JP5257379B2 - Heat-resistant phenolic resin composition, heat-resistant pad using the same, and method for producing heat-resistant pad - Google Patents

Heat-resistant phenolic resin composition, heat-resistant pad using the same, and method for producing heat-resistant pad Download PDF

Info

Publication number
JP5257379B2
JP5257379B2 JP2010046735A JP2010046735A JP5257379B2 JP 5257379 B2 JP5257379 B2 JP 5257379B2 JP 2010046735 A JP2010046735 A JP 2010046735A JP 2010046735 A JP2010046735 A JP 2010046735A JP 5257379 B2 JP5257379 B2 JP 5257379B2
Authority
JP
Japan
Prior art keywords
heat
resistant
phenol resin
base material
pad
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010046735A
Other languages
Japanese (ja)
Other versions
JP2011178952A (en
Inventor
松本  剛
勝彦 奥村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Starlite Co Ltd
Original Assignee
Starlite Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Starlite Co Ltd filed Critical Starlite Co Ltd
Priority to JP2010046735A priority Critical patent/JP5257379B2/en
Publication of JP2011178952A publication Critical patent/JP2011178952A/en
Application granted granted Critical
Publication of JP5257379B2 publication Critical patent/JP5257379B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Surface Treatment Of Glass Fibres Or Filaments (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Treatments For Attaching Organic Compounds To Fibrous Goods (AREA)
  • Winding, Rewinding, Material Storage Devices (AREA)
  • Reinforced Plastic Materials (AREA)

Description

本発明は、高温状態の金属製品の接触に耐える耐熱性フェノール樹脂組成物及びそれを用いた耐熱性パッド並びに耐熱性パッドの製造方法に関するものである。   The present invention relates to a heat-resistant phenol resin composition that can withstand contact with a metal product in a high-temperature state, a heat-resistant pad using the same, and a method for producing the heat-resistant pad.

鉄鋼製品の製造工程において、鋼線や鋼板の二次加工・処理を行う工場ラインでは各種の耐熱性材料が使用されている。熱間・冷間圧延、焼鈍処理後の鋼線や鋼板はコイル状に巻き取られて取り扱われるが、この高温状態の鋼材コイルを搬送、保持する時に疵を防止する目的で使用する置き台には、耐熱性の接触部材が用いられている。   In the manufacturing process of steel products, various heat-resistant materials are used in factory lines that perform secondary processing and processing of steel wires and steel sheets. Steel wires and steel sheets after hot / cold rolling and annealing treatment are wound in a coil shape and handled, but they are used as a pedestal for the purpose of preventing wrinkles when transporting and holding steel coils in this high temperature state. Uses a heat-resistant contact member.

低温工程ではPE/PP複合材や木材が当接部材として使用されている。これらは、接触対象とする鋼材コイルよりも硬度が低いので、線材に疵を付けることはない。しかし、高温工程ではPE/PP複合材や木材では耐熱性が持たないので、使用することができない。そこで、カーボン繊維で補強した耐熱ゴム材等を置き台に使用することも考慮されるが、満足できる結果は得られてない。そのため、このような用途での接触部材には、主に金属部材が用いられている。しかし、金属部材と高温の鋼材コイルが接触する部分に疵が付くことは避けられないのである。しばしば、短時間のみ高温の鋼材コイルを接触させる場合には、耐熱性と耐久性を犠牲にして木材を用いて疵が付くことを防止することもある。   In the low temperature process, PE / PP composite material or wood is used as the contact member. Since these have lower hardness than the steel coil to be contacted, they do not wrinkle the wire. However, PE / PP composite materials and wood cannot be used in high temperature processes because they do not have heat resistance. Therefore, it is considered to use a heat-resistant rubber material reinforced with carbon fiber for the table, but satisfactory results have not been obtained. Therefore, a metal member is mainly used as the contact member in such an application. However, it is unavoidable that the metal member and the hot steel coil are in contact with each other. Often, when high temperature steel coils are contacted for only a short time, wood may be used to prevent wrinkling at the expense of heat resistance and durability.

特許文献1には、熱間圧延後の巻き取りコイル等の鋼材コイルを支持する円筒体支持部の耐熱性や耐摩耗性を有する材料として、グラファイト等の耐熱性を有し、鋼材コイルよりも軟らかい材料を用いることで鋼材コイルに支持部の跡が付くのを防止することが開示されている。しかし、グラファイトを用いると一般的に大幅なコスト高となる。   In Patent Document 1, as a material having heat resistance and wear resistance of a cylindrical body support portion that supports a steel coil such as a winding coil after hot rolling, the material has heat resistance such as graphite, and more than a steel coil. It is disclosed that the use of a soft material prevents the steel coil from being marked with a support portion. However, the use of graphite generally increases the cost significantly.

一方、従来から高強度の繊維クロスとフェノール樹脂からなる積層成形品は提供されている。フェノール樹脂は、比較的耐熱性の高い熱硬化性樹脂であるので、高温の環境下で使用に耐えることができる。特許文献2には、ガラス繊維、アラミド繊維及びポリノジック繊維を混紡した混紡糸を用いて製織した基材に混紡織物を基材とし、これにフェノール樹脂のようなマトリックスとなる熱硬化性樹脂を含浸した含浸シート(プリプレグ)を積層し、加熱加圧成形して樹脂積層板を製造し、この樹脂積層板を連続熱間鋼板圧延設備における仕上圧延機から巻取機にいたるホットランテーブル用ガイド板として用いることが開示されている。   On the other hand, conventionally, a laminated molded article made of a high-strength fiber cloth and a phenol resin has been provided. Since the phenol resin is a thermosetting resin having relatively high heat resistance, it can be used in a high temperature environment. In Patent Document 2, a base material woven using a spun yarn obtained by blending glass fiber, aramid fiber and polynosic fiber is used as a base material, and this is impregnated with a thermosetting resin as a matrix such as a phenol resin. The resin impregnated sheet (prepreg) is laminated and heated and pressed to produce a resin laminate, and this resin laminate is used as a guide plate for a hot run table from a finish rolling mill to a winder in a continuous hot steel rolling mill. It is disclosed to use.

