JP5245491B2 - Manufacturing method of component built-in wiring board, component built-in wiring board - Google Patents

Manufacturing method of component built-in wiring board, component built-in wiring board Download PDF

Info

Publication number
JP5245491B2
JP5245491B2 JP2008084284A JP2008084284A JP5245491B2 JP 5245491 B2 JP5245491 B2 JP 5245491B2 JP 2008084284 A JP2008084284 A JP 2008084284A JP 2008084284 A JP2008084284 A JP 2008084284A JP 5245491 B2 JP5245491 B2 JP 5245491B2
Authority
JP
Japan
Prior art keywords
insulating layer
wiring board
opening
wiring
component built
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008084284A
Other languages
Japanese (ja)
Other versions
JP2009239088A (en
Inventor
賢司 笹岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2008084284A priority Critical patent/JP5245491B2/en
Publication of JP2009239088A publication Critical patent/JP2009239088A/en
Application granted granted Critical
Publication of JP5245491B2 publication Critical patent/JP5245491B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/01Means for bonding being attached to, or being formed on, the surface to be connected, e.g. chip-to-package, die-attach, "first-level" interconnects; Manufacturing methods related thereto
    • H01L2224/10Bump connectors; Manufacturing methods related thereto
    • H01L2224/15Structure, shape, material or disposition of the bump connectors after the connecting process
    • H01L2224/16Structure, shape, material or disposition of the bump connectors after the connecting process of an individual bump connector
    • H01L2224/161Disposition
    • H01L2224/16151Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive
    • H01L2224/16221Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked
    • H01L2224/16225Disposition the bump connector connecting between a semiconductor or solid-state body and an item not being a semiconductor or solid-state body, e.g. chip-to-substrate, chip-to-passive the body and the item being stacked the item being non-metallic, e.g. insulating substrate with or without metallisation
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/73Means for bonding being of different types provided for in two or more of groups H01L2224/10, H01L2224/18, H01L2224/26, H01L2224/34, H01L2224/42, H01L2224/50, H01L2224/63, H01L2224/71
    • H01L2224/732Location after the connecting process
    • H01L2224/73201Location after the connecting process on the same surface
    • H01L2224/73203Bump and layer connectors
    • H01L2224/73204Bump and layer connectors the bump connector being embedded into the layer connector
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2224/00Indexing scheme for arrangements for connecting or disconnecting semiconductor or solid-state bodies and methods related thereto as covered by H01L24/00
    • H01L2224/80Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected
    • H01L2224/83Methods for connecting semiconductor or other solid state bodies using means for bonding being attached to, or being formed on, the surface to be connected using a layer connector
    • H01L2224/8319Arrangement of the layer connectors prior to mounting
    • H01L2224/83192Arrangement of the layer connectors prior to mounting wherein the layer connectors are disposed only on another item or body to be connected to the semiconductor or solid-state body

Description

本発明は、絶縁板中に電気/電子部品を埋設して有する部品内蔵配線板の製造方法およびその部品内蔵配線板に係り、特に、製造する負担の低減に適する部品内蔵配線板の製造方法およびその部品内蔵配線板に関する。   The present invention relates to a method for manufacturing a component built-in wiring board having electric / electronic components embedded in an insulating plate and the component built-in wiring board, and more particularly, to a method for manufacturing a component built-in wiring board suitable for reducing the manufacturing burden and It relates to the component built-in wiring board.

部品内蔵配線板の従来技術として下記特許文献1に開示されたものがある。この部品内蔵配線板は、多層配線層のうち内層の配線層のパターン上に電子部品が表面実装された構造を有している。電子部品は絶縁板中に埋設されるが、その絶縁板には、絶縁性樹脂またはこれとフィラとの混合物をドクターブレード法などによりシート状に成形して得られたものが用いられている。積層工程においては、電子部品の相当する位置に特にくぼみや開口などの逃げ部分を持たせないか、または電子部品の占める大きさより小さなくぼみを持たせた絶縁板が用いられる。   As a prior art of a component built-in wiring board, there is one disclosed in Patent Document 1 below. This component built-in wiring board has a structure in which an electronic component is surface-mounted on a pattern of an inner wiring layer in a multilayer wiring layer. Electronic parts are embedded in an insulating plate, and the insulating plate is obtained by molding an insulating resin or a mixture of this and a filler into a sheet shape by a doctor blade method or the like. In the laminating process, an insulating plate is used that does not have a relief portion such as a recess or an opening, or a recess smaller than the size occupied by the electronic component, at a corresponding position of the electronic component.

上記の構造および製造方法では、絶縁性樹脂の材料として、プリント配線板で一般的なガラスクロスやアラミド樹脂繊維を補強材とするいわゆるプリプレグを用いるのが難しい。すなわち、特殊な絶縁材料を準備する必要がありその入手性やコストの点で不利である。また、無理にプリプレグを用いると、内蔵される電子部品にガラスクロスなどがぶつかり応力が発生して電子部品を破壊する恐れや、内層の配線パターンと電子部品との接続信頼性を損なう恐れを生じる。
特開2003−197849号公報
In the structure and the manufacturing method described above, it is difficult to use a so-called prepreg that uses a glass cloth or an aramid resin fiber as a reinforcing material for a printed wiring board as a material for the insulating resin. That is, it is necessary to prepare a special insulating material, which is disadvantageous in terms of availability and cost. Also, if the prepreg is forcibly used, a glass cloth or the like may collide with the built-in electronic component and stress may be generated, causing the electronic component to be damaged, or the connection reliability between the inner wiring pattern and the electronic component may be impaired. .
JP 2003-197849 A

本発明は、上記した事情を考慮してなされたもので、絶縁板中に電気/電子部品を埋設して有する部品内蔵配線板の製造方法およびその部品内蔵配線板において、製造負担を低減し信頼性向上にも資する部品内蔵配線板の製造方法およびその部品内蔵配線板を提供することを目的とする。   The present invention has been made in consideration of the above-described circumstances. In the method for manufacturing a wiring board with a built-in component having an electrical / electronic component embedded in an insulating plate and the wiring board with a built-in component, the manufacturing burden is reduced and the reliability is improved. It is an object of the present invention to provide a method of manufacturing a component built-in wiring board that also contributes to improvement in performance and the component built-in wiring board.

上記の課題を解決するため、本発明の一態様である部品内蔵配線板の製造方法は、金属配線パターンを有する第1の絶縁層の前記金属配線パターン上に電気/電子部品を電気的機械的に接続する工程と、前記第1の絶縁層上に積層されるべき、補強材を含有した第2の絶縁層の前記電気/電子部品に対応する位置に円弧を複数連ねてなる、該電気/電子部品を拘束しない縁部による開口を形成する工程と、前記第1の絶縁層の前記金属配線パターンが存在する側上に、前記電気/電子部品に対応して前記開口が位置するように前記第2の絶縁層を配置し、さらに該第2の絶縁層上に第3の絶縁層を配置し、積層一体化する工程とを具備することを特徴とする。 In order to solve the above-described problems, a method of manufacturing a component-embedded wiring board according to an aspect of the present invention is a method of electrically and mechanically placing an electrical / electronic component on the metal wiring pattern of the first insulating layer having a metal wiring pattern. a step of connecting, the first to be laminated on the insulating layer, a plurality lined formed by a circular arc at a position corresponding to the second of the electrical / electronic components of the insulating layer containing a reinforcing material, electrical / The step of forming an opening by an edge that does not restrain the electronic component, and the opening corresponding to the electric / electronic component is positioned on the side of the first insulating layer where the metal wiring pattern exists. A step of disposing the second insulating layer, disposing a third insulating layer on the second insulating layer, and laminating and integrating the third insulating layer.

すなわち、「第1の絶縁層上に積層されるべき、補強材を含有した第2の絶縁層の前記電気/電子部品に対応する位置に円弧を複数連ねてなる、該電気/電子部品を拘束しない縁部による開口を形成する」ことで、内蔵されるべき電気/電子部品に対して積層時に第2の絶縁層の補強材がぶつかることを防止する。これにより応力発生を抑制して信頼性を向上する。また、上記開口を、円弧を複数重ねてなる縁部によるものとすることで、開口を形成するのに特殊な装置を必要としない、例えばスルーホール形成と同様のドリル工法を採用できる。これにより製造時の負担増がほとんどない。もとより、第2の絶縁層として配線板で一般的なプリプレグを硬化させたものを使用することが可能であり製造負担の軽減になる。 That is, “ constraint the electric / electronic component formed by connecting a plurality of circular arcs at positions corresponding to the electric / electronic component of the second insulating layer containing the reinforcing material to be laminated on the first insulating layer. By forming the opening by the non- peripheral edge portion ”, the reinforcing material of the second insulating layer is prevented from colliding with the electric / electronic component to be incorporated at the time of stacking. This suppresses the generation of stress and improves reliability. In addition, since the opening is formed by an edge formed by overlapping a plurality of arcs, a drilling method similar to that for forming a through hole, for example, which does not require a special device to form the opening can be employed. Thereby, there is almost no increase in the burden at the time of manufacture. Of course, it is possible to use what hardened a general prepreg with a wiring board as a 2nd insulating layer, and it becomes a reduction of manufacturing burden.

