JP5246756B2 - Control method of distributed power supply - Google Patents

Control method of distributed power supply Download PDF

Info

Publication number
JP5246756B2
JP5246756B2 JP2008120450A JP2008120450A JP5246756B2 JP 5246756 B2 JP5246756 B2 JP 5246756B2 JP 2008120450 A JP2008120450 A JP 2008120450A JP 2008120450 A JP2008120450 A JP 2008120450A JP 5246756 B2 JP5246756 B2 JP 5246756B2
Authority
JP
Japan
Prior art keywords
distributed power
output
value
power supply
load
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008120450A
Other languages
Japanese (ja)
Other versions
JP2009273210A (en
Inventor
英介 下田
茂生 沼田
仁夫 森野
旬平 馬場
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
University of Tokyo NUC
Shimizu Corp
Original Assignee
University of Tokyo NUC
Shimizu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by University of Tokyo NUC, Shimizu Corp filed Critical University of Tokyo NUC
Priority to JP2008120450A priority Critical patent/JP5246756B2/en
Publication of JP2009273210A publication Critical patent/JP2009273210A/en
Application granted granted Critical
Publication of JP5246756B2 publication Critical patent/JP5246756B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、分散型電源の制御方法に関する。   The present invention relates to a method for controlling a distributed power source.

近年、分散型電源(太陽光発電、風力発電等)の導入促進が国家戦略としても進められている。しかし、太陽光発電や風力発電といった自然エネルギー由来電源はその出力が天候に大きく左右されるため供給信頼性が低く、商用系統では電力の需給バランスを取ることが難しくなるという問題が発生している。この問題を解決する手段の―つとして、出力調整が可能な分散型電源を用いて、特定範囲内の需要に応じた発電を行う(以下、負荷追従運転という)ことによって商用系統への負担を軽減することが行われている。   In recent years, the introduction of distributed power sources (solar power generation, wind power generation, etc.) has been promoted as a national strategy. However, natural energy-derived power sources such as solar power generation and wind power generation have a problem in that the output is greatly influenced by the weather, so the supply reliability is low, and it is difficult to balance the supply and demand of power in commercial systems . As a means to solve this problem, a distributed power source capable of adjusting output is used to generate power according to demand within a specific range (hereinafter referred to as load following operation), thereby reducing the burden on the commercial system. Mitigation has been done.

負荷追従運転を実現するための方法は2つに大別することができる。1つ目は特許文献1に記載の系統安定化装置のように、各分散型電源が自律的に負荷電力を計測して負荷追従運転を行う方法(分散制御)であり、この方法を用いると高速な負荷変動に対する追従運転が実現できる。しかし、複数の分散型電源が導入されるケースにおいては、各分散型電源が同時に同じ負荷変動に対して負荷追従運転を行ってしまうことで出力の干渉が発生してしまい、結果として負荷追従運転が失敗する恐れがある。   Methods for realizing the load following operation can be roughly divided into two methods. The first is a method (distributed control) in which each distributed power source autonomously measures load power and performs load following operation like the system stabilization device described in Patent Document 1, and this method is used. Follow-up operation for high-speed load fluctuation can be realized. However, in cases where multiple distributed power sources are introduced, each distributed power source simultaneously performs load following operation for the same load fluctuation, resulting in output interference, resulting in load following operation. There is a risk of failure.

2つ目の方法としては特許文献2に記載の分散型電源の制御方法(統合制御)がある。これは計測した負荷電力を基に、追従性能の異なる複数種類の分散型電源(図9参照)を組み合わせて当該周波数帯域を分担させることで負荷追従運転を実現するとしている。そのため統合的な出力調整を行うために、「負荷、買電、分散型電源出力の計測系」と「分散型電源出力の制御系」を持つ制御システム(制御の頭脳部)を構築する必要がある。   As a second method, there is a distributed power control method (integrated control) described in Patent Document 2. Based on the measured load power, load follow-up operation is realized by combining a plurality of types of distributed power sources (see FIG. 9) having different follow-up performance and sharing the frequency band. Therefore, in order to perform integrated output adjustment, it is necessary to construct a control system (the brain of control) that has a "load, power purchase, distributed power output measurement system" and a "distributed power output control system". is there.

一方、負荷追従運転を実現する手段の―つとして、商用系統への負担を軽減して協調関係の構築を目指すマイクログリッドがある。マイクログリッドの思想を取り込んだ分散型電源によるエネルギー供給システム(以下、マイクログリッドという)では分散型電源が負荷追従運転を行うことによって、以下の2つのメリットを得ることができる。
(1)出力が不安定な自然エネルギー由来電源の商用系統に対する悪影響を抑えることができる。
(2)停電等の商用系統異常発生時に、マイクログリッドを商用系統から切り離すことで当該エリア内の負荷に対して、安定した電力品質(周波数や電圧)での自立運転が継続できる。
On the other hand, as one of means for realizing load following operation, there is a microgrid aiming at building a cooperative relationship by reducing the burden on the commercial system. In an energy supply system (hereinafter referred to as a microgrid) using a distributed power supply that incorporates the idea of a microgrid, the following two merits can be obtained by the load following operation of the distributed power supply.
(1) It is possible to suppress an adverse effect on a commercial system of a natural energy-derived power source whose output is unstable.
(2) When a commercial system abnormality such as a power failure occurs, the independent operation with stable power quality (frequency and voltage) can be continued for the load in the area by separating the microgrid from the commercial system.