しかし、特許文献2に記載の樹脂積層板は、温度の高い鋼板が接触するものであるが、鋼板が常時接触する用途に用いられるのではなく、短時間の接触に耐える程度の耐熱性を備えているに過ぎない。つまり、400℃程度の高温状態にあり、しかも数トンもある鋼材コイルを載置し、長時間保持する用途には耐えられないのである。   However, although the resin laminated plate described in Patent Document 2 is a plate in contact with a high-temperature steel plate, it is not used for an application in which the steel plate is always in contact, but has heat resistance enough to withstand short-time contact. It ’s just that. That is, it cannot withstand the use in which a steel coil having a temperature of about 400 ° C. and several tons is placed and held for a long time.

特開2005−219076号公報Japanese Patent Laying-Open No. 2005-219076 特開2005−296965号公報JP 2005-296965 A

このように、熱間・冷間圧延工程、焼鈍工程で鋼材コイルを搬送、保管する時に、金属製の置き台に接触することでコイルに疵が発生する。低温工程では、PE/PP複合材や木材を接触箇所に設置することで対応可能であるが、約400℃の工程では安全に使用できる材料がなく、鋼材コイルの防疵対策ができてないのが現状である。   In this way, when the steel coil is transported and stored in the hot / cold rolling process and the annealing process, wrinkles are generated in the coil by contacting the metal stand. In low-temperature processes, PE / PP composite materials and wood can be installed at the contact points. However, there is no material that can be safely used in the process at about 400 ° C, and it is not possible to take measures to protect steel coils. Is the current situation.

そこで、本発明が前述の状況に鑑み、解決しようとするところは、約400℃の工程においても鋼材コイルを接触状態で搬送、保管することが可能な耐熱性と強度を備え、しかもコストの上昇を最小限に抑制することが可能な耐熱性フェノール樹脂組成物を提供し、また耐熱性フェノール樹脂組成物を用いた耐熱性パッド並びに耐熱性パッドの製造方法を提供する点にある。   Therefore, in view of the above-described situation, the present invention intends to solve the problem that the steel coil has heat resistance and strength capable of transporting and storing the steel coil in a contact state even at a process of about 400 ° C., and the cost is increased. It is in providing a heat resistant pad using the heat resistant phenol resin composition and a method for producing the heat resistant pad.

本発明は、前述の課題解決のために、ロックウールとポリパラフェニレンベンゾビスオキサゾール(PBO)繊維からなる耐熱基材にフェノール樹脂を含浸させ、加圧熱硬化させたことを特徴とする耐熱性フェノール樹脂組成物を構成した(請求項1)。   In order to solve the above-mentioned problems, the present invention is characterized in that a heat-resistant substrate made of rock wool and polyparaphenylene benzobisoxazole (PBO) fibers is impregnated with a phenol resin, and is heat-pressed and cured. A phenol resin composition was constituted (claim 1).

そして、前記耐熱基材は、ロックウールが40〜95wt%、PBO繊維が5〜60wt%であることが好ましい(請求項2)。   And as for the said heat-resistant base material, it is preferable that rock wool is 40-95 wt% and PBO fiber is 5-60 wt% (Claim 2).

更に、前記耐熱基材が50〜80wt%、フェノール樹脂が20〜50wt%であり(請求項3)、更に好ましくは前記耐熱基材が70〜75wt%、フェノール樹脂が25〜30wt%である(請求項4)。   Further, the heat-resistant substrate is 50 to 80 wt% and the phenol resin is 20 to 50 wt% (Claim 3), more preferably the heat-resistant substrate is 70 to 75 wt% and the phenol resin is 25 to 30 wt% ( Claim 4).

そして、本発明は、前述の耐熱性フェノール樹脂組成物からなる耐熱層と、ガラス繊維クロスにフェノール樹脂を含浸させた積層成形品からなるベース材とを積層したことを特徴とする耐熱性パッドを構成した(請求項5)。   And, the present invention provides a heat-resistant pad comprising a heat-resistant layer made of the above-mentioned heat-resistant phenol resin composition and a base material made of a laminated molded product obtained by impregnating a glass fiber cloth with a phenol resin. (Claim 5).

また、本発明は、ロックウールとポリパラフェニレンベンゾビスオキサゾール(PBO)繊維からなる耐熱基材にフェノール樹脂を含浸させた耐熱層材料と、ガラス繊維クロスにフェノール樹脂を含浸させたシート材を複数枚重ね合わせたベース材材料とを積層し、加圧、加熱処理して、ベース材の表面に耐熱層が一体化した耐熱性パッドを成形することを特徴とする耐熱性パッドの製造方法を提供する(請求項6)。   The present invention also includes a heat-resistant layer material obtained by impregnating a phenol resin with a heat-resistant substrate made of rock wool and polyparaphenylene benzobisoxazole (PBO) fibers, and a plurality of sheet materials obtained by impregnating a glass fiber cloth with a phenol resin. A method for producing a heat-resistant pad is provided, in which a heat-resistant pad is formed by laminating a laminated base material and pressurizing and heat-treating the heat-resistant layer on the surface of the base material. (Claim 6).

ここで、耐熱性パッドの製造方法において、耐熱層に関して採用される特徴的技術は、前述の耐熱性フェノール樹脂組成物と同じである。   Here, in the manufacturing method of a heat resistant pad, the characteristic technique employ | adopted regarding a heat resistant layer is the same as the above-mentioned heat resistant phenol resin composition.

