JP5251261B2 - Carburized rolling bearing - Google Patents

Carburized rolling bearing Download PDF

Info

Publication number
JP5251261B2
JP5251261B2 JP2008140006A JP2008140006A JP5251261B2 JP 5251261 B2 JP5251261 B2 JP 5251261B2 JP 2008140006 A JP2008140006 A JP 2008140006A JP 2008140006 A JP2008140006 A JP 2008140006A JP 5251261 B2 JP5251261 B2 JP 5251261B2
Authority
JP
Japan
Prior art keywords
mass
bearing
hardness
steel material
carburized
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008140006A
Other languages
Japanese (ja)
Other versions
JP2009287073A (en
Inventor
大輔 渡貫
秀幸 飛鷹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NSK Ltd
Original Assignee
NSK Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NSK Ltd filed Critical NSK Ltd
Priority to JP2008140006A priority Critical patent/JP5251261B2/en
Publication of JP2009287073A publication Critical patent/JP2009287073A/en
Application granted granted Critical
Publication of JP5251261B2 publication Critical patent/JP5251261B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/34Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load
    • F16C19/38Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers
    • F16C19/383Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone
    • F16C19/388Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings for both radial and axial load with two or more rows of rollers with tapered rollers, i.e. rollers having essentially the shape of a truncated cone with four rows, i.e. four row tapered roller bearings

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Rolling Contact Bearings (AREA)
  • Heat Treatment Of Articles (AREA)

Description

本発明は、特に鉄鋼・製紙圧延機用転がり軸受や風車ギアボックス用転がり軸受などのように一般に大型で厚肉の浸炭転がり軸受に関する。   The present invention relates to a generally large and thick carburized rolling bearing such as a rolling bearing for a steel and paper mill, a rolling bearing for a wind turbine gear box, and the like.

係る大型・厚肉の浸炭転がり軸受は、その肉厚や質量の大きさ故に不完全焼入組織や旧オーステナイト粒径の粗大な組織が存在し易く、それに伴う疲労強度と寿命の低下が懸念されている。すなわち、特に浸炭・浸炭窒化を施した軸受においては浸炭層の切れ目で引っ張りの残留応力が存在するが、このような浸炭層の切れ目に応力集中源となり得る不完全焼入組織が存在するとその部分を起点として破壊が生ずる。また、旧オーステナイト粒径の粗大な組織(介在物)が存在すると、その介在物周りに応力集中が起こり、これを起点として破損に至ることが知られている。   Such large and thick carburized rolling bearings are liable to have incompletely hardened structures and coarse structures with old austenite grain size due to their thickness and mass, and there is concern about the resulting decrease in fatigue strength and life. ing. That is, especially in bearings that have undergone carburizing / carbonitriding, there is residual tensile stress at the cuts in the carburized layer. Destruction occurs from the starting point. Further, it is known that when a coarse structure (inclusions) having a prior austenite grain size exists, stress concentration occurs around the inclusions, and damage starts from this.

そのため、例えば以下の特許文献1では、軸受用肌焼き鋼の成分を規定し、残留オーステナイト量を規定することで寿命特性と圧壊特性を得るようにしている。
また、以下の特許文献2では、平均粒子径3μm以上30μm以下の酸化物系介在物の数や構成比率を限定することで、これらが起点なって発生する内部起点のフレーキングを抑えて大型軸受の寿命を向上させるようにしている。
特開2004−84869号公報 特開平3−100142号公報
Therefore, for example, in the following Patent Document 1, the life characteristics and the crush characteristics are obtained by defining the components of the case-hardened steel for bearings and defining the amount of retained austenite.
Moreover, in the following Patent Document 2, the number of oxide inclusions having an average particle diameter of 3 μm or more and 30 μm or less and the composition ratio are limited, thereby suppressing the flaking of the internal origin that occurs from the origin and the life of the large bearing. To improve.
JP 2004-84869 A Japanese Patent Laid-Open No. 3-100142

ところで、熱処理を中心としたプロセス面から不完全焼入組織の発生を抑制するには、焼入れ時の冷却速度を速めるという方法がある。しかしながら、この方法によると軸受の変形が不均一となり、研削代の増加や焼き割れなどに繋がってしまうため、プロセス変更によらずに不完全焼入組織を抑制できる方法が求められる。
また、同じくプロセス面から旧オーステナイト粒径の粗大化を抑制するには、焼入れ前に焼鈍を行うか、あるいはその回数を増やしたり、相変態点以上の温度の焼鈍を行うなどの方法がある。しかしながら、これらはいずれも変形を大きくする方向に働くため、同じくプロセス変更によらずに旧オーステナイト粒径の粗大化を抑制する手段が望ましい。
そこで、本発明は前記のような従来技術が有する問題点を解決するために案出されたものであり、その目的は、熱処理を中心としたプロセス面を殆ど変更することなく、優れた耐久性と寿命を発揮できる新規な浸炭転がり軸受を提供するものである。
By the way, in order to suppress the generation of an incompletely hardened structure from the process surface centering on heat treatment, there is a method of increasing the cooling rate at the time of quenching. However, according to this method, the deformation of the bearing becomes non-uniform, which leads to an increase in grinding allowance and quench cracking. Therefore, there is a demand for a method that can suppress the incompletely hardened structure without changing the process.
Similarly, in order to suppress the coarsening of the prior austenite grain size from the process surface, there are methods such as annealing before quenching, increasing the number of times, or annealing at a temperature equal to or higher than the phase transformation point. However, since these all work in the direction of increasing the deformation, a means for suppressing the coarsening of the prior austenite grain size without depending on the process is also desirable.
Therefore, the present invention has been devised to solve the problems of the prior art as described above, and its purpose is to achieve excellent durability without almost changing the process surface centering on heat treatment. It provides a new carburized rolling bearing that can demonstrate its service life.

