JP5245241B2 - Submerged dike construction method and submerged dike - Google Patents

Submerged dike construction method and submerged dike Download PDF

Info

Publication number
JP5245241B2
JP5245241B2 JP2006303003A JP2006303003A JP5245241B2 JP 5245241 B2 JP5245241 B2 JP 5245241B2 JP 2006303003 A JP2006303003 A JP 2006303003A JP 2006303003 A JP2006303003 A JP 2006303003A JP 5245241 B2 JP5245241 B2 JP 5245241B2
Authority
JP
Japan
Prior art keywords
submerged
dike
levee
shell
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006303003A
Other languages
Japanese (ja)
Other versions
JP2007154651A (en
Inventor
秀樹 本田
操 鈴木
和哉 薮田
康人 宮田
達人 高橋
正文 池田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006303003A priority Critical patent/JP5245241B2/en
Publication of JP2007154651A publication Critical patent/JP2007154651A/en
Application granted granted Critical
Publication of JP5245241B2 publication Critical patent/JP5245241B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Description

本発明は、海岸保全や浅場造成などを目的として設置される潜堤の施工法及び潜堤に関する。   The present invention relates to a submerged dike construction method and a submerged dike installed for the purpose of coastal conservation and shallow ground creation.

海岸保全(海岸侵食の防止)、浅場造成、人工リーフ、海域の消波などを目的として、主として沿岸海域の水底に潜堤が設置される。このような潜堤は、水底に捨石やコンクリートブロックを積み上げることにより構築されるのが一般的である。また、水底に捨石基礎を設置し、その上にコンクリートブロックなどを積み上げて潜堤を構築する場合もある。   For the purpose of coastal conservation (prevention of coastal erosion), shallow ground creation, artificial reef, sea wave extinction, etc., a submerged dike is mainly installed at the bottom of the coastal sea area. Such a submerged dike is generally constructed by stacking rubble and concrete blocks on the bottom of the water. In some cases, a rubble foundation is installed at the bottom of the water, and concrete blocks are stacked on top of it to construct a submerged dike.

しかし、捨石として用いられる天然砕石は年々調達が難しくなっている。一般に、海域工事では波に対する抵抗の大きい大きな石が必要とされるが、このような天然石の調達は特に難しくなりつつある。さらに、最近では天然石の採取による自然破壊も問題視されるようになってきた。また、コンクリートブロックはコストが高い難点があり、さらに、ブロック表面が緻密で隙間がないため初期の生物親和性が劣り、このため一時的に設置海域の環境が劣化するという問題もある。
一方、従来、路盤材等の土木用資材として粒径が20〜50mm程度の塊状の製鋼スラグが製造されており、特許文献1には、このような塊状の製鋼スラグを用いて潜堤を構築することが示されている。製鋼スラグは鉄鋼製造プロセスで発生するスラグであり、安価に且つ大量に調達できる利点がある。
特開2002−238401号公報
However, it is difficult to procure natural crushed stone used as rubble every year. Generally, large stones with high resistance to waves are required for offshore construction, but the procurement of such natural stones is becoming particularly difficult. Furthermore, recently, the destruction of natural stones has also become a problem. In addition, the concrete block has a problem of high cost, and further, there is a problem that the environment of the installation sea area is temporarily deteriorated because the block surface is dense and there is no gap, and thus the initial biocompatibility is inferior.
On the other hand, massive steel-making slag having a particle diameter of about 20 to 50 mm has been manufactured as civil engineering materials such as roadbed materials. Patent Document 1 describes the construction of a submerged dike using such massive steel-making slag. Has been shown to do. Steelmaking slag is slag generated in the steel manufacturing process, and has an advantage that it can be procured inexpensively and in large quantities.
JP 2002-238401 A

しかし、特許文献1のように潜堤材として粒径20〜50mm程度の塊状製鋼スラグを用いた場合、大きな波浪などによって潜堤材が流失し、潜堤が大きく損傷したり、酷い場合には潜堤そのものが崩壊・消失してしまう。すなわち、塊状の製鋼スラグで構築された潜堤は、波浪安定性が低いという問題がある。
したがって本発明の目的は、低コストで且つ大量の天然石を用いることなく、高い波浪安定性を有する堅牢な潜堤を構築することができる潜堤の施工法及び構築された潜堤を提供することにある。
However, when a massive steelmaking slag having a particle size of about 20 to 50 mm is used as a submerged levee material as in Patent Document 1, the submerged levee material is washed away by a large wave or the like, and the submerged levee is greatly damaged or severe. The submarine itself collapses and disappears. That is, there is a problem that the submerged dike constructed with massive steelmaking slag has low wave stability.
Therefore, an object of the present invention is to provide a submerged dike construction method and a constructed submerged dike that can construct a robust submerged dike having high wave stability without using a large amount of natural stone at low cost. It is in.

本発明者らは上記課題を解決すべく、使用する潜堤材と施工法の両面から検討を行い、その結果、海水又は汽水域の水底に鉄鋼スラグなどのような粒状・塊状Ca含有物を主体とする潜堤材を用いて堤構造体を構築するとともに、この堤構造体の表層に水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜を生成させ、この殻状皮膜で堤構造体が覆われるようにすることにより、高い波浪安定性を有する堅牢な潜堤を低コストで施工できることを見出した。
さらに、構築された堤構造体が固結するまでの間の潜堤材の流出防止対策としては、(1)堤構造体を流出防止用の被覆体で覆う方法、(2)堤構造体を、流出防止用であって且つ水中で経時的に分解又は腐蝕する被覆体で覆い、堤構造体の表層に殻状皮膜が生成した後に被覆体を分解又は腐蝕により自然消失させる方法、などの方法が好ましいことが判明した。
In order to solve the above problems, the present inventors have studied from both sides of the submerged dike material to be used and the construction method, and as a result, a granular or massive Ca-containing material such as steel slag is formed on the bottom of seawater or brackish water. Building a dike structure using the main submerged dike material and forming a shell-like film mainly composed of magnesium hydroxide precipitates or magnesium hydroxide and calcium hydroxide precipitates on the surface of the dike structure In addition, the present inventors have found that a solid submerged bank having high wave stability can be constructed at low cost by covering the bank structure with this shell-shaped coating.
Furthermore, as measures to prevent the leakage of submerged levee materials until the constructed dam structure is consolidated, (1) a method of covering the levee structure with a covering for preventing spillage, and (2) A method for preventing the outflow and covering with a covering that decomposes or corrodes over time in water, and after the shell-like film is formed on the surface layer of the bank structure, the covering is naturally lost by decomposition or corrosion Was found to be preferred.

本発明は、以上述べたような知見に基づきなされたもので、以下を要旨とするものである。
[1]海水又は汽水域の水底に潜堤材を積み上げることにより、少なくとも外層部が粒状又は/及び塊状のCa含有物を50mass%以上含む潜堤材A(但し、粒状又は/及び塊状のCa含有物のみからなる潜堤材の場合を含む)からなる堤構造体を構築し、該堤構造体の表層に水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜を生成させる潜堤の施工法であり、
潜堤材Aは、粒径2mm以下の製鋼スラグを40mass%以上含むことを特徴とする潜堤の施工法。
[2]海水又は汽水域の水底に潜堤材を積み上げることにより、少なくとも外層部が粒状又は/及び塊状のCa含有物を50mass%以上含む潜堤材A(但し、粒状又は/及び塊状のCa含有物のみからなる潜堤材の場合を含む)からなる堤構造体を構築し、該堤構造体の表層に水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜を生成させる潜堤の施工法であり、
潜堤材Aは、粒径1mm以下の高炉水砕スラグを20mass%以上含むことを特徴とする潜堤の施工法。
[3]上記[1]又は[2]の施工法において、粒状又は/及び塊状のCa含有物が鉄鋼製造プロセスで発生したスラグであることを特徴とする潜堤の施工法。
The present invention has been made on the basis of the findings as described above, and has the following gist.
[1] By laminating a submerged dike material on the bottom of seawater or brackish water area, at least the outer layer part contains submerged dike material A containing 50 mass% or more of granular or / and massive Ca-containing material (however, granular or / and massive Ca (Including the case of a submerged levee material consisting only of inclusions), and the surface layer of the levee structure is mainly composed of magnesium hydroxide precipitates or magnesium hydroxide and calcium hydroxide precipitates. a method of applying Sentsutsumi that Ru to produce a shell-like coating,
The submerged dike material A contains 40 mass% or more of steelmaking slag having a particle size of 2 mm or less .
[2] Submerged levee material A (however, granular or / and massive Ca containing at least 50 mass% of granular or / and massive Ca-containing material in the outer layer by stacking the latent dam material on the bottom of seawater or brackish water) (Including the case of a submerged levee material consisting only of inclusions), and the surface layer of the levee structure is mainly composed of magnesium hydroxide precipitates or magnesium hydroxide and calcium hydroxide precipitates. It is a construction method of a submerged dike that generates a shell film.
The submerged dike material A contains 20 mass% or more of granulated blast furnace slag having a particle size of 1 mm or less.
[3] A construction method for a submerged dike characterized in that in the construction method of [1] or [2] , the granular or / and massive Ca-containing material is slag generated in a steel production process.