本発明の耐熱性フェノール樹脂組成物及びそれを用いた耐熱性パッドによれば、400℃の金属製品の接触温度にも耐えることができ、また金属製品の表面に疵が付くことを防止できる。また、本発明の耐熱性パッドは、ベース材によって基本的な機械的強度と板厚を確保し、耐熱層で高い耐熱性を持たせているので、両者の特徴を同時に備えた従来にない優れた耐熱性パッドとなる。それにより、本発明の耐熱性パッドを、熱間・冷間圧延工程、焼鈍工程で鋼材コイルを搬送、保管する時の置き台の接触部材として用いることにより、鋼材コイルに疵が付くことを防止でき、従来のように疵付いた鋼材コイルを選別する作業が不要になって、作業効率及び歩留まりも大きく改善することができる。   According to the heat-resistant phenol resin composition of the present invention and the heat-resistant pad using the same, it can withstand the contact temperature of a metal product at 400 ° C. and can prevent the surface of the metal product from being wrinkled. In addition, the heat-resistant pad of the present invention ensures basic mechanical strength and thickness by the base material, and has a high heat resistance in the heat-resistant layer, so it has an unprecedented superiority with both features at the same time. Heat resistant pad. This prevents the steel coil from being wrinkled by using the heat-resistant pad of the present invention as a contact member for the table when the steel coil is transported and stored in the hot / cold rolling process and annealing process. This eliminates the need for selecting a steel coil with a pinch as in the prior art, and can greatly improve work efficiency and yield.

また、耐熱性パッドの製造方法によれば、ロックウールとPBO繊維からなる耐熱基材にフェノール樹脂を含浸させた耐熱層材料と、ガラス繊維クロスにフェノール樹脂を含浸させたシート材を複数枚重ね合わせたベース材材料とを積層し、加圧、加熱処理して、ベース材の表面に耐熱層が一体化した耐熱性パッドを成形するので、耐熱層とベース材の界面が連続して強固に一体化するので、熱履歴を受けても界面から剥離することがないのである。   In addition, according to the heat-resistant pad manufacturing method, a heat-resistant layer material obtained by impregnating a phenol resin with a heat-resistant substrate made of rock wool and PBO fibers and a plurality of sheet materials obtained by impregnating a glass fiber cloth with a phenol resin are stacked. Laminated base materials are laminated, pressed and heated to form a heat-resistant pad with a heat-resistant layer integrated on the surface of the base material, so that the interface between the heat-resistant layer and the base material is continuously strong. Since they are integrated, they do not peel off from the interface even if they are subjected to a thermal history.

本発明に係る耐熱性パッドの断面図である。It is sectional drawing of the heat resistant pad which concerns on this invention. 耐熱性パッドの高温物接触試験の配置図を示す斜視図である。It is a perspective view which shows the layout of the high temperature thing contact test of a heat resistant pad. 410℃に加熱した接触治具を耐熱性パッドに接触させた後の接触治具、A部温度、B部温度の変化を示すグラフである。It is a graph which shows the contact jig after making the contact jig heated to 410 degreeC contact a heat resistant pad, A part temperature, and B part temperature. 異なる初期温度の接触治具を耐熱性パッドに接触させた後のA部温度の変化を示すグラフである。It is a graph which shows the change of the A section temperature after making the contact jig of different initial temperature contact a heat resistant pad. 本発明の耐熱性パッドを接触部分に装着したコイルスキッドの実施形態を示す斜視図である。It is a perspective view which shows embodiment of the coil skid which attached the heat resistant pad of this invention to the contact part. 同じくコイルスキッドにスチール線材コイルを載置した使用状態の斜視図である。It is the perspective view of the use condition which similarly mounted the steel wire rod coil on the coil skid. 本発明の耐熱性パッドを接触部分に装着したコイルスキッドに鋼板コイルを載置した使用状態を示し、(a)は正面図、(b)は斜視図である。The use state which mounted the steel plate coil in the coil skid which attached the heat resistant pad of this invention to the contact part is shown, (a) is a front view, (b) is a perspective view.

次に、本発明の耐熱性フェノール樹脂組成物の実施形態を詳しく説明する。本発明の耐熱性フェノール樹脂組成物は、ロックウールとポリパラフェニレンベンゾビスオキサゾール(PBO)繊維からなる耐熱基材にフェノール樹脂を含浸させ、加圧熱硬化させたことを特徴としている。   Next, an embodiment of the heat-resistant phenol resin composition of the present invention will be described in detail. The heat-resistant phenol resin composition of the present invention is characterized in that a heat-resistant base material composed of rock wool and polyparaphenylene benzobisoxazole (PBO) fibers is impregnated with a phenol resin and subjected to pressure thermosetting.

本発明で使用するロックウールは、マグアルティマ繊維(株式会社マグ製)である。マグアルティマ繊維は、天然鉱石を高温で融解し、遠心法で製造された短繊維である。耐熱性(JIS R3450に準拠)は、800℃×30分の強熱減量率は0.5%であり、溶融温度は1000℃である。繊維径は4〜8μm、アスベスト成分は0%であり、発がん性がなく、EU指令に適合している。   The rock wool used in the present invention is Magaltima fiber (manufactured by Mag Co., Ltd.). Magaltima fiber is a short fiber produced by centrifuging natural ore at a high temperature and centrifuging. As for heat resistance (according to JIS R3450), the ignition loss rate of 800 ° C. × 30 minutes is 0.5%, and the melting temperature is 1000 ° C. The fiber diameter is 4-8 μm, the asbestos component is 0%, there is no carcinogenicity, and it conforms to the EU directive.

本発明で使用するポリパラフェニレンベンゾビスオキサゾール(PBO)繊維は、ザイロン(東洋紡績株式会社の登録商標)である。ザイロンは、剛直で極めて直線性の高い分子構造を持つPBO繊維を結晶紡糸した繊維である。ザイロンは、カーボン繊維を上回る高強度・高弾性率を有し、有機繊維の中で最高の耐熱性・難燃性を備えた繊維であり、分解温度は650℃である。   The polyparaphenylene benzobisoxazole (PBO) fiber used in the present invention is Zylon (registered trademark of Toyobo Co., Ltd.). Zylon is a fiber obtained by crystal spinning a PBO fiber having a rigid and extremely linear molecular structure. Zylon is a fiber that has higher strength and higher elastic modulus than carbon fibers and has the highest heat resistance and flame retardancy among organic fibers, and has a decomposition temperature of 650 ° C.