マイクログリッドにより、安定した電力品質での自立運転を実現するために分散型電源の負荷追従運転を行う方法として、出願人は、分散型電源の制御方法「特願2007−189697」を提案している。この制御方法では負荷変動に対する追従性能の異なる複数種類の分散型電源を用いて負荷追従運転を行う際に、分散型電源の追従性能に応じてアナログの専用信号線を介した高速な自律制御と、汎用性の高い低速なデジタル通信網(例えばLAN回線)を介した制御システムによる低速な統合制御とを組み合わせる制御方法を提案している。高速な自律制御では、制御システムによる制御では負荷追従できない高速な負荷の変動成分をハイパスフィルタで抽出することで補償量を決定している。
特開2007−020361号公報 特開2006−246584号公報
As a method of performing load following operation of a distributed power source in order to realize a self-sustained operation with stable power quality using a microgrid, the applicant has proposed a control method of the distributed power source “Japanese Patent Application No. 2007-189697”. Yes. In this control method, when performing load following operation using multiple types of distributed power supplies with different follow-up performance against load fluctuations, high-speed autonomous control via analog dedicated signal lines according to the follow-up performance of distributed power supplies and A control method that combines low-speed integrated control by a control system via a low-speed digital communication network (for example, a LAN line) with high versatility is proposed. In high-speed autonomous control, a compensation amount is determined by extracting a high-speed load fluctuation component that cannot be followed by load control by a control system using a high-pass filter.
JP 2007-020361 A JP 2006-246484 A

しかしながら、同期発電機を主電源とするマイクログリッドにおいては、自立運転中のマイクログリッド系統の周波数が同期発電機の回転数に依存することから、高速な負荷変動を補償する分散型電源には、負荷追従運転ではなく同期発電機の出力偏差の積分値を補償させたほうが、より安定した周波数での電力供給が実現できる。その理由を以下に数式を用いて説明する。   However, in a microgrid that uses a synchronous generator as a main power source, the frequency of the microgrid system that is operating independently depends on the rotational speed of the synchronous generator, so a distributed power source that compensates for high-speed load fluctuations Compensating the integrated value of the output deviation of the synchronous generator rather than the load following operation can realize power supply at a more stable frequency. The reason will be described below using mathematical expressions.

同期発電機を一慣性系で模擬した場合、系統の周波数を決定付ける同期発電機の回転速度に対して以下の式を得ることができる。

Figure 0005246756
但し、J:原動機及び同期発電機の回転子の合成慣性モーメント
B:粘性抵抗 ω:回転子の角速度
:機械入力トルク T:電気出力トルク
:機械入力 P:電気出力 When the synchronous generator is simulated by a single inertia system, the following equation can be obtained with respect to the rotational speed of the synchronous generator that determines the frequency of the system.
Figure 0005246756
However, J: Synthetic moment of inertia of the rotor of the prime mover and the synchronous generator B: Viscous resistance ω: Angular velocity of the rotor T M : Machine input torque T E : Electric output torque P M : Machine input P E : Electric output

ここで、機械入力PM0=電気出力PE0かつ回転子が一定の各速度ωで運転している定常状態から、電気出力のみがPE0+△Pに変化し、それに応じて回転子の回転速度がω+△ωに変化したとする。瞬間的な電気出力の変化に比べて機械入力Pの変化は遅いので、Pは一定であると考えることができる。さらに△ω≪ωであるとすると、式(1)より以下の近似式が得られる。

Figure 0005246756
Here, from the steady state where the machine input P M0 = electric output P E0 and the rotor is operating at a constant speed ω 0 , only the electric output changes to P E0 + ΔP, and the rotor It is assumed that the rotation speed has changed to ω 0 + Δω. Since slow changes in mechanical input P M as compared to the change in the instantaneous electrical output, P M can be considered to be constant. Further, assuming that Δω << ω 0 , the following approximate expression is obtained from the expression (1).
Figure 0005246756

この式は同期発電機の電気出力の変動を抑制すると、同期発電機の角加速度を小さくできることを示しており、言い換えると分散型電源を用いて負荷追従運転を行うことで同期発電機の出力変動を抑制すれば、結果としてマイクログリッド系統の周波数変動も小さくなることを示している。   This formula shows that the angular acceleration of the synchronous generator can be reduced by suppressing the fluctuation of the electric output of the synchronous generator.In other words, the output fluctuation of the synchronous generator can be achieved by performing load following operation using a distributed power source. As a result, the frequency fluctuation of the microgrid system is also reduced.

しかし、この式によると、同期発電機の角加速度をゼロにすることはできるが、角速度の基準偏差△ωをゼロにすることができない。すなわち負荷追従運転が完全に負荷変動を補償できなかった場合に、変動した周波数を基準値へ強制的に戻す機能がない。そこで式(2)を両辺積分して、△ωに関する式を作成する。

Figure 0005246756
However, according to this equation, the angular acceleration of the synchronous generator can be made zero, but the reference deviation Δω of the angular velocity cannot be made zero. That is, there is no function for forcibly returning the changed frequency to the reference value when the load following operation cannot completely compensate for the load change. Therefore, equation (2) is integrated on both sides to create an equation for Δω.
Figure 0005246756

この式より同期発電機の出力変動の積分値をゼロに保てば、もし周波数が変動してもすぐに周波数を基準値に戻すことが可能となる。一般に自立運転中のマイクログリッド系統の周波数を基準値に戻す機能は、同期発電機の電動機内に組み込まれた調速機(ガバナ)が機械入力を調整することで実現されていた。しかし、ガバナの応答速度は数十秒〜数百秒と遅いため、高速な周波数維持管理を行うためには、高速な応答性能を持つ分散型電源を用いてこの同期発電機の出力変動の積分値を補償することが望ましい。   If the integrated value of the output fluctuation of the synchronous generator is kept at zero from this equation, it is possible to immediately return the frequency to the reference value even if the frequency fluctuates. In general, the function of returning the frequency of the microgrid system during self-sustained operation to a reference value has been realized by adjusting the machine input by a governor incorporated in the motor of the synchronous generator. However, since the response speed of the governor is as low as several tens of seconds to several hundreds of seconds, in order to perform high-speed frequency maintenance management, it is necessary to integrate the output fluctuation of this synchronous generator using a distributed power source with high-speed response performance. It is desirable to compensate the value.