前記課題解決するために、この発明の浸炭転がり軸受は、
内輪と外輪との間に複数の転動体を配設してなる浸炭転がり軸受であって、前記内輪、外輪、転動体のいずれか1つ以上の軸受部材が、
C:0.10〜0.30質量%、Si:0.10〜0.50質量%、Mn:0.60〜1.00質量%、Ni:2.00〜5.00質量%、Cr:0.50〜2.00質量%、Mo:0.10〜0.50質量%、Cu:0.3質量%以下、O:0.01質量%以下、Al:0.010〜0.050質量%、N:0.010〜0.030質量%、残部Feおよび不可避的不純物からなる鋼材から構成され、
かつ、当該鋼材のDI値((0.2×C+0.128)(1+0.7Si)(1+3.45Mn)(1+0.07Ni+0.27Ni×Ni)(1+2Cr)(1+2.5Mo)(1+0.35Cu))と当該鋼材からなる軸受部材の肉厚t( mm)が、DI/t>0.45の関係を満足し、前記鋼材からなる軸受部材の芯部平均硬度Hv(ビッカース硬度)と硬度の標準偏差σが、Hv−4σ>400の関係を満足することを特徴とする。
なお、前記DI値の各元素記号で表される変数には、それら元素記号に対応する各成分の含有量(質量%)が代入される。
To the problem solution, it is carburized rolling bearing of this invention,
A carburized rolling bearing in which a plurality of rolling elements are disposed between an inner ring and an outer ring, and any one or more bearing members of the inner ring, the outer ring, and the rolling element,
C: 0.10 to 0.30 mass%, Si: 0.10 to 0.50 mass%, Mn: 0.60 to 1.00 mass%, Ni: 2.00 to 5.00 mass%, Cr: 0.50 to 2.00 mass%, Mo: 0.10 to 0.50 mass%, Cu: 0.3 mass% or less, O: 0.01 mass% or less, Al: 0.010 to 0.050 mass% %, N: 0.010 to 0.030% by mass, the balance is made of a steel material made of Fe and inevitable impurities,
And DI value of the steel material ((0.2 × C + 0.128) (1 + 0.7Si) (1 + 3.45Mn) (1 + 0.07Ni + 0.27Ni × Ni) (1 + 2Cr) (1 + 2.5Mo) (1 + 0.35Cu)) And the thickness t (mm) of the bearing member made of the steel material satisfies the relationship of DI / t> 0.45, and the core portion average hardness Hv (Vickers hardness) and the standard deviation of the hardness of the bearing member made of the steel material σ is you and satisfies the relation Hv-4σ> 400.
In addition, the content (mass%) of each component corresponding to these element symbols is substituted for the variable represented by each element symbol of the DI value.

すなわち、本発明は、軸受部材を構成する鋼材の組成と、そのDI値と、この鋼材からなる軸受部材の肉厚tとの関係に着目して案出されたものであり、その軸受部材の肉厚tが、DI/t>0.45の条件を満足するようにすれば、熱処理を中心としたプロセス面を殆ど変更することなく、優れた耐久性と寿命を発揮することができる。
ここで、鋼材(浸炭鋼)の構成をC:0.10〜0.30質量%、Si:0.10〜0.50質量%、Mn:0.60〜1.00質量%、Ni:2.00〜5.00質量%、Cr:0.50〜2.00質量%、Mo:0.10〜0.50質量%、Cu:0.3質量%以下、O:0.01質量%以下、Al:0.010〜0.050質量%、N:0.010〜0.030質量%、残部Feおよび不可避的不純物としたのは以下の理由による。
That is, the present invention has been devised by paying attention to the relationship between the composition of the steel material constituting the bearing member, its DI value, and the thickness t of the bearing member made of this steel material. If the thickness t satisfies the condition of DI / t> 0.45, excellent durability and life can be exhibited without substantially changing the process surface centering on heat treatment.
Here, the structure of the steel material (carburized steel) is C: 0.10 to 0.30 mass%, Si: 0.10 to 0.50 mass%, Mn: 0.60 to 1.00 mass%, Ni: 2 0.00 to 5.00% by mass, Cr: 0.50 to 2.00% by mass, Mo: 0.10 to 0.50% by mass, Cu: 0.3% by mass or less, O: 0.01% by mass or less , Al: 0.010 to 0.050 mass%, N: 0.010 to 0.030 mass%, the balance Fe and unavoidable impurities are as follows.

(C:0.10〜0.30質量%)
C(炭素)は、焼入後の鋼に必要な芯部強度を付与すると共に、浸炭後に十分な表面硬さを確保するのに有効な元素である。そして、その添加量が0.1質量%より少ないと十分な強度および硬さを得ることができず、反対に0.30質量%を超えると靭性ならびに被削性が低下するため、Cの添加量はこの範囲とする。
(C: 0.10 to 0.30 mass%)
C (carbon) is an element effective for imparting necessary core strength to the steel after quenching and for ensuring sufficient surface hardness after carburizing. And if the addition amount is less than 0.1% by mass, sufficient strength and hardness cannot be obtained, and conversely if it exceeds 0.30% by mass, the toughness and machinability deteriorate, so the addition of C The amount is within this range.

(Si:0.10〜0.50質量%)
Si(ケイ素)は、焼入れ以後の組織の緻密化、靭性、耐疲労性および焼入れ性の向上に有効な元素である。そして、その添加量が0.1質量%より少ないとこれらの効果を得ることができず、反対に0.50質量%を超えると靭性ならびに加工性が低下するため、Siの添加量はこの範囲とする。
(Si: 0.10 to 0.50 mass%)
Si (silicon) is an element effective for densifying the structure after quenching, toughness, fatigue resistance, and hardenability. If the addition amount is less than 0.1% by mass, these effects cannot be obtained. Conversely, if the addition amount exceeds 0.50% by mass, the toughness and workability deteriorate, so the addition amount of Si is within this range. And

(Mn:0.60〜1.00質量%)
Mn(マンガン)は、溶解時における脱酸ならびに脱硫の効果があると共に、焼入れ性の向上に有効な元素である。そして、その添加量が0.60質量%より少ないとこれらの効果を得ることができず、反対に1.00質量%を超えると加工性ならびに被削性が低下するため、Mnの添加量はこの範囲とする。
(Mn: 0.60 to 1.00% by mass)
Mn (manganese) has an effect of deoxidation and desulfurization at the time of dissolution, and is an element effective for improving hardenability. And if the addition amount is less than 0.60% by mass, these effects cannot be obtained. On the other hand, if it exceeds 1.00% by mass, the workability and machinability deteriorate, so the addition amount of Mn is This range.