具体的には、前記耐熱基材は、ロックウール(マグアルティマ繊維)が40〜95wt%、PBO繊維(ザイロン)が5〜60wt%の範囲で作製し、PBO繊維の割合を可及的に少なく設定する。ロックウールの割合を増やすと、当然耐熱性には有利である。   Specifically, the heat-resistant base material is produced in the range of 40 to 95 wt% of rock wool (Magnaltima fiber) and 5 to 60 wt% of PBO fiber (Zylon), and the proportion of PBO fiber is as small as possible. Set. Increasing the proportion of rock wool is naturally advantageous for heat resistance.

また、本発明の耐熱性フェノール樹脂組成物は、前記耐熱基材にフェノール樹脂を含浸、乾燥させたプリプレグシートを用意し、それを熱間プレス成形して所定の厚さの耐熱材とするのである。ここで、前記耐熱基材が50〜80wt%、フェノール樹脂が20〜50wt%であり、更に好ましくは前記耐熱基材が70〜75wt%、フェノール樹脂が25〜30wt%である。   The heat-resistant phenolic resin composition of the present invention is prepared by preparing a prepreg sheet obtained by impregnating and drying the phenolic resin on the heat-resistant base material and hot pressing it to obtain a heat-resistant material having a predetermined thickness. is there. Here, the heat resistant substrate is 50 to 80 wt%, the phenol resin is 20 to 50 wt%, and more preferably, the heat resistant substrate is 70 to 75 wt% and the phenol resin is 25 to 30 wt%.

具体的には、耐熱基材に、レゾール型又はノボラック型のフェノール樹脂を塗布するが、フェノール樹脂が20wt%未満ではカスレが発生し、25wt%以上で十分に含浸させることができる。また、フェノール樹脂が50wt%を超えると、耐熱性が悪くなるので好ましくなく、30wt%もあれば効果は十分である。   Specifically, a resole-type or novolac-type phenol resin is applied to a heat-resistant substrate. However, when the phenol resin is less than 20 wt%, a blur is generated, and the resin can be sufficiently impregnated at 25 wt% or more. On the other hand, if the phenol resin exceeds 50 wt%, the heat resistance deteriorates, which is not preferable. If it is 30 wt%, the effect is sufficient.

このようにして作製した本発明の耐熱性フェノール樹脂組成物からなる耐熱材は、高耐熱性を有し、熱劣化が少ないので、摩耗が少ないといった特徴がある。   The heat-resistant material made of the heat-resistant phenolic resin composition of the present invention thus produced has a feature that it has high heat resistance and little thermal deterioration, so that it is less worn.

ここで、実施例の耐熱材は、マグアルティマ繊維が80wt%、PBO繊維が20wt%で、厚さ14mm、目付8kg/m2の多重織クロスからなる耐熱基材に対して、25〜30wt%のレゾール型フェノール樹脂を均一塗布し、乾燥して溶剤を除去したプリプレグを適当な大きさに裁断し、5MPaの一定圧力を加えながら、180℃の温度で所定時間加熱して作製した。 Here, the heat-resistant material of the example is 25 to 30 wt% with respect to a heat-resistant base material made of a multi-woven cloth having a thickness of 14 mm and a basis weight of 8 kg / m 2 with 80 wt% of Magmartima fiber and 20 wt% of PBO fiber. A prepreg obtained by uniformly applying a resol type phenolic resin, drying and removing the solvent was cut into an appropriate size and heated at a temperature of 180 ° C. for a predetermined time while applying a constant pressure of 5 MPa.

次に、本発明の耐熱性フェノール樹脂組成物からなる耐熱層2と、ガラス繊維クロスにフェノール樹脂を含浸させた積層成形品からなるベース材3とを積層した耐熱性パッド1の製造方法を説明する。数トンの鋼材コイルを載置しても耐えるたけの機械的強度を持たせるために、前述の耐熱性フェノール樹脂組成物からなる耐熱材の厚さを厚くすることは、コスト高となるので、現実的ではない。そのため、このような用途で用いる耐熱性パッド1は、耐熱性フェノール樹脂組成物からなる耐熱層2とガラス繊維クロスにフェノール樹脂を含浸させた積層成形品からなるベース材3の2層構造とし、前記耐熱層2で十分な耐熱性を確保し、前記ベース材3で機械的強度を持たせるだけの厚さを確保するのである。   Next, the manufacturing method of the heat-resistant pad 1 which laminated | stacked the heat-resistant layer 2 which consists of the heat-resistant phenol resin composition of this invention, and the base material 3 which consists of a laminated molding product which impregnated the glass fiber cloth with the phenol resin is demonstrated. To do. Increasing the thickness of the heat-resistant material made of the above-mentioned heat-resistant phenolic resin composition in order to give the mechanical strength enough to withstand even a few tons of steel coil placed is costly. Not right. Therefore, the heat-resistant pad 1 used in such an application has a two-layer structure of a heat-resistant layer 2 made of a heat-resistant phenol resin composition and a base material 3 made of a laminated molded product in which a glass fiber cloth is impregnated with a phenol resin, The heat resistant layer 2 ensures sufficient heat resistance, and the base material 3 secures a thickness sufficient to give mechanical strength.

先ず、マグアルティマ繊維が80wt%、PBO繊維が20wt%で、厚さ14mm、目付8kg/m2の多重織クロスからなる耐熱基材に対して、25〜30wt%のレゾール型フェノール樹脂を、塗布ロールを用いて均一に塗る。それから、電気炉に投入して乾燥させ、溶剤を除去して耐熱層材料(耐熱層プリプレグ)を用意する。 First, mug Altima fiber 80 wt%, in the PBO fibers 20 wt%, thickness 14 mm, with respect to heat-resistant substrate made of a multi-woven cloth having a basis weight of 8 kg / m 2, the 25~30Wt% of resole phenolic resin, coated Apply evenly using a roll. Then, it is put into an electric furnace and dried, and the solvent is removed to prepare a heat-resistant layer material (heat-resistant layer prepreg).

