JP5247986B2 - Manufacturing method of high purity iron oxide - Google Patents
Manufacturing method of high purity iron oxide Download PDFInfo
- Publication number
- JP5247986B2 JP5247986B2 JP2006057963A JP2006057963A JP5247986B2 JP 5247986 B2 JP5247986 B2 JP 5247986B2 JP 2006057963 A JP2006057963 A JP 2006057963A JP 2006057963 A JP2006057963 A JP 2006057963A JP 5247986 B2 JP5247986 B2 JP 5247986B2
- Authority
- JP
- Japan
- Prior art keywords
- iron
- purity
- aqueous
- solution
- iron oxide
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Compounds Of Iron (AREA)
Description
本発明は高純度酸化鉄の製造方法に関する。 The present invention relates to a process for producing a high purity oxidation of iron.
高純度鉄は、半導体素子、電子デバイス、記録素子等の分野において使用されている。かかる目的で使用されている高純度鉄の純度は、通常99.9〜99.99%の程度である。しかしながら近年それら素子等の高集積度化、あるいは新規構造素子の製造に伴い、高純度鉄に僅かに含まれる種々の不純物(重金属、アルカリ金属、又はアルカリ土類金属、またはそれらのイオン)による好ましくない効果が認識され、より一層の高純度鉄が求められている。かかる高純度鉄とは鉄の純度が少なくとも99.9995%以上であり、かつ特定の好ましくない不純物(重金属、アルカリ金属、又はアルカリ土類金属、またはそれらのイオン)の含有量が所定の濃度より低いことが保証されるものである。 High purity iron is used in the fields of semiconductor elements, electronic devices, recording elements and the like. The purity of high-purity iron used for this purpose is usually on the order of 99.9 to 99.99%. However, due to the recent high integration of these elements and the manufacture of new structural elements, it is preferable due to various impurities (heavy metal, alkali metal, alkaline earth metal, or ions thereof) slightly contained in high-purity iron. There is a need for higher purity iron. Such high-purity iron means that the purity of iron is at least 99.9995% or more, and the content of certain undesirable impurities (heavy metal, alkali metal, alkaline earth metal, or ions thereof) is higher than a predetermined concentration. It is guaranteed to be low.
従来かかる高純度鉄を製造する方法には、例えば溶媒抽出、イオン交換、あるいは電解精製等の湿式処理による金属元素の分離、乾燥水素ガス処理による酸素等のガス性元素の除去、またはフロートゾーンメルト精製法がある。しかしこれらの方法は制御が難しく工業的規模で安定して高純度鉄を供給することが難しいという問題がある。 Conventional methods for producing high-purity iron include, for example, separation of metal elements by wet treatment such as solvent extraction, ion exchange, or electrolytic purification, removal of gaseous elements such as oxygen by dry hydrogen gas treatment, or float zone melt. There is a purification method. However, these methods have a problem that it is difficult to control and it is difficult to stably supply high-purity iron on an industrial scale.
また粗鉄材料を塩酸処理及び酸化により鉄(3+)イオンを含む塩酸酸性水溶液とし、かかる溶液をイオン交換クロマトグラフにより銅イオン等の不純物を除去した後、蒸発乾固して酸化鉄とし、後還元して高純度鉄とする方法が知られている(特許文献1)。しかしこの方法は塩化鉄水溶液を加熱して蒸発乾固するという過大なコストを要する工程を含むこと、さらに塩化水素ガスが放出されるということから、コストの点及び作業環境上問題があった。
本発明は、99.9995%以上の純度の高純度鉄の製造に好適な高純度酸化鉄の製造方法を提供することを目的とする。 The present invention aims to provide a manufacturing method of a preferred high purity oxidation of iron in the production of high purity iron or 99.9995% pure.
本発明者らは、99.9995%以上の純度の高純度鉄を低コストかつ大量に、かつ環境に優しい条件で製造する方法を開発すべく鋭意研究した結果、酸性の塩化鉄水溶液を加熱蒸発乾固して酸化鉄とする従来の工程に替えて、酸性の塩化鉄水溶液を特定の条件下でアルカリ水溶液で中和することにより特定の好ましくない不純物(重金属、アルカリ金属、又はアルカリ土類金属、またはそれらのイオン)の含有量が所定の濃度より低い、水酸化鉄を固体沈澱物として得、さらにこの高純度水酸化鉄を用いて、酸化鉄への酸化、及び鉄への還元を行うことにより、高純度の鉄が、低コストでかつ環境に優しい条件で得られることを見いだし、本発明を完成したものである。 As a result of diligent research to develop a method for producing high-purity iron having a purity of 99.9995% or more in a low-cost, large-scale and environmentally friendly condition, the present inventors have heated and evaporated an acidic iron chloride aqueous solution. Instead of the traditional process of drying to iron oxide, certain unfavorable impurities (heavy metal, alkali metal, or alkaline earth metal by neutralizing acidic aqueous iron chloride solution with alkaline aqueous solution under specific conditions , Or their ions) is lower than a predetermined concentration, and iron hydroxide is obtained as a solid precipitate, and this high-purity iron hydroxide is used to oxidize and reduce to iron oxide. Thus, it has been found that high-purity iron can be obtained at low cost under environmentally friendly conditions, and the present invention has been completed.