一方、上記の機能が実現できる分散型電源には、電気二重層キャパシタや超電導電力貯蔵装置、二次電池等が考えられる。上記の機能は同期発電機の出力変動の積分値を補償するため、補償時間が長くなりがちである。しかし、電気二重層キャパシタや超電導電力貯蔵装置はエネルギー密度が低く、容量の観点から長時間補償を行うような制御には適していない。そのため、上記の機能を電気二重層キャパシタや超電導電力貯蔵装置に持たせる際には、その補償を徐々にこれらの電源に準じる負荷追従性能をもつ二次電池に分担させることで、限られた容量の範囲内で電源を運転させる必要もある。   On the other hand, an electric double layer capacitor, a superconducting power storage device, a secondary battery, etc. can be considered as a distributed power source capable of realizing the above function. Since the above function compensates the integrated value of the output fluctuation of the synchronous generator, the compensation time tends to be long. However, the electric double layer capacitor and the superconducting power storage device have low energy density, and are not suitable for control that performs long-time compensation from the viewpoint of capacity. Therefore, when the electric double layer capacitor and the superconducting power storage device have the above functions, the limited capacity is obtained by gradually sharing the compensation to the secondary battery having load following performance according to these power sources. It is also necessary to operate the power supply within the range.

本発明は、このような事情に鑑みてなされたもので、自立運転時にベースとなる電圧、周波数を生成する分散型電源の出力変動と出力変動の積分値を高速な応答性能を持つ分散型電源に補償させることで、周波数を検知することなく自立運転中のマイクログリッド系統の周波数の安定性を向上させることができる分散型電源の制御方法を提供することを目的とする。   DISCLOSURE OF THE INVENTION The present invention has been made in view of such circumstances, and a distributed power source having high-speed response performance based on the output fluctuation of the distributed power source that generates a voltage and frequency serving as a base during independent operation and an integrated value of the output fluctuation. It is an object of the present invention to provide a control method for a distributed power source that can improve the frequency stability of a microgrid system that is operating independently without detecting the frequency.

本発明は、負荷変動に対する追従性能が異なる複数の分散型電源を統合的に制御する分散型電源の制御方法であって、前記複数種類の分散型電源のうち、自立運転時にベースとなる電圧及び周波数を生成する第1の分散型電源の出力値から、第1の分散型電源の出力指令値を減算した差分値を積分した積分値を求めるともに、前記差分値と負荷追従性能の最も高い第2の分散型電源の出力値とを加算した加算値を求め、前記積分値と前記加算値とを加算した値を前記第2の分散型電源の出力指令値として前記第2の分散型電源の運転制御を行うことにより、前記第1の分散型電源の出力変動を補償して、周波数を検知することなく周波数を安定に保つ自立運転制御を行うことを特徴とする。 The present invention is a control method for a distributed power sources that following performance for load changes integrally controls a plurality of distributed power sources having different, the plurality of types of distributed power sources, voltage as a base during self-sustained operation and An integral value obtained by integrating the difference value obtained by subtracting the output command value of the first distributed power source from the output value of the first distributed power source generating the frequency is obtained , and the highest difference between the difference value and the load following performance is obtained. An added value obtained by adding the output values of the two distributed power sources is obtained, and a value obtained by adding the integrated value and the added value is used as an output command value of the second distributed power source. By performing operation control, it is possible to compensate for output fluctuations of the first distributed power source, and to perform independent operation control that keeps the frequency stable without detecting the frequency.

本発明は、前記第2の分散型電源による前記出力変動の補償は、負荷に対して供給した電力値から前記第1の分散型電源の出力値を減算した減算値と、前記第2の分散型電源の出力を積分した積分値とを加算した出力値から低周波成分を抽出した値を、前記第2の分散型電源に準じた負荷追従性能を持ち、かつ前記第2の高い分散型電源より容量が大きい第3の分散型電源の出力指令値として前記第3の分散型電源の運転制御を行うことにより前記出力変動の補償を前記第3の分散型電源に分担させることを特徴とする。 According to the present invention, the output variation compensation by the second distributed power supply is performed by subtracting the output value of the first distributed power supply from the power value supplied to the load, and the second distributed power supply. A value obtained by extracting a low frequency component from an output value obtained by adding the integrated value obtained by integrating the output of the power supply of the type has load following performance according to the second distributed power supply, and the second high distributed power supply. By performing operation control of the third distributed power source as an output command value of a third distributed power source having a larger capacity, the compensation for the output fluctuation is shared by the third distributed power source. .

本発明によれば、複数種類の分散型電源のうち、自立運転時にベースとなる電圧、周波数を生成する分散型電源の出力変動と出力変動の積分値を、負荷追従性能の最も高い分散型電源により補償することにより運転制御を行うようにしたため、自立運転中のマイクログリッド系統の周波数の安定性を向上させることができるという効果が得られる。また、負荷追従性能の最も高い分散型電源による出力変動の補償を、負荷追従性能の最も高い分散型電源に準じた負荷追従性能を持ち、かつ負荷追従性能の最も高い分散型電源より容量が大きい分散型電源に徐々に分担させるようにしたため、限られた容量の範囲内で分散型電源を安定した状態で運転することができるという効果も得られる。   According to the present invention, among a plurality of types of distributed power sources, the distributed power source having the highest load follow-up performance is obtained by calculating the output fluctuation and the integrated value of the output fluctuation of the distributed power source that generates a voltage and frequency as a base during independent operation. Since the operation control is performed by compensating for the above, it is possible to improve the frequency stability of the microgrid system during the independent operation. Compensation of output fluctuations by the distributed power supply with the highest load following performance has load following performance equivalent to the distributed power supply with the highest load following performance, and the capacity is larger than the distributed power supply with the highest load following performance. Since the distributed power source is gradually shared, there is also an effect that the distributed power source can be operated in a stable state within a limited capacity range.