一方、ガラス繊維クロス60wt%にフェノール樹脂40wt%を含浸させ、乾燥させたシート状プリプレグ(ベース材プリプレグ)を用意する。   On the other hand, a sheet-like prepreg (base material prepreg) prepared by impregnating glass fiber cloth 60 wt% with phenol resin 40 wt% and drying it is prepared.

耐熱層プリプレグとベース材プリプレグとを所定の大きさに裁断し、サイズと数量を揃える。本実施形態では、前記耐熱層プリプレグを1枚、前記ベース材プリプレグを20〜30枚用いる。そして、前記耐熱層プリプレグを成形直前に100℃に設定した電気炉へ投入して吸湿水分の除去を行う。また、前記ベース材プリプレグは、100℃に設定した電気炉に投入し、吸湿した水分の除去並びにフェノール樹脂の半硬化処理を行う。   The heat-resistant layer prepreg and the base material prepreg are cut into a predetermined size, and the size and quantity are aligned. In this embodiment, one heat-resistant layer prepreg and 20 to 30 base material prepregs are used. Then, the heat-resistant layer prepreg is put into an electric furnace set at 100 ° C. immediately before molding to remove moisture absorption. Further, the base material prepreg is put into an electric furnace set at 100 ° C. to remove moisture absorbed and to perform a semi-curing treatment of the phenol resin.

それから、前記耐熱層プリプレグ1枚とベース材プリプレグ28枚とを重ね、熱間プレスで一体成形する。成形条件は、成形圧力が5MPaで一定、成形温度が180℃である。その後、ポストキュアを行い、フェノール樹脂の硬化を促進して完成する。このようにして製造した耐熱性パッド1を図1に示す。この耐熱性パッド1は、耐熱層2の厚さは約8mm、ベース材3の厚さは約18mmである。耐熱層2とベース材3の界面は連続し、完全に一体化している。   Then, one heat-resistant layer prepreg and 28 base material prepregs are stacked and integrally formed by hot pressing. The molding conditions are a molding pressure of 5 MPa and a molding temperature of 180 ° C. Thereafter, post cure is performed to complete the curing of the phenolic resin. The heat resistant pad 1 manufactured in this way is shown in FIG. In the heat resistant pad 1, the heat resistant layer 2 has a thickness of about 8 mm, and the base material 3 has a thickness of about 18 mm. The interface between the heat-resistant layer 2 and the base material 3 is continuous and completely integrated.

前記耐熱性パッド1を熱伝導性の評価とクラックの有無を確認するために、高温物接触試験を行った。試験配置は図2に示している。本発明の耐熱性パッド1を100mm×100mmに切り出し、その上に、材質がSUS310S、120mm×120mmの平面形状で、重さが5kgの接触治具4を、所定温度に加熱した後に載せた。前記耐熱層2とベース材3の界面には予め熱電対が埋設されており、またベース材3の裏面にも熱電対が装着されており、耐熱層2とベース材3の界面部分(A部)とベース材3の裏面部分(B部)の温度変化を測定した。   In order to evaluate the thermal conductivity of the heat resistant pad 1 and the presence or absence of cracks, a high temperature contact test was conducted. The test arrangement is shown in FIG. The heat-resistant pad 1 of the present invention was cut out to 100 mm × 100 mm, and a contact jig 4 having a planar shape of SUS310S and 120 mm × 120 mm and having a weight of 5 kg was placed thereon after being heated to a predetermined temperature. A thermocouple is embedded in advance at the interface between the heat-resistant layer 2 and the base material 3, and a thermocouple is mounted on the back surface of the base material 3. ) And the temperature change of the back surface portion (B portion) of the base material 3 was measured.

図3は、410℃に加熱した接触治具4を、耐熱性パッド1の耐熱層2の上に載置した状態で、接触治具4の温度変化と、A部とB部での温度変化を測定した結果を示している。A部の温度は、耐熱層2からベース材3への伝熱を示している。前記接触治具4は、空気中への熱の輻射と、耐熱性パッド1への伝熱によって時間の経過とともに温度が低下する。そして、A部の温度は、接触治具4の接触後から上昇し、約10分後に最大となり、それ以降は接触治具4の温度低下とともに緩やかに低下する。接触治具4の温度が410℃であるにも係わらず、A部の温度は最高でも300℃に達しなかった。それにより、耐熱層2より耐熱性が劣るベース材3でも十分に耐えることが可能であることが分かる。尚、ベース材3の裏面温度(B部の温度)は、最大でも150℃を超えなかった。試験中、耐熱性パッド1の材料破壊、発煙、発火、変形、クラックは発生しなかった。また、試験後に、耐熱層2の外面及び内部、接触治具4の接触面を観察したが、全く問題がなかった。因みに、ベース材3のみの場合には、410℃の接触治具4の接触でクラックが発生した。   FIG. 3 shows the temperature change of the contact jig 4 and the temperature changes in the A part and the B part in a state where the contact jig 4 heated to 410 ° C. is placed on the heat resistant layer 2 of the heat resistant pad 1. The measurement result is shown. The temperature of part A indicates heat transfer from the heat-resistant layer 2 to the base material 3. The temperature of the contact jig 4 decreases with time due to heat radiation into the air and heat transfer to the heat resistant pad 1. And the temperature of A part rises after contact of the contact jig | tool 4, becomes the maximum after about 10 minutes, and falls gradually with the temperature fall of the contact jig | tool 4 after that. Despite the temperature of the contact jig 4 being 410 ° C., the temperature of the part A did not reach 300 ° C. at the maximum. Thereby, it can be seen that even the base material 3 which is inferior in heat resistance to the heat-resistant layer 2 can sufficiently withstand. In addition, the back surface temperature (temperature of the B part) of the base material 3 did not exceed 150 ° C. at the maximum. During the test, no material destruction, smoke generation, ignition, deformation, or crack of the heat resistant pad 1 occurred. Further, after the test, the outer surface and the inner surface of the heat-resistant layer 2 and the contact surface of the contact jig 4 were observed, but there was no problem at all. Incidentally, in the case of only the base material 3, cracks occurred due to the contact of the contact jig 4 at 410 ° C.

図4は、前記接触治具4の初期温度を450℃、400℃、350℃とした場合の、前記耐熱性パッド1の耐熱層2とベース材3の界面部分(A部)の温度変化を示している。これにより、A部の温度の最大値は、接触治具4の初期温度より約100℃低くなることが分かる。これらの接触治具4の各初期温度において、接触後の耐熱性パッド1を観察した。その結果、450℃接触する場合、ベース材3にクラックが発生し、発煙した。これにより、450℃以上の温度で接触する用途には、層間剥離、ベース材強度劣化、発煙が起こる可能性が高く、使用できない。一方、400℃以下で接触する場合、クラックや発煙は発生せず、本発明の耐熱性パッド1の効果が得られることが分かった。   FIG. 4 shows the temperature change of the interface portion (A part) between the heat-resistant layer 2 of the heat-resistant pad 1 and the base material 3 when the initial temperature of the contact jig 4 is 450 ° C., 400 ° C., 350 ° C. Show. Thereby, it turns out that the maximum value of the temperature of A part becomes about 100 degreeC lower than the initial temperature of the contact jig 4. FIG. At each initial temperature of the contact jig 4, the heat-resistant pad 1 after contact was observed. As a result, when contacted at 450 ° C., cracks occurred in the base material 3 and smoke was generated. Thereby, it is highly likely that delamination, base material strength deterioration, and smoke generation will occur in applications where contact is made at a temperature of 450 ° C. or higher. On the other hand, when it contacts at 400 degrees C or less, it turned out that a crack and smoke generation do not generate | occur | produce and the effect of the heat resistant pad 1 of this invention is acquired.

次に、図5及び図6に基づいて、本発明の耐熱性パッド1を接触部分に装着したコイルスキッド5の実施形態を簡単に説明する。このコイルスキッド5は、焼鈍工程後のコイル冷却・搬送ラインに設置され、置き台6の上面と、該置き台6の一端部に垂設した支え部材7の側面に、前記耐熱性パッド1を添設したものである。前記置き台6は2本の平行支持レールを備え、その上に添設した両耐熱性パッド1,1の上面は、鋼材コイルの円周面に加わる応力が集中しないように傾斜面となっている。つまり、耐熱性パッド1の耐熱層2の表面が鋼材コイルの円周面に対して接線方向を向くように取り付けている。前記置き台6の長さは約3m、支え部材7の高さは約150cmである。   Next, based on FIG.5 and FIG.6, embodiment of the coil skid 5 which attached the heat resistant pad 1 of this invention to the contact part is described easily. The coil skid 5 is installed in the coil cooling / conveying line after the annealing process, and the heat-resistant pad 1 is placed on the upper surface of the cradle 6 and the side surface of the support member 7 suspended from one end of the cradle 6. Attached. The table 6 includes two parallel support rails, and the upper surfaces of both heat-resistant pads 1 and 1 provided thereon are inclined so that stress applied to the circumferential surface of the steel coil is not concentrated. Yes. In other words, the heat-resistant pad 1 is attached so that the surface of the heat-resistant layer 2 faces the tangential direction with respect to the circumferential surface of the steel material coil. The stand 6 has a length of about 3 m, and the support member 7 has a height of about 150 cm.

図6に示すように、鋼材コイルとして、サイズが直径150cm、軸方向長さが70cm、重さ2tのスチール線材コイル8を置き台6に載置し、支え部材7に凭れ掛かった状態に保持した。実際には、温度が約400℃のスチール線材コイル8を6個載置した。   As shown in FIG. 6, a steel wire coil 8 having a diameter of 150 cm, an axial length of 70 cm, and a weight of 2 t is placed on a pedestal 6 as a steel coil, and held in a state where it is caught on a support member 7. did. Actually, six steel wire coils 8 having a temperature of about 400 ° C. were placed.

7ヶ月間の実機使用試験の結果、スチール線材コイル8の前記耐熱性パッド1と接触する部位に疵は全く付かなかった。また、置き台6に設けた耐熱性パッド1は、端部の摩耗が進行し、曲面になっているが、コイルと面接触状態を保っている。支え部材7に設けた耐熱性パッド1は、表面接触状態が保たれ、摩耗は殆ど進行していない。耐熱性パッド1から摩耗粉(糸)は発生するが、コイル製品への付着はなく、作業現場への影響はなかった。また、耐熱性パッド1の破損、変形もなく、強度面からも問題がないことが確認された。置き台6に設けた耐熱性パッド1は、使用前に厚さ8mmあった耐熱層2が3mm以上残っており、継続使用可能な状態であった。前記コイルスキッド5の耐熱性パッド1に対する要求寿命は、半年〜1年であるので、十分に実用に耐えることが分かった。   As a result of an actual machine use test for 7 months, no flaws were found on the portion of the steel wire coil 8 that was in contact with the heat-resistant pad 1. Further, the heat-resistant pad 1 provided on the pedestal 6 has a curved surface due to end wear, but is kept in surface contact with the coil. The heat-resistant pad 1 provided on the support member 7 is kept in a surface contact state, and wear hardly progresses. Although abrasion powder (yarn) was generated from the heat-resistant pad 1, it did not adhere to the coil product and had no influence on the work site. Further, it was confirmed that there was no damage and deformation of the heat-resistant pad 1 and there was no problem in terms of strength. The heat-resistant pad 1 provided on the pedestal 6 was in a state where the heat-resistant layer 2 having a thickness of 8 mm before use remained 3 mm or more and could be used continuously. The required life of the coil skid 5 with respect to the heat-resistant pad 1 is from half a year to one year, and thus it has been found that the coil skid 5 can sufficiently withstand practical use.

表1に耐熱層2の厚さが2mm、4mm、8mmの実施例1,2,3と、耐熱層2が無くベース材3のみの比較例1、金属の場合の比較例2とを比較試験した結果をまとめている。   Table 1 shows a comparative test between Examples 1, 2, and 3 in which the thickness of the heat-resistant layer 2 is 2 mm, 4 mm, and 8 mm, Comparative Example 1 without the heat-resistant layer 2 and only the base material 3, and Comparative Example 2 in the case of a metal. The results are summarized.

Figure 0005257379
Figure 0005257379

実施例1,2(2mm、4mm仕様)は、厚さが薄いので比較的製造が容易である。耐熱層による防疵効果は発揮するが、摩耗代が薄く、製品寿命が短い。実施例1の2mm仕様では、断熱効果が少なく、ベース材への伝熱量が大きいためクラックが発生する。実施例2の4mm仕様では、耐熱層の樹脂塗布状態(レゾール樹脂の含有量)によりクラックの発生する恐れがある。それに対して、実施例3の8mm仕様では、厚さが厚く剛性が強いため、通常の生産用含浸機を使用できず、生産効率が悪い、あるいはコスト高となるが、耐熱層の防疵効果を発揮でき、また製品寿命が長く、400℃の接触温度に対しても、断熱効果によりベース材への伝熱量を抑え、ベース材の耐熱限界温度以下で保持することが可能であるので、クラックの発生を防止できる。   Examples 1 and 2 (2 mm and 4 mm specifications) are relatively easy to manufacture because of their small thickness. Although the heat-resistant layer provides an anti-rust effect, the wear margin is thin and the product life is short. In the 2 mm specification of Example 1, the heat insulation effect is small and the amount of heat transfer to the base material is large, so that cracks occur. In the 4 mm specification of Example 2, there is a possibility that cracks may occur depending on the resin application state (resole resin content) of the heat-resistant layer. On the other hand, in the 8 mm specification of Example 3, since the thickness is thick and the rigidity is strong, a normal impregnation machine for production cannot be used, resulting in poor production efficiency or high cost. Since the product life is long and the contact temperature of 400 ° C is low, the heat transfer to the base material can be suppressed by the heat insulation effect, and it can be kept below the heat resistance limit temperature of the base material. Can be prevented.

比較例1は、耐熱層がないベース材のみからなるので、耐熱性がなく、クラックが発生するので、全く使用不可能である。比較例2は、金属製の接触部材であるが、従来例に記載したように、防疵効果が全く無い。   Since the comparative example 1 consists only of a base material without a heat-resistant layer, it has no heat resistance and cracks are generated, so that it cannot be used at all. Comparative Example 2 is a metal contact member, but has no anti-mold effect as described in the conventional example.

本発明の耐熱層2とベース材3の2層構造からなる耐熱性パッド1は、要求仕様に応じて耐熱層2の厚さを調整する。熱間・冷間圧延工程、焼鈍工程で鋼材コイルを搬送、保管する時に使用する耐熱性パッドとしては、耐熱層の厚さは余裕を持たせて少なくとも8mmに設定することが好ましい。   The heat-resistant pad 1 having a two-layer structure of the heat-resistant layer 2 and the base material 3 according to the present invention adjusts the thickness of the heat-resistant layer 2 according to required specifications. As a heat-resistant pad used when a steel coil is transported and stored in a hot / cold rolling process or an annealing process, the thickness of the heat-resistant layer is preferably set to at least 8 mm with a margin.

図7は、前述のコイルスキッド5に、鋼板コイル9を載置する使用例を示している。耐熱性パッドのその他の使用例として、鋼材コイルに対しては反転装置、Cフック、フォーク等の接触部材が挙げられる。   FIG. 7 shows a usage example in which the steel plate coil 9 is placed on the coil skid 5 described above. Other examples of use of the heat-resistant pad include contact members such as a reversing device, C hook, and fork with respect to the steel coil.

1 耐熱性パッド、
2 耐熱層、
3 ベース材、
4 接触治具、
5 コイルスキッド、
6 置き台、
7 支え部材、
8 スチール線材コイル、
9 鋼板コイル。
1 heat-resistant pad,
2 heat-resistant layer,
3 Base material,
4 Contact jig,
5 Coil skid,
6 stand,
7 support members,
8 Steel wire coil,
9 Steel sheet coil.

Claims (9)