[4]上記[1]〜[3]のいずれかの施工法において、堤構造体の表層に生成した殻状皮膜の平均厚みが0.5mm以上であることを特徴とする潜堤の施工法。
[5]上記[1]〜[4]のいずれかの施工法において、構築された堤構造体の少なくとも一部を、潜堤材Aの流失を防止するための被覆体で覆うことを特徴とする潜堤の施工法。
[4] [1] to [3] construction methods of Sentsutsumi, characterized in that in any one of the construction methods, the average thickness of the surface layer in the resulting shell-like coating of the bank structure is 0.5mm or more .
[5] The construction method according to any one of [1] to [4] , wherein at least a part of the constructed dyke structure is covered with a covering for preventing the loss of the submerged levee material A. How to construct a submerged dike .

[6]上記[1]〜[6]のいずれかの施工法において、構築された堤構造体の少なくとも一部を、潜堤材Aの流失を防止するための被覆体であって且つ水中で経時的に分解又は/及び腐蝕する被覆体で覆い、該被覆体で覆われた堤構造体の表層に殻状皮膜が生成した後に、被覆体の少なくとも主要部を分解又は/及び腐蝕により消失させることを特徴とする潜堤の施工法。
[7]上記[1]〜[6]のいずれかの施工法において、潜堤材Aを透水性があり且つ水中で経時的に分解又は/及び腐蝕する容器に入れ、該容器を積み上げることにより少なくとも堤構造体外層部の一部を構築し、容器内の潜堤材Aの表層に殻状皮膜が生成した後に、容器を分解又は/及び腐蝕により消失させることを特徴とする潜堤の施工法。
[8]海水又は汽水域の水底に潜堤材を積み上げることにより構築される、少なくとも外層部が粒状又は/及び塊状のCa含有物を50mass%以上含む潜堤材A(但し、粒状又は/及び塊状のCa含有物のみからなる潜堤材の場合を含む)からなる堤構造体であって、該堤構造体の表層に水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜が生成した潜堤であり、
潜堤材Aは、粒径2mm以下の製鋼スラグを40mass%以上含むことを特徴とする潜堤。
[9]海水又は汽水域の水底に潜堤材を積み上げることにより構築される、少なくとも外層部が粒状又は/及び塊状のCa含有物を50mass%以上含む潜堤材A(但し、粒状又は/及び塊状のCa含有物のみからなる潜堤材の場合を含む)からなる堤構造体であって、該堤構造体の表層に水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜が生成した潜堤であり、
潜堤材Aは、粒径1mm以下の高炉水砕スラグを20mass%以上含むことを特徴とする潜堤。
[6] In the construction method according to any one of the above [1] to [6] , at least a part of the constructed bank structure is a covering for preventing the leakage of the submerged bank material A and is underwater After covering with a covering that decomposes and / or corrodes with time, and forming a shell-like film on the surface layer of the bank structure covered with the covering, at least the main part of the covering is lost by decomposition or / and corrosion. A method of constructing a submerged dike.
[7] In the construction method according to any one of [1] to [6] above, the submerged dike A is placed in a container that is water-permeable and decomposes or / and corrodes over time in water, and the containers are stacked Construction of a submerged levee characterized by constructing at least a part of the outer layer portion of the levee structure and generating a shell-like film on the surface of the submerged levee material A in the container, and then disassembling or / and corroding the container Law.
[8] A submerged levee material A (provided that the outer layer portion contains 50 mass% or more of granular or / and massive Ca-containing material, which is constructed by stacking the submerged levee material on the bottom of seawater or brackish water (particulate or / and A dike structure including a case of a submerged dike material composed only of massive Ca-containing material, and deposits of magnesium hydroxide or magnesium hydroxide and calcium hydroxide on the surface layer of the dike structure It is a submerged dike created by the main shell film ,
The submerged levee material A contains 40 mass% or more of steelmaking slag having a particle diameter of 2 mm or less .
[9] A submerged levee material A (provided that the outer layer portion contains 50 mass% or more of granular or / and massive Ca-containing material, which is constructed by stacking the submerged levee material on the bottom of seawater or brackish water. A dike structure including a case of a submerged dike material composed only of massive Ca-containing material, and deposits of magnesium hydroxide or magnesium hydroxide and calcium hydroxide on the surface layer of the dike structure It is a submerged dike created by the main shell film,
The submerged dike material A contains 20 mass% or more of granulated blast furnace slag having a particle size of 1 mm or less.

本発明によれば、粒状・塊状Ca含有物を主体とした潜堤材を用いるため、潜堤を安価に施工することができ、しかも、堤構造体表層に水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜を生成させ、この殻状皮膜により堤構造体が覆われるようにしたので、高い波浪安定性を有する堅牢な潜堤を構築することができる。   According to the present invention, since the submerged levee material mainly composed of granular and massive Ca-containing material is used, the submerged levee can be constructed at a low cost, and the precipitate of magnesium hydroxide or the hydroxide is formed on the surface layer of the dam structure. A shell-like film composed mainly of magnesium and calcium hydroxide precipitates was generated, and the dam structure was covered with this shell-like film, so it was possible to construct a robust submerged bank with high wave stability. it can.

図1は潜堤の設置形態例(縦断面)を示すもので、図1(A)は海岸保全用(海岸侵食防止用)の潜堤であり、図1(B)は浅場造成用の潜堤である。この浅場造成用の潜堤の内側(海岸側)には、一般に覆砂又は中詰め材の投入+覆砂がなされる。また、潜堤は、上記以外に人工リーフ造成、海岸の消波、水質浄化など様々な目的で設置される。   Fig. 1 shows an example of installation of a submerged dike (longitudinal section). Fig. 1 (A) is a submerged dike for coastal protection (for coastal erosion prevention), and Fig. 1 (B) is a submerged dike for shallow field creation. It is a dyke. The inside (shore side) of this submerged submerged dike is generally covered with sand or a filling material and covered with sand. In addition to the above, the submerged dike is installed for various purposes such as artificial reef formation, coastal wave extinction, and water purification.

本発明の潜堤の施工法では、海水又は汽水域において、潜堤材を運搬船などから水中に投入して水底に積み上げることにより堤構造体を構築する。この堤構造体は、少なくとも外層部が粒状又は/及び塊状のCa含有物を主体とする潜堤材Aで構成される(堤構造体の外層部・内層部については図4を参照)。そして、この堤構造体の表層に水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜を生成させ、この殻状皮膜で堤構造体が覆われる構造とすることにより、高い波浪安定性が得られるようにする。
粒状又は/及び塊状のCa含有物としては、例えば、鉄鋼製造プロセスで発生したスラグ(以下、鉄鋼スラグという)や廃コンクリートなどが挙げられ、これらの1種以上を用いることができる。
以下、粒状・塊状Ca含有物として鉄鋼スラグを用いる場合を例に、本発明を説明するが、以下の説明は鉄鋼スラグに代えて、或いは鉄鋼スラグとともに他の粒状・塊状Ca含有物(例えば、廃コンクリートなど)を用いる場合にも妥当する。
In the construction method of a submerged dike of the present invention, a dike structure is constructed by throwing submerged dike material into water from a transport ship or the like and stacking it on the bottom of the seawater or brackish water. This bank structure is composed of a submerged bank material A whose outer layer portion is mainly composed of granular or / and massive Ca-containing material (see FIG. 4 for the outer layer portion and inner layer portion of the bank structure). And a shell-like film mainly composed of magnesium hydroxide precipitates or magnesium hydroxide and calcium hydroxide precipitates is formed on the surface layer of the bank structure, and the bank structure is covered with the shell film. By doing so, high wave stability is obtained.
Examples of granular or / and massive Ca-containing materials include slag (hereinafter referred to as steel slag) generated in the steel manufacturing process, waste concrete, and the like, and one or more of these can be used.
Hereinafter, the present invention will be described by way of example in which steel slag is used as the granular and massive Ca-containing material, but the following description will be replaced with the steel slag, or together with the steel slag, other granular and massive Ca-containing materials (for example, Applicable when using waste concrete).