以下、本発明の一実施形態による分散型電源の制御方法を図面を参照して説明する。図1は同実施形態に分散型電源を用いたエネルギー供給システムの構成を示すブロック図である。負荷に対して電力供給を行う分散型電源は、インバータを介して接続される二次電池1、エンジンなどで駆動される同期発電機2、インバータを介して接続される電気二重層キャパシタ3から構成する。計測器11は、二次電池1の出力電圧・電流を計測し、計測された電圧・電流値を基に演算された有効電力値(PBES)を変換器12によりA/D変換し、LAN6を経由して制御システム7に対して出力する。計測器21は、同期発電機2の出力電圧・電流を計測し、計測された電圧・電流値を基に演算された有効電力値(P)を変換器22によりA/D変換し、LAN6を経由して制御システム7に対して出力する。計測器31は、電気二重層キャパシタ3の出力電圧・電流を計測し、計測された電圧・電流値を基に演算された有効電力値(PEDLG)を変換器32によりA/D変換し、LAN6を経由して制御システム7に対して出力する。計測器51は、負荷6に対して供給する電力(PLOAD)を計測して、この計測値を変換器52によりA/D変換し、LAN6を経由して制御システム7に対して出力する。 Hereinafter, a distributed power supply control method according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a block diagram showing a configuration of an energy supply system using a distributed power source in the embodiment. A distributed power source for supplying power to a load includes a secondary battery 1 connected through an inverter, a synchronous generator 2 driven by an engine, and an electric double layer capacitor 3 connected through an inverter. To do. The measuring instrument 11 measures the output voltage / current of the secondary battery 1, and A / D-converts the active power value (P BES ) calculated based on the measured voltage / current value by the converter 12. To the control system 7 via. The measuring instrument 21 measures the output voltage / current of the synchronous generator 2, A / D-converts the active power value (P G ) calculated based on the measured voltage / current value by the converter 22, and the LAN 6 To the control system 7 via. The measuring instrument 31 measures the output voltage / current of the electric double layer capacitor 3, and the converter 32 performs A / D conversion on the active power value (P EDLG ) calculated based on the measured voltage / current value. The data is output to the control system 7 via the LAN 6. The measuring instrument 51 measures the electric power (P LOAD ) supplied to the load 6, A / D-converts this measured value by the converter 52, and outputs it to the control system 7 via the LAN 6.

制御システム7は、計測器11、21、31、51のそれぞれが計測した有効電力値PBES、P、PEDLC、PLOADに基づいて、二次電池1及び制御システム4に対する出力指令値PsBESとPsを求める。そして、求めた出力指令値PsBESとPsをLAN6を経由して、変換器13、41のそれぞれによってD/A変換を行い、二次電池1及び制御システム4に対して出力する。この出力指令値PsBESによって二次電池1が行う電力供給の運転制御が実施される。 The control system 7 outputs the output command value Ps for the secondary battery 1 and the control system 4 based on the active power values P BES , P G , P EDLC , and P LOAD measured by the measuring instruments 11, 21, 31, 51. Obtain BES and Ps G. Then, the obtained output command values Ps BES and Ps G are D / A converted by the converters 13 and 41 via the LAN 6 and output to the secondary battery 1 and the control system 4. Operation control of power supply performed by the secondary battery 1 is performed by the output command value Ps BES .

一方、制御システム4は、計測器21が出力する有効電力値Pと、計測器31が出力する有効電力値PEDLCと、制御システム7から出力される出力指令値Psとを入力し、これらの値から、電気二重層キャパシタ3に対する出力指令値PsEDLCを求めて、電気二重層キャパシタ3に対して出力する。この出力指令値によって電気二重層キャパシタ3が行う電力供給の運転制御が実施される。 On the other hand, the control system 4 inputs the active power value P G output from the measuring instrument 21, the active power value P EDLC output from the measuring instrument 31, and the output command value Ps G output from the control system 7. From these values, an output command value Ps EDLC for the electric double layer capacitor 3 is obtained and output to the electric double layer capacitor 3. Operation control of power supply performed by the electric double layer capacitor 3 is performed by the output command value.

このように、電気二重層キャパシタ3は、計測した負荷電力を基に自律的な負荷追従運転を行うのではなく、電気二重層キャパシタ3自身の出力とを同期発電機2の出力目標値(出力指令値Ps)とを基に制御システム4が出力する出力指令値PsEDLCに基づいて、電気二重層キャパシタ3の出力制御を行うことにより安定した電力を供給するように制御を行う。 In this way, the electric double layer capacitor 3 does not perform autonomous load following operation based on the measured load power, but outputs the output of the electric double layer capacitor 3 itself to the output target value (output) of the synchronous generator 2. Based on the output command value Ps EDLC output from the control system 4 based on the command value Ps G ), control is performed so as to supply stable power by performing output control of the electric double layer capacitor 3.

次に、図2を参照して、図1に示す制御システム4の制御動作を説明する。図2は、図1に示す制御システム4の構成を示すブロック線図である。まず、演算器42によって同期発電機2の計測値Pから同期発電機2の出力目標値(出力指令値Ps)を減算する。そして、演算器42の出力を積分器45によって積分する。このときの積分ゲインKは、同期発電機2の回転子の慣性モーメントに応じて調整される値である。一方、演算器43は、演算器42の出力と電気二重層キャパシタ3の計測値PEDLCを加算する。そして、演算器44は、演算器43の出力と積分器45の出力を加算して出力し、リミッタ46によって演算器44の出力を振幅制限して出力する。この出力が電気二重層キャパシタ3に対する出力指令値PsEDLCとなる Next, the control operation of the control system 4 shown in FIG. 1 will be described with reference to FIG. FIG. 2 is a block diagram showing the configuration of the control system 4 shown in FIG. First, subtraction output target value of the synchronous generator 2 (output command value Ps G) from the measured value P G of the synchronous generator 2 by the computing unit 42. Then, the output of the computing unit 42 is integrated by the integrator 45. The integral gain K 1 at this time is a value adjusted according to the moment of inertia of the rotor of the synchronous generator 2. On the other hand, the computing unit 43 adds the output of the computing unit 42 and the measured value P EDLC of the electric double layer capacitor 3. The computing unit 44 adds the output of the computing unit 43 and the output of the integrator 45 and outputs the result. The limiter 46 limits the amplitude of the output of the computing unit 44 and outputs the result. This output becomes the output command value Ps EDLC for the electric double layer capacitor 3.

図2において、演算器43の出力は、従来の負荷追従運転機能を実現するための出力に相当し、式(2)に基づく周波数維持を行うためのものである。一方、積分器45の出力は、同期発電機2の出力変動の積分値を補償するものであり、式(3)に基づく周波数維持を行うためのものである。このように、電気二重層キャパシタ3が、演算器43の出力と積分器45の出力加算値を補償することで高速な周波数維持管理を行うことが可能となる。   In FIG. 2, the output of the computing unit 43 corresponds to an output for realizing the conventional load following operation function, and is for maintaining the frequency based on the equation (2). On the other hand, the output of the integrator 45 is for compensating the integrated value of the output fluctuation of the synchronous generator 2, and is for maintaining the frequency based on the equation (3). In this way, the electric double layer capacitor 3 can perform high-speed frequency maintenance management by compensating for the output of the computing unit 43 and the output added value of the integrator 45.

なお、図1に示す構成においては、同期発電機2が一台であるため、同期発電機2の出力指令値Psが制御システム2に入力されているが、マイクログリッド内に発電機が複数台設置されているような場合に式(3)を適用するには、全ての同期発電機2を纏めて一台の同期発電機のように考える必要があるため、同期発電機2の計測値Pならびに出力指令値Psは全ての同期発電機2の合計値を使用すればよい。 In the configuration shown in FIG. 1, since there is one synchronous generator 2, the output command value Ps G of the synchronous generator 2 is input to the control system 2, but there are a plurality of generators in the microgrid. In order to apply equation (3) when a stand is installed, all the synchronous generators 2 need to be considered as a single synchronous generator. P G and the output command value Ps G may be used the sum of all of the synchronous generator 2.

次に、図3を参照して、図1に示す制御システム7の制御動作を説明する。図3は、図1に示す制御システム7の構成を示すブロック線図である。まず、演算器71は、計測器51の出力(計測値PLOAD)から二次電池1の計測値PBESを減算し、この出力をLPF(ローパスフィルタ)75へ入力し、LPF75によって低周波成分のみを抽出する。そして、LPF75の出力をリミッタ77によって振幅制限を行って出力する。この出力が出力指令値Psとなる。 Next, the control operation of the control system 7 shown in FIG. 1 will be described with reference to FIG. FIG. 3 is a block diagram showing the configuration of the control system 7 shown in FIG. First, the computing unit 71 subtracts the measured value P BES of the secondary battery 1 from the output (measured value P LOAD ) of the measuring device 51, and inputs this output to an LPF (low-pass filter) 75. Extract only. Then, the output of the LPF 75 is output by limiting the amplitude by the limiter 77. This output is the output command value Ps G.

一方、演算器72は、計測器51の出力(計測値PLOAD)から同期発電機2の計測値Pを減算して出力する。積分器73は、電気二重層キャパシタ3の計測値PEDLCを積分する。このときの積分ゲインKは、電気二重層キャパシタ3の容量に応じて調整される値である。演算器74は、演算器72の出力と積分器73の出力とを加算して出力する。この出力をLPF(ローパスフィルタ)76へ入力し、LPF76によって低周波成分のみを抽出する。そして、LPF76の出力をリミッタ78によって振幅制限を行って出力する。この出力が出力指令値PsBESとなる。 On the other hand, the arithmetic unit 72, and outputs the subtracted (measure P LOAD) from the synchronous generator 2 measured value P G output of the measuring device 51. The integrator 73 integrates the measured value P EDLC of the electric double layer capacitor 3. The integral gain K 2 at this time is a value adjusted according to the capacitance of the electric double layer capacitor 3. The computing unit 74 adds the output of the computing unit 72 and the output of the integrator 73 and outputs the result. This output is input to an LPF (low pass filter) 76, and only the low frequency component is extracted by the LPF 76. Then, the output of the LPF 76 is output with the amplitude limited by the limiter 78. This output becomes the output command value Ps BES .