ロックウールとポリパラフェニレンベンゾビスオキサゾール(PBO)繊維からなる耐熱基材にフェノール樹脂を含浸させ、加圧熱硬化させたことを特徴とする耐熱性フェノール樹脂組成物。   A heat-resistant phenol resin composition, wherein a heat-resistant base material composed of rock wool and polyparaphenylene benzobisoxazole (PBO) fibers is impregnated with a phenol resin and subjected to pressure heat curing. 前記耐熱基材は、ロックウールが40〜95wt%、PBO繊維が5〜60wt%である請求項1記載の耐熱性フェノール樹脂組成物。   The heat-resistant phenol resin composition according to claim 1, wherein the heat-resistant base material is 40 to 95 wt% of rock wool and 5 to 60 wt% of PBO fibers. 前記耐熱基材が50〜80wt%、フェノール樹脂が20〜50wt%である請求項1又は2記載の耐熱性フェノール樹脂組成物。   The heat-resistant phenol resin composition according to claim 1 or 2, wherein the heat-resistant substrate is 50 to 80 wt% and the phenol resin is 20 to 50 wt%. 前記耐熱基材が70〜75wt%、フェノール樹脂が25〜30wt%である請求項3記載の耐熱性フェノール樹脂組成物。   The heat-resistant phenol resin composition according to claim 3, wherein the heat-resistant substrate is 70 to 75 wt% and the phenol resin is 25 to 30 wt%. 請求項1〜4何れか1項に記載の耐熱性フェノール樹脂組成物からなる耐熱層と、ガラス繊維クロスにフェノール樹脂を含浸させた積層成形品からなるベース材とを積層したことを特徴とする耐熱性パッド。   A heat-resistant layer made of the heat-resistant phenol resin composition according to any one of claims 1 to 4 and a base material made of a laminated molded article in which a glass fiber cloth is impregnated with a phenol resin are laminated. Heat resistant pad. ロックウールとポリパラフェニレンベンゾビスオキサゾール(PBO)繊維からなる耐熱基材にフェノール樹脂を含浸させた耐熱層材料と、ガラス繊維クロスにフェノール樹脂を含浸させたシート材を複数枚重ね合わせたベース材材料とを積層し、加圧、加熱処理して、ベース材の表面に耐熱層が一体化した耐熱性パッドを成形することを特徴とする耐熱性パッドの製造方法。   A heat-resistant layer material made by impregnating a phenolic resin into a heat-resistant substrate made of rock wool and polyparaphenylenebenzobisoxazole (PBO) fibers, and a base material in which a plurality of sheet materials made by impregnating a glass fiber cloth with a phenolic resin are overlapped A method for producing a heat-resistant pad, comprising: laminating a material, pressurizing and heat-treating to form a heat-resistant pad having a heat-resistant layer integrated on a surface of a base material. 前記耐熱基材は、ロックウールが40〜95wt%、PBO繊維が5〜60wt%である請求項6記載の耐熱性パッドの製造方法。   The method for producing a heat resistant pad according to claim 6, wherein the heat resistant substrate is 40 to 95 wt% of rock wool and 5 to 60 wt% of PBO fiber. 前記耐熱基材が50〜80wt%、フェノール樹脂が20〜50wt%である請求項6又は7記載の耐熱性パッドの製造方法。   The method for producing a heat resistant pad according to claim 6 or 7, wherein the heat resistant substrate is 50 to 80 wt% and the phenol resin is 20 to 50 wt%. 前記耐熱基材が70〜75wt%、フェノール樹脂が25〜30wt%である請求項8記載の耐熱性パッドの製造方法。
The method for producing a heat resistant pad according to claim 8, wherein the heat resistant substrate is 70 to 75 wt% and the phenol resin is 25 to 30 wt%.
JP2010046735A 2010-03-03 2010-03-03 Heat-resistant phenolic resin composition, heat-resistant pad using the same, and method for producing heat-resistant pad Expired - Fee Related JP5257379B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010046735A JP5257379B2 (en) 2010-03-03 2010-03-03 Heat-resistant phenolic resin composition, heat-resistant pad using the same, and method for producing heat-resistant pad

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010046735A JP5257379B2 (en) 2010-03-03 2010-03-03 Heat-resistant phenolic resin composition, heat-resistant pad using the same, and method for producing heat-resistant pad

Publications (2)

Publication Number Publication Date
JP2011178952A JP2011178952A (en) 2011-09-15
JP5257379B2 true JP5257379B2 (en) 2013-08-07

Family

ID=44690807

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010046735A Expired - Fee Related JP5257379B2 (en) 2010-03-03 2010-03-03 Heat-resistant phenolic resin composition, heat-resistant pad using the same, and method for producing heat-resistant pad

Country Status (1)

Country Link
JP (1) JP5257379B2 (en)

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04318092A (en) * 1991-04-16 1992-11-09 Aisin Chem Co Ltd Friction material
JPH06145650A (en) * 1992-11-10 1994-05-27 Nisshinbo Ind Inc Non-asbestos type friction material
JPH11114812A (en) * 1997-10-16 1999-04-27 Toyobo Co Ltd Turntable for polishing
JP2001240847A (en) * 1999-12-20 2001-09-04 Akebono Brake Ind Co Ltd Frictional material
JP2002088345A (en) * 2000-09-19 2002-03-27 Tomoegawa Paper Co Ltd Friction material for brake
JP2003020734A (en) * 2001-07-10 2003-01-24 Matsushita Electric Works Ltd Humidity plate and its manufacturing method
JP3946032B2 (en) * 2001-11-21 2007-07-18 東洋紡績株式会社 Joint sheet forming composition and joint sheet
JP3894200B2 (en) * 2004-04-07 2007-03-14 スターライト工業株式会社 Hot run table guide plate
JP4852328B2 (en) * 2006-03-13 2012-01-11 帝人テクノプロダクツ株式会社 Beater sheet gasket
JP2007246590A (en) * 2006-03-14 2007-09-27 Teijin Techno Products Ltd Friction material

Also Published As

Publication number Publication date
JP2011178952A (en) 2011-09-15

Similar Documents

Publication Publication Date Title
JP2016203397A (en) Method for producing prepreg
JP2013199011A5 (en)
CN103609001B (en) Rotor cover for generator
JP7047755B2 (en) Fiber reinforced plastic sheet
JP6358645B2 (en) Coil spring
JP6056859B2 (en) Brake pads and brake members for yaw control
JP5257379B2 (en) Heat-resistant phenolic resin composition, heat-resistant pad using the same, and method for producing heat-resistant pad
JP2013221040A (en) Chopped strand prepreg, fiber reinforced thermoplastic resin sheet, molded plate using the sheet, and method for manufacturing fiber reinforced thermoplastic resin sheet
JP5753892B2 (en) Method for producing fiber-reinforced resin molded body
JP2013181902A (en) Strand tensile test piece
US20170259525A1 (en) Heat insulation material and method for producing same
JP2018039162A (en) Fiber-reinforced-plastic molded article
KR100910023B1 (en) Heat resistance, wear resistant laminate
JP6490413B2 (en) Fiber reinforced composite shaft
JP4008785B2 (en) Underwater sliding member and manufacturing method thereof
TW201641846A (en) Screw shaft, manufacturing method thereof, and ball screw device
JP2009073715A (en) Method for producing carbon-fibered heat insulating material
JP2003001656A (en) Laminated sheet manufacturing method
JPWO2015076283A1 (en) Fiber reinforced thermoplastic resin sheet
JP2016190355A (en) Laminated base material
US20100209691A1 (en) Friction lining and wear-resistant part
JPH08296160A (en) Heat resistant felt for product used at high temperature
JP6368509B2 (en) Method for producing carbonaceous film and method for producing graphite film
CN107848897A (en) Wet friction material
US20240210114A1 (en) Heat resistant structure and member for heat treatment furnace

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111028

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130221

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130326

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130408

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160502

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees