JP5257670B2 - Method for producing aluminum alloy material excellent in creep resistance - Google Patents

Method for producing aluminum alloy material excellent in creep resistance Download PDF

Info

Publication number
JP5257670B2
JP5257670B2 JP2008234035A JP2008234035A JP5257670B2 JP 5257670 B2 JP5257670 B2 JP 5257670B2 JP 2008234035 A JP2008234035 A JP 2008234035A JP 2008234035 A JP2008234035 A JP 2008234035A JP 5257670 B2 JP5257670 B2 JP 5257670B2
Authority
JP
Japan
Prior art keywords
alloy
brazing
creep resistance
mass
alloy material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008234035A
Other languages
Japanese (ja)
Other versions
JP2010065291A (en
Inventor
渉一 廣澤
義和 鈴木
昭男 新倉
誠 安藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Furukawa Sky Aluminum Corp
Yokohama National University NUC
Original Assignee
Furukawa Sky Aluminum Corp
Yokohama National University NUC
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Sky Aluminum Corp, Yokohama National University NUC filed Critical Furukawa Sky Aluminum Corp
Priority to JP2008234035A priority Critical patent/JP5257670B2/en
Publication of JP2010065291A publication Critical patent/JP2010065291A/en
Application granted granted Critical
Publication of JP5257670B2 publication Critical patent/JP5257670B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Continuous Casting (AREA)
  • Details Of Heat-Exchange And Heat-Transfer (AREA)

Description

本発明は、耐クリープ性に優れたアルミニウム合金材の製造方法に関し、特に、熱交換器等のろう付け構造体の一部をなす素材として有用な、Al−Mn合金材の製造方法に関する。   The present invention relates to a method for producing an aluminum alloy material excellent in creep resistance, and particularly relates to a method for producing an Al—Mn alloy material useful as a material forming part of a brazing structure such as a heat exchanger.

ろう付け接合で構成される自動車用熱交換器では、Al−Mn合金材から形成された部材が多用されている。近年、自動車の燃費性能向上や環境対応のため、従来のものより高い温度及び圧力の下で使用される熱交換器(高性能インタークーラーやCO冷媒を用いたエアコン等)の開発が進められている。これに対応するため、部材の材料であるAl−Mn合金材にも高温、具体的には150〜270℃での耐クリープ性の向上が求められている。 In heat exchangers for automobiles configured by brazing, members formed from Al-Mn alloy materials are frequently used. In recent years, heat exchangers (high-performance intercoolers, air conditioners using CO 2 refrigerant, etc.) that are used under higher temperature and pressure than conventional ones have been developed in order to improve fuel efficiency and environmental friendliness of automobiles. Yes. In order to cope with this, an improvement in creep resistance at a high temperature, specifically 150 to 270 ° C., is also required for the Al—Mn alloy material which is a member material.

ろう付け接合され使用される熱交換器用Al−Mn合金材について、析出物の制御や合金元素の添加等により高温強度を向上させる技術は、例えば特許文献1,2に提案されている。   For example, Patent Documents 1 and 2 propose techniques for improving high-temperature strength by controlling precipitates, adding alloy elements, and the like for Al—Mn alloy materials for heat exchangers that are brazed and used.

特表2007−530794号公報Special table 2007-530794 gazette 特表2004−524442号公報JP-T-2004-524442

特許文献1,2に開示された技術は、Mg等の合金元素の添加による強化を骨子とするものである。しかしながら、例えばMgの添加は、フラックスを使用した場合のろう付け性を低下させてしまうという問題点がある。また、特許文献1,2には、ろう付け後の使用温度での耐クリープ性を向上させる技術は開示されていない。   The techniques disclosed in Patent Documents 1 and 2 are based on strengthening by adding an alloy element such as Mg. However, for example, the addition of Mg has a problem that the brazing property when using a flux is lowered. Further, Patent Documents 1 and 2 do not disclose a technique for improving the creep resistance at the use temperature after brazing.