なお、副次的には、円弧を複数連ねてなる縁部による開口では、開口を単一の丸穴とする場合より、内蔵する電気/電子部品の大きさに沿った開口の大きさとすることができ、開口への樹脂充填性がよくボイドの発生を防止して信頼性を向上できる。また内層の配線形成領域をより大きく残すことができる点も配線板として利点になる。   As a secondary matter, the opening by the edge formed by connecting a plurality of circular arcs should have the size of the opening along the size of the built-in electric / electronic component, compared to the case where the opening is a single round hole. Therefore, the resin filling property into the opening is good and the generation of voids can be prevented to improve the reliability. Another advantage of the wiring board is that a larger inner wiring formation region can be left.

また、本発明の別の態様である部品内蔵配線板は、第1の絶縁層と、前記第1の絶縁層上に設けられた配線パターンと、前記配線パターン上に実装された電気/電子部品と、前記電気/電子部品に対応する位置に円弧を複数連ねてなる、該電気/電子部品を拘束しない縁部による開口を有し、かつ、補強材を含有する第2の絶縁層と、前記第1の絶縁層の前記配線パターンの側の面と前記第2の絶縁層との間を埋め、かつ前記第2の絶縁層の前記開口の前記縁部と前記電気/電子部品との間を埋めて位置する第3の絶縁層とを具備することを特徴とする。 The component built-in wiring board according to another aspect of the present invention includes a first insulating layer, a wiring pattern provided on the first insulating layer, and an electric / electronic component mounted on the wiring pattern. A second insulating layer comprising a plurality of circular arcs at positions corresponding to the electrical / electronic components, having openings by edges that do not restrain the electrical / electronic components , and containing a reinforcing material; A space between the surface of the first insulating layer on the wiring pattern side and the second insulating layer is filled, and a gap between the edge of the opening of the second insulating layer and the electric / electronic component is filled. And a third insulating layer that is buried and located.

すなわち、「前記電気/電子部品に対応する位置に円弧を複数連ねてなる、該電気/電子部品を拘束しない縁部による開口を有し、かつ、補強材を含有する第2の絶縁層」を設けることで、内蔵されるべき電気/電子部品に対して積層時に第2の絶縁層の補強材がぶつかることを防止する。これにより応力発生を抑制して信頼性を向上する。また、上記開口を、円弧を複数重ねてなる縁部によるものとすることで、開口を形成するのに特殊な装置を必要としない、例えばスルーホール形成と同様のドリル工法を採用できる。これにより製造時の負担増がほとんどない。もとより、第2の絶縁層として配線板で一般的なプリプレグを硬化させたものを使用することが可能であり製造負担の軽減になる。 That is, “a second insulating layer that includes a plurality of circular arcs at positions corresponding to the electrical / electronic components, has openings by edges that do not restrain the electrical / electronic components , and contains a reinforcing material”. By providing, the reinforcing material of the second insulating layer is prevented from colliding with the electric / electronic component to be built in at the time of lamination. This suppresses the generation of stress and improves reliability. In addition, since the opening is formed by an edge formed by overlapping a plurality of arcs, a drilling method similar to that for forming a through hole, for example, which does not require a special device to form the opening can be employed. Thereby, there is almost no increase in the burden at the time of manufacture. Of course, it is possible to use what hardened a general prepreg with a wiring board as a 2nd insulating layer, and it becomes a reduction of manufacturing burden.

本発明によれば、絶縁板中に電気/電子部品を埋設して有する部品内蔵配線板の製造法およびその部品内蔵配線板において、製造負担を低減し信頼性向上にも資する部品内蔵配線板の製造方法およびその部品内蔵配線板を提供することができる。   According to the present invention, there is provided a method for manufacturing a wiring board with a built-in component having electric / electronic components embedded in an insulating board, and a wiring board with a built-in component that contributes to reducing manufacturing burden and improving reliability. A manufacturing method and a component built-in wiring board can be provided.

本発明の実施態様として、前記開口の形成が、ドリルを用いてなされる、とすることができる。ドリルを用いる工法は、一般的なスルーホール配線板で要する穴あけに使われる工法であり、既存の製造装置の流用が可能である。   As an embodiment of the present invention, the opening may be formed using a drill. The construction method using a drill is a construction method used for drilling a general through-hole wiring board, and can be used for existing manufacturing equipment.

ここで、前記ドリルによる前記開口の形成が、単一の径のドリルによるものである、とすることができる。単一の径のドリルによる工程とすれば、生産効率がよい。   Here, the formation of the opening by the drill may be performed by a drill having a single diameter. If the process uses a single-diameter drill, production efficiency is good.

また、ここで、前記ドリルによる前記開口の形成が、2種以上の径のドリルによるものである、とすることができる。2種以上の径のドリルによる工程とすれば、単一の径のドリルの場合より生産効率は多少劣るものの、内蔵する電気/電子部品の大きさにより近い開口を形成でき、開口への樹脂充填性をより確保し、また内層の配線形成領域をより大きく残すことができる。   Here, the formation of the opening by the drill can be made by a drill having two or more diameters. If the process uses a drill with two or more diameters, although the production efficiency is somewhat inferior to that of a single-diameter drill, an opening closer to the size of the built-in electrical / electronic component can be formed, and resin filling into the opening It is possible to secure the characteristics and to leave a larger wiring formation region in the inner layer.

また、部品内蔵配線板としての実施態様として、前記第2の絶縁層の前記第1の絶縁層に対向する側の面に設けられた第2の配線パターンと、前記第3の絶縁層を貫通して前記配線パターンの面と前記第2の配線パターンの面との間に挟設され、かつ導電性組成物からなり、かつ積層方向に一致する軸を有し該軸の方向に径が変化している形状である層間接続体とをさらに具備する、とすることができる。この層間接続体は、第1の絶縁層と第2の絶縁層との間に介在する第3の絶縁層を貫通する層間接続体の一例であり、例えば導電性組成物のスクリーン印刷により形成された導電性バンプを由来とする層間接続体である。   Further, as an embodiment as a component built-in wiring board, the second wiring pattern provided on the surface of the second insulating layer facing the first insulating layer, and the third insulating layer are penetrated. And having an axis that is sandwiched between the surface of the wiring pattern and the surface of the second wiring pattern, is made of a conductive composition, and coincides with the stacking direction, and the diameter changes in the direction of the axis. It is further possible to further include an interlayer connection body having a shape. This interlayer connection body is an example of an interlayer connection body that passes through a third insulating layer interposed between the first insulating layer and the second insulating layer, and is formed by screen printing of a conductive composition, for example. It is an interlayer connection body derived from the conductive bump.

また、実施態様として、前記第2の絶縁層の前記開口の前記縁部が、同一の曲率半径の円弧を複数連ねてなる縁である、とすることができる。同一の曲率半径の円弧を複数連ねてなる縁は単一の径のドリルで形成でき、生産効率がよい。   As an embodiment, the edge of the opening of the second insulating layer may be an edge formed by connecting a plurality of arcs having the same radius of curvature. An edge formed by connecting a plurality of arcs having the same radius of curvature can be formed with a single-diameter drill, and the production efficiency is high.

また、実施態様として、前記第2の絶縁層の前記開口の前記縁部が、2種以上の曲率半径の円弧を複数連ねてなる縁である、とすることができる。2種以上の曲率半径の円弧を複数連ねてなる縁を有する開口は、内蔵する電気/電子部品の大きさにより近い開口になり、開口への樹脂充填性をより確保し、また内層の配線形成領域をより大きく残すことができる。   As an embodiment, the edge of the opening of the second insulating layer may be an edge formed by connecting a plurality of arcs having two or more curvature radii. An opening having an edge formed by connecting a plurality of arcs of two or more curvature radii is closer to the size of the built-in electric / electronic component, ensuring more resin filling into the opening, and forming an inner layer wiring The area can be left larger.

また、実施態様として、前記第2の絶縁層が、少なくとも2つの絶縁層の積層であり、前記少なくとも2つの絶縁層の間に挟設された第3の配線パターンをさらに具備する、とすることができる。第2の絶縁層の多層化により、より層数の多い配線板を提供できる。   As an embodiment, the second insulating layer is a laminate of at least two insulating layers, and further includes a third wiring pattern sandwiched between the at least two insulating layers. Can do. By making the second insulating layer multi-layered, a wiring board having a larger number of layers can be provided.