(Ni:2.00〜5.00質量%)
Ni(ニッケル)は、鋼の焼入れ性および焼入れ焼戻し後の靭性を向上させるのに有効な元素である。焼入れ性において、十分な効果を得るためにはその添加量は3質量%であるが、その添加量が多すぎると加工性ならびに被削性が低下するため、その上限は5.00質量%とする。
(Ni: 2.00 to 5.00% by mass)
Ni (nickel) is an element effective in improving the hardenability of steel and the toughness after quenching and tempering. In order to obtain a sufficient effect in hardenability, the amount added is 3% by mass, but if the amount added is too large, the workability and machinability deteriorate, so the upper limit is 5.00% by mass. To do.

(Cr:0.50〜2.00質量%)
Cr(クロム)は、鋼の焼入れ性および焼入れ焼戻し後の強度および靭性を向上させるのに有効な元素である。焼入れ性において十分な効果を得るためには、その添加量は0.50質量%であるが、その添加量が多すぎると複炭化物が形成されて焼入れ性および被削性を害するので、その上限は2.00質量%とする。
(Cr: 0.50 to 2.00% by mass)
Cr (chromium) is an effective element for improving the hardenability of steel and the strength and toughness after quenching and tempering. In order to obtain a sufficient effect in hardenability, the amount added is 0.50% by mass. However, if the amount added is too large, double carbides are formed and the hardenability and machinability are impaired. Is 2.00% by mass.

(Mo:0.10〜0.50質量%)
Mo(モリブデン)もCrと同様に、鋼の焼入れ性および焼入れ焼戻し後の強度および靭性を向上させるのに有効な元素である。焼入れ性において十分な効果を得るためには、その添加量は0.10質量%であるが、その添加量が多すぎると複炭化物が形成されて焼入れ性および被削性を害するので、その上限は0.50質量%とする。
(Mo: 0.10 to 0.50 mass%)
Similarly to Cr, Mo (molybdenum) is an element effective for improving the hardenability of steel and the strength and toughness after quenching and tempering. In order to obtain a sufficient effect in hardenability, the amount added is 0.10% by mass, but if the amount added is too large, double carbides are formed and the hardenability and machinability are impaired. Is 0.50 mass%.

(Cu:0.3質量%以下)
Cu(銅)は、焼入れ性および耐候性向上に有効な元素であるが、その添加量が多すぎると加工性、靭性を害してしまう上に、効果であるため、その添加量の上限は0.3質量%とする。
(O:0.01質量%以下)
O(酸素)が多すぎると、鋼の清浄度が悪くなり、特にSiO系の大型介在物が増加して疲れ強さの低下をきたすので0.01質量%以下とする。
(Cu: 0.3% by mass or less)
Cu (copper) is an element effective for improving hardenability and weather resistance. However, if the addition amount is too large, the workability and toughness are impaired and the effect is effective, so the upper limit of the addition amount is 0. .3 mass%.
(O: 0.01% by mass or less)
If there is too much O (oxygen), the cleanliness of the steel will deteriorate, and in particular, SiO 2 -based large inclusions will increase, resulting in a decrease in fatigue strength.

(Al:0.010〜0.050質量%)
Al(アルミニウム)は溶解時における脱酸の効果があると共に、AlNとして微細分散することで粒径の微細化に有効な元素である。そして、その添加量が0.010質量%より少ないとこれらの効果を得ることができず、反対に0.050質量%を超えるとAlNが粗大化し、結晶粒微細化の効果が得られなくなるのでAlの添加量はこの範囲とする。
(Al: 0.010-0.050 mass%)
Al (aluminum) has an effect of deoxidation at the time of dissolution, and is an element effective for refining the particle size by being finely dispersed as AlN. And if the addition amount is less than 0.010% by mass, these effects cannot be obtained. Conversely, if it exceeds 0.050% by mass, AlN becomes coarse and the effect of refining crystal grains cannot be obtained. The amount of Al added is within this range.

(N:0.010〜0.030質量%)
N(窒素)は、AlNとして微細分散することで粒径の微細化に有効な元素である。そして、その添加量が0.010質量%より少ないとこれらの効果を得ることができず、反対に0.030質量%を超えると加工性ならびに被削性が劣化させるのでNの添加量はこの範囲とする。望ましくは、Nの添加量は0.015〜0.020質量%である。
(N: 0.010 to 0.030 mass%)
N (nitrogen) is an element that is effective in reducing the particle size by being finely dispersed as AlN. And if the addition amount is less than 0.010% by mass, these effects cannot be obtained. Conversely, if it exceeds 0.030% by mass, the workability and machinability deteriorate, so the addition amount of N is this Range. Desirably, the addition amount of N is 0.015-0.020 mass%.

この発明の浸炭転がり軸受は、前記鋼材からなる軸受部材の芯部平均硬度Hv(ビッカース硬度)と硬度の標準偏差σが、Hv−4σ>400の関係を満足することにより、優れた耐久性と長寿命を発揮することができる。 Carburizing the rolling bearing of the present invention, core average hardness Hv of the bearing member made of the steel material (Vickers hardness) The standard deviation of the hardness σ is, by satisfying the relation Hv-4 [sigma]> 400, and excellent durability Long life can be demonstrated.

この発明の浸炭転がり軸受は、1観察範囲6.25mm2 、全被検面積200mm2 を観察し、各視野における旧オーステナイト結晶粒の最大面積の平方根より極値統計を行い、1300000mm2 に換算して求める最大粒径dが、140μm未満であることにより、さらに優れた耐久性と長寿命を発揮することができる。 The carburized rolling bearing according to the present invention has an observation range of 6.25 mm 2 and a total test area of 200 mm 2 , and performs extreme value statistics from the square root of the maximum area of the prior austenite crystal grains in each field of view to be converted into 1300000 mm 2. maximum particle size d to determine Te is, by less than 140 .mu.m, it is possible to exhibit more excellent durability and long life.

この発明の浸炭転がり軸受は、前記鋼材からなる軸受部材の芯部平均硬度Hv(ビッカース硬度)と硬度の標準偏差σと、1観察範囲6.25mm 2 、全被検面積200mm 2 を観察し、各視野における旧オーステナイト結晶粒の最大面積の平方根より極値統計を行い、1300000mm 2 に換算して求める最大粒径dが、Hv−4σ+2500/(粒径dの平方根)>650の関係を満足することにより、さらに優れた耐久性と長寿命を発揮することができる。 Carburizing the rolling bearing of the present invention is to observe the core average hardness Hv of the bearing member made of the steel (Vickers hardness), and the standard deviation σ of hardness, 1 observation range 6.25 mm 2, the total the test area 200 mm 2 The extreme value statistics are calculated from the square root of the maximum area of the prior austenite crystal grains in each field of view, and the maximum particle size d calculated by converting to 1300000 mm 2 satisfies the relationship of Hv−4σ + 2500 / (square root of particle size d)> 650. by, it can exhibit further excellent durability and long life.

本発明によれば、肉厚や質量の大きさ故に不完全焼入組織や旧オーステナイト粒径の粗大な組織が存在し易い大型の軸受であっても、鋼材の合金組成を最適にすることで熱処理を中心としたプロセス面を殆ど変更することなく、優れた耐久性と寿命を発揮することができる。   According to the present invention, it is possible to optimize the alloy composition of a steel material even for a large bearing in which an incompletely hardened structure or a coarse structure with a prior austenite grain size is likely to exist because of the thickness or mass. Excellent durability and longevity can be exhibited without substantially changing the process surface centering on heat treatment.

次に、本発明に係る大型の浸炭転がり軸受の実施の一形態を添付図面を参照しながら詳細に説明する。
図1は、本発明に係る大型の浸炭転がり軸受100のうち、鉄鋼設備用圧延機のバックアップロールなどに適用される4列円錐ころ軸受の構成を示した部分断面図である。
図示するように、この4列円錐ころ軸受100は、内輪10と外輪20との間に、円錐台形状のころ30をその周方向に沿って複数、保持器40によって等間隔かつ回転自在に配設すると共に、さらに、このころ列50をその幅方向に沿って4つ配列した構造となっている。
Next, an embodiment of a large carburized rolling bearing according to the present invention will be described in detail with reference to the accompanying drawings.
FIG. 1 is a partial cross-sectional view showing a configuration of a four-row tapered roller bearing applied to a backup roll of a rolling mill for steel facilities, among large-sized carburized rolling bearings 100 according to the present invention.
As shown in the figure, this four-row tapered roller bearing 100 has a plurality of frustoconical rollers 30 arranged between the inner ring 10 and the outer ring 20 along the circumferential direction so as to be rotatable at regular intervals by a cage 40. In addition, four roller arrays 50 are arranged along the width direction.

そして、例えばこの内輪10に図示しない軸を取り付けるとともに、外輪20を図示しないハウジングなどに取り付けた状態で各円錐ころ30を内輪10および外輪20の各軌道面に沿って転動させることで前記軸のラジアル荷重とアキシアル荷重とを同時に負担できるようになっている。
そして、この4列円錐ころ軸受100を構成する軸受部材、すなわち内輪10、外輪20、円錐ころ30、保持器40のうち少なくとも1つは、以下の4つの条件を全て満たすようになっている。
For example, a shaft (not shown) is attached to the inner ring 10, and the tapered rollers 30 are rolled along the raceway surfaces of the inner ring 10 and the outer ring 20 with the outer ring 20 attached to a housing (not shown). The radial load and the axial load can be borne simultaneously.
At least one of the bearing members constituting the four-row tapered roller bearing 100, that is, the inner ring 10, the outer ring 20, the tapered roller 30 and the cage 40, satisfies all the following four conditions.

(1)内輪10、外輪20、円錐ころ30、保持器40のうち少なくとも1つは、C:0.10〜0.30質量%、Si:0.10〜0.50質量%、Mn:0.60〜1.00質量%、Ni:2.00〜5.00質量%、Cr:0.50〜2.00質量%、Mo:0.10〜0.50質量%、Cu:0.3質量%以下、O:0.01質量%以下、Al:0.010〜0.050質量%、N:0.010〜0.030質量%、残部Feおよび不可避的不純物からなる鋼材から構成され、かつ、この鋼材のDI値((0.2×C+0.128)(1+0.7Si)(1+3.45Mn)(1+0.07Ni+0.27Ni×Ni)(1+2Cr)(1+2.5Mo)(1+0.35Cu))とこの鋼材からなる軸受部材の肉厚tが、DI/t>0.45の関係を満足する。 (1) At least one of the inner ring 10, the outer ring 20, the tapered roller 30, and the cage 40 is C: 0.10 to 0.30 mass%, Si: 0.10 to 0.50 mass%, Mn: 0 .60 to 1.00% by mass, Ni: 2.00 to 5.00% by mass, Cr: 0.50 to 2.00% by mass, Mo: 0.10 to 0.50% by mass, Cu: 0.3 It is composed of a steel material composed of mass% or less, O: 0.01 mass% or less, Al: 0.010 to 0.050 mass%, N: 0.010 to 0.030 mass%, the balance Fe and unavoidable impurities, And DI value of this steel material ((0.2 × C + 0.128) (1 + 0.7Si) (1 + 3.45Mn) (1 + 0.07Ni + 0.27Ni × Ni) (1 + 2Cr) (1 + 2.5Mo) (1 + 0.35Cu)) And the thickness t of the bearing member made of this steel material is DI / t> 0 .45 relationship is satisfied.