本発明は、上記問題点に鑑みてなされたもので、高いろう付け性と、ろう付け後の高温下における高い耐クリープ性が得られるアルミニウム合金材の製造方法を提供することを目的とする。   This invention is made | formed in view of the said problem, and it aims at providing the manufacturing method of the aluminum alloy material from which high brazing property and the high creep resistance under the high temperature after brazing are acquired.

上記目的を達成するため、本発明に係る耐クリープ性に優れたアルミニウム合金材の製造方法は、
Mn:1.0〜1.5質量%、Cu:0.05〜0.2質量%を含有し、不純物としてのSiを0.6質量%未満、Feを0.7質量%未満に規制し、残部がAlと不可避的不純物とからなる合金素材に、最終寸法となるまで冷間加工を施す工程と、
前記冷間加工された前記合金素材に対し560〜620℃の温度で0.5〜2000時間保持する溶体化処理を施す工程と、を備えた、
ことを特徴とする。
In order to achieve the above object, the method for producing an aluminum alloy material excellent in creep resistance according to the present invention,
Containing Mn: 1.0 to 1.5% by mass, Cu: 0.05 to 0.2% by mass, and regulating Si as impurities to less than 0.6% by mass and Fe to less than 0.7% by mass , A process of cold working the alloy material consisting of Al and inevitable impurities to the final dimensions,
Applying a solution treatment for holding the cold worked alloy material at a temperature of 560 to 620 ° C. for 0.5 to 2000 hours,
It is characterized by that.

本発明によれば、熱交換器用の部材として多用されているAl−Mn合金(JIS3003合金)に適切な溶体化処理を施すことにより、Mn及びCuによる固溶強化を増大させるとともに結晶粒を成長させることができるため、高いろう付け性を得ながら耐クリープ性に優れたアルミニウム合金材を提供することができる。   According to the present invention, an appropriate solution treatment is applied to an Al-Mn alloy (JIS3003 alloy) that is frequently used as a member for a heat exchanger, thereby increasing solid solution strengthening by Mn and Cu and growing crystal grains. Therefore, it is possible to provide an aluminum alloy material excellent in creep resistance while obtaining high brazing properties.

以下、本発明の実施形態について具体的に説明する。本発明者らは、MgレスのJIS3003合金が、熱交換器用の部材として多用されていることを重視し、このような一般的なAl−Mn合金の150〜270℃での耐クリープ性を向上するための方法を検討した。そして、本発明者らは、最終板厚まで圧延した後に適切な条件で熱処理することにより、Al−Mn合金板の耐クリープ性の向上が可能なことを見出し、さらにろう付け後の耐クリープ性も改善されることを見出した。   Hereinafter, embodiments of the present invention will be specifically described. The present inventors emphasized that Mg-less JIS3003 alloy is frequently used as a member for heat exchangers, and improved the creep resistance at 150 to 270 ° C. of such a general Al—Mn alloy. The method to do was examined. The present inventors have found that the creep resistance of the Al-Mn alloy sheet can be improved by heat treatment under appropriate conditions after rolling to the final sheet thickness, and further the creep resistance after brazing. Also found to be improved.

以下、本実施形態のアルミニウム合金(以下、Al−Mn合金ともいう)材の製造方法について説明する。なお、以下の説明では、主にAl−Mn合金板の製造方法について説明する。   Hereinafter, the manufacturing method of the aluminum alloy (hereinafter also referred to as Al-Mn alloy) material of the present embodiment will be described. In the following description, a method for manufacturing an Al—Mn alloy plate will be mainly described.

先ず、本実施形態に使用する合金素材を用意する。本発明の対象の合金素材は、Mn:1.0〜1.5質量%、Cu:0.05〜0.2質量%を含有し、不純物としてのSiを0.6質量%未満、Feを0.7質量%未満に規制し、残部がAlと不可避的不純物とからなるAl−Mn合金である。   First, an alloy material used in this embodiment is prepared. The target alloy material of the present invention contains Mn: 1.0 to 1.5% by mass, Cu: 0.05 to 0.2% by mass, Si as an impurity is less than 0.6% by mass, Fe is contained. The Al—Mn alloy is limited to less than 0.7% by mass, and the balance is made of Al and inevitable impurities.

Siを0.6質量%以上含有する場合、又はFeを0.7質量%以上含有する場合には、成形性や耐食性が阻害されるため好ましくない。   When Si is contained in an amount of 0.6% by mass or more, or Fe is contained in an amount of 0.7% by mass or more, formability and corrosion resistance are hindered.

上記Al−Mn合金は、アルミニウム合金に対する不可避的な不純物元素として0.1質量%以下のZnを含有していてもよい。さらに、アルミニウムの鋳造で一般的に用いられる微細化剤由来の成分であるTi:0.01質量%〜0.15質量%を、単独で、又はB(ボロン):0.0001質量%〜0.05質量%とともに含有していてもよい。Ti含有量が0.01質量%未満であり、かつB含有量が0.0001質量%未満である場合には、鋳塊の組織微細化の効果が少なくなる。また、Ti含有量が0.15質量%を超えるとTiAlが晶出し成形性が阻害され、B含有量が0.05質量%を超えるとTiBの粗大粒子が混入し成形性が阻害される。以上の理由により、Ti及びBの含有量は上記範囲内であることが好ましい。 The Al—Mn alloy may contain 0.1% by mass or less of Zn as an inevitable impurity element with respect to the aluminum alloy. Furthermore, Ti: 0.01% by mass to 0.15% by mass, which is a component derived from a finer commonly used in aluminum casting, alone or B (boron): 0.0001% by mass to 0%. .05% by mass may be contained. When the Ti content is less than 0.01% by mass and the B content is less than 0.0001% by mass, the effect of refining the texture of the ingot is reduced. Further, if the Ti content exceeds 0.15% by mass, TiAl 3 crystallizes and formability is inhibited, and if the B content exceeds 0.05% by mass, coarse particles of TiB 2 are mixed and formability is inhibited. The For the above reasons, the Ti and B contents are preferably within the above range.

JIS規格の3003合金が、上記の対象合金範囲に該当する。   JIS standard 3003 alloy corresponds to the above target alloy range.

なお、必須合金成分であるMnは、溶体化処理により、多くが固溶状態となって、クリープに対する抵抗を増大させる効果を持つ。Mnの添加量が1.0〜1.5質量%より少なくなると、耐クリープ性向上の効果が限定されるため好ましくない。また、Mnの添加量が上記の範囲より多くなると、粗大な晶出物が多く形成され、耐クリープ性の向上は飽和するので不適当である。   Note that Mn, which is an essential alloy component, is mostly in a solid solution state by solution treatment, and has an effect of increasing resistance to creep. When the amount of Mn added is less than 1.0 to 1.5% by mass, the effect of improving creep resistance is limited, which is not preferable. On the other hand, if the amount of Mn added is larger than the above range, a large amount of coarse crystallized matter is formed and the improvement in creep resistance is saturated, which is inappropriate.

Cuも耐クリープ性の向上に有効な添加元素である。Cuの添加量が0.05〜0.2質量%より少なくなると、耐クリープ性の向上効果が限定されるため好ましくない。また、Cuの添加量が上記の範囲より多くなると、ろう付け後の150〜270℃での使用時に粒界に析出物が形成され、粒界腐食感受性が高くなるので不適当である。   Cu is also an effective additive element for improving creep resistance. If the amount of Cu added is less than 0.05 to 0.2% by mass, the effect of improving creep resistance is limited, which is not preferable. On the other hand, if the amount of Cu added exceeds the above range, precipitates are formed at the grain boundaries during use at 150 to 270 ° C. after brazing, which is inappropriate because the susceptibility to intergranular corrosion increases.