以上を踏まえ、以下では本発明の実施形態を図面を参照しながら説明する。図1は、本発明の一実施形態に係る部品内蔵配線板の構成を模式的に示す縦断面図(図1(a))および横断面図(図1(b))である。ここで図1(a)中のA−Aa位置における矢視方向断面が図1(b)に対応する。   Based on the above, embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a longitudinal sectional view (FIG. 1 (a)) and a transverse sectional view (FIG. 1 (b)) schematically showing a configuration of a component built-in wiring board according to an embodiment of the present invention. Here, the cross-section in the direction of the arrow at the position A-Aa in FIG. 1A corresponds to FIG.

図1に示すように、この部品内蔵配線板は、絶縁層11、同12、同13、同14、同15、配線層(配線パターン)21、同22、同23、同24、同25、同26(=合計6層)、層間接続体31、同32、同34、同35、スルーホール導電体33、半導体チップ41、導電性バンプ42、アンダーフィル樹脂51、ソルダーレジスト61、62を有する。絶縁層11〜15は、それぞれ、絶縁樹脂11a〜15aとこれを補強する補強材11b〜15b(例えばガラスクロス)とからなる。   As shown in FIG. 1, this component built-in wiring board includes insulating layers 11, 12, 13, 14, 15, wiring layers (wiring patterns) 21, 22, 23, 24, 25, 26 (= 6 layers in total), interlayer connector 31, 32, 34, 35, through-hole conductor 33, semiconductor chip 41, conductive bump 42, underfill resin 51, solder resists 61, 62 . The insulating layers 11 to 15 are made of insulating resins 11a to 15a and reinforcing materials 11b to 15b (for example, glass cloth) that reinforce them.

電気/電子部品としての半導体チップ41は、フリップ接続により導電性バンプ42を介して内層の配線層22に電気的、機械的に接続されている。この接続のため、半導体チップ41が有する端子パッド(不図示)上にあらかじめ導電性バンプ42が形設され、この導電性バンプ42に位置を合わせて配線層22には内蔵部品実装用ランドがパターン形成されている。導電性バンプ42は、材質として例えばAuであり、あらかじめ端子パッド上にスタッド状に形成されたものである。半導体チップ41と配線層22および絶縁層11との間には、フリップ接続部分の機械的および化学的な保護のためアンダーフィル樹脂51が満たされている。   The semiconductor chip 41 as an electrical / electronic component is electrically and mechanically connected to the inner wiring layer 22 via conductive bumps 42 by flip connection. For this connection, conductive bumps 42 are formed in advance on terminal pads (not shown) of the semiconductor chip 41, and the built-in component mounting lands are patterned on the wiring layer 22 in alignment with the conductive bumps 42. Is formed. The conductive bump 42 is made of, for example, Au, and is previously formed in a stud shape on the terminal pad. An underfill resin 51 is filled between the semiconductor chip 41 and the wiring layer 22 and the insulating layer 11 for mechanical and chemical protection of the flip connection portion.

配線層21、26は配線板としての主面上の(外層の)配線層であり、配線層22、23、24、25はそれぞれ内層の配線層である。順に、配線層21と配線層22の間に絶縁層11が、配線層22と配線層23の間に絶縁層12が、配線層23と配線層24との間に絶縁層13が、配線層24と配線層25との間に絶縁層14が、配線層25と配線層26との間に絶縁層15が、それぞれ位置しこれらの配線層21〜26を隔てている。各配線層21〜26は、例えばそれぞれ厚さ18μmの金属(銅)箔からなっている。   The wiring layers 21 and 26 are wiring layers (outer layers) on the main surface as a wiring board, and the wiring layers 22, 23, 24, and 25 are inner wiring layers, respectively. In order, the insulating layer 11 is between the wiring layer 21 and the wiring layer 22, the insulating layer 12 is between the wiring layer 22 and the wiring layer 23, and the insulating layer 13 is between the wiring layer 23 and the wiring layer 24. The insulating layer 14 is located between the wiring layer 25 and the wiring layer 25, and the insulating layer 15 is located between the wiring layer 25 and the wiring layer 26, and the wiring layers 21 to 26 are separated from each other. Each of the wiring layers 21 to 26 is made of, for example, a metal (copper) foil having a thickness of 18 μm.

配線層21、26は、その上に各種の部品(不図示)が実装され得る。このような実装のため配線層21、26は部品実装用のランドを含んでいる。ランド部分を除いて配線層21、26上を含んだ両主面上には、保護層として機能するソルダーレジスト61、62が形成されている(厚さはそれぞれ例えば20μm程度)。ランド部分の表層には、耐腐食性の高いNi/Auのめっき層(不図示)を形成するようにしてもよい。   Various components (not shown) can be mounted on the wiring layers 21 and 26. For such mounting, the wiring layers 21 and 26 include lands for component mounting. Solder resists 61 and 62 functioning as protective layers are formed on both main surfaces including the wiring layers 21 and 26 except for the land portions (thickness is about 20 μm, for example). An Ni / Au plating layer (not shown) with high corrosion resistance may be formed on the surface layer of the land portion.

配線層21と配線層22とは、それらのパターンの面の間に挟設されかつ絶縁層11を貫通する層間接続体31により導通し得る。同様に、配線層22と配線層23とは、それらのパターンの面の間に挟設されかつ絶縁層12を貫通する層間接続体32により導通し得る。配線層23と配線層24とは、絶縁層13を貫通して設けられたスルーホール導電体33により導通し得る。配線層24と配線層25とは、それらのパターンの面の間に挟設されかつ絶縁層14を貫通する層間接続体34により導通し得る。配線層25と配線層26とは、それらのパターンの面の間に挟設されかつ絶縁層15を貫通する層間接続体35により導通し得る。 The wiring layer 21 and the wiring layer 22 can be conducted by an interlayer connector 31 that is sandwiched between the surfaces of the patterns and penetrates the insulating layer 11. Similarly, the wiring layer 22 and the wiring layer 23 can be conducted by an interlayer connector 32 that is sandwiched between the surfaces of the patterns and penetrates the insulating layer 12. The wiring layer 23 and the wiring layer 24 can be conducted by a through-hole conductor 33 provided through the insulating layer 13. The wiring layer 24 and the wiring layer 25 can be conducted by an interlayer connector 34 that is sandwiched between the surfaces of these patterns and penetrates the insulating layer 14. The wiring layer 25 and the wiring layer 26 can be conducted by an interlayer connector 35 that is sandwiched between the surfaces of these patterns and penetrates the insulating layer 15.

層間接続体31、32、34、35は、それぞれ、導電性組成物のスクリーン印刷により形成される導電性バンプを由来とするものであり、その製造工程に依拠して軸方向(図1の図示で上下の積層方向)に径が変化している。その直径は、太い側で例えば200μmである。   The interlayer connectors 31, 32, 34, and 35 are derived from conductive bumps formed by screen printing of a conductive composition, respectively, and depend on the manufacturing process in the axial direction (shown in FIG. 1). The diameter changes in the upper and lower stacking directions). The diameter is, for example, 200 μm on the thick side.

各絶縁層11〜15は、絶縁層13を除き例えばそれぞれ厚さ100μm、絶縁層13のみ例えば厚さ300μmであり、それらの絶縁樹脂11a〜15aの部分は、例えばエポキシ樹脂のようなリジッドな素材である。特に絶縁層13は、内蔵された半導体チップ41に相当する位置部分が開口部となっており、半導体チップ41を内蔵するための空間を提供する。この開口部には、当然補強材13bもない。絶縁層12、14の絶縁樹脂12a、14aは、内蔵された半導体チップ41のための絶縁層13の上記開口部および絶縁層13のスルーホール導電体33内部の空間を埋めるように変形進入しており内部に空隙となる空間は存在しない。   Each insulating layer 11 to 15 is, for example, 100 μm thick except for the insulating layer 13, and only the insulating layer 13 has a thickness of 300 μm, for example, and the portions of the insulating resins 11 a to 15 a are rigid materials such as an epoxy resin, for example. It is. In particular, the insulating layer 13 has an opening at a position corresponding to the built-in semiconductor chip 41, and provides a space for housing the semiconductor chip 41. Of course, there is no reinforcement 13b in this opening. The insulating resins 12a and 14a of the insulating layers 12 and 14 are deformed so as to fill the opening of the insulating layer 13 for the built-in semiconductor chip 41 and the space inside the through-hole conductor 33 of the insulating layer 13. There is no space that becomes a void inside the cage.

絶縁層13に加えて、絶縁層12にも半導体チップ41に相当する位置部分には補強材12bがない。この部品内蔵配線板では、絶縁層13、12について、補強材13b、12bを半導体チップ41の位置相当部分で存在させない構成にすることで、絶縁層13、12として例えばガラスエポキシのプリプレグを容易に利用することができる。すなわち、このようなプリプレグを用いても、内蔵される半導体チップ41にガラスクロスがぶつかってこれを破壊したり、内層の配線層22と半導体チップ41との接続信頼性を損なったりすることがない。   In addition to the insulating layer 13, the insulating layer 12 also has no reinforcing material 12 b at a position corresponding to the semiconductor chip 41. In this component built-in wiring board, the insulating layers 13 and 12 are configured such that the reinforcing members 13b and 12b do not exist in the portion corresponding to the position of the semiconductor chip 41, so that, for example, a glass epoxy prepreg can be easily formed as the insulating layers 13 and 12. Can be used. In other words, even when such a prepreg is used, a glass cloth does not collide with the built-in semiconductor chip 41 and it is not damaged, and connection reliability between the inner wiring layer 22 and the semiconductor chip 41 is not impaired. .