すなわち本発明は、スクラップ鉄を塩酸で溶解し、次いで酸化することにより塩化鉄水溶液を調製し、得られた塩化鉄水溶液をイオン交換クロマトグラフ処理して重金属不純物を除去した後、アルカリ水溶液で中和して水酸化鉄を沈澱させ、当該沈殿を分離乾燥することにより高純度水酸化鉄を調製し、次いで、得られた高純度水酸化鉄を、酸素雰囲気下、500〜700℃の温度で6〜12時間焼成することを特徴とする、高純度酸化鉄の製造方法に関する。 That is, the present invention prepares an aqueous solution of iron chloride by dissolving scrap iron with hydrochloric acid and then oxidizing it. The obtained aqueous solution of iron chloride is subjected to ion exchange chromatography to remove heavy metal impurities, and then added with an aqueous alkaline solution. The resulting high purity iron hydroxide is prepared by separating and drying the precipitate, and then the obtained high purity iron hydroxide is heated at a temperature of 500 to 700 ° C. in an oxygen atmosphere. It is related with the manufacturing method of high purity iron oxide characterized by baking for 6 to 12 hours.
さらには、本発明は、前記中和沈澱処理が、塩化鉄水溶液と、アルカリ水溶液とを同時に、攪拌され、pHが9〜10に維持された反応容器中の水に添加することを特徴とする高純度酸化鉄の製造方法に関する。 Furthermore, the present invention is characterized in that the neutralization precipitation treatment is performed by adding an aqueous iron chloride solution and an alkaline aqueous solution simultaneously to water in a reaction vessel in which the pH is maintained at 9-10. the method for producing a high purity oxidation of iron.
さらには、本発明は、前記アルカリ水溶液が、アンモニア水溶液、メチルアミン水溶液、トリメチルアミン水溶液のいずれかであることを特徴とする高純度酸化鉄の製造方法に関する。 Furthermore, the present invention, the alkali aqueous solution, aqueous ammonia solution, aqueous methylamine, relates to a method for producing high purity acids of iron which is characterized in that any one of trimethylamine aqueous solution.
また本発明には、本発明で製造された高純度酸化鉄、さらにはそれを用いて製造される高純度鉄をも含む。 The present invention also includes the high- purity iron oxide produced by the present invention and the high- purity iron produced using the same.
本発明の製造方法は、塩化鉄水溶液を酸化鉄にする工程における加熱蒸発処理(乾式)に比べてコストの点及び環境の点で優れる。The production method of the present invention is superior in terms of cost and environment as compared with the heat evaporation treatment (dry method) in the step of converting the aqueous iron chloride solution to iron oxide.
以下、発明を実施するための最良の形態を図に基づいて説明する。 The best mode for carrying out the invention will be described below with reference to the drawings.
図1には従来公知の高純度鉄の製造方法の一つが示されている。まず原料であるスクラップ鉄等を塩酸で溶解し、かつ酸化して塩化第2鉄の塩酸水溶液とする(以下この水溶液を「塩化鉄水溶液」とする。)さらに得られた塩化鉄水溶液中の主な不純物である金属イオンを適用なイオン交換クロマトグラフ処理により除去する。さらに得られた塩化鉄水溶液を加熱蒸発により乾固させて酸化鉄とする。酸化鉄を還元することにより高純度鉄が得られる。 FIG. 1 shows one conventionally known method for producing high-purity iron. First, scrap iron, etc., which is a raw material, is dissolved in hydrochloric acid and oxidized to form a ferric chloride aqueous hydrochloric acid solution (hereinafter referred to as “iron chloride aqueous solution”). Metal ions, which are impurities, are removed by appropriate ion exchange chromatography. Further, the obtained aqueous iron chloride solution is evaporated to dryness by heating to form iron oxide. High purity iron can be obtained by reducing iron oxide.
かかる方法において塩化鉄水溶液を酸化鉄にする工程における加熱蒸発処理(乾式)は過大エネルギーを要し、かつ工程中で塩化水素ガスが環境中に発生する。 In such a method, the heat evaporation process (dry process) in the process of converting the aqueous iron chloride solution to iron oxide requires excessive energy, and hydrogen chloride gas is generated in the environment during the process.
これに対し本発明にかかる方法は、図2に示されるように、塩化鉄水溶液を湿式処理する工程を採用する点で大きく異なる方法である。この工程により従来の方法に比べてコストの点及び環境の点で大きな利点となる。以下詳細に説明する。 On the other hand, as shown in FIG. 2, the method according to the present invention is greatly different in that it employs a step of wet-treating an aqueous iron chloride solution. This process provides significant advantages in terms of cost and environment as compared to conventional methods. This will be described in detail below.
図2には、本発明を用いた高純度鉄の製造方法の一般的なフローの1つを示した。原料としてスクラップ鉄を塩酸で処理して溶解する工程と、塩酸に溶解した鉄イオンを酸化して塩化鉄水溶液とする工程と、得られた塩化鉄水溶液をイオン交換クロマトグラフ処理して不純物金属イオン等を除去する工程と、得られた塩化鉄水溶液をアルカリ水溶液で中和沈澱処理して水酸化鉄を沈澱させる工程と、得られた沈澱を分離し、乾燥して高純度水酸化鉄とする工程と、得られた高純度水酸化鉄を酸化処理して高純度酸化鉄とする工程と、得られた高純度酸化鉄を還元して高純度鉄とする工程とからなる。 FIG. 2 shows one general flow of a method for producing high-purity iron using the present invention. The process of dissolving scrap iron as raw material with hydrochloric acid, the step of oxidizing iron ions dissolved in hydrochloric acid to make an aqueous solution of iron chloride, and the resulting aqueous solution of iron chloride by ion-exchange chromatography for impurity metal ions Etc., the step of neutralizing and precipitating the obtained aqueous iron chloride solution with an alkaline aqueous solution to precipitate iron hydroxide, and separating the resulting precipitate and drying to obtain high-purity iron hydroxide It comprises a step, a step of oxidizing the obtained high purity iron hydroxide to obtain a high purity iron oxide, and a step of reducing the obtained high purity iron oxide to obtain a high purity iron.