外層部が鉄鋼スラグを主体とする潜堤材Aで構成される堤構造体の表層に、水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜が生成する機構は、以下のとおりである。すなわち、鉄鋼スラグは比較的多量のCaOを含有しており、このような鉄鋼スラグを水中に置くとCaイオンが溶出して堤構造体周囲の水のpHを上昇させる。このpH上昇により水のイオン溶解度が変化し、水中(海水又は汽水中)のMgイオンが水酸化物(水酸化マグネシウム)として堤構造体(潜堤材Aで構成される堤構造体の外層部)の表層に析出し、比較的固い皮膜(析出物層)が生成される。また、このようにして水酸化マグネシウムが析出する際に、浮泥や堆積物(アルミナ、珪酸、有機物などを含んでいる)、スラグ粒子(潜堤材Aの一部)などを巻き込む場合があり、この場合にはそれらも殻状皮膜の一部となる。さらに、堤構造体の表層に水酸化マグネシウムが層状に析出して堤構造体内の間隙水の海水交換が少なくなると、潜堤材Aの間隙水のpHが上昇し、水酸化マグネシウム析出層の内側や同析出層内に形成された空洞部内面などに水酸化カルシウムが析出することがある。この場合には、水酸化カルシウムの析出物も殻状皮膜の一部となる。また、水酸化マグネシウムや水酸化カルシウム以外に、珪酸やアルミナなどを含む水和物が殻状皮膜の一部として少量析出する場合もある。したがって、堤構造体の表層に生成する殻状皮膜とは、上記のようにして生成した水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とし(すなわち、これら析出物を50mass%以上含む)、場合により珪酸やアルミナを含む水和物の析出物、浮泥・堆積物、スラグ粒子(潜堤材Aの一部)などに由来する成分の非析出物を含む皮膜である。   A shell-like film mainly composed of magnesium hydroxide precipitates or magnesium hydroxide and calcium hydroxide precipitates is formed on the surface layer of the dike structure whose outer layer is composed of the submerged dike material A mainly composed of steel slag. The mechanism to perform is as follows. That is, steel slag contains a relatively large amount of CaO, and when such steel slag is placed in water, Ca ions are eluted and raise the pH of the water around the bank structure. The ion solubility of water changes due to this pH increase, and Mg ions in the water (seawater or brackish water) are converted into hydroxide (magnesium hydroxide) as a hydroxide (magnesium hydroxide). ) To form a relatively hard film (precipitate layer). Further, when magnesium hydroxide is precipitated in this way, floating mud, sediment (containing alumina, silicic acid, organic matter, etc.), slag particles (part of the submerged dam material A), etc. may be involved. In this case, they are also part of the shell film. Furthermore, when magnesium hydroxide is deposited in a layered manner on the surface layer of the bank structure and the seawater exchange of pore water in the bank structure is reduced, the pH of the pore water in the submerged bank material A increases, Calcium hydroxide may be deposited on the inner surface of the cavity formed in the deposited layer. In this case, the precipitate of calcium hydroxide also becomes part of the shell film. In addition to magnesium hydroxide or calcium hydroxide, a small amount of hydrate containing silicic acid or alumina may be deposited as a part of the shell film. Therefore, the shell film formed on the surface layer of the bank structure is mainly composed of magnesium hydroxide precipitates or magnesium hydroxide and calcium hydroxide precipitates generated as described above (that is, these precipitates are 50% by mass or more), and in some cases, a film containing non-precipitates of components derived from precipitates of hydrates including silicic acid and alumina, floating mud / sediment, slag particles (part of submerged dike material A), etc. is there.

水酸化マグネシウムは、最初に堤構造体の外層部を構成する潜堤材Aの材料粒子間に析出した後、粒子間を埋めるように生成し、最終的に堤構造体全体を覆うようにして殻状皮膜が形成される。図2は、この殻状皮膜の断面を模式的に示したものであり、xは殻状皮膜、yは潜堤材Aの材料粒子である。また、図3は、海水中に設置した潜堤材A(スラグ)の表層に生成した殻状皮膜の断面のSEM画像と、SEMを用いてMg及びCaの面分析を行った画像である。この各面分析画像において白っぽく写っているのが、それぞれMg主体の部位、Ca主体の部位である。この殻状皮膜は、製鋼スラグ(脱燐スラグ)と高炉水砕スラグを質量比7:3で混合した材料を海中に置いて1ヶ月間で生成したものである。   Magnesium hydroxide is first deposited between the material particles of the submerged levee material A constituting the outer layer portion of the bank structure, and then generated so as to fill the gap between the particles and finally cover the entire bank structure. A shell film is formed. FIG. 2 schematically shows a cross section of the shell-like film, where x is the shell-like film and y is the material particle of the submerged dike material A. FIG. 3 is an SEM image of a cross-section of the shell-like film formed on the surface layer of the submerged dike material A (slag) installed in seawater, and an image obtained by performing surface analysis of Mg and Ca using the SEM. In each of the surface analysis images, the portions mainly composed of Mg and the portions mainly composed of Ca are shown whitish. This shell-like film is produced in one month by placing a material obtained by mixing steelmaking slag (dephosphorization slag) and granulated blast furnace slag at a mass ratio of 7: 3 in the sea.

上記殻状皮膜は、析出物主体で構成されるため、比較的緻密で固く且つある程度の強度を有しており、このような殻状皮膜で覆われた堤構造体は波浪などの水流に対する高い安定性が得られる。
殻状皮膜は、堤構造体を被覆してこれを一体的に保持できるような状態に生成すればよく、したがって皮膜の厚さなどに特別な制限はないが、厚さが薄いと波浪などの外力に対する強度が不足する場合があるので、平均厚みは0.5mm以上であることが好ましい。殻状皮膜の平均厚みtは、例えば、図8に示すように所定長さ範囲Lにおける厚み方向での皮膜断面積Sを測定し、[平均厚みt=皮膜断面積S/長さL]で求めることができる。一般に長さLは、300mm以上であることが好ましい。
Since the shell-like film is composed mainly of precipitates, it is relatively dense and hard and has a certain level of strength. The bank structure covered with such a shell-like film is highly resistant to water currents such as waves. Stability is obtained.
The shell-like film may be generated so that the bank structure is covered and can be held integrally. Therefore, there is no special limitation on the thickness of the film. Since the strength against external force may be insufficient, the average thickness is preferably 0.5 mm or more. For example, as shown in FIG. 8, the average thickness t of the shell-like film is obtained by measuring a film cross-sectional area S in the thickness direction in a predetermined length range L, and [average thickness t = film cross-sectional area S / length L]. Can be sought. In general, the length L is preferably 300 mm or more.

本発明の施工方法では、堤構造体の波浪などに対する安定性は、基本的には殻状皮膜で堤構造体の表層を覆うことによって確保されるが、鉄鋼スラグの種類や組成によっては、殻状皮膜の生成後、スラグの水硬作用により堤構造体自体が固結する場合がある。すなわち、上述したような機構によって堤構造体の表層に殻状皮膜が形成されると、堤構造体の外層部内の間隙水の海水交換がなくなるためpHが上昇し、スラグ成分に由来してSiO−CaO−HOゲルが生成し、これが材料粒子間を埋めるため、堤構造体の外層部全体が固結(水和硬化)する。このような水和硬化は特に高炉水砕スラグを含む場合に生じやすく、殻状皮膜の生成に加えて堤構造体内部(少なくとも外層部)も固結するため、より高い波浪安定性が得られる。 In the construction method of the present invention, the stability of the dam structure against waves and the like is basically ensured by covering the surface layer of the dam structure with a shell film, but depending on the type and composition of the steel slag, After the formation of the film, the dam structure itself may be consolidated by the hydraulic action of the slag. That is, when a shell-like film is formed on the surface layer of the bank structure by the mechanism as described above, the seawater exchange of pore water in the outer layer portion of the bank structure disappears, so that the pH rises and SiO originates from the slag component. A 2- CaO—H 2 O gel is generated and fills the space between the material particles, so that the entire outer layer portion of the bank structure is consolidated (hydrated and cured). Such hydration hardening is likely to occur particularly when blast furnace granulated slag is included, and in addition to the formation of a shell-like film, the inside of the bank structure (at least the outer layer) is consolidated, so higher wave stability is obtained. .