絶縁層13の上記開口部の平面的な形状は、図1(b)に示すように、円弧を複数連ねてなる縁部による開口になっている。これは、半導体チップ41が、受動部品であるチップ抵抗やチップコンデンサなどと比較して大きな面積を有する場合が多いことに対処して採用した工夫である。まず、円弧を複数連ねた縁部による開口は、ドリルによる加工が可能であり、一般のスルーホール基板を製造するための装置をそのまま利用できるので設備投資を抑制できる。また、ドリル加工は加工を要する板を複数枚重ねて行うことも可能であり生産性がよい。   As shown in FIG. 1B, the planar shape of the opening of the insulating layer 13 is an opening formed by an edge formed by connecting a plurality of arcs. This is an idea adopted in response to the fact that the semiconductor chip 41 often has a large area compared to a chip resistor or a chip capacitor which is a passive component. First, the opening by the edge part which connected the circular arc severally can be processed with a drill, and since the apparatus for manufacturing a general through-hole board | substrate can be utilized as it is, capital investment can be suppressed. In addition, drilling can be performed by stacking a plurality of plates that require processing, and productivity is good.

平面的に面積の小さいチップ抵抗やチップコンデンサでは、そのための開口部の形成にドリル加工による丸穴をひとつ設けることで十分対応ができるものの、これを比較的大きな面積を有する半導体チップ41にも適用すると、問題がある。すなわち、丸穴の縁と半導体チップ41との間の空間は、絶縁層12、14の絶縁樹脂12a、14aで埋められる必要があり、その空間が大きくなってしまうので樹脂充填が不完全でボイドが発生するなどの不良が生じる。そこで、図1(b)に示すように開口部を円弧を複数連ねてなる縁部による開口とすればこのような空間をより小さくでき、不良率を顕著に改善できる。   A chip resistor or chip capacitor having a small area in plan can be adequately provided by forming one round hole by drilling to form an opening for this purpose, but this is also applied to a semiconductor chip 41 having a relatively large area. Then there is a problem. That is, the space between the edge of the round hole and the semiconductor chip 41 needs to be filled with the insulating resins 12a and 14a of the insulating layers 12 and 14, and the space becomes large. Defects such as occur. Therefore, as shown in FIG. 1 (b), if the opening is an opening formed by an edge formed by connecting a plurality of circular arcs, such a space can be made smaller and the defect rate can be remarkably improved.

さらに、このような開口部を形成すれば、絶縁層13の除去面積がより小さくなるため、その両面上の配線層23、24の形成領域をより広く確保することができる。したがって、配線板としてパターン設計の自由度をそれだけ高く維持できる。   Furthermore, if such an opening is formed, the removal area of the insulating layer 13 becomes smaller, so that a wider area for forming the wiring layers 23 and 24 on both surfaces can be secured. Therefore, the degree of freedom in pattern design as a wiring board can be maintained high.

なお、上記では半導体チップ41の配線層22への接続に、Auのスタッド状の導電性バンプ42によるフリップ接続を利用しているが、例えばはんだバンプや導電性接着剤を利用したフリップ接続とすることも当然ながら可能である。半導体チップ41に代えてウエハレベル・チップスケールパッケージによる半導体部品を用いることもできる。また、補強材11b〜15bとしては、ガラスクロスのほか、アラミドクロスやガラス不織布、アラミド不織布などの補強材としてもよい。絶縁層11〜15としては、例えばFR−4相当のもののほか、CEM−3材を用いることができる。   In the above description, flip connection using Au stud-like conductive bumps 42 is used for connection of the semiconductor chip 41 to the wiring layer 22. For example, flip connection using solder bumps or conductive adhesive is used. Of course, it is possible. Instead of the semiconductor chip 41, a semiconductor component of a wafer level / chip scale package can be used. Moreover, as reinforcement material 11b-15b, it is good also as reinforcement materials, such as an aramid cloth, a glass nonwoven fabric, and an aramid nonwoven fabric besides glass cloth. As the insulating layers 11 to 15, for example, a CEM-3 material can be used in addition to the one corresponding to FR-4.

次に、図1に示した部品内蔵配線板の製造工程を図2ないし図5を参照して説明する。図2、図3、図5は、それぞれ、図1に示した部品内蔵配線板の製造過程の一部を模式的断面で示す工程図である。図4Aは、図3(e)中に示す部品用開口部71の形状を示す平面図であり、図4B、図4Cは、それぞれその変形例である。これらの図において図1中に示した構成要素と同一または同一相当のものには同一符号を付してある。   Next, the manufacturing process of the component built-in wiring board shown in FIG. 1 will be described with reference to FIGS. 2, 3, and 5 are process diagrams schematically showing a part of the manufacturing process of the component built-in wiring board shown in FIG. FIG. 4A is a plan view showing the shape of the component opening 71 shown in FIG. 3E, and FIGS. 4B and 4C are modifications thereof. In these figures, the same or equivalent components as those shown in FIG.

図2から説明する。図2は、図1中に示した各構成のうち絶縁層11を中心とした部分の製造工程を示している。まず、図2(a)に示すように、厚さ例えば18μmの金属箔(電解銅箔)22A上に例えばスクリーン印刷により、層間接続体31となるペースト状の導電性組成物をほぼ円錐形のバンプ状(底面径例えば200μm、高さ例えば160μm)に形成する。この導電性組成物は、ペースト状の樹脂中に銀、金、銅などの金属微細粒または炭素微細粒を分散させたものである。説明の都合で金属箔22Aの下面に印刷しているが上面でもよい(以下の各図も同じである)。層間接続体31の印刷後これを乾燥させて硬化させる。   It demonstrates from FIG. FIG. 2 shows a manufacturing process of a portion centering on the insulating layer 11 in each configuration shown in FIG. First, as shown in FIG. 2 (a), a paste-like conductive composition to be an interlayer connection 31 is formed on a metal foil (electrolytic copper foil) 22A having a thickness of 18 μm, for example, by screen printing. It is formed in a bump shape (bottom diameter, eg, 200 μm, height, eg, 160 μm). This conductive composition is obtained by dispersing fine metal particles such as silver, gold and copper or fine carbon particles in a paste-like resin. For convenience of explanation, printing is performed on the lower surface of the metal foil 22A, but it may be printed on the upper surface (the following drawings are also the same). After the interlayer connector 31 is printed, it is dried and cured.

次に、図2(b)に示すように、金属箔22A上に厚さ例えば公称100μmのFR−4のプリプレグ11Aを積層して層間接続体31を貫通させ、その頭部が露出するようにする。露出に際してあるいはその後その先端を塑性変形でつぶしてもよい(いずれにしても層間接続体31の形状は、積層方向に一致する軸を有しその軸方向に径が変化する形状である。)。続いて、図2(c)に示すように、プリプレグ31A上に金属箔(電解銅箔)21Aを積層配置して加圧・加熱し全体を一体化する。このとき、金属箔21Aは層間接続体31と電気的導通状態となり、プリプレグ11Aは完全に硬化して絶縁層11になる。   Next, as shown in FIG. 2B, an FR-4 prepreg 11A having a thickness of, for example, 100 μm is laminated on the metal foil 22A to penetrate the interlayer connector 31, so that the head is exposed. To do. At the time of exposure or afterwards, the tip thereof may be crushed by plastic deformation (in any case, the shape of the interlayer connection body 31 is a shape having an axis coinciding with the stacking direction and the diameter changing in the axial direction). Subsequently, as shown in FIG. 2 (c), a metal foil (electrolytic copper foil) 21A is laminated on the prepreg 31A, and the whole is integrated by pressing and heating. At this time, the metal foil 21A is in electrical continuity with the interlayer connector 31, and the prepreg 11A is completely cured to become the insulating layer 11.

次に、図2(d)に示すように、片側の金属箔22Aに例えば周知のフォトリソグラフィによるパターニングを施し、これを、実装用ランドを含む配線層22に加工する。続いて、図2(e)に示すように、半導体チップ41が実装されるべき配線層22上を含む絶縁層11上に例えばディスペンサを用いて硬化前のアンダーフィル樹脂51Aを適用する。   Next, as shown in FIG. 2D, patterning by, for example, well-known photolithography is performed on the metal foil 22A on one side, and this is processed into a wiring layer 22 including mounting lands. Subsequently, as shown in FIG. 2E, an unfilled underfill resin 51A is applied onto the insulating layer 11 including the wiring layer 22 on which the semiconductor chip 41 is to be mounted using, for example, a dispenser.