このように、負荷電力と同期発電機2の発電目標値の差(負荷追従運転において二次電池1が補償すべき電力値)に電気二重層キャパシタ3が補償した電気出力の積分値を加算することで二次電池1の出力指令値を決定している。これは電気二重層キャパシタ3が補償した電気出力を徐々に二次電池1に振り替えることを意味している。結果として、電気二重層キャパシタ3の電気出力は時間経過と共にゼロに収束することになるので、二次電池1を用いて電気二重層キャパシタ3の容量を管理することが可能となる。また、電気二重層キャパシタ3の補償量を徐々に二次電池1へ分担させる制御は高速に行う必要がないため、LAN6を介して接続されている制御システム7を使用して実現しても問題ない。   In this way, the integral value of the electrical output compensated by the electric double layer capacitor 3 is added to the difference between the load power and the power generation target value of the synchronous generator 2 (the power value that the secondary battery 1 should compensate in the load following operation). Thus, the output command value of the secondary battery 1 is determined. This means that the electric output compensated by the electric double layer capacitor 3 is gradually transferred to the secondary battery 1. As a result, the electric output of the electric double layer capacitor 3 converges to zero with time, so that the capacity of the electric double layer capacitor 3 can be managed using the secondary battery 1. In addition, since the control for gradually sharing the compensation amount of the electric double layer capacitor 3 to the secondary battery 1 does not need to be performed at a high speed, there is a problem even if it is realized using the control system 7 connected via the LAN 6. Absent.

なお、電気二重層キャパシタ3の補償量を徐々に二次電池1へ分担させる制御方法は、エネルギー密度の小さい電気二重層キャパシタ3や超電導電力貯蔵装置を用いる場合に必要な機能であり、二重層キャパシタや超電導電力貯蔵装置を用いない場合にはこの方法は省略してよい。   Note that the control method of gradually sharing the compensation amount of the electric double layer capacitor 3 to the secondary battery 1 is a function necessary when using the electric double layer capacitor 3 or the superconducting power storage device having a low energy density. This method may be omitted when a capacitor or a superconducting power storage device is not used.

また、図1に示す構成では同期発電機2が一台であるため、同期発電機2の出力指令値は同期発電機2に入力されていない。これはN(Nは自然数)台の分散型電源がマイクログリッド内に存在する場合、需要による消費電力と電源による供給電力が常に一致するという関係性からN−1台の電源の電源出力を決定すれば、残り1台の出力が一意に定まるためである。従って、同期発電機2が複数台存在するようなケースでは1台を除いた同期発電機2に対して、制御システム7から出力指令値が送信されるようにすればよい。   Further, in the configuration shown in FIG. 1, since there is one synchronous generator 2, the output command value of the synchronous generator 2 is not input to the synchronous generator 2. This is because when N (N is a natural number) distributed power sources exist in the microgrid, the power output of N-1 power sources is determined from the relationship that the power consumed by the demand always matches the power supplied by the power source. This is because the remaining output is uniquely determined. Therefore, in the case where there are a plurality of synchronous generators 2, the output command value may be transmitted from the control system 7 to the synchronous generator 2 except for one.

次に、図4、図5を参照して、同期発電機2の出力変動の積分値を高速な応答性能を持つ分散型電源に補償させることで、自立運転中のマイクログリッド系統の周波数の安定性を向上させる制御方法の効果を説明する。図4は、同期発電機2の出力変動の積分値を高速な応答性能を持つ分散型電源に補償させる制御を行わずに、負荷追従運転で自立運転を行った場合の各分散型電源の出力ならびに周波数を示す図である。図5は、同期発電機2の出力変動の積分値を高速な応答性能を持つ分散型電源に補償させる制御を行い、負荷追従運転で自立運転を行った場合の各分散電源の出力ならびに周波数を示す図である。電源には同期発電機2としてガスエンジン発電機(図4、5においては、geと表記)を、二次電池1としてニッケル水素電池(図4、5においては、nimhと表記)を採用している。   Next, referring to FIG. 4 and FIG. 5, the integrated value of the output fluctuation of the synchronous generator 2 is compensated for by a distributed power source having high-speed response performance, thereby stabilizing the frequency of the microgrid system during the independent operation. The effect of the control method for improving the performance will be described. FIG. 4 shows the output of each distributed power source when the autonomous operation is performed in the load following operation without performing the control for compensating the integrated value of the output fluctuation of the synchronous generator 2 to the distributed power source having high-speed response performance. It is a figure which shows a frequency. FIG. 5 shows a control for compensating the integrated value of the output fluctuation of the synchronous generator 2 to a distributed power source having high-speed response performance, and the output and frequency of each distributed power source when the autonomous operation is performed by load following operation. FIG. As the power source, a gas engine generator (indicated as ge in FIGS. 4 and 5) is used as the synchronous generator 2, and a nickel-metal hydride battery (indicated as nimh in FIGS. 4 and 5) is used as the secondary battery 1. Yes.

図4、図5における周波数(Freq)の変動を比較すると、最大変動幅は1.96Hzから1.16Hzに低減されている(40.8%の性能改善)。また、標準偏差は0.2Hzから0.14Hzに向上しており(30.0%の性能改善)、本発明による制御法を用いた自立運転中の周波数変動の抑制に効果があることが分かる。   Comparing the fluctuations of the frequency (Freq) in FIGS. 4 and 5, the maximum fluctuation width is reduced from 1.96 Hz to 1.16 Hz (40.8% performance improvement). In addition, the standard deviation is improved from 0.2 Hz to 0.14 Hz (30.0% performance improvement), and it can be seen that it is effective in suppressing frequency fluctuations during self-sustained operation using the control method according to the present invention. .

この結果、本発明による制御法を用いれば、以下の効果を得ることができる。
(1)周波数を検出することなく周波数に関してより高品質な自立運転を行うことができる。
(2)アナログ専用線を用いて高速に出力制御を行う分散型電源にエネルギー密度の小さいものを使用した場合に、その容量を応答性の準じる電源で管理することができるため、比較的小さい容量の範囲内で運転を続けることが可能となる。
As a result, the following effects can be obtained by using the control method according to the present invention.
(1) Higher quality independent operation can be performed with respect to frequency without detecting the frequency.
(2) When a distributed power source that performs high-speed output control using an analog dedicated line uses a power source with a low energy density, the capacity can be managed by a power source that conforms to responsiveness. It becomes possible to continue the operation within the range.

このように、同期発電機2の出力変動と出力変動の積分値を高速な応答性能を持つ分散型電源(電気二重層キャパシタ3)に補償させることで、自立運転中のマイクログリッド系統の周波数の安定性を向上させることができる。また、合わせて高速な応答性能を持つ分散型電源に電気二重層キャパシタや超電導電力貯蔵装置のようなエネルギー密度の小さい電源を使用した場合に、補償量を徐々に容量の大きい二次電池1へ分担させるようにしたため、限られた容量の範囲内で分散型電源を安定した状態で運転することができる。   In this way, by compensating the output fluctuation of the synchronous generator 2 and the integrated value of the output fluctuation to the distributed power source (electric double layer capacitor 3) having a high-speed response performance, the frequency of the microgrid system during the independent operation can be reduced. Stability can be improved. In addition, when a power source having a low energy density such as an electric double layer capacitor or a superconducting power storage device is used as a distributed power source having high-speed response performance, the compensation amount is gradually transferred to the secondary battery 1 having a larger capacity. Since the load is shared, the distributed power source can be operated stably within a limited capacity range.

なお、図1に示す制御システム4と制御システム7の機能を実現するためのプログラムをコンピュータ読み取り可能な記録媒体に記録して、この記録媒体に記録されたプログラムをコンピュータシステムに読み込ませ、実行することにより運転制御を行ってもよい。なお、ここでいう「コンピュータシステム」とは、OSや周辺機器等のハードウェアを含むものとする。また、「コンピュータシステム」は、ホームページ提供環境(あるいは表示環境)を備えたWWWシステムも含むものとする。また、「コンピュータ読み取り可能な記録媒体」とは、フレキシブルディスク、光磁気ディスク、ROM、CD−ROM等の可搬媒体、コンピュータシステムに内蔵されるハードディスク等の記憶装置のことをいう。さらに「コンピュータ読み取り可能な記録媒体」とは、インターネット等のネットワークや電話回線等の通信回線を介してプログラムが送信された場合のサーバやクライアントとなるコンピュータシステム内部の揮発性メモリ(RAM)のように、一定時間プログラムを保持しているものも含むものとする。   Note that a program for realizing the functions of the control system 4 and the control system 7 shown in FIG. 1 is recorded on a computer-readable recording medium, and the program recorded on the recording medium is read by the computer system and executed. The operation control may be performed accordingly. Here, the “computer system” includes an OS and hardware such as peripheral devices. The “computer system” includes a WWW system having a homepage providing environment (or display environment). The “computer-readable recording medium” refers to a storage device such as a flexible medium, a magneto-optical disk, a portable medium such as a ROM and a CD-ROM, and a hard disk incorporated in a computer system. Further, the “computer-readable recording medium” refers to a volatile memory (RAM) in a computer system that becomes a server or a client when a program is transmitted via a network such as the Internet or a communication line such as a telephone line. In addition, those holding programs for a certain period of time are also included.

また、上記プログラムは、このプログラムを記憶装置等に格納したコンピュータシステムから、伝送媒体を介して、あるいは、伝送媒体中の伝送波により他のコンピュータシステムに伝送されてもよい。ここで、プログラムを伝送する「伝送媒体」は、インターネット等のネットワーク(通信網)や電話回線等の通信回線(通信線)のように情報を伝送する機能を有する媒体のことをいう。また、上記プログラムは、前述した機能の一部を実現するためのものであってもよい。さらに、前述した機能をコンピュータシステムにすでに記録されているプログラムとの組み合わせで実現できるもの、いわゆる差分ファイル(差分プログラム)であってもよい。   The program may be transmitted from a computer system storing the program in a storage device or the like to another computer system via a transmission medium or by a transmission wave in the transmission medium. Here, the “transmission medium” for transmitting the program refers to a medium having a function of transmitting information, such as a network (communication network) such as the Internet or a communication line (communication line) such as a telephone line. The program may be for realizing a part of the functions described above. Furthermore, what can implement | achieve the function mentioned above in combination with the program already recorded on the computer system, what is called a difference file (difference program) may be sufficient.

本発明の一実施形態の構成を示すブロック図である。It is a block diagram which shows the structure of one Embodiment of this invention. 図1に示す制御システム4の構成を示すブロック線図である。It is a block diagram which shows the structure of the control system 4 shown in FIG. 図1に示す制御システム7の構成を示すブロック線図である。It is a block diagram which shows the structure of the control system 7 shown in FIG. 負荷追従運転で自立運転を行った場合の各分散電源の出力と周波数の時間変化を示す図である。It is a figure which shows the time change of the output and frequency of each distributed power supply at the time of performing independent operation by load following operation. 負荷追従運転で自立運転を行った場合の各分散電源の出力と周波数の時間変化を示す図である。It is a figure which shows the time change of the output and frequency of each distributed power supply at the time of performing independent operation by load following operation.