ここで得られた塩化鉄水溶液をイオン交換クロマトグラフ処理して不純物金属イオン等を除去する工程は必須ではなく、不純物の種類、量により適宜選択することができる。以下各工程について詳しく説明する。
(原料としてスクラップ鉄を塩酸で処理して溶解する工程)
本発明において使用可能な原料としてのスクラップ鉄は特に制限はなく、鉄の純度として99.0〜99.9%の程度であれば使用可能である。また、不純物として通常含有される他の金属イオンが含まれていても使用可能である。
The step of removing the impurity metal ions and the like by subjecting the obtained aqueous iron chloride solution to ion exchange chromatography is not essential, and can be appropriately selected depending on the type and amount of impurities. Hereinafter, each process will be described in detail.
(Process to dissolve scrap iron as raw material by treating with hydrochloric acid)
Scrap iron as a raw material that can be used in the present invention is not particularly limited, and can be used as long as the purity of the iron is 99.0 to 99.9%. Moreover, it can be used even if other metal ions usually contained as impurities are contained.
原料のスクラップ鉄を溶解する塩酸についても特に制限はないが、不純物をできるだけ含まないものが好ましい。不純物としては、重金属、アルカリ金属、アルカリ土類金属等が挙げられる。かかる塩酸水溶液は、市販されているものをそのまま使用することも可能である。また高純度水に高純度の塩酸ガスを吹き込んで調整することも好ましい。塩酸の濃度についても特に制限はなく原料スクラップ鉄を十分溶解させる濃度であればよい。好ましくは4〜6mol/L程度である。溶解方法には特に制限はなく、不純物の混入を防止し、かつ容器壁からの不純物金属等が溶け込まない材質、形状の容器を用いて、攪拌しながら少しずつ溶解させることが好ましい。
(塩酸に溶解した鉄イオンを酸化して塩化鉄水溶液とする工程)
上で得られた塩化鉄水溶液は最初鉄(2+)イオンの形で溶解するが、空気中の酸素により鉄(3+)イオンに変化する。この酸化を完全にするために積極的に酸化剤で酸化することが好ましい。酸化剤としては鉄(2+)イオンを酸性水溶液中で鉄(3+)イオンに酸化できるものであれば特に制限はなく種々の無機、有機の酸化剤が使用可能である。無機酸化剤としては過酸化水素水、塩素ガス、オゾンが挙げられる。特に過酸化水素水の使用が好ましい。酸化剤は最初から反応槽の水中に入れておいてもよいし、反応の途中で添加してもよい。酸化が完全に進行したかどうかは、反応溶液の色の変化で容易に判断可能である。
Although there is no restriction | limiting in particular also about the hydrochloric acid which melt | dissolves raw material scrap iron, The thing which does not contain an impurity as much as possible is preferable. Examples of impurities include heavy metals, alkali metals, alkaline earth metals, and the like. A commercially available hydrochloric acid solution can be used as it is. It is also preferable to adjust by blowing high purity hydrochloric acid gas into high purity water. The concentration of hydrochloric acid is not particularly limited as long as the raw scrap iron is sufficiently dissolved. Preferably it is about 4-6 mol / L. There is no particular limitation on the dissolution method, and it is preferable to dissolve the solution little by little with stirring using a container of a material and a shape that prevents impurities from being mixed and does not dissolve the impurity metal from the container wall.
(Step of oxidizing iron ions dissolved in hydrochloric acid to make an aqueous solution of iron chloride)
The aqueous iron chloride solution obtained above first dissolves in the form of iron (2+) ions, but is converted to iron (3+) ions by oxygen in the air. In order to complete this oxidation, it is preferable to actively oxidize with an oxidizing agent. The oxidizing agent is not particularly limited as long as it can oxidize iron (2+) ions to iron (3+) ions in an acidic aqueous solution, and various inorganic and organic oxidizing agents can be used. Examples of the inorganic oxidizing agent include hydrogen peroxide water, chlorine gas, and ozone. In particular, the use of hydrogen peroxide water is preferable. The oxidizing agent may be put in the water of the reaction vessel from the beginning, or may be added during the reaction. Whether or not the oxidation has completely progressed can be easily determined by a change in the color of the reaction solution.
得られた塩化鉄水溶液はそのまま次の工程で使用することが可能である。また必要な場合適当な濃度に希釈してイオン交換カラムクロマトグラフ処理を行い不純物金属イオン等を除去して使用することも可能である。 The obtained aqueous iron chloride solution can be used in the next step as it is. If necessary, it can be diluted to an appropriate concentration and subjected to ion exchange column chromatography to remove impurity metal ions and the like.
また次の工程の前に得られた塩化鉄水溶液の元素分析を行うことが好ましい。元素分析の方法は特に制限はないが、鉄、他の重金属、アルカリ金属、アルカリ土類金属の検出限界が1ppt程度である方法、装置の使用が好ましい。具体的には誘導結合プラズマ質量分析装置(ICP−MS)が挙げられる。
(塩化鉄水溶液をイオン交換クロマトグラフ処理する工程)
本発明においては、前記得られた塩化鉄水溶液を中和沈殿処理する前に、イオン交換クロマトグラフ処理して不純物の濃度を下げることが好ましい。この目的で使用するイオン交換クロマトグラフは、通常公知の種々の方法が使用できる。具体的に除かれるべき不純物が2価の陽イオン(銅イオン、ニッケルイオン等)の場合には、公知の陰イオン交換クロマトグラフ装置を用いて可能である(Thin Solid Films 461(2004)94−98)。
(塩化鉄水溶液をアルカリ水溶液で中和沈澱処理して水酸化鉄を沈澱させる工程)
本発明は特に上で調製した塩化鉄水溶液を湿式処理、すなわちアルカリ水溶液で中和しつつ水酸化物として沈澱させ分離することを特徴とする。かかる処理により鉄イオンは不溶性の水酸化鉄の沈殿固体(粉体)となり、他の不純物(他の金属イオン等)は反応溶液中に溶解したままであることから鉄のみを容易に分離することが可能となる。反応中の水溶液のpHについては鉄イオンが不溶性の水酸化物となる範囲であれば特に制限はなく8以上の範囲であればよい。本発明では水酸化鉄が十分沈殿を生成し反応溶液から分離され、かつ不純物がその沈殿に混入しない条件として9〜10に維持されることが好ましい。
Moreover, it is preferable to perform elemental analysis of the aqueous iron chloride solution obtained before the next step. The method of elemental analysis is not particularly limited, but it is preferable to use a method and apparatus in which the detection limit of iron, other heavy metals, alkali metals, and alkaline earth metals is about 1 ppt. Specific examples include an inductively coupled plasma mass spectrometer (ICP-MS).
(Process of ion exchange chromatographic treatment of iron chloride aqueous solution)
In the present invention, it is preferable to reduce the concentration of impurities by ion exchange chromatography before neutralizing and precipitating the obtained aqueous iron chloride solution. For the ion exchange chromatograph used for this purpose, various publicly known methods can be used. When the impurities to be specifically removed are divalent cations (copper ions, nickel ions, etc.), it is possible to use a known anion exchange chromatograph (Thin Solid Films 461 (2004) 94-). 98).
(Step of neutralizing and precipitating iron chloride aqueous solution with alkaline aqueous solution to precipitate iron hydroxide)
The present invention is particularly characterized in that the aqueous iron chloride solution prepared above is wet-processed, that is, precipitated and separated as a hydroxide while neutralizing with an aqueous alkaline solution. By this treatment, iron ions become insoluble solid precipitates (powder) of iron hydroxide and other impurities (other metal ions, etc.) remain dissolved in the reaction solution, so that only iron can be easily separated. Is possible. The pH of the aqueous solution during the reaction is not particularly limited as long as iron ions are in an insoluble hydroxide, and may be in the range of 8 or more. In the present invention, it is preferable that iron hydroxide is sufficiently separated from the reaction solution to generate a precipitate, and is maintained at 9 to 10 as a condition that impurities are not mixed into the precipitate.
中和に使用可能なアルカリ水溶液についても特に制限はないが、高純度であるほうが好ましい。特にアルカリ水溶液からの種々のアルカリ金属、アルカリ土類金属の混入は避けることが好ましい。具体的に本発明で使用可能なアルカリ水溶液としては、水酸化ナトリウム水溶液、アンモニア水溶液、メチルアミン水溶液が挙げられる。半導体製造用として市販されている高純度水酸化ナトリウム水溶液をそのまま使用することが可能であるし、また高純度ナトリウム、高純度水酸化ナトリウムを高純度水に溶解して調製することも可能である。高純度鉄に含まれる不純物としてナトリウム、カリウム、マグネシウムが問題とならない場合にはアルカリ水溶液として、水酸化ナトリウム水溶液が好ましく使用可能である。また高純度鉄に含まれる不純物としてナトリウム、カリウム、マグネシウムが問題となる場合にはアルカリ水溶液として、アンモニア水溶液、メチルアミン水溶液、特にアンモニア水溶液が好ましく使用可能である。アルカリ水溶液の濃度についても特に制限はないが、5〜8 mol/Lの範囲であればよい。 The alkaline aqueous solution that can be used for neutralization is not particularly limited, but preferably has a high purity. In particular, it is preferable to avoid mixing of various alkali metals and alkaline earth metals from the alkaline aqueous solution. Specific examples of the alkaline aqueous solution that can be used in the present invention include an aqueous sodium hydroxide solution, an aqueous ammonia solution, and an aqueous methylamine solution. It is possible to use a high-purity sodium hydroxide aqueous solution that is commercially available for semiconductor production, or it can be prepared by dissolving high-purity sodium or high-purity sodium hydroxide in high-purity water. . When sodium, potassium, and magnesium are not problematic as impurities contained in high-purity iron, an aqueous sodium hydroxide solution can be preferably used as the alkaline aqueous solution. When sodium, potassium, or magnesium is a problem as an impurity contained in high-purity iron, an aqueous ammonia solution, an aqueous methylamine solution, particularly an aqueous ammonia solution can be preferably used as the alkaline aqueous solution. Although there is no restriction | limiting in particular also about the density | concentration of aqueous alkali solution, What is necessary is just the range of 5-8 mol / L.