次に、図2(f)に示すように、導電性バンプ42を伴った半導体チップ41を例えばフリップチップボンダを用いて、配線層22の実装用ランドに位置合わせし圧接する。圧接の後、その接続強度の向上のため、およびアンダーフィル樹脂51Aを硬化するため、加熱工程を行う。以上により、導電性バンプ42を介して半導体チップ41が配線層22の実装用ランド上に接続され、かつ半導体チップ41と配線層22および絶縁層11との間にアンダーフィル樹脂51が満たされた状態の配線板素材1が得られる。この配線板素材1を用いる後の工程については図5で後述する。   Next, as shown in FIG. 2F, the semiconductor chip 41 with the conductive bumps 42 is positioned and pressed against the mounting land of the wiring layer 22 by using, for example, a flip chip bonder. After the pressure welding, a heating step is performed to improve the connection strength and to cure the underfill resin 51A. As described above, the semiconductor chip 41 is connected to the mounting land of the wiring layer 22 via the conductive bump 42, and the underfill resin 51 is filled between the semiconductor chip 41 and the wiring layer 22 and the insulating layer 11. A wiring board material 1 in a state is obtained. The subsequent steps using this wiring board material 1 will be described later with reference to FIG.

次に、図3を参照して説明する。図3は、図1中に示した各構成のうち絶縁層13および同12を中心とした部分の製造工程を示している。まず、図3(a)に示すように、両面に例えば厚さ18μmの金属箔(電解銅箔)23A、24Aが積層された例えば厚さ300μmのFR−4の絶縁層13を用意し、その所定位置にスルーホール導電体を形成するための貫通孔72をあける。   Next, a description will be given with reference to FIG. FIG. 3 shows a manufacturing process of a part centering on the insulating layer 13 and the same 12 in each configuration shown in FIG. First, as shown in FIG. 3A, for example, an FR-4 insulating layer 13 having a thickness of, for example, 300 μm in which metal foils (electrolytic copper foils) 23A and 24A having a thickness of 18 μm are laminated on both surfaces is prepared. A through hole 72 for forming a through hole conductor is formed at a predetermined position.

次に、無電解めっきおよび電解めっきを行い、図3(b)に示すように、貫通孔72の内壁にスルーホール導電体33を形成する。続いて、図3(c)に示すように、金属箔23A、24Aを周知のフォトリソグラフィを利用して所定にパターニングし、配線層23、24を形成する。   Next, electroless plating and electrolytic plating are performed to form a through-hole conductor 33 on the inner wall of the through-hole 72 as shown in FIG. Subsequently, as shown in FIG. 3C, the metal foils 23 </ b> A and 24 </ b> A are patterned in a predetermined manner using well-known photolithography to form wiring layers 23 and 24.

次に、図3(d)に示すように、配線層23上の所定の位置に層間接続体32となる導電性バンプ(底面径例えば200μm、高さ例えば160μm)をペースト状導電性組成物のスクリーン印刷により形成する。続いて、図3(e)に示すように、絶縁層12とすべきFR−4のプリプレグ12A(公称厚さ例えば100μm)を配線層23側にプレス機を用い積層する。   Next, as shown in FIG. 3D, conductive bumps (bottom diameter, for example, 200 μm, height, for example, 160 μm) to be the interlayer connector 32 are formed at predetermined positions on the wiring layer 23 with the paste-like conductive composition. It is formed by screen printing. Subsequently, as shown in FIG. 3E, an FR-4 prepreg 12A (nominal thickness, for example, 100 μm) to be the insulating layer 12 is laminated on the wiring layer 23 side using a press.

この積層工程では、層間接続体32の頭部をプリプレグ12Aに貫通させる。なお、図3(e)における層間接続体32の頭部の破線は、この段階でその頭部を塑性変形させてつぶしておく場合と塑性変形させない場合の両者あり得ることを示す。この工程により、配線層23はプリプレグ12A側に沈み込んで位置する。   In this lamination process, the head of the interlayer connector 32 is passed through the prepreg 12A. In addition, the broken line of the head part of the interlayer connection body 32 in FIG. 3 (e) indicates that there are both cases where the head part is plastically deformed and crushed at this stage and when it is not plastically deformed. By this step, the wiring layer 23 is located by sinking to the prepreg 12A side.

絶縁層13上にプリプレグ12Aを積層後、図3(e)に示すように、絶縁層13およびプリプレグ12Aの所定位置に部品内蔵用の開口部71をドリル加工により形成する。以上により得られた配線板素材を配線板素材2とする。   After the prepreg 12A is laminated on the insulating layer 13, as shown in FIG. 3E, an opening 71 for component incorporation is formed by drilling at a predetermined position of the insulating layer 13 and the prepreg 12A. The wiring board material obtained as described above is referred to as a wiring board material 2.

図4Aは、図3(e)中に示した部品用開口部71の平面的な形状を示している。半導体チップ41の平面的な大きさは、ここでは例えば3mm×3mmである。そこで、図示するように、これを収めるための開口部71の形成に、ドリル加工位置711〜719でのドリリング(隣と互いに重なる3×3の並びで9箇所)を用いる。ドリリングの各径は例えば1.6mmであり、例えば参照符号の若い順にドリリングを行う。ここでの加工順は、4隅位置、中央、4辺位置の順である。このような単一の径のドリルによる開口形成によれば、ドリル刃交換が不要であり生産効率が上がる。   FIG. 4A shows a planar shape of the component opening 71 shown in FIG. The planar size of the semiconductor chip 41 is, for example, 3 mm × 3 mm here. Therefore, as shown in the figure, drilling at drilling positions 711 to 719 (9 locations in a 3 × 3 array overlapping each other) is used to form the opening 71 for accommodating the opening 71. Each diameter of the drilling is 1.6 mm, for example, and the drilling is performed in ascending order of reference numerals. The processing order here is the order of the four corner positions, the center, and the four side positions. According to the opening formation with such a single-diameter drill, it is not necessary to replace the drill blade and the production efficiency is increased.

図4Bは、図4Aに示した部品用開口部の変形例を示している。ここでの半導体チップ41Aの平面的な大きさは、例えば1.56mm×1.56mmである。これを収めるための開口部71Aの形成に、ドリル加工位置71A1〜71A5でのドリリングを用いる。ドリル加工位置71A〜71A4では、それぞれ例えば0.8mmの径のドリリングを行い、ドリル加工位置71A5では、例えば2mmの径のドリリングを行う。加工順は4隅位置、中央の順(ドリル加工位置の参照符号の順)である。   FIG. 4B shows a modification of the component opening shown in FIG. 4A. The planar size of the semiconductor chip 41A here is, for example, 1.56 mm × 1.56 mm. Drilling at drilling positions 71A1 to 71A5 is used to form the opening 71A for accommodating this. At the drilling positions 71A to 71A4, drilling with a diameter of, for example, 0.8 mm is performed, and at the drilling position 71A5, drilling with a diameter of, for example, 2 mm is performed. The processing order is the four corner positions and the center order (the order of the reference numerals of the drill processing positions).

このような2種の径のドリルによる開口形成では、ドリル刃交換やドリル機器自体を複数用意するなどの対応が必要であり、生産負担上は単一のドリル径の場合より多少劣る。しかしながら、内蔵する半導体チップ41Aの大きさにより沿った開口を形成し得るため、開口への樹脂充填性をより確保し、また内層の配線形成領域をより大きく確保する上では好ましい。また、ドリリングを行う回数を少なくする効果もある。同様に、生産負担とこれらの各利点とを比較考量し、3種以上のドリルによる開口形成を採用することもできる。   Opening with such two types of diameter drills requires measures such as exchanging drill blades and preparing a plurality of drill devices themselves, and the production burden is somewhat inferior to that of a single drill diameter. However, since an opening along the size of the built-in semiconductor chip 41A can be formed, it is preferable for ensuring a resin filling property into the opening and securing a larger wiring formation region in the inner layer. In addition, there is an effect of reducing the number of drilling operations. Similarly, the production burden and each of these advantages can be weighed and openings formed by three or more types of drills can be employed.

図4Cは、図4Aに示した部品用開口部の別の変形例を示している。ここでの半導体チップ41Bの平面的な大きさは、例えば1.66mm×1.21mmである。これを収めるための開口部71Bの形成に、ドリル加工位置71B1〜71B7でのドリリングを用いる。ドリル加工位置71B1〜71B4では、それぞれ例えば0.8mmの径のドリリングを行い、ドリル加工位置71B5〜71B7では、それぞれ例えば1.55mmの径のドリリングを行う。加工順は4隅位置、中央やや右、中央、中央やや左(ドリル加工位置の参照符号の順)である。   FIG. 4C shows another modification of the component opening shown in FIG. 4A. The planar size of the semiconductor chip 41B here is, for example, 1.66 mm × 1.21 mm. Drilling at drilling positions 71B1 to 71B7 is used to form the opening 71B for accommodating this. At the drilling positions 71B1 to 71B4, drilling with a diameter of, for example, 0.8 mm is performed, and at the drilling positions 71B5 to 71B7, drilling with a diameter of, for example, 1.55 mm is performed. The machining order is the four corner positions, the center slightly right, the center, the center slightly left (in the order of the reference numerals of the drilling positions).