次に、上記合金素材を最終板厚まで圧延する。圧延は、例えば、DC(Direct Chill)鋳造、均質化処理、熱間圧延及び冷間圧延を用いた公知の方法により行うことができる。これにより、Al−Mn合金板が得られる。冷間圧延においては、中間板厚又は最終板厚での焼鈍を適宜実施してもよい。また、Al−Mn合金板は、最終焼鈍されたO材、又は加工が加えられたH材のいずれでもよい。   Next, the alloy material is rolled to the final thickness. Rolling can be performed by a known method using, for example, DC (Direct Chill) casting, homogenization treatment, hot rolling, and cold rolling. Thereby, an Al-Mn alloy plate is obtained. In cold rolling, annealing at the intermediate plate thickness or the final plate thickness may be appropriately performed. Moreover, the Al-Mn alloy plate may be either an O material that has been finally annealed or an H material that has been processed.

次に、Al−Mn合金板に対して、以下の条件で溶体化処理を施す。具体的には、560〜620℃で0.5〜2000時間保持し、その後100℃までの平均冷却速度が1℃/s以上となるように急冷する。これより遅い冷却速度であると、冷却中にMnを含む金属間化合物の析出が起こり、耐クリープ性に寄与する固溶Mnが減少するため不適当である。   Next, a solution treatment is performed on the Al—Mn alloy plate under the following conditions. Specifically, it is held at 560 to 620 ° C. for 0.5 to 2000 hours, and then rapidly cooled so that the average cooling rate up to 100 ° C. is 1 ° C./s or more. If the cooling rate is lower than this, precipitation of an intermetallic compound containing Mn occurs during cooling, and the solid solution Mn contributing to creep resistance is reduced, which is inappropriate.

ここで、溶体化処理温度及び保持時間を上記範囲内とした理由を以下に示す。   Here, the reason why the solution treatment temperature and the holding time are within the above ranges will be described below.

溶体化処理温度が560℃より低いと、合金元素成分の固溶が不十分になるため不適当である。また、溶体化処理温度が620℃より高い温度でも、効果の改善は飽和し、局部溶融等の弊害が起こる可能性があるので不適当である。   When the solution treatment temperature is lower than 560 ° C., the solid solution of the alloy element components becomes insufficient, which is inappropriate. Further, even when the solution treatment temperature is higher than 620 ° C., the improvement in the effect is saturated, and there is a possibility that harmful effects such as local melting may occur.

保持時間を0.5時間未満とすると、溶体化効果及び結晶粒成長が不足するため不適当である。また、2000時間を超える保持時間で溶体化処理をしても特段の性能向上に結びつかない。従って、保持時間は0.5〜2000時間とすることが適当である。特に、保持時間を15時間以上とすると、後述するように耐クリープ性の向上が大きいため、特に望ましい。   If the holding time is less than 0.5 hours, the solution effect and crystal grain growth are insufficient, which is inappropriate. Moreover, even if the solution treatment is performed for a holding time exceeding 2000 hours, it does not lead to a special performance improvement. Accordingly, the holding time is suitably 0.5 to 2000 hours. In particular, a holding time of 15 hours or longer is particularly desirable because the creep resistance is greatly improved as will be described later.

なお、溶体化処理は、大気雰囲気炉、非酸化性ガス雰囲気炉又は塩浴炉等の炉を適宜選択して実施することができる。また、冷却方法は、空冷又は水焼入れ等の方法を適宜選択することができる。さらに、溶体化処理の前又は後に、板のプレス成形やロール成形等の加工を行っても差し支えない。   The solution treatment can be performed by appropriately selecting a furnace such as an air atmosphere furnace, a non-oxidizing gas atmosphere furnace, or a salt bath furnace. In addition, as a cooling method, a method such as air cooling or water quenching can be appropriately selected. Further, before or after the solution treatment, it is possible to perform processing such as press molding or roll molding of the plate.

上記方法で製造されたAl−Mn合金板は、最も多い使用形態として、熱交換器等の構造体を形成するために、他の部材と組み合わせてろう付け接合される。このような使用形態では、少なくとも接合しうる部位にはAl−Si系合金からなるろう材が配置される。ここで、相手材については、Al−Si系合金を皮材とするブレージングシートとすることが生産効率上好ましい。   The Al—Mn alloy plate manufactured by the above method is brazed and bonded in combination with other members to form a structure such as a heat exchanger as the most used form. In such a usage pattern, a brazing material made of an Al—Si based alloy is disposed at least at a portion that can be joined. Here, it is preferable in terms of production efficiency that the mating material is a brazing sheet having an Al—Si alloy as a skin material.

ろう付け方法は、フッ化物系などの非腐食性フラックスを用いて炉中でろう付けを行う、所謂ノコロック法が好適であるが、これに限定されるものではない。ろう付け加熱温度は590〜610℃の範囲が好適であり、この温度範囲内で1〜30分間保持されることで接合される。ろう付け加熱の冷却は1℃/s以上の速度で行うことが望ましい。   As the brazing method, a so-called nocolok method in which brazing is performed in a furnace using a non-corrosive flux such as a fluoride type is preferable, but the brazing method is not limited thereto. The brazing heating temperature is preferably in the range of 590 to 610 ° C., and the brazing is carried out by being held within this temperature range for 1 to 30 minutes. It is desirable to perform brazing heating cooling at a rate of 1 ° C./s or more.

上述した本実施形態の製造方法によれば、適切な溶体化処理を施すことで、Mn及びCuによる固溶強化の効果が増大する。これにより、Al−Mn合金板の耐クリープ性を向上させることができる。また、本実施形態の溶体化処理時に結晶粒が成長することも耐クリープ性の向上に寄与する。なお、Al−Mn合金板をろう付けする場合には590℃〜610℃での短時間の加熱が行われるが、事前の溶体化処理を行うことにより、十分に有効元素を固溶させることが可能となる。また、本実施形態の製造方法は、Mg等のろう付け性を低下させる合金元素を添加していないため、フラックスを使用した場合にも良好なろう付け性が得られる。   According to the manufacturing method of this embodiment mentioned above, the effect of the solid solution strengthening by Mn and Cu increases by performing an appropriate solution treatment. Thereby, the creep resistance of the Al—Mn alloy plate can be improved. Further, the growth of crystal grains during the solution treatment of the present embodiment also contributes to the improvement of creep resistance. In addition, when brazing an Al-Mn alloy plate, heating for a short time at 590 ° C. to 610 ° C. is performed. However, the effective element can be sufficiently dissolved by performing a prior solution treatment. It becomes possible. Moreover, since the manufacturing method of this embodiment does not add the alloy element which reduces brazing properties, such as Mg, favorable brazing property is obtained also when a flux is used.

なお、上述の実施形態ではAl−Mn合金板の製造方法について説明した。しかし、本発明に係るアルミニウム材の製造方法は、板材のみならず、棒材、線材、管材等、用途に応じ様々な形状のAl−Mn合金材に使用することとしてもよい。これらの場合、最終寸法までの冷間加工は、圧延以外にも押出し、引抜き等、Al−Mn合金材の形状に応じた種々の方法を使用することができる。   In the above-described embodiment, the method for manufacturing the Al—Mn alloy plate has been described. However, the method for producing an aluminum material according to the present invention may be used not only for a plate material but also for an Al—Mn alloy material having various shapes such as a bar material, a wire material, and a pipe material depending on applications. In these cases, various methods according to the shape of the Al—Mn alloy material, such as extrusion and drawing, can be used for cold working up to the final dimension, in addition to rolling.

以下、本発明の効果について、その特許請求の範囲から外れる比較例と比較して具体的に説明する。   Hereinafter, the effect of the present invention will be specifically described in comparison with a comparative example that is out of the scope of the claims.

先ず、表1に示す組成のAl−Mn合金を通常のDC鋳造で鋳塊とし、均質化処理後に熱間圧延して厚さ5mmの熱間圧延板とした。続いて、この熱間圧延板を、さらに冷間圧延で板厚2mmとし、最終焼鈍で再結晶させてO材のAl−Mn合金板とした。   First, an Al—Mn alloy having the composition shown in Table 1 was made into an ingot by ordinary DC casting, and hot-rolled after homogenization to give a hot-rolled plate having a thickness of 5 mm. Subsequently, the hot-rolled sheet was further cold-rolled to a thickness of 2 mm, and recrystallized by final annealing to obtain an O-material Al-Mn alloy sheet.

Figure 0005257670
Figure 0005257670

次に、上記のAl−Mn合金板(O材)を、表2に示すように600℃で保持時間を変えて溶体化処理した。この際の冷却は水焼入れとしたが、冷却速度は500℃/s以上であった。   Next, as shown in Table 2, the Al—Mn alloy plate (O material) was subjected to a solution treatment at 600 ° C. while changing the holding time. The cooling at this time was water quenching, but the cooling rate was 500 ° C./s or more.

Figure 0005257670
Figure 0005257670

このようにして作製した試験片について、耐クリープ性をシングル型クリープラプチャー試験装置によって評価した。試験片は平行部5mmで評点間30mmのものを用い、試験条件は250℃、負荷応力は45MPaとした。   The test piece thus produced was evaluated for creep resistance using a single type creep rupture test apparatus. A test piece having a parallel part of 5 mm and a score of 30 mm was used, the test conditions were 250 ° C., and the load stress was 45 MPa.

本発明の規定範囲内で処理された実施例1〜6と、比較例1〜4とについての上記試験結果を表3に示す。実施例1〜4と比較例1,2とは、ともにろう付け加熱がなされていない例である。表3に示すように、実施例1〜4の場合に、最小歪速度が小さくなるとともに破断時間が長くなった。即ち、実施例1〜4の場合に耐クリープ性が改善されたことを示す結果が得られた。その中でも、溶体化処理の保持時間が15時間以上である実施例1,2では、特に最小歪速度が10−6/sのオーダーと小さくなり破断時間が長くなることから、特筆すべき耐クリープ性の向上が実現されている。これに対し、溶体化処理保持時間の短い比較例1、及び、溶体化処理しなかった比較例2では、最小歪速度が大きく破断時間が短い。即ち、比較例1,2では耐クリープ性が不十分である。 Table 3 shows the test results for Examples 1 to 6 and Comparative Examples 1 to 4 processed within the specified range of the present invention. Examples 1 to 4 and Comparative Examples 1 and 2 are examples in which brazing heating is not performed. As shown in Table 3, in Examples 1 to 4, the minimum strain rate was reduced and the break time was increased. That is, the results showing that the creep resistance was improved in the case of Examples 1 to 4 were obtained. Among them, in Examples 1 and 2 in which the retention time of the solution treatment is 15 hours or more, the minimum strain rate is particularly small on the order of 10 −6 / s and the breaking time becomes long. The improvement of performance is realized. On the other hand, in Comparative Example 1 in which the solution treatment holding time is short and in Comparative Example 2 in which the solution treatment is not performed, the minimum strain rate is large and the breaking time is short. That is, in Comparative Examples 1 and 2, the creep resistance is insufficient.

Figure 0005257670
Figure 0005257670

また、一部の溶体化処理条件で、本発明の処理を施したAl−Mn合金板と本発明の範囲から外れるAl−Mn合金板とに、それぞれろう付け加熱を行った上で試験片を作製した。その作製方法を以下に示す。   Further, under some solution treatment conditions, the specimens were subjected to brazing heating on the Al-Mn alloy sheet treated according to the present invention and the Al-Mn alloy sheet outside the scope of the present invention. Produced. The manufacturing method is shown below.

先ず、図1に示すように、Al−Mn合金板11の長手方向の両端部にブレージングシート12をろう付けしてろう付け構造体10を形成した。ブレージングシート12は、Al−Siろう材を外皮とするクラッド材である。Al−Mn合金板11とブレージングシート12との接合部は、公知の方法でフッ化物系のフラックスを塗布し、600℃で3分間保持する条件で窒素中ろう付けした。このろう付け温度保持後の冷却は、約1.8℃/s程度の速度であった。その後、Al−Mn合金板11から試験片を採取した。   First, as shown in FIG. 1, a brazing structure 12 was formed by brazing a brazing sheet 12 to both ends in the longitudinal direction of an Al—Mn alloy plate 11. The brazing sheet 12 is a clad material whose outer skin is an Al—Si brazing material. The joining part of the Al-Mn alloy plate 11 and the brazing sheet 12 was brazed in nitrogen under the condition that a fluoride-based flux was applied by a known method and kept at 600 ° C for 3 minutes. The cooling after maintaining the brazing temperature was about 1.8 ° C./s. Thereafter, a test piece was collected from the Al—Mn alloy plate 11.

このように作製されたろう付け加熱後の試験片に対して、上述した試験条件と同様のクリープラプチャー試験を実施した。表3に示すように、溶体化が短時間か溶体化処理なしでろう付け加熱された比較例3,4に対して、本発明の実施例5,6はろう付け後でも250℃での耐クリープ性が良好であるという結果が得られた。また、ろう付け加熱された試験片の場合でも、溶体化処理の保持時間が15h以上である実施例5で特に耐クリープ性が良好であった。なお、ろう付け性は本発明の実施例5,6ともに良好であった。   A creep rupture test similar to the test conditions described above was performed on the test piece after brazing and heating thus produced. As shown in Table 3, Examples 5 and 6 of the present invention are resistant to 250 ° C. even after brazing, compared to Comparative Examples 3 and 4 where brazing is performed for a short time or without solution treatment. The result that the creep property was good was obtained. Moreover, even in the case of the test piece heated by brazing, the creep resistance was particularly good in Example 5 in which the retention time of the solution treatment was 15 hours or longer. The brazing properties were good in both Examples 5 and 6.

本発明の実施例におけるろう付け構造体を示す斜視図である。It is a perspective view which shows the brazing structure in the Example of this invention.

符号の説明Explanation of symbols

10 ろう付け構造体
11 Al−Mn合金板
12 ブレージングシート
10 Brazed structure 11 Al-Mn alloy plate 12 Brazing sheet

Claims (1)

Mn:1.0〜1.5質量%、Cu:0.05〜0.2質量%を含有し、不純物としてのSiを0.6質量%未満、Feを0.7質量%未満に規制し、残部がAlと不可避的不純物とからなる合金素材に、最終寸法となるまで冷間加工を施す工程と、
前記冷間加工された前記合金素材に対し560〜620℃の温度で0.5〜2000時間保持する溶体化処理を施す工程と、を備えた、
ことを特徴とする耐クリープ性に優れたアルミニウム合金材の製造方法。
Containing Mn: 1.0 to 1.5% by mass, Cu: 0.05 to 0.2% by mass, and regulating Si as impurities to less than 0.6% by mass and Fe to less than 0.7% by mass , A process of cold working the alloy material consisting of Al and inevitable impurities to the final dimensions,
Applying a solution treatment for holding the cold worked alloy material at a temperature of 560 to 620 ° C. for 0.5 to 2000 hours,
A method for producing an aluminum alloy material having excellent creep resistance.
JP2008234035A 2008-09-11 2008-09-11 Method for producing aluminum alloy material excellent in creep resistance Expired - Fee Related JP5257670B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008234035A JP5257670B2 (en) 2008-09-11 2008-09-11 Method for producing aluminum alloy material excellent in creep resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008234035A JP5257670B2 (en) 2008-09-11 2008-09-11 Method for producing aluminum alloy material excellent in creep resistance

Publications (2)

Publication Number Publication Date
JP2010065291A JP2010065291A (en) 2010-03-25
JP5257670B2 true JP5257670B2 (en) 2013-08-07

Family

ID=42191122

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008234035A Expired - Fee Related JP5257670B2 (en) 2008-09-11 2008-09-11 Method for producing aluminum alloy material excellent in creep resistance

Country Status (1)

Country Link
JP (1) JP5257670B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619970A (en) * 2017-10-26 2018-01-23 江苏亚太安信达铝业有限公司 Aluminium alloy for domestic air conditioning composite pipe and preparation method thereof

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2754673C2 (en) * 1977-12-08 1980-07-03 Metallgesellschaft Ag, 6000 Frankfurt Process for the production of semi-finished products from an Al-Mn alloy with improved strength properties
JPH01111897A (en) * 1987-10-24 1989-04-28 Nippon Light Metal Co Ltd Production of aluminum alloy sheet for forming light-reddish beige colored anodic oxide film
JP2000119784A (en) * 1998-10-08 2000-04-25 Sumitomo Light Metal Ind Ltd Aluminum alloy material excellent in high temperature creep characteristic and its production
JP4244252B2 (en) * 1999-02-22 2009-03-25 古河スカイ株式会社 A method for producing an aluminum alloy case material for a sealed prismatic battery excellent in formability and creep resistance, a sealed prismatic battery case and a sealed prismatic battery.
JP3843368B2 (en) * 2000-10-23 2006-11-08 古河スカイ株式会社 Aluminum alloy plate for battery case with excellent resistance to high temperature blistering and method for producing the same
JP5054364B2 (en) * 2006-12-08 2012-10-24 株式会社神戸製鋼所 Method for producing aluminum alloy plate

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107619970A (en) * 2017-10-26 2018-01-23 江苏亚太安信达铝业有限公司 Aluminium alloy for domestic air conditioning composite pipe and preparation method thereof

Also Published As

Publication number Publication date
JP2010065291A (en) 2010-03-25

Similar Documents

Publication Publication Date Title
US9797029B2 (en) Heat resistant titanium alloy sheet excellent in cold workability and a method of production of the same
JP6458003B2 (en) Aluminum alloy material suitable for manufacturing automobile body panel and method for producing the same
JP4166613B2 (en) Aluminum alloy fin material for heat exchanger and heat exchanger formed by assembling the fin material
JP4084733B2 (en) High strength low specific gravity steel plate excellent in ductility and method for producing the same
JP5339560B1 (en) Aluminum alloy brazing sheet and method for producing the same
JP5214899B2 (en) High corrosion resistance aluminum alloy composite for heat exchanger and method for producing the same
WO2005118898A1 (en) Titanium alloy and method of manufacturing titanium alloy material
JP6934368B2 (en) Brazing sheet for heat exchanger fins and its manufacturing method
JP2012149313A (en) Aluminum alloy having excellent extrudability and intergranular corrosion resistance for finely hollow shape, and process for producing the same
JP2009079271A (en) Ca-CONTAINING Mg ALLOY ROLLED MATERIAL
JP2007070672A (en) Method for producing aluminum alloy thick plate having excellent fatigue property
JP5952995B2 (en) Aluminum alloy fin material for heat exchanger
JP5545798B2 (en) Method for producing aluminum alloy fin material for heat exchanger
JP5743642B2 (en) Aluminum alloy brazing sheet
JP5257670B2 (en) Method for producing aluminum alloy material excellent in creep resistance
JP2004027253A (en) Aluminum alloy sheet for molding, and method of producing the same
JP2004176091A (en) High strength aluminum alloy fin material for automotive heat exchanger having excellent rollability, and its manufacturing method
JP4257185B2 (en) Aluminum alloy plate for forming and method for producing the same
JP2009293059A (en) High strength aluminum alloy fin material having excellent erosion resistance, method for producing the same, and automobile heat exchanger
JP4304425B2 (en) Cold rolled titanium alloy sheet and method for producing cold rolled titanium alloy sheet
JP4326907B2 (en) Manufacturing method of brazing sheet
JP4352457B2 (en) Method for producing brazing sheet excellent in strength and wax erosion resistance
JP3735700B2 (en) Aluminum alloy fin material for heat exchanger and method for producing the same
JPH058087A (en) Production of high-strength aluminum brazing sheet
JP4326906B2 (en) Manufacturing method of brazing sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111227

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120106

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130311

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130410

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5257670

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

LAPS Cancellation because of no payment of annual fees