潜堤材Aを構成する鉄鋼スラグとしては、高炉水砕スラグ、高炉徐冷スラグ(但し、この高炉徐冷スラグは水中でSが溶出しないようにするため、十分にエージング処理したものが好ましい)、製鋼スラグ、鉱石還元スラグなどの各種スラグを用いることができる。また、製鋼スラグとしては、脱燐スラグ・脱硫スラグ・脱珪スラグ等の溶銑予備処理スラグ、脱炭スラグ、鋳造スラグ、電気炉スラグ等が挙げられる。製鋼スラグとしては、特に脱炭スラグと脱燐スラグが好適である。
上記潜堤材Aは、粒状又は/及び塊状の形態を有するものであり、粒度としては、通常100mm程度以下のものが使用可能である。通常使用する製鋼スラグの粒度は85mm以下、高炉水砕スラグの粒度は5mm以下であるが、既に固結しているような場合には、それ以上の粒度のものを用いることもできる。
As the steel slag constituting the submerged dam material A, blast furnace granulated slag, blast furnace slow-cooled slag (however, this blast furnace slow-cooled slag is preferably sufficiently aged to prevent S from eluting in water) Various slags such as steelmaking slag and ore reduction slag can be used. Steelmaking slag includes hot metal pretreatment slag such as dephosphorization slag, desulfurization slag, and desiliconization slag, decarburization slag, cast slag, electric furnace slag, and the like. As the steelmaking slag, decarburization slag and dephosphorization slag are particularly suitable.
The submerged dam material A has a granular or / and massive shape, and a particle size of about 100 mm or less is usually usable. Normally used steelmaking slag has a particle size of 85 mm or less, and blast furnace granulated slag has a particle size of 5 mm or less. However, when it is already consolidated, a particle having a larger particle size can be used.

潜堤材Aは、上記鉄鋼スラグのみで構成してもよいが、鉄鋼スラグ以外の粒状物や塊状物、例えば、天然砂、天然砕石、天然砕石を加工した人工砂等の1種以上を、スラグによる皮膜生成能を阻害しない範囲で含むことができる。但し、本発明は鉄鋼スラグからのCaイオンの溶出を利用して堤構造体表層に殻状皮膜を生成させるものであるため、潜堤材Aは鉄鋼スラグを主体とするものであること、すなわち鉄鋼スラグの割合が50mass%以上、好ましく70mass%以上であることが必要である。   The submerged dam material A may be composed of only the above steel slag, but one or more kinds of granular materials and aggregates other than steel slag, such as natural sand, natural crushed stone, artificial sand processed natural crushed stone, It can be included in a range that does not hinder the film forming ability of the slag. However, since the present invention is to generate a shell-like film on the surface of the bank structure utilizing elution of Ca ions from the steel slag, the submerged bank material A is mainly composed of steel slag, that is, The ratio of steel slag needs to be 50 mass% or more, preferably 70 mass% or more.

殻状皮膜は、水中において比較的短期間に生成することが好ましく、例えば、潜堤材Aを水中に設置してから6ヶ月以内、望ましくは3ヶ月以内に所定の厚さの殻状皮膜が形成されることが好ましい。
殻状皮膜を比較的短期間で適切に生成させるには、鉄鋼スラグからのCaイオンの溶出性が十分確保される必要がある。Caイオンの溶出性は鉄鋼スラグの種類や粒度によって異なり、スラグの粒径が小さいほどCaイオンは溶出しやすく、また、高炉水砕スラグに較べて製鋼スラグの方がCaイオンは溶出しやすい。このため、製鋼スラグを用いる場合には、潜堤材Aは粒径2mm以下の製鋼スラグを10mass%以上含むことが好ましく、また、高炉水砕スラグを用いる場合には、潜堤材Aは粒径1mm以下の高炉水砕スラグを20mass%以上含むことが好ましい。また、製鋼スラグと高炉水砕スラグを混合してもよく、この場合には、上記条件のいずれかを満足することが好ましい。
The shell-like film is preferably generated in a relatively short time in water. For example, the shell-like film having a predetermined thickness is formed within 6 months, preferably within 3 months after the submerged dike A is installed in water. Preferably it is formed.
In order to appropriately generate the shell film in a relatively short period of time, it is necessary to sufficiently ensure the elution of Ca ions from the steel slag. The elution of Ca ions varies depending on the type and particle size of the steel slag. The smaller the slag particle size, the easier the Ca ions to elute, and the steelmaking slag more easily elutes Ca ions than blast furnace granulated slag. For this reason, when using steelmaking slag, it is preferable that the submerged dike material A contains 10 mass% or more of steelmaking slag having a particle size of 2 mm or less. It is preferable to contain 20 mass% or more of granulated blast furnace slag having a diameter of 1 mm or less. Moreover, steelmaking slag and blast furnace granulated slag may be mixed, and in this case, it is preferable to satisfy any of the above conditions.

本発明により構築される潜堤は、堤構造体の全部を潜堤材Aで構成してもよいが、外層部を潜堤材Aで構成し、内層部については他の潜堤材Bで構成してもよい。図4は、そのような形態の潜堤(縦断面)を示している。堤構造体の内層部を構成する潜堤材Bとしては、建設残土、浚渫土、塊状の製鋼スラグなどの任意の材料の1種以上を用いることができる。   In the submerged dike constructed according to the present invention, the entire dike structure may be constituted by the submerged dike material A, but the outer layer portion is constituted by the submerged dike material A, and the inner layer portion is constituted by another submerged dike material B. It may be configured. FIG. 4 shows such a submerged dike (longitudinal section). As the submerged dike material B constituting the inner layer portion of the bank structure, one or more kinds of arbitrary materials such as construction residual soil, dredged soil, and massive steel-making slag can be used.

また、本発明法では、堤構造体を構築した後、堤構造体表層に殻状皮膜が生成するまでは、波浪などによって潜堤材が流出する恐れがある。このような潜堤材の流出の防止策としては、以下のような方法の1つ以上を採ることができる。
(i)構築された堤構造体の少なくとも一部を、潜堤材流失防止用の被覆体で覆い、この被覆体で覆われた堤構造体の表層に殻状皮膜が生成した後、被覆体を取り外す方法。
(ii)構築された堤構造体の少なくとも一部を、潜堤材流失防止用であって且つ水中で経時的に分解又は/及び腐蝕する被覆体で覆い、この被覆体で覆われた堤構造体の表層に殻状皮膜が生成した後に、被覆体の少なくとも主要部を分解又は/及び腐蝕により消失(自然消失)させる方法。
(iii)潜堤材Aを透水性があり且つ水中で経時的に分解又は/及び腐蝕する容器に入れ、この容器を積み上げることにより少なくとも堤構造体外層部の一部を構築し、容器内の潜堤材(=堤構造体の外層部)の表層に殻状皮膜が生成した後に、容器の少なくとも主要部を分解又は/及び腐蝕により消失(自然消失)させる方法。
Further, in the method of the present invention, after the bank structure is constructed, the submerged bank material may flow out due to waves or the like until a shell-like film is formed on the surface of the bank structure. One or more of the following methods can be taken as a measure for preventing the leakage of the submerged levee material.
(I) At least a part of the constructed levee structure is covered with a covering for preventing the loss of latent levee material, and a shell-like film is formed on the surface layer of the dam structure covered with the covering, and then the covering is formed. How to remove.
(Ii) At least a part of the constructed levee structure is covered with a covering for preventing the loss of latent levee material and being decomposed or / corroded over time in water, and the dam structure covered with this covering A method in which after a shell-like film is formed on the surface layer of the body, at least the main part of the covering disappears by decomposition or / and corrosion (natural disappearance).
(Iii) The submerged levee material A is placed in a container that is water permeable and decomposes or / and corrodes over time in water, and by building up the container, at least a part of the outer layer portion of the levee structure is constructed, A method in which at least a main part of a container disappears by decomposition or / and corrosion (natural disappearance) after a shell-like film is formed on the surface layer of the submerged levee material (= the outer layer part of the bank structure).

図5は、上記(i)及び(ii)の方法の実施形態(潜堤縦断面)を示しており、3は潜堤材流失防止用の被覆体である。上記(i)及び(ii)のいずれの方法でも、被覆体3は網やシートで構成することができるが、網の場合には潜堤材が流出しないような目開きのものを用いる。一方、堤構造体の表層に殻状皮膜を生成させるには、堤構造体の表層にMgイオンが潤沢に供給されることが必要であり、このため被覆体3は透水性を有し、被覆体3内外での海水交換が適切に行われるようなものであることが好ましい。
被覆体3は、潜堤材の流失が防止できるような形態で堤構造体1の全部又は一部を被覆すればよい。また、被覆体3の固定方法も任意であり、例えば、適当なアンカー手段で水底に固定すればよい。
FIG. 5 shows an embodiment (longitudinal dike longitudinal section) of the above methods (i) and (ii), and 3 is a covering for preventing the loss of submerged dike material. In any of the above methods (i) and (ii), the covering 3 can be formed of a net or a sheet. On the other hand, in order to generate a shell-like film on the surface layer of the bank structure, Mg ions need to be supplied to the surface layer of the bank structure, and therefore the coating body 3 has water permeability and is coated. It is preferable that the seawater is exchanged appropriately inside and outside the body 3.
The covering body 3 should just coat | cover all or one part of the bank structure 1 in the form which can prevent the loss of a submerged bank material. Moreover, the fixing method of the coating | covering body 3 is also arbitrary, For example, what is necessary is just to fix to a water bottom with a suitable anchor means.

上記(i)の方法では、堤構造体1の表層に殻状皮膜が生成した後に、ダイバーの水中作業などによって被覆体3を取り外し、回収する。
一方、上記(ii)の方法では、水中で経時的に分解又は/及び腐蝕する被覆体3を用いることで、被覆体3で覆われた堤構造体1の表層に殻状皮膜が生成した後に、被覆体3の少なくとも主要部を分解又は/及び腐蝕により消失(自然消失)させるようにする。このように被覆体3を水中で経時的に分解又は/及び腐蝕する材料で構成し、最終的に自然消失させるのは、被覆体3がゴミ化するなどして環境汚染を生じさせるのを防止すること、潜堤を生物(水中動植物)の生息・生育に好適な環境とするには、潜堤面に潜堤材Aが露出した状態(岩肌の状態)となることが必要であること、などのためである。
In the method (i), after the shell-like film is formed on the surface layer of the bank structure 1, the covering 3 is removed and collected by underwater work of a diver.
On the other hand, in the method (ii), after the shell-like film is formed on the surface layer of the bank structure 1 covered with the covering 3 by using the covering 3 that decomposes and / or corrodes with time in water. Then, at least the main part of the covering 3 is made to disappear (natural disappearance) by decomposition or / and corrosion. In this way, the covering 3 is made of a material that decomposes and / or corrodes over time in water, and eventually disappears spontaneously to prevent the covering 3 from becoming dusty and causing environmental pollution. In order to make the submerged levee a suitable environment for living and growing organisms (underwater animals and plants), it is necessary that the submerged levee material A is exposed (rock surface state) on the surface of the submerged levee, For such as.

ここで、水中で経時的に分解又は/及び腐蝕する被覆体3としては、例えば、生分解性プラスチック製のシートや網、植物又は植物繊維製のシートや網(例えば、筵、麻織布など)、鋼製などの金属箔、金属網などを用いることができるが、これに限定されるものではない。水中(特に海水中)において例えば数ヶ月〜1年位の間に、少なくとも主要な部分が徐々に分解又は/及び腐蝕して最終的に自然消失するものであって、且つその分解・腐蝕が水中の環境に悪影響を与えないようなものが好ましい。
被覆体3は、堤構造体1の表層に殻状皮膜が生成しないうちは消失せず、必要な流失防止機能を果たすようにするため、その種類・組成や厚さなどを選択すればよい。なお、生分解性プラスチックについては後に詳述する。
Here, as the covering 3 that decomposes and / or corrodes over time in water, for example, a biodegradable plastic sheet or net, a plant or plant fiber sheet or net (for example, straw, linen cloth, etc.) ), A metal foil made of steel, a metal net, or the like can be used, but is not limited thereto. In water (especially in seawater), for example, for several months to one year, at least the main part gradually decomposes and / or corrodes and eventually spontaneously disappears, and the decomposition and corrosion is underwater. Those that do not adversely affect the environment are preferred.
The covering 3 does not disappear before the shell-like film is formed on the surface layer of the bank structure 1, and the type, composition, thickness, etc. may be selected in order to fulfill the necessary loss prevention function. The biodegradable plastic will be described in detail later.

図6は、上記(iii)の方法の実施形態(潜堤縦断面)を示しており、4は潜堤材Aを入れた容器(袋体)である。上記(iii)の方法では、透水性があり且つ水中で経時的に分解又は/及び腐蝕する容器4内に潜堤材Aを入れ、この容器4を積み上げることにより少なくとも堤構造体外層部の一部を構築するが、通常、容器4内に潜堤材Aを入れる作業は陸上又は船上で行われる。
容器4としては、後述するような理由により袋体が特に好ましいが、ある程度の剛性を有する容器(例えば、箱、篭など)であってもよい。
FIG. 6 shows an embodiment (longitudinal dike longitudinal section) of the above method (iii), and 4 is a container (bag) containing the dike material A. In the method (iii), the submerged levee material A is placed in a container 4 that is water permeable and decomposes or / and corrodes over time in water. In general, the operation of putting the submergence material A into the container 4 is performed on land or on a ship.
As the container 4, a bag is particularly preferable for the reason described later, but a container having a certain degree of rigidity (for example, a box, a basket, etc.) may be used.

この方法でも、水中で経時的に分解又は/及び腐蝕する容器4を用い、容器4内の潜堤材A(=堤構造体の外層部)の表層に殻状皮膜が生成した後に、容器4の少なくとも主要部を分解又は/及び腐蝕により消失(自然消失)させるようにする。このように容器4を水中で経時的に分解又は/及び腐蝕する材料で構成し、最終的に自然消失させるのは、容器4がゴミ化するなどして環境汚染を生じさせるのを防止すること、潜堤を生物(水中動植物)の生息・生育に好適な環境とするには、潜堤面に潜堤材Aが露出した状態(岩肌の状態)となることが必要であること、などのためである。   Also in this method, after the shell 4 is generated on the surface layer of the submerged dike material A (= the outer layer portion of the bank structure) in the container 4 using the container 4 that decomposes and / or corrodes with time in water, the container 4 At least the main part of the material is lost (naturally disappeared) by decomposition or / and corrosion. In this way, the container 4 is made of a material that decomposes and / or corrodes over time in water, and eventually disappears spontaneously to prevent the container 4 from becoming polluted and causing environmental pollution. In order to make the submarine a suitable environment for living and growing organisms (underwater animals and plants), it is necessary that the submerged dike surface A is exposed (rock surface), etc. Because.

容器4の材質は上記(ii)の方法の被覆体3と同様である。すなわち、容器4は、例えば、生分解性プラスチック製のシートや網、植物又は植物繊維製のシートや網(例えば、筵、麻織布など)、鋼製などの金属箔、金属網などを用いることができるが、これに限定されるものではない。水中(特に海水中)において例えば数ヶ月〜1年位の間に、少なくとも主要な部分が徐々に分解又は/及び腐蝕して最終的に自然消失するものであって、且つその分解・腐蝕が水中の環境に悪影響を与えないようなものが好ましい。   The material of the container 4 is the same as that of the covering 3 of the method (ii). That is, the container 4 uses, for example, a biodegradable plastic sheet or net, a plant or plant fiber sheet or net (for example, a bag, hemp cloth, etc.), a metal foil made of steel, a metal net, or the like. However, the present invention is not limited to this. In water (especially in seawater), for example, for several months to one year, at least the main part gradually decomposes and / or corrodes and eventually spontaneously disappears, and the decomposition and corrosion is underwater. Those that do not adversely affect the environment are preferred.

容器内の潜堤材Aの表層に殻状皮膜を生成させるには、潜堤材表層にMgイオンが適切に供給されることが必要であり、このため容器は透水性(水浸透性)を有し、材料表層に対する海水交換が適切に行われることが必要である。ここで、透水性を有する容器とは、容器を構成する素材自体が透水性を有するものの他に、容器を構成する素材は非透水性であるが、容器内に水を浸透させることができる隙間や孔を有する容器も含まれる。このような容器は、上記隙間や孔から容器内に水が浸透する。   In order to form a shell-like film on the surface layer of the submerged dike material A in the container, it is necessary that Mg ions are appropriately supplied to the surface layer of the submerged dike material. For this reason, the container has water permeability (water permeability). It is necessary that the seawater exchange for the material surface layer is performed appropriately. Here, the container having water permeability is a gap that allows water to permeate into the container although the material constituting the container is non-permeable, in addition to the material itself constituting the container having water permeability. And containers having holes. In such a container, water permeates into the container through the gap or hole.

また、水底などの形状に合わせて容器を積み上げて構造体などを構築するためには、材料Aを入れた容器は変形できることが好ましく、この観点からは、容器は袋体であることが好ましいが、ある程度の剛性を有する容器(例えば、箱、篭など)であってもよい。
また、水底などの形状に合わせて容器4を積み上げて堤構造体を構築するためには、潜堤材Aを入れた容器4は変形できることが好ましく、この観点からは、容器4は袋体であることが好ましいが、ある程度の剛性を有する容器(例えば、箱、篭など)であってもよい。
以上の点からして、容器としては布袋や網袋などが特に好ましい。布袋としては、例えば、一般にフレコンバッグ(好ましくは、防水処理を施していないもの)と呼ばれるものなどを利用できる。
Further, in order to build up a structure or the like by stacking containers according to the shape of the water bottom or the like, the container containing the material A is preferably deformable, and from this viewpoint, the container is preferably a bag body. A container (for example, a box, a basket, etc.) having a certain degree of rigidity may be used.
Moreover, in order to build up the bank structure by stacking the containers 4 in accordance with the shape of the bottom of the water, it is preferable that the container 4 containing the submerged bank material A can be deformed. From this viewpoint, the container 4 is a bag body. Although it is preferable, there may be a container (for example, a box, a basket, etc.) having a certain degree of rigidity.
In view of the above, the container is particularly preferably a cloth bag or a net bag. As the cloth bag, for example, a so-called flexible container bag (preferably, a bag that is not waterproofed) can be used.

また、容器4についても、その内部の潜堤材の表層に殻状皮膜が生成しないうちは消失せず、必要な流失防止機能を果たすようにするため、その種類・組成や厚さなどを選択すればよい。
また、図7は、上記(iii)の方法の他の実施形態(潜堤縦断面)を示しており、堤構造体1の外層部を潜堤材Aを入れた容器4(特に袋体が好ましい)で構成し、内層部を潜堤材Aを積み上げて構成したものである。また、図4と同様に、内層部には潜堤材A以外の潜堤材Bを用いてもよい。
In addition, the type, composition, and thickness of the container 4 are selected so that they do not disappear before the shell-like film is formed on the surface layer of the submerged dike material in the container 4 so as to perform the necessary loss prevention function. do it.
7 shows another embodiment (longitudinal dike longitudinal section) of the above method (iii), in which the outer layer portion of the dike structure 1 is filled with a container 4 containing a submerged dike material A (especially a bag body). The inner layer portion is constructed by stacking the submerged dike material A. Moreover, you may use the submerged dike material B other than the submerged dike material A for an inner layer part similarly to FIG.

上記(ii)の方法の被覆体3や上記(iii)の方法の容器4に用いる生分解性プラスチックとは、土中または海水中などの環境に置かれた際に微生物により分解され、最終的に水と二酸化炭素になるプラスチックを指す。この種のプラスチックは、通常の使用状態では他の一般的なプラスチックと同等の機能(強度など)を有する。
使用する生分解性プラスチックの種類に特別な制限はないが、例えば、トウモロコシなどの植物性のデンプンを主原料としたポリ乳酸、微生物が作るPHB、バクテリアセルロースなどを用いることができる。また、これらを用いる場合、例えば、分解速度が速いバクテリアセルロースと分解速度が遅いポリ乳酸を混合し、それらの混合率を調整することにより、被覆体3や容器4の分解速度を調整することができる。
The biodegradable plastic used in the covering 3 of the method (ii) and the container 4 of the method (iii) is decomposed by microorganisms when placed in an environment such as soil or seawater, and finally It refers to plastic that becomes water and carbon dioxide. This type of plastic has functions (strength, etc.) equivalent to other general plastics under normal use conditions.
There are no particular restrictions on the type of biodegradable plastic used, but for example, polylactic acid mainly made from plant starch such as corn, PHB produced by microorganisms, and bacterial cellulose can be used. When these are used, for example, bacterial cellulose having a high decomposition rate and polylactic acid having a low decomposition rate are mixed, and the mixing rate is adjusted to adjust the decomposition rate of the covering 3 or the container 4. it can.

生分解性プラスチック製の被覆体3や容器4は、水中に置かれた後、水中の微生物により経時的に分解され、最終的に消失するが、生分解性プラスチックの種類・組成や被覆の厚さなどを選択することにより、水中での分解・消失期間を設定することができる。
生分解性プラスチックは分解してCOと水になるため、自然環境に悪影響を与える恐れは全くない。
The biodegradable plastic covering 3 or container 4 is placed in water and then decomposed over time by the microorganisms in the water and eventually disappears. However, the type and composition of the biodegradable plastic and the thickness of the coating By selecting the size, the decomposition / disappearance period in water can be set.
Biodegradable plastic decomposes into CO 2 and water, so there is no risk of adverse effects on the natural environment.

また、生分解性プラスチック製の被覆体3や容器4には、全てが生分解性プラスチックで構成されるもの以外に、一部に生分解性プラスチック以外の物質を混合し或いは物理的に組み合わせたもの(すなわち、生分解性プラスチックを主体とした被覆体や容器)も含まれる。主たる構成物質または構成部材である生分解性プラスチックが経時的に分解・消失することで、被覆体3や容器4の主要部が消失できるものが好ましい。   In addition, the biodegradable plastic covering 3 and the container 4 are partially mixed with or physically combined with substances other than the biodegradable plastic, in addition to those composed entirely of biodegradable plastic. The thing (namely, the covering and container which mainly consisted of biodegradable plastics) is also contained. It is preferable that the main constituent material or the biodegradable plastic which is a constituent member decomposes and disappears over time, so that the main part of the covering 3 and the container 4 can disappear.

なお、上述した(ii)及び(iii)の方法では被覆体3や容器4として分解又は/及び腐食により自然消失するものを用いたが、環境保全上特に大きな問題がない材料や施工場所の場合には、簡単には自然消失しない被覆体3や容器4を用いてもよい。したがって、堤構造体を覆った被覆体3を上記(i)の方法のように取り外すのではなく、堤構造体の表層に殻状皮膜が生成した後もそのままの状態にしておいてもよい。
本発明の潜堤が構築される水域は、港湾や内海などの沿岸海域だけでなく、汽水域の河川、河口、湖沼なども含まれる。
In the above-mentioned methods (ii) and (iii), the covering 3 and the container 4 are those that spontaneously disappear due to decomposition or / and corrosion. For this, a covering 3 or a container 4 that does not easily disappear naturally may be used. Therefore, the covering 3 covering the bank structure may not be removed as in the method (i) above, but may be left as it is after the shell-like film is formed on the surface layer of the bank structure.
The water area where the submerged dike of the present invention is constructed includes not only coastal sea areas such as harbors and inland seas, but also rivers, estuaries, lakes and marshes in brackish water areas.

以上述べたような施工法により得られる本発明の潜堤は、水底に潜堤材を積み上げることにより構築される、少なくとも外層部が粒状又は/及び塊状のCa含有物(鉄鋼スラグなど)を主体とする潜堤材A(但し、粒状又は/及び塊状のCa含有物のみからなる潜堤材の場合を含む)からなる堤構造体であって、この堤構造体の表層に水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜が生成した潜堤である。   The submerged dike of the present invention obtained by the construction method as described above is constructed by stacking submerged dike material on the bottom of the water, and at least the outer layer portion is mainly composed of granular or / and massive Ca-containing materials (steel slag, etc.). A dike structure composed of a submerged dike material A (including a case of a submerged dike material composed only of granular or / and massive Ca-containing material), and precipitation of magnesium hydroxide on the surface layer of the dike structure Or a submerged dike in which a shell-like film composed mainly of precipitates of magnesium hydroxide and calcium hydroxide is formed.

[実施例1]
表1に示す潜堤材(1)〜(10)を用いて、内湾の比較的波浪条件の穏やかな実海域(水深4.0〜4.5m)において、高さ2m、幅5m、長さ5mの潜堤を構築した。潜堤材(1)〜(8)において、製鋼スラグとしては粒径2mm以下の割合が40mass%のものを、高炉水砕スラグとしては粒径1mm以下の割合が80mass%のものを、それぞれ用いた。また、潜堤材(9),(10)については、表1の欄外に記載した粒度の製鋼スラグと高炉水砕スラグを用いた。
潜堤材を積み上げた堤構造体の表面をプラスチック製の被覆網(目開き1mm)で覆い、潜堤を構築してから1ヶ月経過後に被覆網を撤去し、各堤構造体の上面表層に生成した殻状皮膜の厚さを複数箇所で調べ、その平均値を求めた。その結果を表1に示す。
[Example 1]
Using the submerged dike materials (1) to (10) shown in Table 1, in the actual sea area (water depth of 4.0 to 4.5 m) in the inner bay where the wave conditions are relatively calm, the height is 2 m, the width is 5 m, and the length. A 5m submerged dike was constructed. In the submerged dike materials (1) to (8), steelmaking slag having a particle size of 2 mm or less is 40 mass%, and blast furnace granulated slag having a particle size of 1 mm or less is 80 mass%. It was. Moreover, about the submerged dike materials (9) and (10), the steelmaking slag and the blast furnace granulated slag of the particle size described in the margin of Table 1 were used.
Cover the surface of the embankment structure piled up with submerged levee material with a plastic covering mesh (mesh opening 1mm), and remove the covering mesh one month after the construction of the submerged levee. The thickness of the generated shell film was examined at a plurality of locations, and the average value was obtained. The results are shown in Table 1.

なお、殻状皮膜の平均厚みtは、図8に示すように所定長さ範囲Lにおける厚み方向での皮膜断面積Sを測定し、[平均厚みt=皮膜断面積S/長さL]で求めた。すなわち、堤構造体の複数箇所から採取した試料の殻状皮膜断面を研磨し、任意に選択した約500mm〜800mmの長さ範囲Lでの皮膜断面積Sを測定した。この皮膜断面積Sの測定では、10倍に拡大した画像に1mmの方眼トレース紙を当てて殻状皮膜部が含まれる方眼のマス目をカウントし、その数から皮膜断面積Sを求めた。なお、殻状皮膜部とそれ以外部分を含むマス目については1/2個としてカウントした。また、殻状皮膜部中に含まれるスラグ粒子などの非析出物も皮膜の一部としてカウントした(但し、空洞部はカウントせず)。   In addition, the average thickness t of the shell-like film is obtained by measuring the film cross-sectional area S in the thickness direction in a predetermined length range L as shown in FIG. 8, and [average thickness t = film cross-sectional area S / length L]. Asked. That is, the shell-shaped film cross section of the sample collected from a plurality of locations of the bank structure was polished, and the film cross-sectional area S in the length range L of about 500 mm to 800 mm arbitrarily selected was measured. In the measurement of the film cross-sectional area S, a grid of 1 mm square was applied to the image magnified 10 times, the squares of the grid containing the shell-shaped film part were counted, and the film cross-sectional area S was obtained from the number. In addition, about the square containing a shell-like film | membrane part and an other than that part, it counted as 1/2. Further, non-precipitates such as slag particles contained in the shell-like film part were also counted as a part of the film (however, the cavity part was not counted).

[実施例2]
製鋼スラグ単独材からなる供試体を透水性を有する麻袋に入れ、潜堤を想定して沿岸海域の水深約10mの海底に複数個設置した。4年半経過した後に設置状態を調査したが、スラグを入れた麻袋は、波に流されることなくほぼ設置ままの状態を維持し、且つ内部のスラグが固結したような状態で保形していた。
一部の麻袋の口を空けて内部を確認したところ、供試体(スラグ)表層に比較的厚い殻状皮膜(数mm以上)が生成し、且つこの殻状皮膜の内側のスラグが約20cm程度の厚さで固結していた。この殻状皮膜+スラグ固結部(20cm×10cm×30cm)を圧縮試験用試料として採取し、一軸圧縮強度の測定を行い、その結果に基づき粘着力を評価した。
[Example 2]
A plurality of specimens made of a single steelmaking slag material were placed in a water-permeable hemp sack, and a plurality of specimens were installed on the seabed at a depth of about 10 m in the coastal sea area assuming a submerged dike. After four and a half years, the state of installation was investigated, but the hemp slag containing the slag was kept in the almost installed state without being swept away by the waves, and the slag inside was kept in a solid state. It was.
When the inside of some hemp bags was opened and the inside was confirmed, a relatively thick shell film (several mm or more) was formed on the surface of the specimen (slag), and the slag inside the shell film was about 20 cm. It was consolidated by thickness. This shell-like film + slag consolidated part (20 cm × 10 cm × 30 cm) was taken as a sample for compression test, uniaxial compression strength was measured, and adhesive strength was evaluated based on the result.

粘着力は、一般には、三軸圧縮試験(例えば、地盤工学会基準JGS0524)により求めるが、一軸圧縮試験(JIS−A−1216)により求まる圧縮強度の1/4〜1/5相当の値を用いてもよい。本発明者らは、予め実験を行い、この粘着力(一軸圧縮強度の1/4〜1/5相当の値)が20kN/m以上、好ましくは35kN/m以上あれば高い波浪安定性が得られ、潜堤として十分に機能することを確認した。
圧縮試験の結果、上記試料の一軸圧縮強度は390kN/mであった。この結果から、粘着力は約80〜100kN/mであることが推定され、潜堤として高い波浪安定性が得られることが確認できた。
The adhesive strength is generally determined by a triaxial compression test (for example, JGS0524, Geotechnical Society Standard), but a value corresponding to 1/4 to 1/5 of the compressive strength determined by a uniaxial compression test (JIS-A-1216). It may be used. The present inventors have conducted experiments in advance, and if this adhesive force (a value corresponding to 1/4 to 1/5 of the uniaxial compressive strength) is 20 kN / m 2 or more, preferably 35 kN / m 2 or more, high wave stability. It was confirmed that it functions sufficiently as a submerged dike.
As a result of the compression test, the uniaxial compressive strength of the sample was 390 kN / m 2 . From this result, it was estimated that the adhesive strength was about 80 to 100 kN / m 2 , and it was confirmed that high wave stability was obtained as a submerged dike.

潜堤の設置形態例(縦断面)を示す説明図Explanatory drawing showing an example of installation form (longitudinal section) of submarine 本発明の施工法において、堤構造体の表層に生成する殻状皮膜の断面を模式的に示す説明図Explanatory drawing which shows typically the cross section of the shell-like film | membrane produced | generated in the surface layer of a bank structure in the construction method of this invention 海水中に設置した潜堤材(スラグ)の表層に生成した殻状皮膜断面のSEM画像と、SEMを用いたMg及びCaの面分析画像SEM image of the cross-section of the shell-like film generated on the surface of the submerged levee material (slag) installed in seawater, and surface analysis images of Mg and Ca using SEM 本発明法の一実施形態(潜堤縦断面)を示す説明図Explanatory drawing which shows one Embodiment (submerged dike longitudinal section) of the method of this invention 本発明法の他の実施形態(潜堤縦断面)を示す説明図Explanatory drawing which shows other embodiment (submersible longitudinal section) of this invention method 本発明法の他の実施形態(潜堤縦断面)を示す説明図Explanatory drawing which shows other embodiment (submersible longitudinal section) of this invention method 本発明法の他の実施形態(潜堤縦断面)を示す説明図Explanatory drawing which shows other embodiment (submersible longitudinal section) of this invention method 本発明法において生成した殻状皮膜の厚み方向断面を模式的に示す説明図Explanatory drawing which shows typically the thickness direction cross section of the shell-shaped film | membrane produced | generated in this invention method

符号の説明Explanation of symbols

1 堤構造体
2 ブロック
3 被覆体
4 容器
x 殻状皮膜
y 材料粒子
1 Levee structure 2 Block 3 Covering body 4 Container x Shell-like film y Material particles

Claims (9)

海水又は汽水域の水底に潜堤材を積み上げることにより、少なくとも外層部が粒状又は/及び塊状のCa含有物を50mass%以上含む潜堤材A(但し、粒状又は/及び塊状のCa含有物のみからなる潜堤材の場合を含む)からなる堤構造体を構築し、該堤構造体の表層に水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜を生成させる潜堤の施工法であり、
潜堤材Aは、粒径2mm以下の製鋼スラグを40mass%以上含むことを特徴とする潜堤の施工法。
By laminating a submerged dike material on the bottom of seawater or brackish water, at least the outer layer part contains a granular or / and massive Ca-containing material of 50 mass% or more. However, only the granular or / and massive Ca-containing material is contained. (Including the case of a submerged levee material), and a shell-like film mainly composed of precipitates of magnesium hydroxide or magnesium hydroxide and calcium hydroxide on the surface layer of the dam structure It is a construction method of Sentsutsumi that Ru to generate,
The submerged dike material A contains 40 mass% or more of steelmaking slag having a particle size of 2 mm or less .
海水又は汽水域の水底に潜堤材を積み上げることにより、少なくとも外層部が粒状又は/及び塊状のCa含有物を50mass%以上含む潜堤材A(但し、粒状又は/及び塊状のCa含有物のみからなる潜堤材の場合を含む)からなる堤構造体を構築し、該堤構造体の表層に水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜を生成させる潜堤の施工法であり、
潜堤材Aは、粒径1mm以下の高炉水砕スラグを20mass%以上含むことを特徴とする潜堤の施工法。
By laminating a submerged dike material on the bottom of seawater or brackish water, at least the outer layer part contains a granular or / and massive Ca-containing material of 50 mass% or more. However, only the granular or / and massive Ca-containing material is contained. (Including the case of a submerged levee material), and a shell-like film mainly composed of precipitates of magnesium hydroxide or magnesium hydroxide and calcium hydroxide on the surface layer of the dam structure It is a construction method of Sentsutsumi that Ru to generate,
The submerged dike material A contains 20 mass% or more of granulated blast furnace slag having a particle size of 1 mm or less .
粒状又は/及び塊状のCa含有物が鉄鋼製造プロセスで発生したスラグであることを特徴とする請求項1又は2に記載の潜堤の施工法。 The submerged bank construction method according to claim 1 or 2, wherein the granular or / and massive Ca-containing material is slag generated in a steel manufacturing process. 堤構造体の表層に生成した殻状皮膜の平均厚みが0.5mm以上であることを特徴とする請求項1〜3のいずれかに記載の潜堤の施工法。 The method for constructing a submerged embankment according to any one of claims 1 to 3, wherein the average thickness of the shell-like film formed on the surface layer of the embankment structure is 0.5 mm or more. 構築された堤構造体の少なくとも一部を、潜堤材Aの流失を防止するための被覆体で覆うことを特徴とする請求項1〜のいずれかに記載の潜堤の施工法。 The construction method of a submerged levee according to any one of claims 1 to 4 , wherein at least a part of the constructed levee structure is covered with a covering for preventing the submerged levee material A from being washed away. 構築された堤構造体の少なくとも一部を、潜堤材Aの流失を防止するための被覆体であって且つ水中で経時的に分解又は/及び腐蝕する被覆体で覆い、該被覆体で覆われた堤構造体の表層に殻状皮膜が生成した後に、被覆体を分解又は/及び腐蝕により消失させることを特徴とする請求項1〜のいずれかに記載の潜堤の施工法。 At least a part of the constructed levee structure is covered with a covering for preventing the leakage of the submerged levee material A and decomposed or / corroded over time in water, and covered with the covering The method for constructing a submerged levee according to any one of claims 1 to 5 , wherein after the shell-like film is formed on the surface layer of the broken levee structure, the covering is removed by decomposition or / and corrosion. 潜堤材Aを透水性があり且つ水中で経時的に分解又は/及び腐蝕する容器に入れ、該容器を積み上げることにより少なくとも堤構造体外層部の一部を構築し、容器内の潜堤材Aの表層に殻状皮膜が生成した後に、容器を分解又は/及び腐蝕により消失させることを特徴とする請求項1〜6のいずれかに記載の潜堤の施工法。The submerged levee material A is placed in a container that is water-permeable and decomposes or / and corrodes over time in water, and the container is stacked to construct at least a part of the outer layer portion of the levee structure. The method for constructing a submerged dike according to any one of claims 1 to 6, wherein after the shell-like film is formed on the surface layer of A, the container is removed by decomposition or / and corrosion. 海水又は汽水域の水底に潜堤材を積み上げることにより構築される、少なくとも外層部が粒状又は/及び塊状のCa含有物を50mass%以上含む潜堤材A(但し、粒状又は/及び塊状のCa含有物のみからなる潜堤材の場合を含む)からなる堤構造体であって、該堤構造体の表層に水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜が生成した潜堤であり、
潜堤材Aは、粒径2mm以下の製鋼スラグを40mass%以上含むことを特徴とする潜堤。
A submerged levee material A (provided that at least the outer layer part contains granular or / and massive Ca-containing material of 50 mass% or more constructed by stacking the submerged dike material on the bottom of seawater or brackish water (however, granular or / and massive Ca A dike structure including a case of a submerged dike material composed only of inclusions, the main layer of which is a precipitate of magnesium hydroxide or a precipitate of magnesium hydroxide and calcium hydroxide on the surface layer of the dike structure A submerged dike created by a shell-like film ,
The submerged levee material A contains 40 mass% or more of steelmaking slag having a particle diameter of 2 mm or less .
海水又は汽水域の水底に潜堤材を積み上げることにより構築される、少なくとも外層部が粒状又は/及び塊状のCa含有物を50mass%以上含む潜堤材A(但し、粒状又は/及び塊状のCa含有物のみからなる潜堤材の場合を含む)からなる堤構造体であって、該堤構造体の表層に水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜が生成した潜堤であり、
潜堤材Aは、粒径1mm以下の高炉水砕スラグを20mass%以上含むことを特徴とする潜堤。
A submerged levee material A (provided that at least the outer layer part contains granular or / and massive Ca-containing material of 50 mass% or more constructed by stacking the submerged dike material on the bottom of seawater or brackish water (however, granular or / and massive Ca A dike structure including a case of a submerged dike material composed only of inclusions, the main layer of which is a precipitate of magnesium hydroxide or a precipitate of magnesium hydroxide and calcium hydroxide on the surface layer of the dike structure A submerged dike created by a shell-like film ,
The submerged dike material A contains 20 mass% or more of granulated blast furnace slag having a particle size of 1 mm or less .
JP2006303003A 2005-11-08 2006-11-08 Submerged dike construction method and submerged dike Active JP5245241B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303003A JP5245241B2 (en) 2005-11-08 2006-11-08 Submerged dike construction method and submerged dike

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005324175 2005-11-08
JP2005324175 2005-11-08
JP2006303003A JP5245241B2 (en) 2005-11-08 2006-11-08 Submerged dike construction method and submerged dike

Publications (2)

Publication Number Publication Date
JP2007154651A JP2007154651A (en) 2007-06-21
JP5245241B2 true JP5245241B2 (en) 2013-07-24

Family

ID=38239367

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303003A Active JP5245241B2 (en) 2005-11-08 2006-11-08 Submerged dike construction method and submerged dike

Country Status (1)

Country Link
JP (1) JP5245241B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4920533B2 (en) * 2007-09-14 2012-04-18 新日本製鐵株式会社 Method for suppressing fluorine elution from steelmaking slag containing fluorine
JP5825605B2 (en) * 2011-11-04 2015-12-02 大成建設株式会社 Temporary construction road protection method, crushed stone outflow protection structure, and protection net

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070667B2 (en) * 2000-12-14 2012-11-14 Jfeスチール株式会社 Underwater environment improvement method
JP2004000104A (en) * 2001-09-11 2004-01-08 Kokan Kogyo Kk Method for improving underwater or environmental water shore
JP2004236546A (en) * 2003-02-04 2004-08-26 Jfe Steel Kk Method for improving environment in water or on water beach

Also Published As

Publication number Publication date
JP2007154651A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
Lawson Geotextile containment for hydraulic and environmental engineering
US7897831B2 (en) Method for solidifying high moisture sludge, solidified sludge therefrom
Escarameia River and channel revetments
JP4736449B2 (en) Construction method of shallow ground
JP5070667B2 (en) Underwater environment improvement method
JP5400680B2 (en) Artificial shallow or tidal flat
JP5245241B2 (en) Submerged dike construction method and submerged dike
JP5125037B2 (en) Construction method for underwater installation of steel slag
JP5181447B2 (en) Submerged dike construction method and submerged dike
JP4736443B2 (en) Construction method of shallow ground
JP5125063B2 (en) Construction method for installing granular and massive Ca-containing materials in water
JP4736444B2 (en) Construction method of shallow ground
Melchers Long-term immersion corrosion of irons and steel in seawaters with calcareous deposition
JP2007170041A (en) Artificial tideland development method and coal ash columnar body used for the same
JP4872275B2 (en) Covering sand at the bottom of the water
Burt Guidelines for the beneficial use of dredged material
Chan et al. Some insights to the reuse of dredged marine soils by admixing with activated steel slag
WO2009058011A1 (en) Method for preparing a structure in a body of water
JP2003253642A (en) Installation method for underwater structure and block for underwater structure
JP4736448B2 (en) Construction method of shallow ground
JPH0765304B2 (en) Tidal flat creation method
JP4380129B2 (en) Installation method for underwater structure and block for underwater structure
Mackie Concrete durability in small harbours: The Southern African experience
JP2003158946A (en) Method for improving underwater or waterside environment
Bailey et al. Equipment and placement techniques for subaqueous capping

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090727

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120524

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130325

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5245241

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250