この場合も図4Bに示す場合と同様に、2種の径のドリルによる開口形成であるため生産負担上は単一のドリル径の場合より多少劣る。しかし、内蔵する半導体チップ41Bの大きさにより沿った開口を形成でき、開口への樹脂充填性をより確保し内層の配線形成領域をより大きく確保する上では好ましい。   In this case as well, as in the case shown in FIG. 4B, since the opening is formed by drills of two types of diameters, the production burden is somewhat inferior to that of a single drill diameter. However, an opening along the size of the built-in semiconductor chip 41B can be formed, which is preferable in securing a resin filling property in the opening and ensuring a larger inner wiring formation region.

次に、図5を参照して説明する。図5は、上記で得られた配線板素材1、2などを積層する配置関係を示す図である。   Next, a description will be given with reference to FIG. FIG. 5 is a diagram showing an arrangement relationship in which the wiring board materials 1 and 2 obtained as described above are stacked.

図5において、図示上側の配線板素材3は、下側の配線板素材1と同様な工程を適用し、かつそのあと層間接続体34およびプリプレグ14Aを図示中間の配線板素材2における層間接続体32およびプリプレグ12Aと同様にして形成し得られたものである。ただし、部品(半導体チップ41)およびこれを接続するための部位(実装用ランド)のない構成であり、さらにプリプレグ14Aには半導体チップ41用の開口部も設けない。そのほかは、金属箔(電解銅箔)26A、絶縁層15、層間接続体35、配線層25、プリプレグ14A、層間接続体34とも、それぞれ配線板素材1の金属箔21A、絶縁層11、層間接続体31、配線層22、配線板素材2のプリプレグ12A、層間接続体32と同じである。   In FIG. 5, the upper wiring board material 3 shown in FIG. 5 applies the same process as the lower wiring board material 1, and then the interlayer connector 34 and the prepreg 14 </ b> A are connected to the interlayer connector in the intermediate wiring board material 2 shown in FIG. 5. 32 and the prepreg 12A. However, there is no component (semiconductor chip 41) and no part (mounting land) for connecting it, and the prepreg 14A is not provided with an opening for the semiconductor chip 41. Other than that, the metal foil (electrolytic copper foil) 26A, the insulating layer 15, the interlayer connection body 35, the wiring layer 25, the prepreg 14A, and the interlayer connection body 34 are the metal foil 21A of the wiring board material 1, the insulating layer 11, and the interlayer connection, respectively. The same as the body 31, the wiring layer 22, the prepreg 12 </ b> A of the wiring board material 2, and the interlayer connection body 32.

図5に示すような配置で各配線板素材1、2、3を積層配置してプレス機で加圧・加熱する。これにより、プリプレグ12A、14Aが完全に硬化し全体が積層・一体化する。このとき、加熱により得られるプリプレグ12A、14Aの流動性により、半導体チップ41の周りの空間およびスルーホール導電体33内部の空間にはプリプレグ12A、14Aが変形進入し空隙は発生しない。また、配線層22、24は、層間接続体32、34にそれぞれ電気的に接続される。   The respective wiring board materials 1, 2, and 3 are laminated and arranged in the arrangement as shown in FIG. Thereby, the prepregs 12A and 14A are completely cured, and the whole is laminated and integrated. At this time, due to the fluidity of the prepregs 12 </ b> A and 14 </ b> A obtained by heating, the prepregs 12 </ b> A and 14 </ b> A are deformed into the space around the semiconductor chip 41 and the space inside the through-hole conductor 33, and no gap is generated. The wiring layers 22 and 24 are electrically connected to the interlayer connectors 32 and 34, respectively.

図5に示す積層工程の後、上下両面の金属箔26A、21Aを周知のフォトリソグラフィを利用して所定にパターニングし、さらにソルダーレジスト61、62の層を形成することにより、図1に示したような部品内蔵配線板を得ることができる。   After the lamination step shown in FIG. 5, the upper and lower metal foils 26A and 21A are patterned in a predetermined manner using well-known photolithography, and further, layers of solder resists 61 and 62 are formed, as shown in FIG. Such a component built-in wiring board can be obtained.

なお、変形例として、中間の絶縁層13に設けられたスルーホール導電体33については、層間接続体31や同32と同様なものとするもできる。また、外側の配線層21、26は、最後の積層工程のあとにパターニングして得る以外に、各配線板素材1、3の段階で(例えば図2(d)の段階で)形成するようにしてもよい。   As a modification, the through-hole conductor 33 provided in the intermediate insulating layer 13 can be the same as the interlayer connector 31 or 32. Further, the outer wiring layers 21 and 26 are formed at the stage of each wiring board material 1 and 3 (for example, at the stage of FIG. 2D) other than patterning after the last lamination step. May be.

次に、本発明の別の実施形態について図6を参照して説明する。図6は、本発明の別の実施形態に係る部品内蔵配線板の構成を模式的に示す断面図である。図6において、すでに説明した構成部分と同一または同一相当の部分には同一符号を付し、その説明は省略する。   Next, another embodiment of the present invention will be described with reference to FIG. FIG. 6 is a cross-sectional view schematically showing a configuration of a component built-in wiring board according to another embodiment of the present invention. In FIG. 6, the same or equivalent parts as those already described are denoted by the same reference numerals, and the description thereof is omitted.

この実施形態の部品内蔵配線板は、図1に示したものに比較して、絶縁層13が絶縁層7、6、5の3層積層になっている点、絶縁層7、6、5の隣り合う絶縁層間に配線層9、8を備える点、スルーホール導電体33の代わりに配線層23のパターン面と配線層9のパターン面との間に挟設された層間接続体331、配線層9のパターン面と配線層8のパターン面との間に挟設された層間接続体333、配線層8のパターン面と配線層24のパターン面との間に挟設された層間接続体332を備える点が異なる。   In the component built-in wiring board of this embodiment, the insulating layer 13 is a three-layer laminate of insulating layers 7, 6, 5 compared to that shown in FIG. A point that the wiring layers 9 and 8 are provided between adjacent insulating layers, an interlayer connector 331 that is interposed between the pattern surface of the wiring layer 23 and the pattern surface of the wiring layer 9 instead of the through-hole conductor 33, and a wiring layer An interlayer connector 333 sandwiched between the pattern surface 9 and the pattern surface of the wiring layer 8, and an interlayer connector 332 sandwiched between the pattern surface of the wiring layer 8 and the pattern surface of the wiring layer 24. The point to prepare is different.

すなわち、絶縁層7、6、5をそれぞれ貫通して配線層のパターン面間に挟設されて層間接続体331、333、332を設けることで、スルーホール導電体33による層間接続の必要のない構成になっている。絶縁層7、6、5は、それぞれ、絶縁樹脂7a、6a、5aとこれを補強する補強材7b、6b、5b(例えばガラスクロス)とからなる。   That is, by providing the interlayer connectors 331, 333, and 332 through the insulating layers 7, 6, and 5 so as to be sandwiched between the pattern surfaces of the wiring layer, there is no need for interlayer connection by the through-hole conductor 33. It is configured. The insulating layers 7, 6, and 5 are made of insulating resins 7a, 6a, and 5a and reinforcing members 7b, 6b, and 5b (for example, glass cloth) that reinforce the insulating resins 7a, 6a, and 5a, respectively.

絶縁層7、6、5は、内蔵の半導体チップ41に相当する位置が開口部になっており、この開口部には補強材7b、6b、5bは、当然存在しない。また、半導体チップ41が埋設された領域で絶縁層12も補強材12bを有さず、それ以外の領域で補強材12bを有する。これにより、半導体チップ41と補強材7b、6b、5b、12bとの衝突を避け信頼性を向上することができる。   The insulating layers 7, 6, and 5 have openings at positions corresponding to the built-in semiconductor chip 41, and the reinforcing materials 7 b, 6 b, and 5 b naturally do not exist in the openings. Further, the insulating layer 12 does not have the reinforcing material 12b in the region where the semiconductor chip 41 is embedded, and has the reinforcing material 12b in the other region. Thereby, it is possible to improve the reliability by avoiding the collision between the semiconductor chip 41 and the reinforcing members 7b, 6b, 5b, and 12b.