符号の説明Explanation of symbols

1・・・二次電池、2・・・同期発電機、3・・・電気二重層キャパシタ、4・・・制御システム(高速演算)、5・・・負荷、6・・・LAN、7・・・制御システム(低速演算)、11、21、31、51・・・計測器、12、22、32、52・・・A/D変換器、13、41・・・D/A変換器   DESCRIPTION OF SYMBOLS 1 ... Secondary battery, 2 ... Synchronous generator, 3 ... Electric double layer capacitor, 4 ... Control system (high-speed calculation), 5 ... Load, 6 ... LAN, 7 ..Control system (low speed calculation) 11, 21, 31, 51 ... measuring instrument 12, 22, 32, 52 ... A / D converter, 13, 41 ... D / A converter

Claims (2)

負荷変動に対する追従性能が異なる複数の分散型電源を統合的に制御する分散型電源の制御方法であって、
前記複数種類の分散型電源のうち、自立運転時にベースとなる電圧及び周波数を生成する第1の分散型電源の出力値から、第1の分散型電源の出力指令値を減算した差分値を積分した積分値を求めるともに、前記差分値と負荷追従性能の最も高い第2の分散型電源の出力値とを加算した加算値を求め、前記積分値と前記加算値とを加算した値を前記第2の分散型電源の出力指令値として前記第2の分散型電源の運転制御を行うことにより、前記第1の分散型電源の出力変動を補償して、周波数を検知することなく周波数を安定に保つ自立運転制御を行うことを特徴とする分散型電源の制御方法。
A control method for a distributed power source that integrally controls a plurality of distributed power sources having different follow-up performance to load fluctuations,
The plurality of types of distributed power source, integrated from the output value of the first distributed power source for generating the voltage and frequency as a base during self-sustained operation, the difference value obtained by subtracting the output command value of the first distributed power And obtaining an added value obtained by adding the difference value and the output value of the second distributed power supply having the highest load follow-up performance, and obtaining a value obtained by adding the integrated value and the added value. By controlling the operation of the second distributed power supply as the output command value of the second distributed power supply, the output fluctuation of the first distributed power supply is compensated, and the frequency is stabilized without detecting the frequency. A control method for a distributed power source, characterized by performing autonomous operation control to maintain.
前記第2の分散型電源による前記出力変動の補償は、負荷に対して供給した電力値から前記第1の分散型電源の出力値を減算した減算値と、前記第2の分散型電源の出力を積分した積分値とを加算した出力値から低周波成分を抽出した値を、前記第2の分散型電源に準じた負荷追従性能を持ち、かつ前記第2の高い分散型電源より容量が大きい第3の分散型電源の出力指令値として前記第3の分散型電源の運転制御を行うことにより前記出力変動の補償を前記第3の分散型電源に分担させることを特徴とする請求項1に記載の分散型電源の制御方法。 Compensation of the output fluctuation by the second distributed power supply includes subtraction value obtained by subtracting the output value of the first distributed power supply from the power value supplied to the load, and the output of the second distributed power supply. the extracted values of the low-frequency component, the second has a distributed power load following performance pursuant to, and capacity higher dispersed type power supply of said second large from the output value obtained by adding the integral of the integral value The compensation for the output fluctuation is shared by the third distributed power supply by performing operation control of the third distributed power supply as an output command value of the third distributed power supply. The control method of the distributed power supply as described.
JP2008120450A 2008-05-02 2008-05-02 Control method of distributed power supply Expired - Fee Related JP5246756B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008120450A JP5246756B2 (en) 2008-05-02 2008-05-02 Control method of distributed power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008120450A JP5246756B2 (en) 2008-05-02 2008-05-02 Control method of distributed power supply

Publications (2)

Publication Number Publication Date
JP2009273210A JP2009273210A (en) 2009-11-19
JP5246756B2 true JP5246756B2 (en) 2013-07-24

Family

ID=41439273

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008120450A Expired - Fee Related JP5246756B2 (en) 2008-05-02 2008-05-02 Control method of distributed power supply

Country Status (1)

Country Link
JP (1) JP5246756B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013046244A1 (en) * 2011-09-26 2013-04-04 Murano Minoru System using direct-current power source, and direct-current-type microgrid network using same system

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4858799B2 (en) * 2005-03-02 2012-01-18 清水建設株式会社 Control method of distributed power supply
JP4852885B2 (en) * 2005-05-24 2012-01-11 株式会社明電舎 Load following operation control method with multiple types of distributed power supply
JP4706361B2 (en) * 2005-07-11 2011-06-22 株式会社明電舎 System stabilization device
JP5019372B2 (en) * 2007-07-20 2012-09-05 清水建設株式会社 Control method of distributed power supply

Also Published As

Publication number Publication date
JP2009273210A (en) 2009-11-19

Similar Documents

Publication Publication Date Title
Choi et al. Hybrid operation strategy of wind energy storage system for power grid frequency regulation
WO2019187411A1 (en) Control device for distributed power source
US7761190B2 (en) System and method for utility and wind turbine control
JP5435633B2 (en) Control method of distributed power supply
US9640999B2 (en) Power system stabilizer
WO2018230071A1 (en) New energy source integrated power conversion device
JP6342203B2 (en) Wind farm output control device, method, and program
JP4846450B2 (en) Inverter power controller
US10746043B2 (en) Power source, adjusting power instructing apparatus, method, and recording medium for changing adjusting power
CN107769265B (en) Control method and system of voltage type inverter
KR102264862B1 (en) System and Method for Controlling Inertial of Energy Storage System
CN111697595B (en) Frequency dynamic optimization control method and system of virtual synchronous fan
KR102017306B1 (en) Apparatus and method for controlling cvcf ess capacity of stand-alone micro grid
CA2737885C (en) Pitch control device and system for wind power generator
JP5246756B2 (en) Control method of distributed power supply
JP4866764B2 (en) Control method of distributed power supply
KR101043430B1 (en) System for pitch angle control of wind turbine
Fernández et al. Linear and non-linear control of wind farms. Contribution to the grid stability
JP5019372B2 (en) Control method of distributed power supply
JP2020108269A (en) Power conversion device
CN115528702A (en) Power system frequency situation prediction method considering offshore wind power frequency modulation capability
US20220149628A1 (en) Systems and methods for power system stabilization and oscillation damping control
JP2018182865A (en) Power leveling device
JP2010068574A (en) Vibration suppressing controller for power generator
JP4904597B2 (en) Power storage facility determination method and power storage facility determination program

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20110215

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130404

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees