JP5125063B2 - Construction method for installing granular and massive Ca-containing materials in water - Google Patents

Construction method for installing granular and massive Ca-containing materials in water Download PDF

Info

Publication number
JP5125063B2
JP5125063B2 JP2006303002A JP2006303002A JP5125063B2 JP 5125063 B2 JP5125063 B2 JP 5125063B2 JP 2006303002 A JP2006303002 A JP 2006303002A JP 2006303002 A JP2006303002 A JP 2006303002A JP 5125063 B2 JP5125063 B2 JP 5125063B2
Authority
JP
Japan
Prior art keywords
container
massive
water
granular
slag
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006303002A
Other languages
Japanese (ja)
Other versions
JP2007154650A (en
Inventor
康人 宮田
和哉 薮田
操 鈴木
秀樹 本田
正文 池田
達人 高橋
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2006303002A priority Critical patent/JP5125063B2/en
Publication of JP2007154650A publication Critical patent/JP2007154650A/en
Application granted granted Critical
Publication of JP5125063B2 publication Critical patent/JP5125063B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A10/00TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
    • Y02A10/11Hard structures, e.g. dams, dykes or breakwaters

Description

本発明は、鉄鋼製造プロセスで発生したスラグなどのような粒状・塊状Ca含有物を水中設置するための施工方法であって、粒状・塊状Ca含有物を用いて水中において構造体や基礎などを施工するのに好適な施工方法に関するものである。   The present invention is a construction method for installing granular and massive Ca-containing materials such as slag generated in the steel manufacturing process in water, and using the granular and massive Ca-containing materials underwater to structure and foundation The present invention relates to a construction method suitable for construction.

海岸保全(海岸侵食の防止)や浅場造成などを目的として、沿岸海域などの水底に潜堤が設置される。このような潜堤は、水底に捨石やコンクリートブロックを積み上げることにより構築されるのが一般的である。また、水底に捨石基礎を設置し、その上にコンクリートブロックなどを積み上げて潜堤を構築する場合もある。   For the purpose of coastal conservation (prevention of coastal erosion) and shallow ground creation, a submerged dike is installed at the bottom of the coastal sea area. Such a submerged dike is generally constructed by stacking rubble and concrete blocks on the bottom of the water. In some cases, a rubble foundation is installed at the bottom of the water, and concrete blocks are stacked on top of it to construct a submerged dike.

しかし、捨石として用いられる天然砕石は年々調達が難しくなっている。一般に、海域工事では波に対する抵抗の大きい大きな石が必要とされるが、このような天然石の調達は特に難しくなりつつある。さらに、最近では天然石の採取による自然破壊も問題視されるようになってきた。また、コンクリートブロックはコストが高い難点があり、さらに、ブロック表面が緻密で隙間がないため初期の生物親和性が劣り、このため一時的に設置海域の環境が劣化するという問題もある。
一方、従来、路盤材等の土木用資材として粒径が20〜50mm程度の塊状の製鋼スラグが製造されており、特許文献1には、このような塊状の製鋼スラグを用いて潜堤を構築することが示されている。製鋼スラグは鉄鋼製造プロセスで発生するスラグ(鉄鋼スラグ)であり、安価に且つ大量に調達できる利点がある。
特開2002−238401号公報
However, it is difficult to procure natural crushed stone used as rubble every year. Generally, large stones with high resistance to waves are required for offshore construction, but the procurement of such natural stones is becoming particularly difficult. Furthermore, recently, the destruction of natural stones has also become a problem. In addition, the concrete block has a problem of high cost, and further, there is a problem that the environment of the installation sea area is temporarily deteriorated because the block surface is dense and there is no gap, and thus the initial biocompatibility is inferior.
On the other hand, massive steel-making slag having a particle diameter of about 20 to 50 mm has been manufactured as civil engineering materials such as roadbed materials. Patent Document 1 describes the construction of a submerged dike using such massive steel-making slag. Has been shown to do. Steelmaking slag is slag generated in the steel manufacturing process (steel slag), and has an advantage that it can be procured at low cost and in large quantities.
JP 2002-238401 A

しかし、特許文献1のように潜堤材として粒径20〜50mm程度の塊状製鋼スラグを用いた場合、大きな波浪などによって潜堤材が流失し、潜堤が大きく損傷したり、酷い場合には潜堤そのものが崩壊・消失してしまう。すなわち、塊状の製鋼スラグで構築された潜堤は、波浪安定性が低いという問題がある。
また、例えば、護岸の構築や水底の基礎・基盤工事などにおいても塊状の製鋼スラグを使用することが考えられるが、この場合も上述した潜堤と同様に波浪安定性に大きな問題がある。
したがって本発明の目的は、鉄鋼スラグなどのような粒状・塊状Ca含有物を水中に安定的に設置することができ、これにより粒状・塊状Ca含有物を用いて高い波浪安定性を有する水中構造体や基礎・基盤などを容易に施工することができる施工法を提供することにある。
However, when a massive steelmaking slag having a particle size of about 20 to 50 mm is used as a submerged levee material as in Patent Document 1, the submerged levee material is washed away by a large wave or the like, and the submerged levee is greatly damaged or severe. The submarine itself collapses and disappears. That is, there is a problem that the submerged dike constructed with massive steelmaking slag has low wave stability.
In addition, for example, it is conceivable to use massive steelmaking slag in construction of revetments, foundations of foundations and foundations, etc., but in this case as well as the above-mentioned submerged dike, there is a big problem in wave stability.
Accordingly, an object of the present invention is to stably install granular and massive Ca-containing materials such as steel slag in water, and thereby to have a high wave stability using granular and massive Ca-containing materials. The object is to provide a construction method that allows easy construction of the body, foundation and foundation.

本発明者らは上記課題を解決すべく検討を行い、その結果、鉄鋼スラグなどのような粒状・塊状Ca含有物を主体とする材料を透水性がある容器に入れ、この容器を水中に置いて容器内の材料表層に水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜を生成させ、この殻状皮膜で材料が覆われるようにすることにより、粒状・塊状Ca含有物を主体とする材料を波浪などによる流出を生じることなく水中に安定的に設置でき、これにより高い波浪安定性を有する構造体や基礎・基盤などを容易に施工できることが判った。また、好ましくは、容器として水中で経時的に分解又は腐蝕する容器を用い、容器内の材料表層に殻状皮膜が生成した後に容器を分解又は腐蝕により消失(自然消失)させることにより、容器がゴミ化するなどして環境汚染を生じさせることなく、また、施工された構造体等を生物の生息・生育に好適な環境とすることができることが判った。   The present inventors have studied to solve the above problems, and as a result, put a material mainly composed of granular and massive Ca-containing materials such as steel slag into a water-permeable container and place this container in water. By forming a shell film mainly composed of magnesium hydroxide precipitates or magnesium hydroxide and calcium hydroxide precipitates on the material surface layer in the container, and by covering the material with this shell film, It can be seen that materials mainly composed of granular and massive Ca can be stably installed in water without causing outflow due to waves, etc., which makes it possible to easily construct structures, foundations and foundations with high wave stability. It was. Preferably, a container that decomposes or corrodes with time in water is used as the container, and after the shell-like film is formed on the material surface layer in the container, the container disappears by decomposition or corrosion (natural disappearance). It was found that the constructed structure or the like can be made into an environment suitable for living and growing of living organisms without causing environmental pollution due to trash.

本発明は、以上述べたような知見に基づきなされたもので、以下を要旨とするものである。
[1]粒状又は/及び塊状のCa含有物を50mass%以上含む材料(但し、粒状又は/及び塊状のCa含有物のみからなる材料の場合を含む)を透水性がある容器に入れ、該容器を海水又は汽水中に置いて材料表層に水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜を生成させる施工方法であって、前記容器が水中で経時的に分解又は/及び腐蝕する容器であり、容器内の材料表層に殻状皮膜が生成した後に、該容器を分解又は/及び腐蝕により消失させることを特徴とする、粒状・塊状Ca含有物を水中設置するための施工方法。
[2]上記[1]の施工方法において、粒状又は/及び塊状のCa含有物が鉄鋼製造プロセスで発生したスラグであることを特徴とする、粒状・塊状Ca含有物を水中設置するための施工方法。
[3]上記[1]又は[2]の施工方法において、容器が袋体であることを特徴とする、粒状・塊状Ca含有物を水中設置するための施工方法。
The present invention has been made on the basis of the findings as described above, and has the following gist.
[1] A material containing 50 mass% or more of granular or / and massive Ca-containing material ( including a material consisting only of granular or / and massive Ca-containing material) is placed in a water-permeable container, and the container In a seawater or brackish water to produce a shell film mainly composed of magnesium hydroxide precipitates or magnesium hydroxide and calcium hydroxide precipitates on the surface of the material , wherein the container A granular and massive Ca-containing material characterized in that after the formation of a shell-like film on the surface layer of the material in the container, the container is decomposed or / and corroded , Construction method for underwater installation.
[2] In the construction method according to [1], the granular and / or massive Ca-containing material is slag generated in the steel manufacturing process, and the construction for installing the granular and massive Ca-containing material in water. Method.
[3] A construction method for installing granular and massive Ca-containing materials in water in the construction method of [1] or [2] above, wherein the container is a bag .

[4]上記[1]〜[3]のいずれかの施工方法において、容器内の材料表層に生成した殻状皮膜の平均厚みが0.5mm以上であることを特徴とする、粒状・塊状Ca含有物を水中設置するための施工方法。
[5]上記[1]〜[4]のいずれかの施工方法において、容器内の材料は、粒径2mm以下の製鋼スラグを10mass%以上含むことを特徴とする、粒状・塊状Ca含有物を水中設置するための施工方法。
[6]上記[1]〜[5]のいずれかの施工方法において、容器内の材料は、粒径1mm以下の高炉水砕スラグを20mass%以上含むことを特徴とする、粒状・塊状Ca含有物を水中設置するための施工方法。
[7]上記[1]〜[6]のいずれかの施工方法において、材料を入れた容器により、少なくとも潜堤外層部の一部を構築することを特徴とする、粒状・塊状Ca含有物を水中設置するための施工方法。
[4] In the construction method according to any one of [1] to [3] , the average thickness of the shell-like film formed on the material surface layer in the container is 0.5 mm or more. Construction method for installing inclusions underwater.
[5] In the construction method according to any one of the above [1] to [4] , the material in the container includes a granular and massive Ca-containing material characterized by containing 10 mass% or more of steelmaking slag having a particle size of 2 mm or less. Construction method for underwater installation.
[6] In the construction method according to any one of [1] to [5 ] above, the material in the container contains 20 mass% or more of granulated blast furnace slag having a particle size of 1 mm or less, and contains granular and massive Ca Construction method for installing objects underwater.
[7] In the construction method according to any one of the above [1] to [6] , a granular and massive Ca-containing material is characterized in that at least a part of the submerged dike outer layer portion is constructed by a container containing a material. Construction method for underwater installation.

本発明の施工方法によれば、材料表層に水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜を生成させ、この殻状皮膜により材料が覆われるようにすることで、粒状・塊状Ca含有物を主体とする材料を、波浪などによる流出を生じることなく水中に安定的に設置することができる。このため、高い波浪安定性を有する水中構造体や基礎・基盤などを容易に施工することができる。   According to the construction method of the present invention, a shell film mainly composed of magnesium hydroxide precipitates or magnesium hydroxide and calcium hydroxide precipitates is formed on the material surface layer, and the material is covered with the shell film. Thus, a material mainly composed of granular and massive Ca-containing material can be stably placed in water without causing outflow due to waves or the like. For this reason, it is possible to easily construct an underwater structure or foundation / base having high wave stability.

本発明の施工方法では、粒状又は/及び塊状のCa含有物を主体とする材料(以下、材料Aという)を透水性のある容器に入れ、この容器を海水又は汽水中に置いて容器内の材料Aの表層に水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜を生成させ、この殻状皮膜で材料が覆われるようにする。材料Aは容器に入れられているため波浪などで流出する恐れはなく、また、殻状皮膜が生成した後は容器が消失したとしても波浪などに対する高い安定性が得られる。   In the construction method of the present invention, a granular or / and massive Ca-containing material (hereinafter referred to as “material A”) is placed in a water-permeable container, and the container is placed in seawater or brackish water. A shell-like film mainly composed of magnesium hydroxide precipitates or magnesium hydroxide and calcium hydroxide precipitates is formed on the surface layer of the material A, and the material is covered with the shell-like film. Since the material A is contained in the container, there is no fear of flowing out due to waves and the like, and even if the container disappears after the shell-like film is formed, high stability against waves and the like can be obtained.

ここで、容器内の材料Aの表層とは、容器に保持された材料の最外層(容器内面に接している最外層を含む)を指すが、本発明では、必ずしも材料Aの全表層に殻状皮膜が生成される(すなわち、材料A全体が殻状皮膜で覆われる)必要はなく、部分的に殻状皮膜が生成しない表層(例えば、容器どうしが接している部分における材料表層)があってもよい。
粒状又は/及び塊状のCa含有物としては、例えば、鉄鋼製造プロセスで発生したスラグ(鉄鋼スラグ)や廃コンクリートなどが挙げられ、これらの1種以上を用いることができる。
以下、粒状・塊状Ca含有物として鉄鋼スラグを用いる場合を例に、本発明を説明するが、以下の説明は鉄鋼スラグに代えて、或いは鉄鋼スラグとともに他の粒状・塊状Ca含有物(例えば、廃コンクリート等)を用いる場合にも妥当する。
Here, the surface layer of the material A in the container refers to the outermost layer of the material held in the container (including the outermost layer in contact with the inner surface of the container). It is not necessary that a film-like film is generated (that is, the entire material A is covered with a shell-like film), and there is a surface layer (for example, a material surface layer in a portion where containers are in contact) where a shell-like film is not partially formed. May be.
Examples of granular or / and massive Ca-containing materials include slag (steel slag) generated in the steel manufacturing process and waste concrete, and one or more of these can be used.
Hereinafter, the present invention will be described by way of example in which steel slag is used as the granular and massive Ca-containing material, but the following description will be replaced with the steel slag, or together with the steel slag, other granular and massive Ca-containing materials (for example, Applicable when using waste concrete).

鉄鋼スラグを主体とする材料Aの表層に水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜が生成する機構は、以下のとおりである。すなわち、鉄鋼スラグは比較的多量のCaOを含有しており、このような鉄鋼スラグを水中に置くとCaイオンが溶出して材料周囲の水のpHを上昇させる。このpH上昇により水のイオン溶解度が変化し、水中(海水又は汽水中)のMgイオンが水酸化物(水酸化マグネシウム)として材料Aの表層に析出し、比較的固い皮膜(析出物層)が生成される。また、このようにして水酸化マグネシウムが析出する際に、浮泥や堆積物(アルミナ、珪酸、有機物などを含んでいる)、スラグ粒子(材料Aの一部)などを巻き込む場合があり、この場合にはそれらも殻状皮膜の一部となる。さらに、材料Aの表層に水酸化マグネシウムが層状に析出して材料内の間隙水の海水交換が少なくなると、材料Aの間隙水のpHが上昇し、水酸化マグネシウム析出層の内側や同析出層内に形成された空洞部内面などに水酸化カルシウムが析出することがある。この場合には、水酸化カルシウムの析出物も殻状皮膜の一部となる。また、水酸化マグネシウムや水酸化カルシウム以外に、珪酸やアルミナなどを含む水和物が殻状皮膜の一部として少量析出する場合もある。したがって、容器内の材料Aの表層に生成する殻状皮膜とは、上記のようにして生成した水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とし(すなわち、これら析出物を50mass%以上含む)、場合により珪酸やアルミナを含む水和物の析出物、浮泥・堆積物、スラグ粒子(材料Aの一部)などに由来する成分の非析出物を含む皮膜である。   The mechanism by which a shell film mainly composed of magnesium hydroxide precipitates or magnesium hydroxide and calcium hydroxide precipitates is formed on the surface layer of the material A mainly composed of steel slag is as follows. That is, steel slag contains a relatively large amount of CaO. When such steel slag is placed in water, Ca ions are eluted and raise the pH of the water around the material. This pH increase changes the water ion solubility, and Mg ions in water (seawater or brackish water) are deposited on the surface layer of material A as hydroxide (magnesium hydroxide), resulting in a relatively hard film (precipitate layer). Generated. Further, when magnesium hydroxide is precipitated in this manner, floating mud, sediment (containing alumina, silicic acid, organic matter, etc.), slag particles (part of material A), etc. may be involved. In some cases they are also part of the shell film. Further, when magnesium hydroxide is deposited in a layer on the surface layer of the material A and the seawater exchange of the pore water in the material is reduced, the pH of the pore water of the material A increases, and the inside of the magnesium hydroxide precipitation layer or the same precipitation layer Calcium hydroxide may precipitate on the inner surface of the cavity formed inside. In this case, the precipitate of calcium hydroxide also becomes part of the shell film. In addition to magnesium hydroxide or calcium hydroxide, a small amount of hydrate containing silicic acid or alumina may be deposited as a part of the shell film. Therefore, the shell-like film formed on the surface layer of the material A in the container is mainly composed of magnesium hydroxide precipitates or magnesium hydroxide and calcium hydroxide precipitates generated as described above (that is, these precipitates are deposited). In a film containing non-precipitates of components derived from precipitates of hydrates containing silicic acid or alumina, floating mud / sediment, slag particles (part of material A), etc. is there.

水酸化マグネシウムは、最初に材料粒子間に析出した後、粒子間を埋めるように生成し、最終的に材料全体を覆うようにして殻状皮膜が形成される。図1は、この殻状皮膜の断面を模式的に示したものであり、xは殻状皮膜、yは材料粒子である。また、図2は、殻状皮膜の断面のSEM画像と、SEMを用いてMg及びCaの面分析を行った画像である。この各面分析画像において白っぽく写っているのが、それぞれMg主体の部位、Ca主体の部位である。この殻状皮膜は、製鋼スラグ(脱燐スラグ)と高炉水砕スラグを質量比7:3で混合した材料を海中に置いて1ヶ月間で生成したものである。   Magnesium hydroxide is first deposited between the material particles, then formed so as to fill the space between the particles, and finally a shell-like film is formed so as to cover the entire material. FIG. 1 schematically shows a cross section of the shell-like film, where x is a shell-like film and y is a material particle. FIG. 2 shows an SEM image of a cross-section of the shell-like film and an image obtained by performing surface analysis of Mg and Ca using the SEM. In each of the surface analysis images, the portions mainly composed of Mg and the portions mainly composed of Ca are shown whitish. This shell-like film is produced in one month by placing a material obtained by mixing steelmaking slag (dephosphorization slag) and granulated blast furnace slag at a mass ratio of 7: 3 in the sea.

上記殻状皮膜は、析出物主体で構成されるため、比較的緻密で固く且つある程度の強度を有しており、このような殻状皮膜で覆われた材料Aは波浪などの水流に対する高い安定性が得られる。
殻状皮膜は、材料Aを被覆してこれを一体的に保持できるような状態に生成すればよく、したがって皮膜の厚さなどに特別な制限はないが、厚さが薄いと波浪などの外力に対する強度が不足する場合があるので、平均厚みは0.5mm以上であることが好ましい。殻状皮膜の平均厚みtは、例えば、図6に示すように所定長さ範囲Lにおける厚み方向での皮膜断面積Sを測定し、[平均厚みt=皮膜断面積S/長さL]で求めることができる。一般に長さLは、300mm以上であることが好ましい。
Since the shell film is composed mainly of precipitates, it is relatively dense and hard and has a certain level of strength. The material A covered with such a shell film is highly stable against water currents such as waves. Sex is obtained.
The shell film only needs to be formed so that the material A can be coated and held integrally. Therefore, there is no particular limitation on the thickness of the film, but if the thickness is thin, external forces such as waves are applied. Therefore, the average thickness is preferably 0.5 mm or more. For example, as shown in FIG. 6, the average thickness t of the shell-like film is obtained by measuring a film cross-sectional area S in the thickness direction in a predetermined length range L, and [average thickness t = film cross-sectional area S / length L]. Can be sought. In general, the length L is preferably 300 mm or more.

本発明の施工方法では、材料Aの波浪などに対する安定性は、基本的には殻状皮膜で材料表層を覆うことによって確保されるが、鉄鋼スラグの種類や組成によっては、殻状皮膜の生成後、スラグの水硬作用により材料自体が固結する場合がある。すなわち、上述したような機構によって材料Aの表層に殻状皮膜が形成されると、材料内の間隙水の海水交換がなくなるためpHが上昇し、スラグ成分に由来してSiO−CaO−HOゲルが生成し、これが材料粒子間を埋めるため、材料全体が固結(水和硬化)する。このような水和硬化は特に高炉水砕スラグを含む場合に生じやすく、殻状皮膜の生成に加えて材料内部も固結するため、より高い波浪安定性が得られる。 In the construction method of the present invention, the stability of the material A against waves and the like is basically ensured by covering the material surface layer with a shell film, but depending on the type and composition of the steel slag, the formation of the shell film Later, the material itself may solidify due to the hydraulic action of the slag. That is, when a shell-like film is formed on the surface layer of the material A by the mechanism as described above, since the seawater exchange of pore water in the material is lost, the pH rises, and the SiO 2 —CaO—H originates from the slag component. A 2 O gel is formed, which fills between the material particles, so that the entire material is consolidated (hydrated and cured). Such hydration hardening is likely to occur particularly when blast furnace granulated slag is included, and in addition to the formation of a shell-like film, the inside of the material is consolidated, so that higher wave stability can be obtained.

材料Aを構成する鉄鋼スラグとしては、高炉水砕スラグ、高炉徐冷スラグ(但し、この高炉徐冷スラグは水中でSが溶出しないようにするため、十分にエージング処理したものが好ましい)、製鋼スラグ、鉱石還元スラグなどの各種スラグを用いることができる。また、製鋼スラグとしては、脱燐スラグ・脱硫スラグ・脱珪スラグ等の溶銑予備処理スラグ、脱炭スラグ、鋳造スラグ、電気炉スラグ等が挙げられる。製鋼スラグとしては、特に脱炭スラグと脱燐スラグが好適である。
材料Aは、粒状又は/及び塊状の形態を有するものであり、粒度としては、通常100mm程度以下のものが使用可能である。通常使用する製鋼スラグの粒度は85mm以下、高炉水砕スラグの粒度は5mm以下であるが、既に固結しているような場合には、それ以上の粒度のものを用いることもできる。
As the steel slag constituting the material A, blast furnace granulated slag, blast furnace slow-cooled slag (however, this blast furnace slow-cooled slag is preferably sufficiently aged to prevent S from eluting in water), steel making Various slags such as slag and ore reduction slag can be used. Steelmaking slag includes hot metal pretreatment slag such as dephosphorization slag, desulfurization slag, and desiliconization slag, decarburization slag, cast slag, electric furnace slag, and the like. As the steelmaking slag, decarburization slag and dephosphorization slag are particularly suitable.
The material A has a granular or / and massive shape, and a particle size of about 100 mm or less can be used. Normally used steelmaking slag has a particle size of 85 mm or less, and blast furnace granulated slag has a particle size of 5 mm or less. However, when it is already consolidated, a particle having a larger particle size can be used.

材料Aは、上記鉄鋼スラグのみで構成してもよいが、鉄鋼スラグ以外の粒状物や塊状物、例えば、天然砂、天然砕石、天然砕石を加工した人工砂等の1種以上を、スラグによる皮膜生成能を阻害しない範囲で含むことができる。但し、本発明は鉄鋼スラグからのCaイオンの溶出を利用して材料表層に殻状皮膜を生成させるものであるため、材料Aは鉄鋼スラグを主体とするものであること、すなわち鉄鋼スラグの割合が50mass%以上、好ましくは70mass%以上であることが必要である。   The material A may be composed of only the above steel slag, but at least one kind of granular material or lump other than steel slag, for example, natural sand, natural crushed stone, artificial sand processed natural crushed stone, etc. It can be included as long as the film forming ability is not impaired. However, since the present invention generates a shell-like film on the surface of the material using elution of Ca ions from the steel slag, the material A is mainly composed of steel slag, that is, the ratio of steel slag. Needs to be 50 mass% or more, preferably 70 mass% or more.

殻状皮膜は、水中において比較的短期間に生成することが好ましく、例えば、容器を水中に設置してから6ヶ月以内、望ましくは3ヶ月以内に所定の厚さの殻状皮膜が形成されることが好ましい。
殻状皮膜を比較的短期間で適切に生成させるには、鉄鋼スラグからのCaイオンの溶出性が十分確保される必要がある。Caイオンの溶出性は鉄鋼スラグの種類や粒度によって異なり、スラグの粒径が小さいほどCaイオンは溶出しやすく、また、高炉水砕スラグに較べて製鋼スラグの方がCaイオンは溶出しやすい。このため、製鋼スラグを用いる場合には、材料Aは粒径2mm以下の製鋼スラグを10mass%以上含むことが好ましく、また、高炉水砕スラグを用いる場合には、材料Aは粒径1mm以下の高炉水砕スラグを20mass%以上含むことが好ましい。また、製鋼スラグと高炉水砕スラグを混合してもよく、この場合には、上記条件のいずれかを満足することが好ましい。
The shell film is preferably generated in a relatively short time in water. For example, a shell film having a predetermined thickness is formed within 6 months, preferably within 3 months after the container is placed in water. It is preferable.
In order to appropriately generate the shell film in a relatively short period of time, it is necessary to sufficiently ensure the elution of Ca ions from the steel slag. The elution of Ca ions varies depending on the type and particle size of the steel slag. The smaller the slag particle size, the easier the Ca ions to elute, and the steelmaking slag more easily elutes Ca ions than blast furnace granulated slag. For this reason, when using steelmaking slag, it is preferable that the material A contains 10 mass% or more of steelmaking slag having a particle size of 2 mm or less, and when using blast furnace granulated slag, the material A has a particle size of 1 mm or less. It is preferable to contain 20 mass% or more of granulated blast furnace slag. Moreover, steelmaking slag and blast furnace granulated slag may be mixed, and in this case, it is preferable to satisfy any of the above conditions.

容器内の材料Aの表層に殻状皮膜を生成させるには、材料表層にMgイオンが適切に供給されることが必要であり、このため容器は透水性(水浸透性)を有し、材料表層に対する海水交換が適切に行われることが必要である。ここで、透水性を有する容器とは、容器を構成する素材自体が透水性を有するものの他に、容器を構成する素材は非透水性であるが、容器内に水を浸透させることができる隙間や孔を有する容器も含まれる。このような容器は、上記隙間や孔から容器内に水が浸透する。
また、水底などの形状に合わせて容器を積み上げて構造体などを構築するためには、材料Aを入れた容器は変形できることが好ましく、この観点からは、容器は袋体であることが好ましいが、ある程度の剛性を有する容器(例えば、箱、篭など)であってもよい。
以上の点からして、容器としては植物繊維や合成樹脂繊維製の織布からなる布袋、植物繊維や合成樹脂繊維製の網袋などが特に好ましい。織布からなる布袋としては、例えば、一般にフレコンバッグ(好ましくは、防水処理を施していないもの)と呼ばれるものなどを利用できる。
In order to form a shell-like film on the surface layer of the material A in the container, it is necessary to appropriately supply Mg ions to the material surface layer, and therefore the container has water permeability (water permeability), and the material It is necessary that seawater exchange for the surface layer is performed appropriately. Here, the container having water permeability is a gap that allows water to permeate into the container although the material constituting the container is non-permeable, in addition to the material itself constituting the container having water permeability. And containers having holes. In such a container, water permeates into the container through the gap or hole.
Further, in order to build up a structure or the like by stacking containers according to the shape of the water bottom or the like, the container containing the material A is preferably deformable, and from this viewpoint, the container is preferably a bag body. A container (for example, a box, a basket, etc.) having a certain degree of rigidity may be used.
In view of the above, the container is particularly preferably a cloth bag made of a woven fabric made of vegetable fiber or synthetic resin fiber, or a net bag made of vegetable fiber or synthetic resin fiber. As the cloth bag made of woven fabric, for example, a so-called flexible container bag (preferably, a bag that is not waterproofed) can be used.

通常、容器内に材料Aを入れる作業は陸上又は船上で行われる。
容器は、スラグを水中に設置するための施工場所(例えば、構造体や基礎などの施工場所)以外の水中において中身の材料Aの表層に殻状皮膜を生成させた後、施工場所に移動させてもよいが、直接施工場所に設置した状態で容器内の材料A表層に殻状皮膜を生成させた方が、施工が容易であるため好ましい。
Usually, the operation | work which puts the material A in a container is performed on land or a ship.
The container is moved to the construction site after generating a shell film on the surface of the material A in the water other than the construction site (for example, construction site for structures and foundations) for installing the slag in the water. However, it is preferable to form a shell-like film on the surface of the material A in the container in a state of being directly installed at the construction site because the construction is easy.

本発明法では、容器として水中で経時的に分解又は/及び腐蝕する容器を用い、容器内の材料A表層に殻状皮膜が生成した後に、容器の少なくとも主要部を分解又は/及び腐蝕により消失(自然消失)させるようにすることが特に好ましい。
図3は、この方法で潜堤を施工する場合の一実施形態(潜堤縦断面)を示しており、2は材料A(以下、潜堤材という)を入れた容器(袋体)である。この方法では、透水性があり且つ水中で経時的に分解又は/及び腐蝕する容器2内に潜堤材を入れ、この容器2を積み上げることにより堤構造体1(潜堤)を構築する。
この方法のように容器2を水中で経時的に分解又は/及び腐蝕する材料で構成し、最終的に自然消失させるのは、容器2がゴミ化するなどして環境汚染を生じさせるのを防止すること、潜堤などのような構造体を生物(水中動植物)の生息・生育に好適な環境とするには、構造体面に殻状皮膜で被覆された材料が露出した状態(岩肌の状態)となることが必要であること、などのためである。
In the method of the present invention, a container that decomposes or corrodes with time in water is used as the container, and after a shell-like film is formed on the surface of the material A in the container, at least the main part of the container disappears by decomposition or / and corrosion. It is particularly preferable to cause (natural disappearance).
FIG. 3 shows an embodiment (a submerged longitudinal section) in the case of constructing a submerged dike by this method, and 2 is a container (bag) containing material A (hereinafter referred to as submerged dike material). . In this method, a dike structure 1 (submerged dike) is constructed by placing a dike material in a container 2 that is water permeable and decomposes or / and corrodes over time in water.
Constructing the container 2 with a material that decomposes and / or corrodes over time in water as in this method, and finally eliminating it spontaneously prevents the container 2 from becoming contaminated and causing environmental pollution. In order to make structures such as submersibles suitable for inhabiting and growing organisms (underwater animals and plants), the surface of the structure covered with a shell-like film is exposed (rock surface condition) This is because it is necessary to become.

容器2の材料としては、例えば、生分解性プラスチック製のシートや網、植物又は植物繊維製のシートや網(例えば、筵、麻織布など)、鋼製などの金属箔、金属網などを用いることができるが、これに限定されるものではない。水中(特に海水中)において例えば数ヶ月〜1年位の間に、少なくとも主要な部分が徐々に分解又は/及び腐蝕して最終的に自然消失するものであって、且つその分解・腐蝕が水中の環境に悪影響を与えないようなものが好ましい。
また、先に述べたように、水底などの形状に合わせて容器2を積み上げて構造体などを構築するためには、容器2は上記材質などからなる袋体であることが好ましい。
また、容器2は、その内部の材料A表層に殻状皮膜が生成しないうちは消失せず、必要な流失防止機能を果たすようにするため、その種類・組成や厚さなどを選択すればよい。
Examples of the material of the container 2 include a biodegradable plastic sheet or net, a plant or plant fiber sheet or net (for example, cocoon, hemp cloth, etc.), a metal foil made of steel, a metal net, or the like. Although it can be used, it is not limited to this. In water (especially in seawater), for example, for several months to one year, at least the main part gradually decomposes and / or corrodes and eventually spontaneously disappears, and the decomposition and corrosion is underwater. Those that do not adversely affect the environment are preferred.
Further, as described above, in order to build up a structure or the like by stacking the containers 2 in accordance with the shape of the water bottom or the like, the containers 2 are preferably bag bodies made of the above materials or the like.
In addition, the container 2 may be selected for its type, composition, thickness, etc. so that it does not disappear before the shell A film is formed on the surface of the material A inside it, and performs the necessary anti-flowing function. .

また、図4は、潜堤を施工する場合の他の実施形態(潜堤縦断面)を示しており、堤構造体1の外層部を潜堤材(材料A)を入れた容器2(特に袋体が好ましい)で構成し、内層部を潜堤材をそのまま積み上げて構成したものである。また、内層部には本発明が規定する材料A以外の潜堤材(例えば、建設残土、浚渫土、塊状製鋼スラグなどの1種)を用いてもよい。
また、図5は、傾斜護岸を施工する場合の一実施形態(護岸縦断面)を示しており、傾斜護岸3のアンコ材として材料Aを入れた容器2(特に袋体が好ましい)を設置し、その上に他の護岸材4を設置したものである。
FIG. 4 shows another embodiment (submerged vertical longitudinal section) in the case of constructing a submerged dike, and a container 2 (particularly, a submerged dike material (material A) is placed in the outer layer portion of the dike structure 1 A bag body is preferable), and the inner layer portion is formed by stacking the submerged dike material as it is. Moreover, you may use latent-bank materials other than the material A which this invention prescribes | regulates (for example, 1 type, such as construction residual soil, dredged soil, and massive steel-making slag) for an inner layer part.
FIG. 5 shows an embodiment (a revetment longitudinal section) in the case of constructing an inclined revetment, and a container 2 (particularly a bag body) containing material A as an anchor material for the inclined revetment 3 is installed. The other revetment material 4 is installed on top of it.

容器2に用いる生分解性プラスチックとは、土中または海水中などの環境に置かれた際に微生物により分解され、最終的に水と二酸化炭素になるプラスチックを指す。この種のプラスチックは、通常の使用状態では他の一般的なプラスチックと同等の機能(強度など)を有する。
使用する生分解性プラスチックの種類に特別な制限はないが、例えば、トウモロコシなどの植物性のデンプンを主原料としたポリ乳酸、微生物が作るPHB、バクテリアセルロースなどを用いることができる。また、これらを用いる場合、例えば、分解速度が速いバクテリアセルロースと分解速度が遅いポリ乳酸を混合し、それらの混合率を調整することにより容器2の分解速度を調整することができる。
The biodegradable plastic used for the container 2 refers to a plastic that is decomposed by microorganisms and finally becomes water and carbon dioxide when placed in an environment such as soil or seawater. This type of plastic has functions (strength, etc.) equivalent to other general plastics under normal use conditions.
There are no particular restrictions on the type of biodegradable plastic used, but for example, polylactic acid mainly made from plant starch such as corn, PHB produced by microorganisms, and bacterial cellulose can be used. When these are used, for example, bacterial cellulose having a high decomposition rate and polylactic acid having a low decomposition rate are mixed, and the decomposition rate of the container 2 can be adjusted by adjusting the mixing ratio thereof.

生分解性プラスチック製の容器2は、水中に置かれた後、水中の微生物により経時的に分解され、最終的に消失するが、生分解性プラスチックの種類・組成や被覆の厚さなどを選択することにより、水中での分解・消失期間を設定することができる。
生分解性プラスチックは分解してCOと水になるため、自然環境に悪影響を与える恐れは全くない。
The biodegradable plastic container 2 is placed in water and then decomposed over time by the microorganisms in the water, eventually disappearing. Select the type and composition of the biodegradable plastic and the thickness of the coating. By doing so, the decomposition / disappearance period in water can be set.
Biodegradable plastic decomposes into CO 2 and water, so there is no risk of adverse effects on the natural environment.

また、生分解性プラスチック製の容器2には、全てが生分解性プラスチックで構成されるもの以外に、一部に生分解性プラスチック以外の物質を混合し或いは物理的に組み合わせたもの(すなわち、生分解性プラスチックを主体とした被覆体や容器)も含まれる。要は、主たる構成物質または構成部材である生分解性プラスチックが経時的に分解・消失することで、容器2の主要部が消失できるものであればよい。
本発明法は、例えば、潜堤や護岸などの構造体の施工、水底での各種基礎・基盤の施工などに好適であるが、これらに限らず、鉄鋼スラグを水中設置するためのあらゆる施工工事に適用できる。また、適用される水域も、港湾や内海などの沿岸海域だけでなく、汽水域の河川、河口、湖沼なども含まれる。
In addition, the biodegradable plastic container 2 may be a mixture of materials other than the biodegradable plastic or a physical combination of the biodegradable plastic 2 in addition to the one composed entirely of biodegradable plastic (ie Covers and containers mainly made of biodegradable plastics are also included. The point is that the main component of the container 2 can be lost by the biodegradable plastic as the main constituent material or component being decomposed and lost over time.
The method of the present invention is suitable for, for example, construction of structures such as submersibles and revetments, construction of various foundations and foundations at the bottom of the water, but is not limited thereto, and any construction work for installing steel slag underwater Applicable to. The applicable water areas include not only coastal sea areas such as harbors and inland seas, but also rivers, estuaries and lakes in brackish water areas.

[実施例1]
粒度の異なる3種類の製鋼スラグ(脱燐スラグ)と海砂を用い、製鋼スラグ単独材、製鋼スラグ+海砂の混合材、海砂単独材(いずれも、各500kg)からなる各供試体を、透水性を有する袋体(通称フレコンバッグ)に入れて沿岸海域の水深約10mの海底に設置した。1ヵ月後に袋体の口を空けて、各供試体表層に生成した殻状皮膜の厚さを複数箇所で調べ、その平均値を求めた。その結果を表1に示す。
[Example 1]
Using three types of steelmaking slag (dephosphorization slag) and sea sand with different particle sizes, each specimen made of steelmaking slag alone, steelmaking slag + seasand mixture, and seasand alone (each 500kg each) Then, it was placed in a water-permeable bag (commonly called a flexible container bag) and installed on the seabed at a depth of about 10 m in the coastal sea area. One month later, the bag body was opened, the thickness of the shell film formed on the surface layer of each specimen was examined at a plurality of locations, and the average value was obtained. The results are shown in Table 1.

なお、殻状皮膜の平均厚みtは、図6に示すように所定長さ範囲Lにおける厚み方向での皮膜断面積Sを測定し、[平均厚みt=皮膜断面積S/長さL]で求めた。すなわち、供試体の複数箇所から採取した試料の殻状皮膜断面を研磨し、任意に選択した約500mm〜800mmの長さ範囲Lでの皮膜断面積Sを測定した。この皮膜断面積Sの測定では、10倍に拡大した画像に1mmの方眼トレース紙を当てて殻状皮膜部が含まれる方眼のマス目をカウントし、その数から皮膜断面積Sを求めた。なお、殻状皮膜部とそれ以外部分を含むマス目については1/2個としてカウントした。また、殻状皮膜部中に含まれるスラグ粒子などの非析出物も皮膜の一部としてカウントした(但し、空洞部はカウントせず)。   Note that the average thickness t of the shell-like film is obtained by measuring the film cross-sectional area S in the thickness direction in the predetermined length range L as shown in FIG. 6, and [average thickness t = film cross-sectional area S / length L]. Asked. That is, the shell-shaped film cross section of the sample collected from a plurality of locations of the specimen was polished, and the film cross-sectional area S in the length range L of about 500 mm to 800 mm arbitrarily selected was measured. In the measurement of the film cross-sectional area S, a grid of 1 mm square was applied to the image magnified 10 times, the squares of the grid containing the shell-shaped film part were counted, and the film cross-sectional area S was obtained from the number. In addition, about the square containing a shell-like film | membrane part and an other than that part, it counted as 1/2. Further, non-precipitates such as slag particles contained in the shell-like film part were also counted as a part of the film (however, the cavity part was not counted).

[実施例2]
粒度の異なる3種類の高炉水砕スラグと海砂を用い、高炉水砕スラグ単独材、高炉水砕スラグ+海砂の混合材、海砂単独材(いずれも、各500kg)からなる各供試体を、透水性を有する袋体(通称フレコンバッグ)に入れて沿岸海域の水深約10mの海底に設置した。1ヵ月後に袋体の口を空けて、各供試体表層に生成した殻状皮膜の厚さを複数箇所で調べ、その平均値を求めた。その結果を表2に示す。なお、殻状皮膜の平均厚みは、実施例1と同じ手法で求めた。
[Example 2]
Specimens consisting of three types of granulated blast furnace slag and sea sand with different particle sizes, each consisting of blast furnace granulated slag alone, blast furnace granulated slag + sea sand, and sea sand alone (each 500 kg each). Was placed in a water-permeable bag (commonly called a flexible container bag) and installed on the seabed at a depth of about 10 m in the coastal sea area. One month later, the bag body was opened, the thickness of the shell film formed on the surface layer of each specimen was examined at a plurality of locations, and the average value was obtained. The results are shown in Table 2. The average thickness of the shell film was obtained by the same method as in Example 1.

[実施例3]
製鋼スラグ+高炉水砕スラグの混合材、製鋼スラグ+高炉水砕スラグ+海砂の混合材(いずれも、各500kg)からなる各供試体を、透水性を有する袋体(通称フレコンバッグ)に入れて沿岸海域の水深約10mの海底に設置した。1ヵ月後に袋体の口を空けて、各供試体表層に生成した殻状皮膜の厚さを複数箇所で調べ、その平均値を求めた。その結果を表3に示す。なお、殻状皮膜の平均厚みは、実施例1と同じ手法で求めた。
[Example 3]
Each specimen consisting of steelmaking slag + blast furnace granulated slag mixed material, steelmaking slag + blast furnace granulated slag + sea sand mixed material (each 500 kg each) is made into a permeable bag (commonly called flexible container bag). It was installed on the bottom of the coast with a depth of about 10m. One month later, the bag body was opened, the thickness of the shell film formed on the surface layer of each specimen was examined at a plurality of locations, and the average value was obtained. The results are shown in Table 3. The average thickness of the shell film was obtained by the same method as in Example 1.

[実施例4]
製鋼スラグ単独材からなる供試体を透水性を有する麻袋に入れ、沿岸海域の水深約10mの海底に複数個設置した。4年半経過した後に設置状態を調査したが、スラグを入れた麻袋は、波に流されることなくほぼ設置ままの状態を維持し、且つ内部のスラグが固結したような状態で保形していた。
一部の麻袋の口を空けて内部を確認したところ、供試体(スラグ)表層に比較的厚い殻状皮膜(数mm以上)が生成し、且つこの殻状皮膜の内側のスラグが約20cm程度の厚さで固結していた。この殻状皮膜+スラグ固結部(20cm×10cm×30cm)を圧縮試験用試料として採取し、一軸圧縮強度の測定を行い、その結果に基づき粘着力を評価した。
[Example 4]
A plurality of specimens made of a single steelmaking slag material were placed in a water-permeable hemp sack, and a plurality of specimens were installed on the seabed at a depth of about 10 m in the coastal sea area. After four and a half years, the state of installation was investigated, but the hemp slag containing the slag was kept in the almost installed state without being swept away by the waves, and the slag inside was kept in a solid state. It was.
When the inside of some hemp bags was opened and the inside was confirmed, a relatively thick shell film (several mm or more) was formed on the surface of the specimen (slag), and the slag inside the shell film was about 20 cm. It was consolidated by thickness. This shell-like film + slag consolidated part (20 cm × 10 cm × 30 cm) was taken as a sample for compression test, uniaxial compression strength was measured, and adhesive strength was evaluated based on the result.

粘着力は、一般には、三軸圧縮試験(例えば、地盤工学会基準JGS0524)により求めるが、一軸圧縮試験(JIS−A−1216)により求まる圧縮強度の1/4〜1/5相当の値を用いてもよい。本発明者らは、予め実験を行い、この粘着力(一軸圧縮強度の1/4〜1/5相当の値)が20kN/m以上、好ましくは35kN/m以上あれば高い波浪安定性が得られ、潜堤として十分に機能することを確認した。
圧縮試験の結果、上記試料の一軸圧縮強度は390kN/mであった。この結果から、粘着力は約80〜100kN/mであることが推定され、潜堤に適用した場合に高い波浪安定性が得られることが確認できた。
The adhesive strength is generally determined by a triaxial compression test (for example, JGS0524, Geotechnical Society Standard), but a value corresponding to 1/4 to 1/5 of the compressive strength determined by a uniaxial compression test (JIS-A-1216). It may be used. The present inventors have conducted experiments in advance, and if this adhesive force (a value corresponding to 1/4 to 1/5 of the uniaxial compressive strength) is 20 kN / m 2 or more, preferably 35 kN / m 2 or more, high wave stability. It was confirmed that it functions sufficiently as a submerged dike.
As a result of the compression test, the uniaxial compressive strength of the sample was 390 kN / m 2 . From this result, it was estimated that the adhesive strength was about 80 to 100 kN / m 2 , and it was confirmed that high wave stability was obtained when applied to a submerged dike.

本発明の施工方法により材料表層に生成する殻状皮膜の断面を模式的に示す説明図Explanatory drawing which shows typically the cross section of the shell-like film | membrane produced | generated to a material surface layer by the construction method of this invention 本発明の施工方法により材料表層に生成した殻状皮膜断面のSEM画像と、SEMを用いたMg及びCaの面分析画像SEM image of the cross-section of the shell-like film generated on the material surface layer by the construction method of the present invention, and an area analysis image of Mg and Ca using SEM 本発明法を潜堤の施工に適用した場合の一実施形態(潜堤縦断面)を示す説明図Explanatory drawing which shows one Embodiment (submerged dike longitudinal section) at the time of applying this invention method to construction of a submerged dike 本発明法を潜堤の施工に適用した場合の他の実施形態(潜堤縦断面)を示す説明図Explanatory drawing which shows other embodiment at the time of applying this invention method to construction of a submerged dike (submerged dike longitudinal section) 本発明法を傾斜護岸の施工に適用した場合の一実施形態(護岸縦断面)を示す説明図Explanatory drawing which shows one embodiment (the revetment longitudinal section) at the time of applying this invention method to construction of a slope revetment 本発明法において生成した殻状皮膜の厚み方向断面を模式的に示す説明図Explanatory drawing which shows typically the thickness direction cross section of the shell-shaped film | membrane produced | generated in this invention method

符号の説明Explanation of symbols

1 堤構造体
2 容器
3 傾斜護岸
4 護岸材
x 殻状皮膜
y 材料粒子
1 Levee structure 2 Container 3 Inclined revetment 4 Revetment material x Shell-like film y Material particles

Claims (7)

粒状又は/及び塊状のCa含有物を50mass%以上含む材料(但し、粒状又は/及び塊状のCa含有物のみからなる材料の場合を含む)を透水性がある容器に入れ、該容器を海水又は汽水中に置いて材料表層に水酸化マグネシウムの析出物又は水酸化マグネシウムと水酸化カルシウムの析出物を主体とする殻状皮膜を生成させる施工方法であって、
前記容器が水中で経時的に分解又は/及び腐蝕する容器であり、容器内の材料表層に殻状皮膜が生成した後に、該容器を分解又は/及び腐蝕により消失させることを特徴とする、粒状・塊状Ca含有物を水中設置するための施工方法。
A material containing 50 mass% or more of granular or / and massive Ca-containing material (however, including a material consisting only of granular or / and massive Ca-containing material) is placed in a water-permeable container, and the container is filled with seawater or It is a construction method for generating a shell film mainly composed of magnesium hydroxide deposits or magnesium hydroxide and calcium hydroxide deposits on the material surface layer in brackish water ,
The container is a container that decomposes and / or corrodes over time in water, and after the shell-like film is formed on the surface layer of the material in the container, the container disappears by decomposition or / and corrosion. -A construction method for installing massive Ca-containing materials underwater.
粒状又は/及び塊状のCa含有物が鉄鋼製造プロセスで発生したスラグであることを特徴とする、請求項1に記載の粒状・塊状Ca含有物を水中設置するための施工方法。   The construction method for installing the granular / bulky Ca-containing material in water according to claim 1, wherein the granular or / and massive Ca-containing material is slag generated in a steel manufacturing process. 容器が袋体であることを特徴とする、請求項1又は2に記載の粒状・塊状Ca含有物を水中設置するための施工方法。   The construction method for installing the granular and massive Ca-containing material according to claim 1 or 2 in water, wherein the container is a bag. 容器内の材料表層に生成した殻状皮膜の平均厚みが0.5mm以上であることを特徴とする、請求項1〜のいずれかに記載の粒状・塊状Ca含有物を水中設置するための施工方法。 The average thickness of the shell-like film formed on the material surface layer in the container is 0.5 mm or more, for installing the granular and massive Ca-containing material according to any one of claims 1 to 3 in water Construction method. 容器内の材料は、粒径2mm以下の製鋼スラグを10mass%以上含むことを特徴とする、請求項1〜のいずれかに記載の粒状・塊状Ca含有物を水中設置するための施工方法。 In the material of the container, characterized in that it comprises a particle size 2mm less steelmaking slag least 10 mass%, the construction method for underwater installation of particulate-mass Ca-containing product according to any one of claims 1-4. 容器内の材料は、粒径1mm以下の高炉水砕スラグを20mass%以上含むことを特徴とする、請求項1〜のいずれかに記載の粒状・塊状Ca含有物を水中設置するための施工方法。 The material in the container contains 20 mass% or more of granulated blast furnace slag having a particle size of 1 mm or less. Construction for installing granular and massive Ca-containing materials according to any one of claims 1 to 5 Method. 材料を入れた容器により、少なくとも潜堤外層部の一部を構築することを特徴とする、請求項1〜のいずれかに記載の粒状・塊状Ca含有物を水中設置するための施工方法。 The construction method for installing underwater the granular and massive Ca-containing material according to any one of claims 1 to 6 , wherein at least a part of the submerged dike outer layer portion is constructed by a container containing a material.
JP2006303002A 2005-11-08 2006-11-08 Construction method for installing granular and massive Ca-containing materials in water Active JP5125063B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006303002A JP5125063B2 (en) 2005-11-08 2006-11-08 Construction method for installing granular and massive Ca-containing materials in water

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005324181 2005-11-08
JP2005324181 2005-11-08
JP2006303002A JP5125063B2 (en) 2005-11-08 2006-11-08 Construction method for installing granular and massive Ca-containing materials in water

Publications (2)

Publication Number Publication Date
JP2007154650A JP2007154650A (en) 2007-06-21
JP5125063B2 true JP5125063B2 (en) 2013-01-23

Family

ID=38239366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006303002A Active JP5125063B2 (en) 2005-11-08 2006-11-08 Construction method for installing granular and massive Ca-containing materials in water

Country Status (1)

Country Link
JP (1) JP5125063B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6287973B2 (en) * 2015-06-29 2018-03-07 Jfeスチール株式会社 Underwater structure and its construction method

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5070667B2 (en) * 2000-12-14 2012-11-14 Jfeスチール株式会社 Underwater environment improvement method
JP2004000104A (en) * 2001-09-11 2004-01-08 Kokan Kogyo Kk Method for improving underwater or environmental water shore
JP2004236546A (en) * 2003-02-04 2004-08-26 Jfe Steel Kk Method for improving environment in water or on water beach

Also Published As

Publication number Publication date
JP2007154650A (en) 2007-06-21

Similar Documents

Publication Publication Date Title
Lawson Geotextile containment for hydraulic and environmental engineering
US7897831B2 (en) Method for solidifying high moisture sludge, solidified sludge therefrom
CN212956378U (en) Intertidal zone ecological revetment structure
JP5125037B2 (en) Construction method for underwater installation of steel slag
JP5400680B2 (en) Artificial shallow or tidal flat
JP5070667B2 (en) Underwater environment improvement method
JP4736443B2 (en) Construction method of shallow ground
AU2011305344A1 (en) Installation of leakage barriers to enhance yield of mineral deposits in unlined solar pond systems
JP5181447B2 (en) Submerged dike construction method and submerged dike
JP5245241B2 (en) Submerged dike construction method and submerged dike
JP5125063B2 (en) Construction method for installing granular and massive Ca-containing materials in water
JP4360645B2 (en) How to create an artificial tidal flat
JPH0440298A (en) Sludge solidifying material
JP2005240544A (en) Method of developing shallows and the like
Dubey et al. Erosion mitigation with biocementation: a review on applications, challenges, & future perspectives
JP4872275B2 (en) Covering sand at the bottom of the water
WO2009058011A1 (en) Method for preparing a structure in a body of water
Chan et al. Some insights to the reuse of dredged marine soils by admixing with activated steel slag
JP4736448B2 (en) Construction method of shallow ground
JPH03183813A (en) Creation of tideland
JP2003253642A (en) Installation method for underwater structure and block for underwater structure
JP5627283B2 (en) Treatment method of seabed sediment
Koslanant Influence of storage conditions on geotechnical properties of Ariake clay and on its chemical stabilization
JP2004000104A (en) Method for improving underwater or environmental water shore
JP2003158946A (en) Method for improving underwater or waterside environment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090821

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100520

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111025

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5125063

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250