絶縁層7、6、5の上記開口部の平面的な形状は、図1に示した実施形態と同様に、円弧を複数連ねてなる縁部による開口になっている。よって、ドリルによる加工が可能であり、一般のスルーホール基板を製造するための装置をそのまま利用できるので設備投資を抑制できる。ここで、ドリル加工は加工を要する板を複数枚重ねて行うことも可能であり生産性がよい。さらに、開口部の縁と半導体チップ41との間の空間をより小さくでき、樹脂充填を十分に確保して不良率を顕著に改善できる。また、配線層23、24、9、8の形成領域をより広く確保することができ、配線板としてパターン設計の自由度をそれだけ高く維持できる。   The planar shape of the opening of the insulating layers 7, 6, and 5 is an opening formed by an edge formed by connecting a plurality of arcs as in the embodiment shown in FIG. 1. Therefore, processing by a drill is possible, and equipment for manufacturing a general through-hole substrate can be used as it is, so that capital investment can be suppressed. Here, the drilling can be performed by stacking a plurality of plates that require processing, and the productivity is good. Furthermore, the space between the edge of the opening and the semiconductor chip 41 can be further reduced, and sufficient resin filling can be ensured to significantly improve the defect rate. In addition, a wider area for forming the wiring layers 23, 24, 9, and 8 can be secured, and the degree of freedom in pattern design as a wiring board can be maintained high.

この図6に示す部品内蔵配線板の製造方法を概略的に述べると以下のようである。まず、両面にそれぞれ配線パターンと金属箔とを有しそれらの層間接続が積層方向に径の変化する形状の層間接続体によりされている両面基板を、絶縁層11、7、5、15それぞれに相当して4枚製造する。その工程は図2(そのうちの(d)まで)に示した通りである。   The manufacturing method of the component built-in wiring board shown in FIG. 6 is roughly described as follows. First, double-sided boards each having a wiring pattern and a metal foil on both sides and having an interlayer connection having a shape in which the diameter of the interlayer connection changes in the laminating direction are respectively formed on the insulating layers 11, 7, 5, 15. Correspondingly, 4 sheets are manufactured. The process is as shown in FIG. 2 (up to (d) of them).

次に、そのうち絶縁層5に相当するものの配線層8上に、層間接続体333となる導電性バンプを印刷形成しさらにその面に絶縁層6とすべきプリプレグを積層する。そして、その絶縁層6とすべきプリプレグ側に、絶縁層7に相当する両面基板の配線層9側を対向させて加圧・加熱により積層・一体化する。これにより配線層が4つの基板(コア基板)ができる。続いてその外側の金属箔をパターニングすることで配線層23、24が形成される。   Next, on the wiring layer 8 corresponding to the insulating layer 5, conductive bumps to be the interlayer connector 333 are formed by printing, and a prepreg to be the insulating layer 6 is laminated on the surface. Then, the wiring layer 9 side of the double-sided substrate corresponding to the insulating layer 7 is opposed to the prepreg side to be the insulating layer 6 and laminated and integrated by pressing and heating. As a result, a substrate having four wiring layers (core substrate) can be formed. Subsequently, the wiring layers 23 and 24 are formed by patterning the outer metal foil.

次に、形成された配線層23上に、層間接続体32となる導電性バンプを印刷形成しさらにその面に絶縁層12とすべきプリプレグを積層する。そして、これにより得られた積層体に、内蔵する半導体チップ41に対応する位置の開口をドリリングにより形成する。   Next, on the formed wiring layer 23, conductive bumps to be the interlayer connector 32 are formed by printing, and a prepreg to be the insulating layer 12 is laminated on the surface. And the opening of the position corresponding to the semiconductor chip 41 incorporated in the laminated body obtained by this is formed by drilling.

一方、絶縁層15に相当するものが有する配線層25上には、層間接続体34となる導電性バンプを印刷形成しさらにその面に絶縁層14とすべきプリプレグを積層しておく。絶縁層11に相当するものが有する配線層22上には半導体チップ41を導電性バンプ42を介して接続しておく。   On the other hand, on the wiring layer 25 that corresponds to the insulating layer 15, conductive bumps to be the interlayer connection 34 are printed and formed, and a prepreg to be the insulating layer 14 is laminated on the surface. A semiconductor chip 41 is connected via a conductive bump 42 on a wiring layer 22 included in the insulating layer 11.

以上のようにして得られた3つの部材を、図5に示した配置と同様に積層配置し加熱しつつ積層方向に加圧する。このとき、絶縁層12とすべきプリプレグおよび絶縁層14とすべきプリプレグの絶縁樹脂12a、14aの部分が半導体チップ41周りの空間を埋めて密着する。この状態で両プリプレグは完全に硬化し絶縁層12、14になる。   The three members obtained as described above are arranged in the same manner as in the arrangement shown in FIG. 5 and are pressed in the laminating direction while heating. At this time, the portions of the prepreg to be the insulating layer 12 and the insulating resins 12a and 14a of the prepreg to be the insulating layer 14 fill the space around the semiconductor chip 41 and adhere to each other. In this state, both prepregs are completely cured and become insulating layers 12 and 14.

そして、両面に位置する金属箔に例えば周知のフォトリソグラフィによるパターニングを行い、これらを配線層21、26に加工し、さらにソルダーレジスト61、62の層を形成することにより、図6に示したような構成の部品内蔵配線板を得ることができる。   Then, for example, by performing well-known photolithography patterning on the metal foils located on both sides, processing these into wiring layers 21 and 26, and further forming layers of solder resists 61 and 62, as shown in FIG. A component built-in wiring board having a simple structure can be obtained.

本発明の一実施形態に係る部品内蔵配線板の構成を模式的に示す縦断面図および横断面図。The longitudinal cross-sectional view and cross-sectional view which show typically the structure of the component built-in wiring board which concerns on one Embodiment of this invention. 図1に示した部品内蔵配線板の製造過程の一部を模式的断面で示す工程図。Process drawing which shows a part of manufacturing process of the component built-in wiring board shown in FIG. 図1に示した部品内蔵配線板の製造過程の別の一部を模式的断面で示す工程図。Process drawing which shows another part of manufacturing process of the component built-in wiring board shown in FIG. 図3(e)中に示した部品用開口部71の形状を示す平面図。The top view which shows the shape of the opening part 71 for components shown in FIG.3 (e). 図4Aに示した部品用開口部の変形例を示す平面図。The top view which shows the modification of the opening part for components shown to FIG. 4A. 図4Aに示した部品用開口部の別の変形例を示す平面図。The top view which shows another modification of the opening part for components shown to FIG. 4A. 図1に示した部品内蔵配線板の製造過程のさらに別の一部を模式的断面で示す工程図。FIG. 9 is a process diagram schematically showing still another part of the manufacturing process of the component built-in wiring board shown in FIG. 1. 本発明の別の実施形態に係る部品内蔵配線板の構成を模式的に示す縦断面図。The longitudinal cross-sectional view which shows typically the structure of the component built-in wiring board which concerns on another embodiment of this invention.

符号の説明Explanation of symbols

1,2,3…配線板素材、5,6,7…絶縁層、5a,6a,7a…絶縁樹脂、5b,6b,7b…補強材、8,9…配線層(配線パターン)、11,12,13,14,15…絶縁層、11a,12a,13a,14a,15a…絶縁樹脂、11b,12b,13b,14b,15b…補強材、11A,12A,14A…プリプレグ、21,22,23,24,25,26…配線層(配線パターン)、21A,22A,23A,24A,26A…金属箔(銅箔)、31,32,34,35…層間接続体(導電性組成物印刷による導電性バンプ)、33…スルーホール導電体、41,41A,41B…半導体チップ、42…導電性バンプ(Auスタッドバンプ)、51…アンダーフィル樹脂、51A…アンダーフィル樹脂(硬化前)、61,62…ソルダーレジスト、71,71A,71B…部品用開口部、72…貫通孔、331,332,333…層間接続体(導電性組成物印刷による導電性バンプ)、711,712,713,714,715,716,717,718,719…ドリル加工位置、71A1,71A2,71A3,71A4,71A5…ドリル加工位置、71B1,71B2,71B3,71B4,71B5,71B6,71B7…ドリル加工位置。   1, 2, 3 ... wiring board material, 5, 6, 7 ... insulating layer, 5a, 6a, 7a ... insulating resin, 5b, 6b, 7b ... reinforcing material, 8, 9 ... wiring layer (wiring pattern), 11, 12, 13, 14, 15 ... insulating layer, 11a, 12a, 13a, 14a, 15a ... insulating resin, 11b, 12b, 13b, 14b, 15b ... reinforcing material, 11A, 12A, 14A ... prepreg, 21, 22, 23 , 24, 25, 26 ... wiring layer (wiring pattern), 21A, 22A, 23A, 24A, 26A ... metal foil (copper foil), 31, 32, 34, 35 ... interlayer connection (conducting by conductive composition printing) , 33... Through-hole conductor, 41, 41 A, 41 B... Semiconductor chip, 42... Conductive bump (Au stud bump), 51... Underfill resin, 51 A. 2 ... Solder resist, 71, 71A, 71B ... Opening for parts, 72 ... Through-hole, 331, 332, 333 ... Interlayer connector (conductive bump by conductive composition printing), 711, 712, 713, 714 715, 716, 717, 718, 719 ... drilling position, 71A1, 71A2, 71A3, 71A4, 71A5 ... drilling position, 71B1, 71B2, 71B3, 71B4, 71B5, 71B6, 71B7 ... drilling position.