また本発明において、塩化鉄水溶液と、アルカリ水溶液の反応の形式については特に制限はないが、両方の水溶液を同時に反応槽中の水に添加する方法が好ましい。添加速度が15.0〜25.0ml/分の範囲であれば特に制限はない。この範囲より大きな速度で添加する場合、生成した沈殿中に不純物が取り込まれる恐れがある。また反応槽中の反応溶液は攪拌装置で十分攪拌することが好ましい。反応終了後は沈殿を十分熟成するためにしばらく攪拌を続けることが好ましい。反応温度についても特に制限はないが、30〜50℃の範囲を維持することが好ましい。 Further, in the present invention, there is no particular limitation on the type of reaction between the aqueous iron chloride solution and the alkaline aqueous solution, but a method in which both aqueous solutions are simultaneously added to the water in the reaction vessel is preferable. There is no particular limitation as long as the addition rate is in the range of 15.0 to 25.0 ml / min. When added at a rate larger than this range, impurities may be taken into the produced precipitate. The reaction solution in the reaction vessel is preferably sufficiently stirred with a stirring device. After completion of the reaction, it is preferable to continue stirring for a while in order to sufficiently mature the precipitate. Although there is no restriction | limiting in particular also about reaction temperature, It is preferable to maintain the range of 30-50 degreeC.
中和反応形式にも特に制限はなく、いわゆるバッチ式、及び連続式のどちらでも可能である。連続式の場合反応装置に設けたオーバーフローパイプにより、生成した水酸化鉄沈殿を連続的に取り出すことができることからより効率的に行うことができる。
(得られた沈澱を分離し、乾燥して高純度水酸化鉄とする工程)
上で得られた水酸化鉄の沈澱は、種々の方法で容易に反応溶液から分離することが可能である。デカンテーションや、フィルタを用いた濾過による方法が可能である。また沈殿中に溶液の形で混入する不純物イオンは、高純度水で数回十分洗浄することで容易に洗い流すことができる。
The neutralization reaction type is not particularly limited, and can be either a batch type or a continuous type. In the case of the continuous type, the generated iron hydroxide precipitate can be continuously taken out by the overflow pipe provided in the reaction apparatus, so that it can be carried out more efficiently.
(Step of separating the obtained precipitate and drying it to make high purity iron hydroxide)
The iron hydroxide precipitate obtained above can be easily separated from the reaction solution by various methods. A method by decantation or filtration using a filter is possible. Impurity ions mixed in the form of a solution during precipitation can be easily washed away by sufficiently washing several times with high-purity water.
得られた水酸化鉄沈殿は通常の乾燥方法により十分乾燥することができる。具体的には50〜70℃で、真空乾燥装置内で10〜20時間保持する。
(得られた高純度水酸化鉄を酸化処理して高純度酸化鉄とする工程)
得られた高純度水酸化鉄は、通常の酸化処理方法をもちいて容易に高純度酸化鉄とすることができる。具体的には酸素雰囲気下で、500〜700℃で、6〜12時間焼成することで可能である。
(得られた高純度酸化鉄を還元して高純度鉄とする工程)
得られた酸化鉄は、通常の還元処理方法をもちいて容易に高純度鉄とすることができる。具体的には水素ガス雰囲気で800℃で加熱する方法が使用できる。
The obtained iron hydroxide precipitate can be sufficiently dried by an ordinary drying method. Specifically, it is held at 50 to 70 ° C. for 10 to 20 hours in a vacuum drying apparatus.
(Step of oxidizing the resulting high-purity iron hydroxide to high-purity iron oxide)
The obtained high-purity iron hydroxide can be easily made into high-purity iron oxide by using a normal oxidation treatment method. Specifically, it can be performed by baking at 500 to 700 ° C. for 6 to 12 hours in an oxygen atmosphere.
(Step of reducing the obtained high purity iron oxide to high purity iron)
The obtained iron oxide can be easily made into high-purity iron using a normal reduction treatment method. Specifically, a method of heating at 800 ° C. in a hydrogen gas atmosphere can be used.
以下本発明を実施例に基づいて詳しく説明する。しかし本発明がこれらの実施例に限定されることはない。 Hereinafter, the present invention will be described in detail based on examples. However, the present invention is not limited to these examples.
原料としてスクラップ鉄を以下の実施例、比較例で使用した。塩化鉄及び酸化鉄の元素分析は、ICP−MS(PerkinElmer社製 Optima 4300DV)を用い、測定データは、鉄に対する測定各元素の濃度として求めた値(測定各元素の濃度=測定各元素の総量/鉄の総量)である。また、鉄の元素分析は、グロー放電質量分析(Glow Discharge Mass Spectroscopy)を用いた。
(実施例1)
原料スクラップ鉄400gを粉砕し、35%の塩酸(関東化学社製、製品番号18078−80)8Lに加えて溶解した。その後、蒸留水を12L加えて全量を20Lとした。後35%過酸化水素水(宇部ケミラ株式会社製)500mlをゆっくり加えながら攪拌した。水溶液の色が薄い青色から濃い黄色に変化した。得られた塩化鉄水溶液の元素分析結果を次の表1に示す。
Scrap iron was used as a raw material in the following examples and comparative examples. For elemental analysis of iron chloride and iron oxide, ICP-MS (Optima 4300 DV manufactured by PerkinElmer) was used, and the measurement data was a value obtained as the concentration of each element measured with respect to iron (concentration of each element measured = total amount of each element measured) / Total amount of iron). Moreover, the glow element mass spectrometry (Glow Discharge Mass Spectroscopy) was used for the elemental analysis of iron.
Example 1
400 g of raw scrap iron was pulverized and dissolved in 8 L of 35% hydrochloric acid (manufactured by Kanto Chemical Co., product number 18078-80). Thereafter, 12 L of distilled water was added to make the total volume 20 L. Thereafter, 500 ml of 35% hydrogen peroxide solution (manufactured by Ube Chemilla Co., Ltd.) was slowly added and stirred. The color of the aqueous solution changed from light blue to dark yellow. The results of elemental analysis of the obtained aqueous iron chloride solution are shown in Table 1 below.
反応槽として15L容積の塩化ビニル製円筒容器(半径13cm、高さ25cm)を用いた。反応槽にイオン交換蒸留水を3L入れ、反応槽内の水の温度を40℃に制御し、pHをpH制御計により10に維持した。さらに半径3.5cmのプロペラ形状撹拌器を回転速度400rpmに反応槽中心に固定して攪拌した。 A 15 L volume vinyl chloride cylindrical container (radius 13 cm, height 25 cm) was used as a reaction vessel. 3 L of ion-exchanged distilled water was added to the reaction tank, the temperature of the water in the reaction tank was controlled at 40 ° C., and the pH was maintained at 10 with a pH controller. Further, a propeller-shaped stirrer having a radius of 3.5 cm was fixed to the center of the reaction vessel at a rotation speed of 400 rpm and stirred.
この反応槽に、塩化鉄水溶液8Lと、28%アンモニア水溶液(関東化学社製、特級グレード、製品番号01266−80)1Lとを同時に定量滴下装置を用いて6時間かけて加えた。塩化鉄水溶液の滴下速度は、23ml/分であった。 To this reaction vessel, 8 L of iron chloride aqueous solution and 1 L of 28% ammonia aqueous solution (manufactured by Kanto Chemical Co., Ltd., special grade, product number 01266-80) were simultaneously added over 6 hours using a quantitative dropping device. The dropping rate of the aqueous iron chloride solution was 23 ml / min.
滴下とともに赤褐色の沈殿が生成した。 A reddish brown precipitate formed with the addition.
その後、デカンテーション水洗を2回行い洗浄し、吸引濾過機を用いて濾過分離した。得られた沈殿を約60℃で真空下、10時間乾燥して水酸化鉄306gを得た。 Thereafter, washing with decantation water was performed twice, followed by filtration and separation using a suction filter. The obtained precipitate was dried at about 60 ° C. under vacuum for 10 hours to obtain 306 g of iron hydroxide.
得られた水酸化鉄760gを酸化炉装置中で空気雰囲気下、650℃で10時間焼成して酸化鉄を1145g得た。得られた酸化鉄の元素分析結果を表2に示した。 760 g of the obtained iron hydroxide was calcined in an oxidation furnace apparatus at 650 ° C. for 10 hours in an air atmosphere to obtain 1145 g of iron oxide. Table 2 shows the elemental analysis results of the obtained iron oxide.
測定値から酸化鉄の純度は99.988%であり、かつアルミニウム、マグネシウム、ナトリウムの含有量はいずれも1ppm以下であった。 From the measured values, the purity of iron oxide was 99.988%, and the contents of aluminum, magnesium and sodium were all 1 ppm or less.
得られた酸化鉄1145gを還元炉装置を用いて水素雰囲気下800℃で10時間加熱して還元し鉄400gを得た。 1145 g of the obtained iron oxide was reduced by heating at 800 ° C. for 10 hours in a hydrogen atmosphere using a reduction furnace apparatus to obtain 400 g of iron.
また、下記の数1に示すような式を用いてエネルギーコストを試算したところ蒸発乾固法より高純度鉄化合物1kgを作るために必要なエネルギーコストは約1/4倍に低減できた(表3参照)。 Moreover, when the energy cost was calculated using the equation shown in the following equation 1, the energy cost required to make 1 kg of high-purity iron compound by the evaporation to dryness method could be reduced to about 1/4 times (see Table 1). 3).
Q={W×H×E}/Fe
Q ;高純度鉄化合物1kgを作るために必要なエネルギーコスト (円)
W ;電力消費量 (kW)
H ;処理時間 (hr)
E ;単価 (円/kW)
Fe ;鉄処理量 (kg)
※使用する塩化鉄の鉄濃度を25g/Lとした。
Q = {W × H × E} / Fe
Q: Energy cost required to make 1kg of high-purity iron compound (yen)
W: Power consumption (kW)
H: Processing time (hr)
E: Unit price (yen / kW)
Fe: Iron processing amount (kg)
* The iron concentration of the iron chloride used was 25 g / L.
(実施例2)
実施例1で使用したアンモニア水溶液に代えて、水酸化ナトリウム水溶液を使用したこと以外は実施例1と同様の条件で行った。ここで水酸化ナトリウム水溶液は半導体用高純度グレードを使用した(鶴見曹達株式会社製、製品名CLEARCUT−S)。
(Example 2)
It replaced with the ammonia aqueous solution used in Example 1, and carried out on the conditions similar to Example 1 except having used the sodium hydroxide aqueous solution. Here, a high-purity grade for semiconductor was used as the aqueous sodium hydroxide solution (product name CLEARCUT-S, manufactured by Tsurumi Soda Co., Ltd.).
得られた酸化鉄の元素分析結果を表4に示した。 Table 4 shows the elemental analysis results of the obtained iron oxide.
測定値から酸化鉄の純度は99.948%とであり、かつアルミニウム、マグネシウムの含有量はいずれも1ppm以下であった。一方ナトリウムの含有量は374ppmであった。
(実施例3)
実施例1で調製した塩化鉄水溶液20Lを、陰イオン交換樹脂30L(三菱化学株式会社製、製品名DIAION SA10A、直径12cmの塩化ビニル製カラムに充填)に流して鉄イオンを吸着させその他の元素イオンと分離した。次に溶離液(濃度 1mol/L 塩酸)により鉄イオンを溶離した。得られた溶離液の元素分析は次の表5に示した。
From the measured values, the purity of iron oxide was 99.948%, and the contents of aluminum and magnesium were both 1 ppm or less. On the other hand, the sodium content was 374 ppm.
(Example 3)
The iron chloride aqueous solution 20L prepared in Example 1 was passed through an anion exchange resin 30L (Mitsubishi Chemical Corporation, product name DIAION SA10A, packed in a 12 cm diameter vinyl chloride column) to adsorb iron ions and other elements. Separated from ions. Next, iron ions were eluted with an eluent (concentration: 1 mol / L hydrochloric acid). Elemental analysis of the obtained eluent is shown in Table 5 below.
得られた鉄イオン溶離液8Lを次の中和沈殿に用いた。中和沈殿は、実施例1と同様に行った。また得られた水酸化鉄の酸化鉄への酸化、酸化鉄から鉄への還元も実施例1と同様に行った。 The obtained iron ion eluent 8L was used for the next neutralization precipitation. Neutralization precipitation was performed in the same manner as in Example 1. In addition, the obtained iron hydroxide was oxidized to iron oxide and reduced from iron oxide to iron in the same manner as in Example 1.
得られた酸化鉄、鉄の元素分析結果をそれぞれ表6と表7に示した。 The elemental analysis results of the obtained iron oxide and iron are shown in Tables 6 and 7, respectively.
測定値から酸化鉄の純度は99.998%であり、かつ重金属、マグネシウム、ナトリウムの含有量はいずれも1ppm以下であった。
From the measured values, the purity of iron oxide was 99.998%, and the contents of heavy metals, magnesium, and sodium were all 1 ppm or less.
また、鉄の純度は99.9998%であり、かつコバルト、銅は1ppm以下であるがその他の金属は、0.1ppm以下であった。
(比較例1)
ホットプレート上においたテフロン製1000mlの円筒型ビーカに塩化鉄水溶液500mlを入れた。これを加熱して黒色結晶の酸化鉄を得た。得られた酸化鉄の元素分析を表8に示した。
Moreover, the purity of iron was 99.9998%, and cobalt and copper were 1 ppm or less, but other metals were 0.1 ppm or less.
(Comparative Example 1)
500 ml of an aqueous iron chloride solution was placed in a 1000 ml cylindrical beaker made of Teflon placed on a hot plate. This was heated to obtain black crystalline iron oxide. The elemental analysis of the obtained iron oxide is shown in Table 8.
測定値から酸化鉄の純度は、99.998%であり、かつカルシウムとシリカ以外の金属元素は2ppm以下であった。
(実施例4) 連続法による中和沈殿処理1
攪拌機付きの反応槽に水3Lを入れ、pH制御計によりpHを10に調整した。ここへ鉄濃度が20g/Lの塩化鉄水溶液と、48%の水酸化ナトリウム水溶液を反応槽内のpHが自動的に10に維持されるように投入した。塩化鉄水溶液の投入流速は23ml/分であった。また、反応槽内の温度は40℃に維持し、攪拌機で常に攪拌した。生成した水酸化鉄はオーバーフロー管よりオーバーフローさせて取り出し、水洗、脱水、乾燥処理した。このようにして、高純度水酸化鉄粉末を得た。
(実施例5) 連続法中和沈殿処理2
同様に水酸化ナトリウム水溶液に替えて、28%のアンモニア水溶液を用いた。他は上と同様に行い高純度水酸化鉄粉末を得た。
From the measured values, the purity of iron oxide was 99.998%, and the metal elements other than calcium and silica were 2 ppm or less.
(Example 4) Neutralization precipitation treatment 1 by a continuous method
3 L of water was placed in a reaction vessel equipped with a stirrer, and the pH was adjusted to 10 with a pH controller. An iron chloride aqueous solution having an iron concentration of 20 g / L and a 48% sodium hydroxide aqueous solution were added thereto so that the pH in the reaction vessel was automatically maintained at 10. The input flow rate of the iron chloride aqueous solution was 23 ml / min. Moreover, the temperature in a reaction tank was maintained at 40 degreeC, and was always stirred with the stirrer. The produced iron hydroxide was taken out by overflowing from the overflow pipe, washed with water, dehydrated and dried. In this way, high purity iron hydroxide powder was obtained.
(Example 5) Continuous process neutralization precipitation process 2
Similarly, a 28% aqueous ammonia solution was used in place of the aqueous sodium hydroxide solution. The others were carried out in the same manner as above to obtain high-purity iron hydroxide powder.
本発明により、99.9995%以上の純度の高純度鉄の製造に好適な高純度酸化鉄の製造が低コストで、環境にやさしい条件で可能となる。 The present invention, preparation of suitable purity oxidation of iron in the production of high purity iron over 99.9995% of purity at a low cost, thereby enabling the condition environmentally friendly.
Claims (4)
得られた塩化鉄水溶液をイオン交換クロマトグラフ処理して重金属不純物を除去した後、アルカリ水溶液で中和して水酸化鉄を沈澱させ、当該沈殿を分離乾燥することにより高純度水酸化鉄を調製し、
次いで、得られた高純度水酸化鉄を、酸素雰囲気下、500〜700℃の温度で6〜12時間焼成することを特徴とする、高純度酸化鉄の製造方法。 An aqueous iron chloride solution is prepared by dissolving scrap iron with hydrochloric acid and then oxidizing it,
The obtained aqueous iron chloride solution is subjected to ion exchange chromatography to remove heavy metal impurities, then neutralized with an aqueous alkaline solution to precipitate iron hydroxide , and the precipitate is separated and dried to prepare high purity iron hydroxide. And
Next, the high-purity iron oxide obtained is calcined at a temperature of 500 to 700 ° C. for 6 to 12 hours in an oxygen atmosphere.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006057963A JP5247986B2 (en) | 2006-03-03 | 2006-03-03 | Manufacturing method of high purity iron oxide |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006057963A JP5247986B2 (en) | 2006-03-03 | 2006-03-03 | Manufacturing method of high purity iron oxide |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007230850A JP2007230850A (en) | 2007-09-13 |
JP5247986B2 true JP5247986B2 (en) | 2013-07-24 |
Family
ID=38551823
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006057963A Expired - Fee Related JP5247986B2 (en) | 2006-03-03 | 2006-03-03 | Manufacturing method of high purity iron oxide |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5247986B2 (en) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102185902B1 (en) * | 2018-12-31 | 2020-12-02 | 한국세라믹기술원 | Bur-like feooh·fe2o3 and method for preparing the same |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS58151332A (en) * | 1982-02-26 | 1983-09-08 | Osamu Kimura | Manufacture of hydroxide containing iron from aqueous iron chloride solution |
JP2979423B2 (en) * | 1990-02-13 | 1999-11-15 | エヌオーケー株式会社 | Method for producing magnetic fine particles |
JPH08319119A (en) * | 1995-05-19 | 1996-12-03 | Chemi Light Kogyo Kk | Production of fine powder of high-purity iron oxide |
JP4323078B2 (en) * | 2000-09-29 | 2009-09-02 | ソニー株式会社 | High purity iron and method for producing the same, and high purity iron target |
-
2006
- 2006-03-03 JP JP2006057963A patent/JP5247986B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2007230850A (en) | 2007-09-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
AU2020374016B2 (en) | Method for extracting lithium by means of extraction-back extraction separation and purification | |
CN102070198B (en) | Method for preparing high-purity manganese sulfate and high-purity manganese carbonate by reduction leaching of pyrolusite through scrap iron | |
CN106745076A (en) | A kind of method that Industrial Wastewater Treatment is produced carnallite resource | |
JP5032400B2 (en) | Nickel oxide | |
CN105293454B (en) | A kind of method that spent solder stripper prepares dust technology, spongy tin and aluminium polychlorid | |
CN104843770A (en) | Method of resource utilization of tin sludge | |
CN105776333A (en) | Preparation method of vanadium pentoxide | |
KR20170134618A (en) | Anhydrous nickel chloride and method for producing same | |
CN107585792B (en) | Preparation method of ferrous chloride dihydrate solid and ferrous chloride dihydrate solid | |
CN112357893A (en) | Method for purifying crude selenium by melting and filtering | |
CN106282563B (en) | A kind of method that barium oxide is directly prepared using solution containing vanadium | |
CN105819607A (en) | Equipment and method for treating acid-containing waste water | |
JP2006061754A (en) | Method and facilities for treating fluorine containing waste water | |
JP7115123B2 (en) | Lithium purification method | |
CN104743606B (en) | Metatitanic acid purification process | |
JP5247986B2 (en) | Manufacturing method of high purity iron oxide | |
EP3233724B1 (en) | Acid recovery from acid-rich solutions | |
WO2010096862A1 (en) | Zinc oxide purification | |
CN116283552A (en) | Refining method of oxalic acid | |
CN108866354B (en) | Method for efficiently extracting vanadium from vanadium-containing ore | |
CN106396202A (en) | Method for resource utilization of waste acid with arsenic and fluorine import | |
CN115261625A (en) | Method for recovering copper and arsenic step by step in combined leaching of black copper mud and arsenic filter cake | |
CN115010152A (en) | Lithium carbonate purification production process | |
JP2008063164A (en) | Method for producing high-purity cobalt compound | |
JP5373867B2 (en) | Method for producing nickel oxide |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20071221 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20100818 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20100824 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20100830 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20100929 |
|
A02 | Decision of refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A02 Effective date: 20101119 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20101228 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20110114 |
|
A911 | Transfer to examiner for re-examination before appeal (zenchi) |
Free format text: JAPANESE INTERMEDIATE CODE: A911 Effective date: 20110218 |
|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20110418 |
|
A912 | Re-examination (zenchi) completed and case transferred to appeal board |
Free format text: JAPANESE INTERMEDIATE CODE: A912 Effective date: 20110617 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20110816 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120127 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120703 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20121031 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130410 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5247986 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160419 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
LAPS | Cancellation because of no payment of annual fees |