(2)また、さらに、前記鋼材からなる軸受部材は、その芯部平均硬度Hv(ビッカース硬度)と硬度の標準偏差σが、Hv−4σ>400の関係を満足する。
(3)また、前記鋼材からなる軸受部材は、1観察範囲6.25mm2 、全被検面積200mm2 を観察し、各視野における旧オーステナイト結晶粒の最大面積の平方根より極値統計を行い、1300000mm2 に換算して求める最大粒径dが、140μm未満である。
(4)また、前記鋼材からなる軸受部材の芯部平均硬度Hv(ビッカース硬度)と硬度の標準偏差σと、1観察範囲6.25mm 2 、全被検面積200mm 2 を観察し、各視野における旧オーステナイト結晶粒の最大面積の平方根より極値統計を行い、1300000mm 2 に換算して求める最大粒径dが、Hv−4σ+2500/(粒径dの平方根)>650の関係を満足する。
(2) Further, in the bearing member made of the steel material, the core average hardness Hv (Vickers hardness) and the standard deviation σ of the hardness satisfy the relationship of Hv−4σ> 400.
(3) Further, the bearing member made of the steel material observes an observation range of 6.25 mm 2 and a total test area of 200 mm 2 , and performs extreme value statistics from the square root of the maximum area of the prior austenite crystal grains in each field of view. The maximum particle diameter d calculated in terms of 1300000 mm 2 is less than 140 μm.
(4) Further, the core part average hardness Hv (Vickers hardness) of the bearing member made of the steel material , the standard deviation σ of hardness, 1 observation range 6.25 mm 2 , total test area 200 mm 2 were observed, The extreme value statistics are calculated from the square root of the maximum area of the prior austenite crystal grains in, and the maximum particle size d calculated by converting to 1300000 mm 2 satisfies the relationship of Hv−4σ + 2500 / (square root of particle size d)> 650.

そして、このような条件を全て満足した本発明の4列円錐ころ軸受(浸炭転がり軸受)100にあっては、以下の実施例からもわかるように、熱処理を中心としたプロセス面を変えなくとも優れた耐久性と長寿命を発揮することができる。このため、本発明の4列円錐ころ軸受100のような肉厚や質量の大きな大型の軸受であっても、その機能を長期に亘って維持することができる。   And, in the four-row tapered roller bearing (carburized rolling bearing) 100 of the present invention that satisfies all these conditions, as can be seen from the following examples, the process surface centering on heat treatment is not changed. Excellent durability and long life can be demonstrated. For this reason, even if it is a large sized bearing with large thickness and mass like the 4-row tapered roller bearing 100 of this invention, the function can be maintained over a long period of time.

次に、本発明の具体的実施例について説明する。
先ず以下の表1に示すような組成(C、Si、Mn、Ni、Cr、Mo、Cu、Al、N+残部Fe+不可避的不純物)をした鋼材からなる3種類の肉厚(14.5mm、29mm、45mm)の試験片(比較例1,2、7,8、13,14,19,23および実施例3〜6、9〜12、15〜18、21〜22)を作成し、これら各試験片を用いて疲労試験、硬さ測定、粒径の極値統計と強度、軸受寿命試験を行い、その結果を以下の表2に示した。
Next, specific examples of the present invention will be described.
First, three types of wall thickness (14.5 mm, 29 mm) made of steel materials having compositions (C, Si, Mn, Ni, Cr, Mo, Cu, Al, N + balance Fe + inevitable impurities) as shown in Table 1 below. , 45 mm) test pieces (Comparative Examples 1, 2, 7, 8, 13, 14, 19, 23 and Examples 3 to 6, 9 to 12, 15 to 18, 21 to 22). The piece was used for fatigue test, hardness measurement, extreme value statistics and strength of grain size, bearing life test, and the results are shown in Table 2 below.

表2には、これら各試験片のDI値((0.2×C+0.128)(1+0.7Si)(1+3.45Mn)(1+0.07Ni+0.27Ni×Ni)(1+2Cr)(1+2.5Mo)(1+0.35Cu))と、DI値/肉厚、平均硬度、硬度の標準偏差、これらより求めたHv−4σ(組織の硬度)の値、疲労限度、最大粒径、パラメータX(X=Hv−4σ+2500/(粒径dの平方根))、さらに軸受寿命試験における寿命比(比較例1を1とした)を示した。 Table 2 shows the DI value ((0.2 × C + 0.128) (1 + 0.7Si) (1 + 3.45Mn) (1 + 0.07Ni + 0.27Ni × Ni) (1 + 2Cr) (1 + 2.5Mo) ( 1 + 0.35Cu)), DI value / thickness, average hardness, hardness of the standard deviation of the value of the Hv-4 [sigma] obtained from these (the hardness of the tissue), fatigue limit, a maximum particle size, the parameters X (X = Hv −4σ + 2500 / (square root of particle diameter d)), and the life ratio in the bearing life test (comparative example 1 is 1).

なお、これら各試験片には、図2に示すように、所定形状に鍛造した後、浸炭(850〜1050℃)→焼鈍(600〜700℃)→焼入れ(780〜900℃)→焼戻し(150〜240℃)といった従来から行われている一連の熱処理を施した。
また、本実施例で用いた疲労試験方法としては、これら各試験片の試験部直径8mmの回転曲げを行った。
As shown in FIG. 2, these test pieces are forged into a predetermined shape, and then carburized (850 to 1050 ° C.) → annealed (600 to 700 ° C.) → quenched (780 to 900 ° C.) → tempered (150 A series of conventional heat treatments (˜240 ° C.) were performed.
In addition, as a fatigue test method used in this example, rotational bending was performed with a test portion diameter of 8 mm of each test piece.

また、硬さ測定方法としては、疲労試験の試験部に相当する部分の硬さ測定を行った。試験荷重は4900Nで少なくとも30点以上の測定を行い、平均と標準偏差を求めた。
また、最大粒径は極値統計により算出したが、1観察範囲6.25mm、全被検面積200mmを観察し、各視野における粒子の最大面積の平方根より極値統計を行い、1300000mmに換算したときに予想される最大粒径を計算した。
Moreover, as a hardness measuring method, the hardness measurement of the part corresponded to the test part of a fatigue test was performed. The test load was 4900N and at least 30 points were measured, and the average and standard deviation were obtained.
Further, the maximum grain size was calculated by extreme value statistics, 1 observation range 6.25 mm 2, to observe all the test area 200 mm 2, performs extreme value statistics than the square root of the maximum area of the particles in each field, 1300000Mm 2 The maximum particle size expected when converted to was calculated.

また、寿命試験方法としては、表1に示す鋼材から試験用の軸受(NU228)を形成し、この軸受(NU228)を用いて以下の条件で軸受寿命試験を行った。なお、焼入れを行うときには、予め大型軸受の焼入れ時の芯部冷却速度を測定しておき、その冷却速度と同じになるように、冷媒の温度・攪拌条件などを変え、大型軸受の芯部組織を再現した。
・軸受:NU228
・ラジアル荷重:P/C=0.6
・回転数:1000min−1
・潤滑:Ro58
As a life test method, a test bearing (NU228) was formed from the steel materials shown in Table 1, and a bearing life test was performed under the following conditions using this bearing (NU228). When quenching, measure the core cooling rate at the time of quenching the large bearing, change the refrigerant temperature and stirring conditions, etc. so that it is the same as the cooling rate, and the core structure of the large bearing Was reproduced.
・ Bearings: NU228
・ Radial load: P / C = 0.6
・ Rotation speed: 1000 min -1
・ Lubrication: Ro58

Figure 0005251261
Figure 0005251261

Figure 0005251261
Figure 0005251261

図3〜図5は、表2に示した結果のうち、各試験片の肉厚14.5mm、29mm、45mmの各場合について疲労強さ(疲労限度/MP)と寿命比(L10寿命比)との関係をプロットしたものである。
図示するようにいずれの肉厚の場合でも、約600MPa以上で寿命比が大きくなることがわかる。
また、図6〜図8は、各試験片の肉厚14.5mm、29mm、45mmの各場合についてDI値/肉厚tと寿命比(L10寿命比)との関係をプロットしたものである。
図示するようにいずれの肉厚の場合でも、DI値/肉厚が、0.45以上であれば、比較例1に比べて2倍以上の寿命比を発揮できることがわかる。
3 to 5 show the fatigue strength (fatigue limit / MP) and life ratio (L10 life ratio) in each case of the thicknesses 14.5 mm, 29 mm, and 45 mm of the test pieces among the results shown in Table 2. Is a plot of the relationship.
As shown in the figure, it can be seen that the life ratio becomes large at about 600 MPa or more at any wall thickness.
6 to 8 are plots of the relationship between the DI value / thickness t and the life ratio (L10 life ratio) for each case where the thickness of each test piece is 14.5 mm, 29 mm, and 45 mm.
As shown in the figure, it can be seen that at any thickness, if the DI value / thickness is 0.45 or more, the life ratio can be twice or more that of Comparative Example 1.

次に、図9は、比較例1〜実施例18までの18個の試験片の疲労強度(疲労限度)をHv−4σ(組織の硬度)に対して表したものである。
この図からもわかるように、Hv−4σが大きくなるにしたがって疲労強度も大きくなり、両者は比例関係になっている。そして、Hv−4σが約400以上で十分な疲労強度が得られることがわかる。
Next, FIG. 9 represents the fatigue strength (fatigue limit) of 18 test pieces from Comparative Example 1 to Example 18 with respect to Hv-4σ (structure hardness).
As can be seen from this figure, the fatigue strength increases as Hv-4σ increases, and both are in a proportional relationship. And it turns out that sufficient fatigue strength is obtained when Hv-4σ is about 400 or more.

また、図10は、比較例19〜実施例22までの4個の試験片の、極値統計に由来する最大粒径(μm)と寿命比との関係を示したものである。
この図からもわかるように最大粒径(μm)が小さくなるに従って寿命比が大きくなり、両者は反比例関係になっている。そして、最大粒径(μm)が約140μm以下で優れた寿命比が得られることがわかる。
FIG. 10 shows the relationship between the maximum particle size (μm) derived from extreme value statistics and the life ratio of the four test pieces from Comparative Example 19 to Example 22.
As can be seen from this figure, the life ratio increases as the maximum particle size (μm) decreases, and both are in an inversely proportional relationship. It can be seen that an excellent life ratio can be obtained when the maximum particle size (μm) is about 140 μm or less.

また、図11は、パラメータXと寿命比との関係を示したものである。
図からもわかるようにパラメータXが、約650以上で顕著な寿命比を発揮できることがわかる。
すなわち、表2に示すように比較例1,2、7,8、13,14は、いずれもDI値/肉厚tが本発明で規定する値(0.45以上)より低く、また、芯部平均硬度Hv(ビッカース硬度)と硬度の標準偏差σの関係を示すHv−4σが本発明で規定する値(400以上)より低く、さらにパラメータX(Hv−4σ+2500/(粒径dの平方根))が本発明で規定する値(650以上)より低いため、いずれも十分な寿命を発揮することができなかった。
FIG. 11 shows the relationship between the parameter X and the life ratio.
As can be seen from the figure, a remarkable life ratio can be exhibited when the parameter X is about 650 or more.
That is, as shown in Table 2, Comparative Examples 1, 2, 7, 8, 13, and 14 all have a DI value / thickness t lower than the value defined in the present invention (0.45 or more). Hv-4σ indicating the relationship between the part average hardness Hv (Vickers hardness) and the standard deviation σ of hardness is lower than the value specified in the present invention (400 or more), and further, the parameter X (Hv-4σ + 2500 / (square root of particle diameter d)) ) Is lower than the value specified in the present invention (650 or more), and none of them can exhibit a sufficient life.

また、比較例19は、極値統計に由来する測定方法で測定した最大粒径が180μmであり、本発明で規定する値(140μm未満)より低いため、同じく十分な寿命を発揮することができなかった。
また、比較例23は、DI値/肉厚t、Hv−4σ、最大粒径、パラメータXのいずれも本発明の既定値を満足していないため、寿命比が各例のなかで最も低かった(0.6)。
これに対し、本発明の条件を全て満足した実施例3〜6、9〜12、15〜18、21〜22の寿命比は、いずれも比較例1の2倍以上と優れた寿命を発揮した。特に、パラメータXが最も高い実施例6は、比較例1の3倍近い寿命比(2.7)を発揮した。
In Comparative Example 19, the maximum particle size measured by the measurement method derived from extreme value statistics is 180 μm, which is lower than the value specified in the present invention (less than 140 μm), and therefore can exhibit a sufficient life. There wasn't.
In Comparative Example 23, none of the DI value / thickness t, Hv-4σ, maximum particle size, and parameter X satisfied the preset values of the present invention, so the life ratio was the lowest among the examples. (0.6).
On the other hand, the life ratios of Examples 3 to 6, 9 to 12, 15 to 18, and 21 to 22 satisfying all the conditions of the present invention exhibited excellent lifespan, which is twice or more that of Comparative Example 1. . In particular, Example 6 having the highest parameter X exhibited a life ratio (2.7) nearly three times that of Comparative Example 1.

本発明に係る浸炭転がり軸受(4列円錐ころ軸受)100の実施の一形態を示す部分断面図である。1 is a partial cross-sectional view showing an embodiment of a carburized rolling bearing (four-row tapered roller bearing) 100 according to the present invention. 本実施例で採用した熱処理工程を示す工程図であるIt is process drawing which shows the heat treatment process employ | adopted in the present Example. 疲労限度と寿命比との関係(肉厚14.5mm)を示したグラフ図である。It is the graph which showed the relationship (wall thickness 14.5mm) of a fatigue limit and a life ratio. 疲労限度と寿命比との関係(肉厚29mm)を示したグラフ図である。It is the graph which showed the relationship (thickness 29mm) of a fatigue limit and a life ratio. 疲労限度と寿命比との関係(肉厚45mm)を示したグラフ図である。It is the graph which showed the relationship (thickness 45mm) of a fatigue limit and a life ratio. DI値/肉厚と寿命比との関係(肉厚14.5mm)を示したグラフ図である。It is the graph which showed the relationship (wall thickness 14.5mm) of DI value / wall thickness and life ratio. DI値/肉厚と寿命比との関係(肉厚29mm)を示したグラフ図である。It is the graph which showed the relationship (thickness 29mm) of DI value / thickness and life ratio. DI値/肉厚と寿命比との関係(肉厚45mm)を示したグラフ図である。It is the graph which showed the relationship (thickness 45mm) of DI value / wall thickness and life ratio. Hv−4σ(組織の硬度)と疲労限度との関係を示したグラフ図である。It is the graph which showed the relationship between Hv-4 (sigma) (structure hardness) and a fatigue limit. 最大粒径と寿命比との関係を示したグラフ図である。It is the graph which showed the relationship between the maximum particle size and life ratio. パラメータXと寿命比との関係を示したグラフ図である。It is the graph which showed the relationship between the parameter X and a lifetime ratio.

符号の説明Explanation of symbols

100…浸炭転がり軸受(4列円錐ころ軸受)
10…内輪
20…外輪
30…円錐ころ
40…保持器
100 ... Carburized rolling bearing (4-row tapered roller bearing)
DESCRIPTION OF SYMBOLS 10 ... Inner ring 20 ... Outer ring 30 ... Conical roller 40 ... Cage

Claims (3)

内輪と外輪との間に複数の転動体を配設してなる浸炭転がり軸受であって、
前記内輪、外輪、転動体のいずれか1つ以上の軸受部材が、
C:0.10〜0.30質量%、Si:0.10〜0.50質量%、Mn:0.60〜1.00質量%、Ni:2.00〜5.00質量%、Cr:0.50〜2.00質量%、Mo:0.10〜0.50質量%、Cu:0.3質量%以下、O:0.01質量%以下、Al:0.010〜0.050質量%、N:0.010〜0.030質量%、残部Feおよび不可避的不純物からなる鋼材から構成され、
かつ、当該鋼材のDI値と当該鋼材からなる軸受部材の肉厚t( mm)が、DI/t>0.45の関係を満足し、
前記鋼材からなる軸受部材の芯部平均硬度Hv(ビッカース硬度)と硬度の標準偏差σが、Hv−4σ>400の関係を満足することを特徴とする浸炭転がり軸受。
但し、DI値=(0.2×C+0.128)(1+0.7Si)(1+3.45Mn)(1+0.07Ni+0.27Ni×Ni)(1+2Cr)(1+2.5Mo)(1+0.35Cu)とする。
A carburized rolling bearing in which a plurality of rolling elements are disposed between an inner ring and an outer ring,
Any one or more bearing members of the inner ring, the outer ring, and the rolling element,
C: 0.10 to 0.30 mass%, Si: 0.10 to 0.50 mass%, Mn: 0.60 to 1.00 mass%, Ni: 2.00 to 5.00 mass%, Cr: 0.50 to 2.00 mass%, Mo: 0.10 to 0.50 mass%, Cu: 0.3 mass% or less, O: 0.01 mass% or less, Al: 0.010 to 0.050 mass% %, N: 0.010 to 0.030% by mass, the balance is made of a steel material made of Fe and inevitable impurities,
And the DI value of the steel material and the thickness t (mm) of the bearing member made of the steel material satisfy the relationship of DI / t> 0.45,
A carburized rolling bearing characterized in that an average hardness Hv (Vickers hardness) of the bearing member made of the steel material and a standard deviation σ of the hardness satisfy a relationship of Hv-4σ> 400.
However, DI value = (0.2 × C + 0.128) (1 + 0.7Si) (1 + 3.45Mn) (1 + 0.07Ni + 0.27Ni × Ni) (1 + 2Cr) (1 + 2.5Mo) (1 + 0.35Cu).
請求項1に記載の浸炭転がり軸受において、
1観察範囲6.25mm2 、全被検面積200mm2 を観察し、各視野における旧オーステナイト結晶粒の最大面積の平方根より極値統計を行い、1300000mm2 に換算して求める最大粒径dが、140μm未満であることを特徴とする浸炭転がり軸受。
The carburized rolling bearing according to claim 1,
1 observation range 6.25 mm 2 , total test area 200 mm 2 is observed, extreme value statistics are calculated from the square root of the maximum area of the prior austenite crystal grains in each field of view, the maximum particle diameter d calculated by converting to 1300000 mm 2 , A carburized rolling bearing characterized by being less than 140 μm.
請求項1に記載の浸炭転がり軸受において、
前記鋼材からなる軸受部材の芯部平均硬度Hv(ビッカース硬度)と硬度の標準偏差σと、1観察範囲6.25mm 2 、全被検面積200mm 2 を観察し、各視野における旧オーステナイト結晶粒の最大面積の平方根より極値統計を行い、1300000mm 2 に換算して求める最大粒径dが、Hv−4σ+2500/(粒径dの平方根)>650の関係を満足することを特徴とする浸炭転がり軸受。
The carburized rolling bearing according to claim 1,
Observe the core average hardness Hv (Vickers hardness) , hardness standard deviation σ, 1 observation range 6.25 mm 2 , total test area 200 mm 2 of the bearing member made of the steel material, and the old austenite crystal grains in each field of view. Carbide rolling, characterized in that extreme value statistics are calculated from the square root of the maximum area of the material and the maximum particle size d obtained by conversion to 1300000 mm 2 satisfies the relationship of Hv-4σ + 2500 / (square root of particle size d)> 650 bearing.
JP2008140006A 2008-05-28 2008-05-28 Carburized rolling bearing Active JP5251261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008140006A JP5251261B2 (en) 2008-05-28 2008-05-28 Carburized rolling bearing

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008140006A JP5251261B2 (en) 2008-05-28 2008-05-28 Carburized rolling bearing

Publications (2)

Publication Number Publication Date
JP2009287073A JP2009287073A (en) 2009-12-10
JP5251261B2 true JP5251261B2 (en) 2013-07-31

Family

ID=41456573

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008140006A Active JP5251261B2 (en) 2008-05-28 2008-05-28 Carburized rolling bearing

Country Status (1)

Country Link
JP (1) JP5251261B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103597101B (en) * 2011-05-25 2016-10-12 Skf公司 The method of heat-treated steel component
CN115667566B (en) * 2020-03-31 2024-01-16 日本制铁株式会社 Carburized bearing component

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH073393A (en) * 1993-06-17 1995-01-06 Sumitomo Metal Ind Ltd Steel product excellent in rolling fatigue life and procucibility
JP3646467B2 (en) * 1996-07-31 2005-05-11 日本精工株式会社 Rolling bearing
JP4114218B2 (en) * 1996-09-19 2008-07-09 日本精工株式会社 Rolling bearing
JP2002275580A (en) * 2001-03-15 2002-09-25 Nsk Ltd Antifriction bearing
JP2007308739A (en) * 2006-05-16 2007-11-29 Nsk Ltd Method for manufacturing rolling bearing, and rolling bearing
JP5119717B2 (en) * 2007-04-11 2013-01-16 日本精工株式会社 Method for manufacturing rolling bearing component and rolling bearing
JP2008266683A (en) * 2007-04-17 2008-11-06 Nsk Ltd Method for producing rolling bearing constituting member, and rolling bearing

Also Published As

Publication number Publication date
JP2009287073A (en) 2009-12-10

Similar Documents

Publication Publication Date Title
US9506137B2 (en) Gas-carburized steel part excellent in surface fatigue strength, steel product for gas carburizing, and manufacturing method of gas-carburized steel part
KR20140073506A (en) Ingot for bearing and production process
KR101482364B1 (en) Ingot for bearing, and process for producing bearing steel
KR20130061737A (en) Bearing steel and ingot material for bearing having high rolling fatigue life characteristics and method for manufacturing same
JP2009192071A (en) Roller bearing
JP5696575B2 (en) Rolling sliding member, method for manufacturing the same, and rolling bearing
JP4923776B2 (en) Rolling and sliding parts and manufacturing method thereof
JP2014074212A (en) Rolling and sliding member, manufacturing method thereof, and rolling bearing
JP4998054B2 (en) Rolling bearing
JP2004232669A (en) Roller bearing unit for wheel support
JP5251261B2 (en) Carburized rolling bearing
JP5998631B2 (en) Rolling bearing
JP2018021654A (en) Rolling slide member, its manufacturing method, carburization steel material and rolling bearing
JP2011174506A (en) Method for manufacturing thrust race of needle thrust bearing
US11136639B2 (en) Bearing steel and manufacturing method therefor
JP2007177897A (en) Roller bearing
JP2006299313A (en) Rolling supporter
JP2010031307A (en) Roller bearing
JP5103987B2 (en) Method for manufacturing rolling bearing component and rolling bearing
US6719854B2 (en) Rolling Bearing
JP6029950B2 (en) After hot forging, normalizing can be omitted, and a method for producing case-hardened steel and parts with excellent high-temperature carburizing properties
JP2007308739A (en) Method for manufacturing rolling bearing, and rolling bearing
JP2006328514A (en) Rolling supporting device
JP2022170056A (en) steel
JP5672740B2 (en) Manufacturing method of high fatigue strength case hardening steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120918

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120925

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121107

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130319

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130401

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160426

Year of fee payment: 3

S801 Written request for registration of abandonment of right

Free format text: JAPANESE INTERMEDIATE CODE: R311801

ABAN Cancellation of abandonment
R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350