流を充填可能なバッグとを備えることを特徴とする希釈排気サンプリング装置。   A heating / cooling surge tube device through which the entire amount of exhaust gas of the internal combustion engine passes, an exhaust laminar flow meter for measuring the flow rate of the exhaust gas downstream of the heating / cooling surge tube device, and a position immediately after the exhaust laminar flow meter An exhaust gas probe that branches the exhaust gas sample flow, a CFO or CFV that regulates the exhaust gas sample flow to a constant flow rate, and another CFO that regulates dilution gas introduced from outside the system into the system at a constant flow rate. An oven apparatus for making the temperature and pressure conditions on the inlet side of each CFO or CFV of the exhaust gas sample stream and the dilution gas stream the same, and the exhaust gas sample stream and the dilution gas downstream of both the CFO or CFV Flow path to form a diluted exhaust gas stream, and the diluted exhaust gas stream from the exhaust laminar flow meter A variable cross-sectional area orifice type flow measurement control device for diverting a flow based on a gas gas flow meter signal to form a control diluted exhaust gas flow, and a bag capable of being filled with the control diluted exhaust gas flow. Diluted exhaust sampling device. 内燃エンジンの排気ガスを排気ラミナー流量計で流量計測し、前記排気ラミナー流量計の直後の位置で排気ガスサンプル流の分岐を行い、前記排気ガスサンプル流をCFOまたはCFVにより一定流量に規制し、一方、系外から系内に導いた希釈ガスを他のCFOまたはCFVにより一定流量に規制し、排気ガスサンプル流と希釈ガス流はそれぞれのCFOまたはCFVの入り口側の温度圧力条件を同一にしCFOまたはCFVの下流側で合流されて混合されて希釈排気ガス流を形成し、前記希釈排気ガス流を可変断面積オリフィス式流量測定制御装置により前記排気ラミナー流量計からの全排気ガス流量計の信号に基づいて分流して制御希釈排気ガス流を形成し、前記制御希釈排気ガス流を測定時間だけバッグサンプル試料ガスとして設定温度に制御されたバッグに送入し、測定時に取り出して分析に供することを特徴とする希釈排気サンプリング方法。   The flow rate of the exhaust gas of the internal combustion engine is measured with an exhaust laminar flow meter, the exhaust gas sample flow is branched at a position immediately after the exhaust laminar flow meter, and the exhaust gas sample flow is regulated to a constant flow rate by CFO or CFV, On the other hand, the dilution gas introduced from the outside into the system is regulated to a constant flow rate by another CFO or CFV, and the exhaust gas sample flow and the dilution gas flow have the same temperature and pressure conditions at the inlet side of each CFO or CFV. Alternatively, a combined exhaust gas stream is formed on the downstream side of the CFV to form a diluted exhaust gas flow, and the diluted exhaust gas flow is signaled from the exhaust laminar flow meter by the variable cross-sectional area orifice type flow measurement control device. To form a control dilution exhaust gas flow and set the control dilution exhaust gas flow as a bag sample sample gas for the measurement time Diluted exhaust sampling method characterized by subjecting to forced in the bag, which is controlled every time, taken out at the time of measurement analysis. ガスを流通させるガス流通路を形成し管壁に通気孔を貫通形成している管路と、前記管路に取り付けられて前記ガス流通路を加熱または冷却して温度調節する温度調節装置と、前記管路の外側に前記管路の前記通気孔を内包する状態で配置され前記管路に気密に配置されているゴム薄膜製のサージチューブ部材と、前記サージチューブ部材の外側に前記サージチューブ部材を内包する状態で配置されている剛性を有し管壁に多数の通気口を形成してある筒状保護管とを有することを特徴とする加熱・冷却サージチューブ装置。   A pipe line that forms a gas flow path through which gas flows and has a vent hole formed in a pipe wall; and a temperature control device that is attached to the pipe line and that heats or cools the gas flow path to adjust the temperature; A surge tube member made of a rubber thin film that is arranged outside the pipeline so as to enclose the vent hole of the pipeline, and is hermetically arranged in the pipeline, and the surge tube member outside the surge tube member A heating / cooling surge tube device comprising: a cylindrical protective tube having rigidity and disposed in a state of enclosing the tube and having a plurality of vent holes formed in a tube wall. 前記温度調節の範囲は100℃〜200℃であり、前記筒状保護管の前記通気口による開口率は35%以上であり、または前記温度調節装置は表面がステンレスで作られた700W以上の容量を持つシーズヒータコイルを前記管路の内周に配備していることを特徴とする請求項8記載の加熱・冷却サージチューブ装置。   The temperature control range is 100 ° C. to 200 ° C., the opening ratio of the cylindrical protective tube by the vent is 35% or more, or the temperature control device has a capacity of 700 W or more whose surface is made of stainless steel. The heating / cooling surge tube device according to claim 8, wherein a sheathed heater coil having an inner diameter is provided on an inner periphery of the pipe.
JP2005209052A 2005-07-19 2005-07-19 Apparatus and method for sampling diluted exhaust gas using laminar exhaust gas flowmeter and heating/cooling surge tube apparatus Pending JP2007024730A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005209052A JP2007024730A (en) 2005-07-19 2005-07-19 Apparatus and method for sampling diluted exhaust gas using laminar exhaust gas flowmeter and heating/cooling surge tube apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005209052A JP2007024730A (en) 2005-07-19 2005-07-19 Apparatus and method for sampling diluted exhaust gas using laminar exhaust gas flowmeter and heating/cooling surge tube apparatus

Publications (1)

Publication Number Publication Date
JP2007024730A true JP2007024730A (en) 2007-02-01

Family

ID=37785685

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005209052A Pending JP2007024730A (en) 2005-07-19 2005-07-19 Apparatus and method for sampling diluted exhaust gas using laminar exhaust gas flowmeter and heating/cooling surge tube apparatus

Country Status (1)

Country Link
JP (1) JP2007024730A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048765A (en) * 2008-08-25 2010-03-04 Mitsubishi Electric Corp Iodine sampler
JP2015519585A (en) * 2012-06-11 2015-07-09 エイヴィエル・テスト・システムズ・インコーポレーテッド Exhaust sampling system and method for synchronizing time alignment and time delay
CN109489984A (en) * 2018-12-20 2019-03-19 西安交通大学 A kind of engine exhaust gas particulate part diluted stream device and its application method
CN111458374A (en) * 2019-01-18 2020-07-28 上海沃尔沃汽车研发有限公司 System for monitoring water condensation in dilution tunnel and method for vehicle emission test
WO2022223959A1 (en) * 2021-04-21 2022-10-27 Emissions Analytics Ltd Apparatus and method for sampling an exhaust gas
CN116878979A (en) * 2023-09-06 2023-10-13 启东市恒盛仪表设备有限公司 Self-cooled industrial gas sampler

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04310822A (en) * 1991-04-09 1992-11-02 Tsukasa Sotsuken:Kk Takeout method of constant flow rate of exhaust gas and variable venturi type device for control of measurement of constant flow rate
JPH0449687Y2 (en) * 1986-04-17 1992-11-24
JPH06213783A (en) * 1992-11-02 1994-08-05 Siemens Ag Operation of gas-quantity adjusting system
JPH07113730A (en) * 1993-10-14 1995-05-02 Ono Sokki Co Ltd Multipipe type flow branching dilution tunnel and its controlling method
JPH08226879A (en) * 1995-02-21 1996-09-03 Horiba Ltd Gas-sampling apparatus
JPH11211631A (en) * 1998-01-21 1999-08-06 Tsukasa Sokken:Kk Apparatus for diluting sampling exhaust gas
JP2001507458A (en) * 1997-04-01 2001-06-05 ホリバ インスツルメンツ インコーポレイテッド Flow control and measurement correction in an emission analyzer based on water content
JP2001165827A (en) * 1999-12-06 2001-06-22 Horiba Ltd Exhaust gas analysis system
JP2003075308A (en) * 2001-09-06 2003-03-12 Tsukasa Sokken Co Ltd Mini constant flow rate sampling apparatus
JP2003269685A (en) * 2002-03-11 2003-09-25 Tsukasa Sokken Co Ltd Structure of surge tube
JP2004053481A (en) * 2002-07-22 2004-02-19 Tsukasa Sokken Co Ltd Laminar type flowmeter
JP2006162417A (en) * 2004-12-07 2006-06-22 Tsukasa Sokken Co Ltd Total pressure/static pressure measuring venturi system flow measuring device

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0449687Y2 (en) * 1986-04-17 1992-11-24
JPH04310822A (en) * 1991-04-09 1992-11-02 Tsukasa Sotsuken:Kk Takeout method of constant flow rate of exhaust gas and variable venturi type device for control of measurement of constant flow rate
JPH06213783A (en) * 1992-11-02 1994-08-05 Siemens Ag Operation of gas-quantity adjusting system
JPH07113730A (en) * 1993-10-14 1995-05-02 Ono Sokki Co Ltd Multipipe type flow branching dilution tunnel and its controlling method
JPH08226879A (en) * 1995-02-21 1996-09-03 Horiba Ltd Gas-sampling apparatus
JP2001507458A (en) * 1997-04-01 2001-06-05 ホリバ インスツルメンツ インコーポレイテッド Flow control and measurement correction in an emission analyzer based on water content
JPH11211631A (en) * 1998-01-21 1999-08-06 Tsukasa Sokken:Kk Apparatus for diluting sampling exhaust gas
JP2001165827A (en) * 1999-12-06 2001-06-22 Horiba Ltd Exhaust gas analysis system
JP2003075308A (en) * 2001-09-06 2003-03-12 Tsukasa Sokken Co Ltd Mini constant flow rate sampling apparatus
JP2003269685A (en) * 2002-03-11 2003-09-25 Tsukasa Sokken Co Ltd Structure of surge tube
JP2004053481A (en) * 2002-07-22 2004-02-19 Tsukasa Sokken Co Ltd Laminar type flowmeter
JP2006162417A (en) * 2004-12-07 2006-06-22 Tsukasa Sokken Co Ltd Total pressure/static pressure measuring venturi system flow measuring device

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010048765A (en) * 2008-08-25 2010-03-04 Mitsubishi Electric Corp Iodine sampler
JP2015519585A (en) * 2012-06-11 2015-07-09 エイヴィエル・テスト・システムズ・インコーポレーテッド Exhaust sampling system and method for synchronizing time alignment and time delay
CN109489984A (en) * 2018-12-20 2019-03-19 西安交通大学 A kind of engine exhaust gas particulate part diluted stream device and its application method
CN111458374A (en) * 2019-01-18 2020-07-28 上海沃尔沃汽车研发有限公司 System for monitoring water condensation in dilution tunnel and method for vehicle emission test
CN111458374B (en) * 2019-01-18 2023-10-24 上海沃尔沃汽车研发有限公司 Dilution passage in-water condensation monitoring system and method for vehicle emission testing
WO2022223959A1 (en) * 2021-04-21 2022-10-27 Emissions Analytics Ltd Apparatus and method for sampling an exhaust gas
CN116878979A (en) * 2023-09-06 2023-10-13 启东市恒盛仪表设备有限公司 Self-cooled industrial gas sampler
CN116878979B (en) * 2023-09-06 2023-11-14 启东市恒盛仪表设备有限公司 Self-cooled industrial gas sampler

Similar Documents

Publication Publication Date Title
US6200819B1 (en) Method and apparatus for providing diluent gas to exhaust emission analyzer
US5756360A (en) Method and apparatus for providing diluted gas to exhaust emission analyzer
US7647811B2 (en) Solid particle counting system with valve to allow reduction of pressure pulse at particle counter when vacuum pump is started
US8752412B2 (en) Sniffing leak detector
JP2007024730A (en) Apparatus and method for sampling diluted exhaust gas using laminar exhaust gas flowmeter and heating/cooling surge tube apparatus
US20080148874A1 (en) Solid particle counting system with flow meter upstream of evaporation unit
US6973818B2 (en) Exhaust volume measurement device
US7565846B2 (en) Particulate sampler and dilution gas flow device arrangement for an exhaust sampling system
US6668663B2 (en) Method and apparatus to determine flow rate with the introduction of ambient air
US7665375B2 (en) Flow splitter for a solid particle counting system
KR20060094331A (en) Compact mini-tunnel type dilutor system using wall air entrance
JP2006162417A (en) Total pressure/static pressure measuring venturi system flow measuring device
US10544723B2 (en) Exhaust gas analysis apparatus and exhaust gas analysis method
US8887554B2 (en) Raw proportional toxic sampler for sampling exhaust
JP5630894B2 (en) Particulate matter measuring device
CN107870012A (en) The device and method of rate-of flow under a kind of heat balance method of test complex environment
CN209639805U (en) A kind of aerospace automatic calibration unit for gas flowmeters
JP7150013B2 (en) Apparatus and method for distinguishing test gas leaking from leak site from interfering gas
JP3992121B2 (en) Exhaust gas dilution sampling device
CN212539289U (en) Novel flow monitoring system
JPS5890144A (en) Automatic uniform suction device for exhaust gas
JPH10123029A (en) Extraction unit and dilution unit
CN115824327A (en) Method and system for detecting air flow, storage medium and computer equipment
JPH07110257A (en) Gas meter testing device
WO1999028614A1 (en) Indirect engine exhaust mass flow measurement system

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080703

A977 Report on retrieval

Effective date: 20101122

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101125

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110401