Claims (9)

金属配線パターンを有する第1の絶縁層の前記金属配線パターン上に電気/電子部品を電気的機械的に接続する工程と、
前記第1の絶縁層上に積層されるべき、補強材を含有した第2の絶縁層の前記電気/電子部品に対応する位置に円弧を複数連ねてなる、該電気/電子部品を拘束しない縁部による開口を形成する工程と、
前記第1の絶縁層の前記金属配線パターンが存在する側上に、前記電気/電子部品に対応して前記開口が位置するように前記第2の絶縁層を配置し、さらに該第2の絶縁層上に第3の絶縁層を配置し、積層一体化する工程と
を具備することを特徴とする部品内蔵配線板の製造方法。
Electrically and mechanically connecting an electrical / electronic component on the metal wiring pattern of the first insulating layer having a metal wiring pattern;
An edge that does not restrain the electric / electronic component, and is formed by connecting a plurality of arcs at a position corresponding to the electric / electronic component of the second insulating layer containing a reinforcing material to be laminated on the first insulating layer. Forming an opening by a portion;
The second insulating layer is disposed on the side of the first insulating layer where the metal wiring pattern is present so that the opening is located corresponding to the electrical / electronic component, and the second insulating layer is further disposed. And a step of arranging, laminating and integrating a third insulating layer on the layer. A method for producing a component built-in wiring board.
前記開口の形成が、ドリルを用いてなされることを特徴とする請求項1記載の部品内蔵配線板の製造方法。   2. The method of manufacturing a component built-in wiring board according to claim 1, wherein the opening is formed using a drill. 前記ドリルによる前記開口の形成が、単一の径のドリルによるものであることを特徴とする請求項2記載の部品内蔵配線板の製造方法。   3. The method of manufacturing a component built-in wiring board according to claim 2, wherein the opening is formed by a drill having a single diameter. 前記ドリルによる前記開口の形成が、2種以上の径のドリルによるものであることを特徴とする請求項2記載の部品内蔵配線板の製造方法。   3. The method of manufacturing a component built-in wiring board according to claim 2, wherein the opening is formed by a drill having two or more diameters. 第1の絶縁層と、
前記第1の絶縁層上に設けられた配線パターンと、
前記配線パターン上に実装された電気/電子部品と、
前記電気/電子部品に対応する位置に円弧を複数連ねてなる、該電気/電子部品を拘束しない縁部による開口を有し、かつ、補強材を含有する第2の絶縁層と、
前記第1の絶縁層の前記配線パターンの側の面と前記第2の絶縁層との間を埋め、かつ前記第2の絶縁層の前記開口の前記縁部と前記電気/電子部品との間を埋めて位置する第3の絶縁層と
を具備することを特徴とする部品内蔵配線板。
A first insulating layer;
A wiring pattern provided on the first insulating layer;
An electrical / electronic component mounted on the wiring pattern;
A second insulating layer comprising a plurality of circular arcs at a position corresponding to the electrical / electronic component, having an opening by an edge that does not restrain the electrical / electronic component , and containing a reinforcing material;
Between the surface of the first insulating layer on the wiring pattern side and the second insulating layer, and between the edge of the opening of the second insulating layer and the electric / electronic component And a third insulating layer located so as to be embedded in the wiring board.
前記第2の絶縁層の前記第1の絶縁層に対向する側の面に設けられた第2の配線パターンと、
前記第3の絶縁層を貫通して前記配線パターンの面と前記第2の配線パターンの面との間に挟設され、かつ導電性組成物からなり、かつ積層方向に一致する軸を有し該軸の方向に径が変化している形状である層間接続体と
をさらに具備することを特徴とする請求項5記載の部品内蔵配線板。
A second wiring pattern provided on a surface of the second insulating layer facing the first insulating layer;
An axis that penetrates the third insulating layer and is sandwiched between the surface of the wiring pattern and the surface of the second wiring pattern, is made of a conductive composition, and coincides with the stacking direction. The component built-in wiring board according to claim 5, further comprising an interlayer connector having a shape whose diameter changes in a direction of the axis.
前記第2の絶縁層の前記開口の前記縁部が、同一の曲率半径の円弧を複数連ねてなる縁であることを特徴とする請求項5または6記載の部品内蔵配線板。   7. The component built-in wiring board according to claim 5, wherein the edge of the opening of the second insulating layer is an edge formed by connecting a plurality of arcs having the same radius of curvature. 前記第2の絶縁層の前記開口の前記縁部が、2種以上の曲率半径の円弧を複数連ねてなる縁であることを特徴とする請求項5または6記載の部品内蔵配線板。   The component built-in wiring board according to claim 5 or 6, wherein the edge of the opening of the second insulating layer is an edge formed by connecting a plurality of arcs having two or more kinds of curvature radii. 前記第2の絶縁層が、少なくとも2つの絶縁層の積層であり、
前記少なくとも2つの絶縁層の間に挟設された第3の配線パターンをさらに具備することを特徴とする請求項5ないし8のいずれか1項記載の部品内蔵配線板。
The second insulating layer is a stack of at least two insulating layers;
The component built-in wiring board according to claim 5, further comprising a third wiring pattern sandwiched between the at least two insulating layers.
JP2008084284A 2008-03-27 2008-03-27 Manufacturing method of component built-in wiring board, component built-in wiring board Expired - Fee Related JP5245491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008084284A JP5245491B2 (en) 2008-03-27 2008-03-27 Manufacturing method of component built-in wiring board, component built-in wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008084284A JP5245491B2 (en) 2008-03-27 2008-03-27 Manufacturing method of component built-in wiring board, component built-in wiring board

Publications (2)

Publication Number Publication Date
JP2009239088A JP2009239088A (en) 2009-10-15
JP5245491B2 true JP5245491B2 (en) 2013-07-24

Family

ID=41252670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008084284A Expired - Fee Related JP5245491B2 (en) 2008-03-27 2008-03-27 Manufacturing method of component built-in wiring board, component built-in wiring board

Country Status (1)

Country Link
JP (1) JP5245491B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5708903B2 (en) * 2013-02-14 2015-04-30 株式会社村田製作所 Circuit board and manufacturing method thereof
CN108391378B (en) * 2018-04-03 2019-11-22 江门崇达电路技术有限公司 The production method of minute grooves on a kind of improvement wiring board

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003168871A (en) * 2001-12-03 2003-06-13 Airex Inc Printed-wiring board with built-in electronic component
JP4597631B2 (en) * 2004-10-13 2010-12-15 大日本印刷株式会社 Component built-in wiring board, method of manufacturing component built-in wiring board
JP2006156669A (en) * 2004-11-29 2006-06-15 Dainippon Printing Co Ltd Wiring board with built-in part and method of manufacturing the same

Also Published As

Publication number Publication date
JP2009239088A (en) 2009-10-15

Similar Documents

Publication Publication Date Title
JP5662551B1 (en) WIRING BOARD, SEMICONDUCTOR DEVICE, AND WIRING BOARD MANUFACTURING METHOD
KR101611804B1 (en) Part built-in wiring board, and manufacturing method for the part built-in wiring board
US8737085B2 (en) Wiring board with a built-in component and method for manufacturing the same
JP5100989B2 (en) Component built-in wiring board
JP2015122385A (en) Wiring board, semiconductor device and wiring board manufacturing method
CN101582406A (en) Wiring board, method for manufacturing the same, and semiconductor package
JP4597631B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP5454681B2 (en) Module substrate and manufacturing method thereof
JP5245491B2 (en) Manufacturing method of component built-in wiring board, component built-in wiring board
JP2006156669A (en) Wiring board with built-in part and method of manufacturing the same
JP4598140B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP2009283689A (en) Method for manufacturing of component-incorporating wiring board, and component-incorporating wiring board
JP4657870B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP5515210B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP5354078B2 (en) Manufacturing method of component built-in wiring board, component built-in wiring board
JP5621311B2 (en) Circuit board manufacturing method
JP5671857B2 (en) Manufacturing method of wiring board with embedded parts
JP4824972B2 (en) Circuit wiring board and manufacturing method thereof
JP5223893B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP4978709B2 (en) Electronic component built-in wiring board
JP2005294496A (en) Connecting structure of wiring board and its manufacturing method
JP5882100B2 (en) Component built-in circuit board
JP5793372B2 (en) Component built-in substrate and manufacturing method thereof
JP5699344B2 (en) Component built-in wiring board, method of manufacturing component built-in wiring board
JP5818296B2 (en) Electronic module and method for manufacturing electronic module

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Ref document number: 5245491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees