JP5245094B2 - Gas barrier film - Google Patents

Gas barrier film Download PDF

Info

Publication number
JP5245094B2
JP5245094B2 JP2010212418A JP2010212418A JP5245094B2 JP 5245094 B2 JP5245094 B2 JP 5245094B2 JP 2010212418 A JP2010212418 A JP 2010212418A JP 2010212418 A JP2010212418 A JP 2010212418A JP 5245094 B2 JP5245094 B2 JP 5245094B2
Authority
JP
Japan
Prior art keywords
layer
gas barrier
sio
acrylate
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010212418A
Other languages
Japanese (ja)
Other versions
JP2012066456A (en
Inventor
健 古田
康雄 近藤
憲親 古市
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kitagawa Industries Co Ltd
Original Assignee
Kitagawa Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kitagawa Industries Co Ltd filed Critical Kitagawa Industries Co Ltd
Priority to JP2010212418A priority Critical patent/JP5245094B2/en
Publication of JP2012066456A publication Critical patent/JP2012066456A/en
Application granted granted Critical
Publication of JP5245094B2 publication Critical patent/JP5245094B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laminated Bodies (AREA)

Description

本発明は、透明度が高く、水蒸気に対するバリア性に優れるガスバリアフィルムに関する。   The present invention relates to a gas barrier film having high transparency and excellent barrier properties against water vapor.

従来、ディスプレイやタッチパネルなどの電子表示デバイスでは、ガラス基板が利用されてきたが、ガラス基板には、割れる、重い、曲げられない、といった問題がある。そのため、近年は、ガラス基板に代えて、樹脂基材を利用して構成されたフレキシブル基板なども開発されている。   Conventionally, in an electronic display device such as a display or a touch panel, a glass substrate has been used. However, there is a problem that the glass substrate is cracked, heavy, or not bent. Therefore, in recent years, a flexible substrate constituted by using a resin base material has been developed instead of the glass substrate.

しかし、樹脂基材の場合、ガラス基板とは異なり、水蒸気を透過させやすいという性質があり、このようなガスの透過を十分に抑制しないと、電子デバイスの劣化を引き起こしやすい、という問題がある。   However, unlike a glass substrate, a resin base material has a property of easily allowing water vapor to pass therethrough, and there is a problem that deterioration of an electronic device is likely to occur unless such gas permeation is sufficiently suppressed.

こうした問題に対し、ガスバリア性の高いフィルムとしては、従来、アルミ蒸着フィルムや金属酸化物を蒸着したフィルムなどが知られている(例えば、特許文献1参照。)。   In order to solve such a problem, conventionally, as a film having a high gas barrier property, an aluminum vapor-deposited film, a film obtained by vapor-depositing a metal oxide, or the like is known (for example, see Patent Document 1).

特公昭53−12953号公報Japanese Patent Publication No.53-12953

しかしながら、アルミ蒸着フィルムの場合、十分なガスバリア性を確保すると、透明度がきわめて低いフィルムとなるので、透明性が必要なデバイスには使用できない、という問題があった。   However, in the case of an aluminum vapor-deposited film, if sufficient gas barrier properties are ensured, the film has a very low transparency, so that there is a problem that it cannot be used for a device that requires transparency.

また、金属酸化物薄膜を蒸着したフィルムの場合、アルミ蒸着フィルムよりも透明度が高くなるものの、ガスバリア性が不十分である、という問題があった。
さらに、有機物層や無機物層を4層以上にわたって多重に積層することでガスバリア性を改善したフィルムなどもあるが、積層数が過剰に増えると製造プロセスが複雑になり、高コストになる、という問題があった。
Moreover, in the case of the film which vapor-deposited the metal oxide thin film, although transparency became higher than an aluminum vapor deposition film, there existed a problem that gas barrier property was inadequate.
In addition, there are films that improve gas barrier properties by laminating multiple organic or inorganic layers over 4 layers, but the problem is that if the number of layers increases excessively, the manufacturing process becomes complicated and expensive. was there.

本発明は、上記問題を解決するためになされたものであり、その目的は、十分に透明度が高く、水蒸気に対するバリア性にも優れたガスバリアフィルムを提供することにある。   The present invention has been made to solve the above problems, and an object of the present invention is to provide a gas barrier film having sufficiently high transparency and excellent barrier properties against water vapor.

以下、本発明において採用した構成について説明する。
本発明のガスバリアフィルムは、透明なフィルム状の樹脂基材と、前記樹脂基材の一方の面に樹脂組成物をコーティングして形成される層であり、前記コーティング後の表面粗さをJIS B 0601−2001に規定された算術平均粗さRaでRa≦2.5nmまで平坦化する平坦化処理層と、前記樹脂基材に前記平坦化処理層が形成されてから、前記平坦化処理層側の面に成膜される層であり、表面粗さはJIS B 0601−2001に規定された算術平均粗さRaで、Ra≦2.5nm、表面における水の接触角は55度以上、且つ、酸素量xは1.6≦x<2.0の範囲内とされたSiOx層とを備えることを特徴とする。
Hereinafter, the configuration employed in the present invention will be described.
The gas barrier film of the present invention is a layer formed by coating a transparent film-like resin base material and a resin composition on one surface of the resin base material, and the surface roughness after the coating is JIS B The flattening layer that is flattened to Ra ≦ 2.5 nm with the arithmetic average roughness Ra specified in 0601-2001, and the flattening layer side after the flattening layer is formed on the resin base material The surface roughness is an arithmetic average roughness Ra specified in JIS B 0601-2001, Ra ≦ 2.5 nm, the contact angle of water on the surface is 55 degrees or more, and The oxygen amount x includes an SiO x layer in a range of 1.6 ≦ x <2.0.

本発明のガスバリアフィルムにおいて、樹脂基材としては、十分な透明性を確保可能な樹脂フィルムを利用すればよく、例えば、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレートなどのポリエステル樹脂フィルムを用いることができる。また、透明性が確保されていれば、ポリエステル樹脂以外のフィルム材でもよく、例えば、ポリエチレン、ポリプロピレンなどのポリオレフィン樹脂、ナイロン6、ナイロン12などのポリアミド樹脂、ポリビニルアルコールやエチレン−ビニルアルコール共重合体などのビニルアルコール樹脂、さらにはポリスチレン、トリアセチルセルロース、アクリル、ポリ塩化ビニル、ポリカーボネート、ポリイミド、ポリエーテルサルホン、環状ポリオレフィンなどの合成樹脂からなるフィルムを用いることができる。中でも、透明性が高く、機械的強度も高く、寸法安定性にも優れる点では、ポリエチレンテレフタレートフィルムが好ましい。樹脂基材の厚さは、用途によっても変わり得るが、実用上一般的と考えられる厚さとしては、25〜188μm程度とされていると好適である。   In the gas barrier film of the present invention, a resin film that can ensure sufficient transparency may be used as the resin base material. For example, a polyester resin film such as polyethylene terephthalate, polybutylene terephthalate, or polyethylene naphthalate may be used. it can. Moreover, as long as transparency is ensured, film materials other than polyester resin may be used, for example, polyolefin resin such as polyethylene and polypropylene, polyamide resin such as nylon 6 and nylon 12, polyvinyl alcohol and ethylene-vinyl alcohol copolymer. A film made of a synthetic resin such as polystyrene, triacetyl cellulose, acrylic, polyvinyl chloride, polycarbonate, polyimide, polyethersulfone, cyclic polyolefin, or the like can be used. Among them, a polyethylene terephthalate film is preferable in terms of high transparency, high mechanical strength, and excellent dimensional stability. Although the thickness of the resin base material may vary depending on the application, it is preferable that the thickness considered to be general in practice is about 25 to 188 μm.

また、本発明のガスバリアフィルムにおいて、平坦化処理層は、樹脂基材の表面に形成されることで、樹脂基材の表面を平坦化する層である。この平坦化処理層を形成する樹脂組成物としては、本発明で規定した通りの平坦化を実現でき、樹脂基材の透明性を過剰に損ねることがないものであれば、任意の樹脂組成物を利用できる。   In the gas barrier film of the present invention, the planarization layer is a layer that planarizes the surface of the resin substrate by being formed on the surface of the resin substrate. As the resin composition for forming the flattening layer, any resin composition can be used as long as the flattening as defined in the present invention can be realized and the transparency of the resin base material is not excessively impaired. Can be used.

このような樹脂組成物の一例としては、例えば、エネルギー線硬化型のアクリル系樹脂組成物を挙げることができる。また、ここでいうエネルギー線としては、例えば、紫外線、電子線などを挙げることができる。   As an example of such a resin composition, for example, an energy ray curable acrylic resin composition can be given. In addition, examples of the energy rays here include ultraviolet rays and electron beams.

エネルギー線硬化型のアクリル系樹脂組成物としては、アクリル系の光重合性プレポリマーや光重合性モノマーなどを主成分として、さらに光重合開始剤などが添加された組成物を利用することができる。   As the energy ray curable acrylic resin composition, a composition in which an acrylic photopolymerizable prepolymer, a photopolymerizable monomer or the like is a main component and a photopolymerization initiator is further added can be used. .

アクリル系の光重合性プレポリマーとしては、ウレタンアクリレート、ポリエステルアクリレート、エポキシアクリレート、メラミンアクリレートなどを挙げることができる。また、アクリル系の光重合性モノマーとしては、メチル(メタ)アクリレート、エチル(メタ)アクリレート、プロピル(メタ)アクリレート、ブチル(メタ)アクリレート、2−エチルヘキシル(メタ)アクリレート、イソデシル(メタ)アクリレート、ラウリル(メタ)アクリレート、ステアリル(メタ)アクリレート、アリル(メタ)アクリレート、シクロヘキシル(メタ)アクリレート、メチルシクロヘキシル(メタ)アクリレート、イソボルニル(メタ)アクリレート、2−ヒドロキシエチル(メタ)アクリレート、2−ヒドロキシプロピル(メタ)アクリレート、グリセロール(メタ)アクリレート、グリシジル(メタ)アクリレート、ベンジル(メタ)アクリレート、2−エトキシエチル(メタ)アクリレート、2−(2−エトキシエトキシ)エチル(メタ)アクリレート、ブトキシエチル(メタ)アクリレート、2−メトキシエチル(メタ)アクリレート、メトキシジエチレングリコール(メタ)アクリレート、メトキシトリエチレングリコール(メタ)アクリレート、メトキシポリエチレングリコール(メタ)アクリレート、2−メトキシプロピル(メタ)アクリレート、メトキシジプロピレングリコール(メタ)アクリレート、メトキシトリプロピレングリコール(メタ)アクリレート、メトキシポリプロピレングリコール(メタ)アクリレート、ポリエチレングリコール(メタ)アクリレート、ポリプロピレングリコール(メタ)アクリレートなどを挙げることができる。   Examples of the acrylic photopolymerizable prepolymer include urethane acrylate, polyester acrylate, epoxy acrylate, and melamine acrylate. Examples of the acrylic photopolymerizable monomer include methyl (meth) acrylate, ethyl (meth) acrylate, propyl (meth) acrylate, butyl (meth) acrylate, 2-ethylhexyl (meth) acrylate, isodecyl (meth) acrylate, Lauryl (meth) acrylate, stearyl (meth) acrylate, allyl (meth) acrylate, cyclohexyl (meth) acrylate, methylcyclohexyl (meth) acrylate, isobornyl (meth) acrylate, 2-hydroxyethyl (meth) acrylate, 2-hydroxypropyl (Meth) acrylate, glycerol (meth) acrylate, glycidyl (meth) acrylate, benzyl (meth) acrylate, 2-ethoxyethyl (meth) acrylate, 2- (2-e Xoxyethoxy) ethyl (meth) acrylate, butoxyethyl (meth) acrylate, 2-methoxyethyl (meth) acrylate, methoxydiethylene glycol (meth) acrylate, methoxytriethylene glycol (meth) acrylate, methoxypolyethylene glycol (meth) acrylate, 2- Mention of methoxypropyl (meth) acrylate, methoxydipropylene glycol (meth) acrylate, methoxytripropylene glycol (meth) acrylate, methoxypolypropylene glycol (meth) acrylate, polyethylene glycol (meth) acrylate, polypropylene glycol (meth) acrylate, etc. Can do.

光重合開始剤としては、ベンゾイン、ベンゾインメチルエーテル、ベンゾインエチルエーテル、ベンゾインプロピルエーテル、ベンゾインイソブチルエーテルなどのベンゾイン類;アセトフェノン、2,2−ジエトキシ−2−フェニルアセトフェノン、1,1−ジクロロアセトフェノン、2−ヒドロキシ−2−メチル−フェニルプロパン−1−オン、ジエトキシアセトフェノン、1−ヒドロキシシクロヘキシルフェニルケトン、2−メチル−1−〔4−(メチルチオ)フェニル〕−2−モルフォリノプロパン−1−オンなどのアセトフェノン類;2−エチルアントラキノン、2−t−ブチルアントラキノン、2−クロロアントラキノン、2−アミルアントラキノンなどのアントラキノン類;2,4−ジエチルチオキサントン、2−イソプロピルチオキサントン、2−クロロチオキサントンなどのチオキサントン類;アセトフェノンジメチルケタール、ベンジルジメチルケタールなどのケタール類;ベンゾフェノン、4−ベンゾイル−4’−メチルジフェニルサルファイド、4,4’−ビスメチルアミノベンゾフェノンなどのベンゾフェノン類;2,4,6−トリメチルベンゾイルジフェニルホスフィンオキサイド、ビス(2,4,6−トリメチルベンゾイル)−フェニルホスフィンオキサイドなどのホスフィンオキサイド類等が挙げられる。また、具体的には、市場より、チバ・スペシャリティケミカルズ社製イルガキュア184(1−ヒドロキシシクロヘキシルフェニルケトン)、イルガキュア907(2−メチル−1−(4−(メチルチオ)フェニル)−2−モルフォリノプロパン−1−オン)、BASF社製ルシリンTPO(2,4,6−トリメチルベンゾイルジフェニルフォスフィンオキサイド)等を容易に入手出来る。また、これらは、単独又は2種以上を混合して使用しても良い。   Examples of the photopolymerization initiator include benzoins such as benzoin, benzoin methyl ether, benzoin ethyl ether, benzoin propyl ether, and benzoin isobutyl ether; acetophenone, 2,2-diethoxy-2-phenylacetophenone, 1,1-dichloroacetophenone, 2 -Hydroxy-2-methyl-phenylpropan-1-one, diethoxyacetophenone, 1-hydroxycyclohexyl phenyl ketone, 2-methyl-1- [4- (methylthio) phenyl] -2-morpholinopropan-1-one, etc. Acetophenones; anthraquinones such as 2-ethylanthraquinone, 2-t-butylanthraquinone, 2-chloroanthraquinone, 2-amylanthraquinone; 2,4-diethylthioxanthone, 2-isopropyl Thioxanthones such as thioxanthone and 2-chlorothioxanthone; ketals such as acetophenone dimethyl ketal and benzyl dimethyl ketal; benzophenones such as benzophenone, 4-benzoyl-4′-methyldiphenyl sulfide and 4,4′-bismethylaminobenzophenone; And phosphine oxides such as 2,4,6-trimethylbenzoyldiphenylphosphine oxide and bis (2,4,6-trimethylbenzoyl) -phenylphosphine oxide. Specifically, from the market, Irgacure 184 (1-hydroxycyclohexyl phenyl ketone) and Irgacure 907 (2-methyl-1- (4- (methylthio) phenyl) -2-morpholinopropane manufactured by Ciba Specialty Chemicals, Inc. -1-one), Lucylin TPO (2,4,6-trimethylbenzoyldiphenylphosphine oxide) manufactured by BASF, etc. can be easily obtained. Moreover, you may use these individually or in mixture of 2 or more types.

以上のような樹脂組成物をコーティングして樹脂基材の表面に対する平坦化処理を行うには、平坦化処理層として、厚さ1〜10μm程度のコーティング層を形成すると望ましい。この平坦化処理層の厚さが1μm未満になると、期待するような平坦化を十分に行うことが難しくなる。一方、平坦化処理層の厚さが10μmを超過しても、さらなる平坦化を期待することはできないので、資源的にも経済的にも無駄である。   In order to perform the planarization treatment on the surface of the resin base material by coating the resin composition as described above, it is desirable to form a coating layer having a thickness of about 1 to 10 μm as the planarization treatment layer. If the thickness of the planarization layer is less than 1 μm, it becomes difficult to perform the planarization as expected. On the other hand, even if the thickness of the planarization layer exceeds 10 μm, further planarization cannot be expected, which is wasteful in terms of resources and economy.

さらに、本発明のガスバリアフィルムにおいて、SiOx層は、ガスバリア性を発現させるための層である。このようなSiOx層は、スパッタリング、イオンプレーティングなどの物理的蒸着技術によって形成することができる。 Furthermore, in the gas barrier film of the present invention, the SiO x layer is a layer for developing gas barrier properties. Such SiO x layer can be formed by sputtering, physical vapor deposition techniques such as ion plating.

このSiOx層は、樹脂基材に平坦化処理層が形成されてから、平坦化処理層側の面に成膜される。これにより、このSiOx層もきわめて平坦化された表面を持つ層となり、その表面粗さを、JIS B 0601−2001に規定された算術平均粗さRaで、Ra≦2.5nmとすることが可能となる。SiOx層の表面粗さは、平滑であればあるほどよく、算術平均粗さRaは2.5nm以下であれば、その下限値は特に限定されない。 This SiO x layer is formed on the surface on the side of the planarization layer after the planarization layer is formed on the resin substrate. As a result, this SiO x layer also becomes a layer having a very flat surface, and the surface roughness is Ra ≦ 2.5 nm with the arithmetic average roughness Ra specified in JIS B 0601-2001. It becomes possible. The surface roughness of the SiO x layer is preferably as smooth as possible, and the lower limit thereof is not particularly limited as long as the arithmetic average roughness Ra is 2.5 nm or less.

また、SiOx層の表面は、水との親和性が低い方が望ましく、その指標として、SiOx層の表面における水の接触角は55度以上となっていると好ましい。この接触角が55度を下回ると水との親和性が高まることで、水蒸気に対するバリア性が低下する傾向がある。なお、この接触角は55度以上であれば特に上限値は限定されない。 Further, the surface of the SiO x layer preferably has a low affinity with water, and as an index, the contact angle of water on the surface of the SiO x layer is preferably 55 degrees or more. When this contact angle is less than 55 degrees, the affinity with water increases, so that the barrier property against water vapor tends to decrease. In addition, if this contact angle is 55 degree | times or more, an upper limit will not be specifically limited.

さらに、SiOx層において、酸素量xは1.6≦x<2.0の範囲内とされることも重要である。この酸素量が1.6を下回る場合、2.0以上となる場合は、いずれもガスバリア性が期待するほど高くならない傾向がある。 Furthermore, in the SiO x layer, it is also important that the oxygen amount x is in the range of 1.6 ≦ x <2.0. When this amount of oxygen is less than 1.6, when it is 2.0 or more, any gas barrier property tends not to be as high as expected.

以上のように構成された本発明のガスバリアフィルムによれば、平坦化処理層によって事前に表面が平坦化された樹脂基材上に、本発明で規定する諸特性を兼ね備えたSiOx層を形成しているので、従来品に比べ、格段に高いガスバリア性能を有するガスバリアフィルムとなる。 According to the gas barrier film of the present invention configured as described above, the SiO x layer having the characteristics defined in the present invention is formed on the resin substrate whose surface has been previously planarized by the planarization treatment layer. Therefore, it becomes a gas barrier film having a gas barrier performance much higher than that of the conventional product.

ガスバリア性能の詳細については、後述する実験例等により明らかとなるが、本発明のガスバリアフィルムによれば、透湿度が0.02g/m2/day未満というきわめて高い水蒸気バリア性を示す。 Details of the gas barrier performance will be apparent from experimental examples and the like to be described later. However, according to the gas barrier film of the present invention, the water vapor permeability is extremely high, that is, less than 0.02 g / m 2 / day.

したがって、高い水蒸気バリア性が要求される様々な用途、例えば、光学部材、エレクトロニクス部材、一般包装部材、薬品包装部材など幅広い用途において、本発明のガスバリアフィルムを用いることで、保護対象物を水蒸気から保護することができる。   Therefore, in various applications where high water vapor barrier properties are required, such as a wide range of applications such as optical members, electronics members, general packaging members, and medicine packaging members, the gas barrier film of the present invention can be used to protect the object to be protected from water vapor. Can be protected.

本発明の実施形態として説明したガスバリアフィルムの一部を拡大して示す断面図。Sectional drawing which expands and shows a part of gas barrier film demonstrated as embodiment of this invention.

次に、本発明の実施形態について一例を挙げて説明する。
〔1〕ガスバリアフィルムの構造
図1に例示するガスバリアフィルム1は、樹脂基材2と、平坦化処理層3と、SiOx層4とを積層してなる三層構造のフィルムである。
Next, an embodiment of the present invention will be described with an example.
[1] Structure of Gas Barrier Film A gas barrier film 1 illustrated in FIG. 1 is a film having a three-layer structure in which a resin base material 2, a planarization treatment layer 3, and a SiO x layer 4 are laminated.

樹脂基材2は、ポリエステル樹脂製(本実施形態では、ポリエチレンテレフタレート製)のフィルムで、本実施形態においては、その厚さが125μmとされている。
平坦化処理層3は、樹脂基材2に対して紫外線硬化型のアクリル系樹脂組成物をコーティングするとともに、そこに紫外線を照射して硬化させたもので、本実施形態においては、その厚さが6μmとされている。
The resin base material 2 is a film made of a polyester resin (in this embodiment, made of polyethylene terephthalate), and in this embodiment, the thickness is set to 125 μm.
The flattened layer 3 is obtained by coating the resin substrate 2 with an ultraviolet curable acrylic resin composition and irradiating the resin substrate 2 with ultraviolet rays, and curing the thickness in the present embodiment. Is 6 μm.

また、平坦化処理層3は、きわめて平滑な表面を持つ層であり、その表面粗さがJIS B 0601−2001に規定された算術平均粗さRaで、Ra=1.1nmとされている。この表面粗さは、本実施形態においては、原子間力顕微鏡(AFM;Atomic Force Microscope、KEYENCE社製、VN−8010)を利用して測定した。   Further, the planarization layer 3 is a layer having a very smooth surface, and the surface roughness is an arithmetic average roughness Ra specified in JIS B 0601-2001, and Ra = 1.1 nm. In this embodiment, this surface roughness was measured using an atomic force microscope (AFM; Atomic Force Microscope, manufactured by KEYENCE, VN-8010).

具体的には、まず、測定に当たっては、サンプルフィルムをガラスに貼付してから測定台にセットし、測定条件として、測定モード:DFM(dynamic force microscope)、スキャンエリア:200μm×200μm、スキャン速度:Autoを設定し、AFM測定を行った。そして、この測定で得られたAFM画像の傾きを補正したのち、JIS B 0601−2001法準拠の表面粗さ計測を実施した。なお、この計測については、1サンプルにつき3点の計測を実施し、その平均値を測定データとして採用した。   Specifically, for measurement, first, a sample film is affixed to glass and then set on a measurement table. As measurement conditions, measurement mode: DFM (dynamic force microscope), scan area: 200 μm × 200 μm, scan speed: Auto was set and AFM measurement was performed. And after correcting the inclination of the AFM image obtained by this measurement, the surface roughness measurement based on JISB0601-2001 method was implemented. In addition, about this measurement, 3 points | pieces were implemented per sample and the average value was employ | adopted as measurement data.

SiOx層4は、樹脂基材2に平坦化処理層3が形成されてから、スパッタリングにより、平坦化処理層3側の面に成膜された層で、本実施形態においては、その厚さが50〜75nmとされている。 The SiO x layer 4 is a layer formed on the surface of the flattening treatment layer 3 side by sputtering after the flattening treatment layer 3 is formed on the resin base material 2. In this embodiment, the thickness of the SiO x layer 4 is Is 50 to 75 nm.

SiOx層4を成膜するためのスパッタリングは、ロールトゥロール方式のスパッタリング装置にフィルム(=樹脂基材2に平坦化処理層3が形成されたもの)を取り付けて実施した。また、スパッタリング装置が備えるデュアルマグネトロンカソードには、スパッタリングのターゲット材として、シリコン(住友金属鉱山株式会社製)を取り付けた。 Sputtering for forming the SiO x layer 4 was carried out by attaching a film (= the one in which the planarizing layer 3 is formed on the resin base material 2) to a roll-to-roll type sputtering apparatus. Further, silicon (manufactured by Sumitomo Metal Mining Co., Ltd.) was attached to the dual magnetron cathode provided in the sputtering apparatus as a sputtering target material.

スパッタリングを開始するに当たっては、まず、真空ポンプにてスパッタリング装置の真空槽内を減圧し、真空槽内の圧力が4×10-4Paになるまで排気したのち、放電ガスであるアルゴンガスをマスフロコントローラーで流量制御しながら真空槽内に導入した。 To start sputtering, first, the vacuum chamber of the sputtering apparatus is depressurized with a vacuum pump and evacuated until the pressure in the vacuum chamber reaches 4 × 10 −4 Pa. It was introduced into the vacuum chamber while controlling the flow rate with a flow controller.

そして、放電ガス導入後、アルゴンガス流量を調整して真空槽内の圧力を0.4Paとし、放電電源(PE−II、Advanced Energy社製)を用いて、任意の成膜出力をカソードへ供給しプレスパッタを実施した。   After introducing the discharge gas, the argon gas flow rate is adjusted so that the pressure in the vacuum chamber is 0.4 Pa, and an arbitrary film formation output is supplied to the cathode using a discharge power source (PE-II, manufactured by Advanced Energy). Then, pre-sputtering was performed.

その後、プレスパッタ開始から10分が経過したら、反応ガスとして酸素ガスをマスフロコントローラーで流量制御しながら真空槽内に導入した。酸素ガス導入後、任意の放電電圧になるよう酸素ガス流量を調整した。そして、最終的な成膜圧力が0.4Paになるようアルゴンガスと酸素ガスの流量を低減し、フィルムを搬送しながら所期のSiOx層4を成膜した。 Then, when 10 minutes passed from the start of pre-sputtering, oxygen gas as a reaction gas was introduced into the vacuum chamber while controlling the flow rate with a mass flow controller. After the oxygen gas was introduced, the oxygen gas flow rate was adjusted to an arbitrary discharge voltage. Then, the flow rates of argon gas and oxygen gas were reduced so that the final film forming pressure would be 0.4 Pa, and the desired SiO x layer 4 was formed while conveying the film.

〔2〕物性・性能測定
上述したガスバリアフィルム1について、その物性及び性能を測定した。物性及び性能の測定に当たっては、製造条件を変えることで物性の異なる試料を多数作製し、それらの試料についてスクリーニングを行い、性能が優れた試料の選定を行った。
[2] Physical property / performance measurement About the gas barrier film 1 mentioned above, the physical property and performance were measured. In measuring physical properties and performance, a number of samples having different physical properties were prepared by changing the production conditions, screening was performed on those samples, and samples having excellent performance were selected.

物性・性能測定の評価項目としては、(A)平坦化処理層3の表面粗さRa、(B)SiOx層4内の酸素量x、(C)SiOx層4の表面粗さRa、(D)SiOx層4表面における水の接触角、(E)透湿度を選び、これらの測定を行った。 Evaluation items of physical properties and performance measurement include (A) surface roughness Ra of the planarization layer 3, (B) oxygen amount x in the SiO x layer 4, (C) surface roughness Ra of the SiO x layer 4, (D) The contact angle of water on the surface of the SiO x layer 4 and (E) moisture permeability were selected, and these measurements were performed.

これらの評価項目のうち、(A),(C)については、すでに説明した方法で、JIS B 0601−2001に準拠して、算術平均粗さRaを計測した。(B)については、ESCA(ESCA5400、ULVAC−PHI社製)を用い、X線源としては、Mgアノード(出力400W、管電圧14kV)を用い、測定範囲0.8mmφで、Si:2p、O:1sのバインディングエネルギー(Binding Energy)に相当するピークが現れる範囲で測定を実施した。得られた測定結果は、ESCA装置に付属のソフトウェア(MultiPak、ULVAC−PHI社製)にて解析を行った。このとき、各ピークに対し、シャーリーのバックグラウンド除去を行い、ピーク面積に各元素の感度係数補正を行い、原子数比を求める。得られた原子数比について、Si原子数を1とし、O原子数を計算した。1サンプルにつき3点測定し平均値を酸素量xとして採用した。   Among these evaluation items, for (A) and (C), the arithmetic average roughness Ra was measured according to JIS B 0601-2001 by the method described above. For (B), ESCA (ESCA5400, manufactured by ULVAC-PHI) was used, and as the X-ray source, an Mg anode (output 400 W, tube voltage 14 kV) was used, the measurement range was 0.8 mmφ, Si: 2p, O The measurement was performed in a range where a peak corresponding to a binding energy of 1 s appears. The obtained measurement results were analyzed with software (MultiPak, manufactured by ULVAC-PHI) attached to the ESCA apparatus. At this time, the background of Shirley is removed for each peak, the sensitivity coefficient of each element is corrected for the peak area, and the atomic ratio is obtained. With respect to the obtained atomic ratio, the number of O atoms was calculated by setting the number of Si atoms to 1. Three points were measured per sample, and the average value was adopted as the oxygen amount x.

(D)については、自動接触角計(DM−500、協和界面科学株式会社製)を利用し、サンプルフィルムをスライドガラスに貼付して、自動接触角計の台にセットし、蒸留水1μLを滴下し、滴下したあと3秒後の接触角を計測した。なお、この接触角については、1サンプルにつき5点計測し、平均値を測定データとして採用した。   For (D), using an automatic contact angle meter (DM-500, manufactured by Kyowa Interface Science Co., Ltd.), a sample film is affixed to a slide glass, set on the base of the automatic contact angle meter, and 1 μL of distilled water is added. After dropping, the contact angle after 3 seconds was measured. In addition, about this contact angle, 5 points | pieces per sample were measured and the average value was employ | adopted as measurement data.

(E)については、水蒸気透過試験機(PERMATRAN W3/33、MOCON社製)を利用して、温度40℃、相対湿度90%の環境で、JIS K7129 Bに準拠して測定した。   About (E), it measured based on JISK7129B in the environment of a temperature of 40 degreeC, and a relative humidity of 90% using the water-vapor-permeation tester (PERMATRAN W3 / 33, the product made by MOCON).

また、以上の評価項目以外に、SiOx層4の膜厚、全光線透過率なども測定した。全光線透過率はヘーズメータ(HZ−2、スガ試験機)を用いJIS K 7136法に準拠して測定した。代表的な試料をいくつか抜粋し、それらの試料についての測定結果等を表1に示す。 In addition to the above evaluation items, the thickness of the SiO x layer 4 and the total light transmittance were also measured. The total light transmittance was measured according to JIS K 7136 method using a haze meter (HZ-2, Suga test machine). Some representative samples are extracted and the measurement results and the like for these samples are shown in Table 1.

表1中、実施例1〜3として示した試料は、透湿度が測定装置の測定保証値以下(0.02g/m2/day以下)となり、きわめて高い水蒸気バリア性を示す結果となった。
これに対し、比較例1として示した試料は、平坦化処理層3の表面粗さが9.0nmと比較的粗く、SiOx層4の表面粗さも9.4nmと比較的粗いものであり、比較例1は、期待するほど高い水蒸気バリア性を示さない結果となった。
In Table 1, the samples shown as Examples 1 to 3 had a moisture permeability of not more than the measurement guaranteed value of the measuring apparatus (0.02 g / m 2 / day or less), and showed extremely high water vapor barrier properties.
On the other hand, the sample shown as Comparative Example 1 has a relatively rough surface roughness of the planarization layer 3 of 9.0 nm and a relatively rough surface roughness of the SiO x layer 4 of 9.4 nm. Comparative Example 1 did not show a water vapor barrier property as high as expected.

そこで、この結果について、さらに検証をするため、平坦化処理層3の表面粗さを変更して実験を重ねた。そして、その実験結果を検証したところ、平坦化処理層3の表面粗さについては、少なくとも2.5nmを超える試料に関し、十分に高い水蒸気バリア性を確保できていないことが判明した。   Therefore, in order to further verify this result, experiments were repeated by changing the surface roughness of the planarization layer 3. And when the experimental result was verified, it turned out that about the surface roughness of the planarization process layer 3 has not ensured sufficiently high water vapor | steam barrier property regarding the sample exceeding 2.5 nm at least.

ただし、比較例2〜6にも示した通り、平坦化処理層3の表面粗さが2.5nm以下の試料でも十分に高い水蒸気バリア性を確保できない場合があるため、この点についても、さらに検討を行った。具体的には、SiOx層4の表面粗さについても種々変更してさらに実験を重ね、その実験結果を検証した。 However, as also shown in Comparative Examples 2 to 6, since a sufficiently high water vapor barrier property may not be ensured even in a sample having a surface roughness of the planarization layer 3 of 2.5 nm or less, this point is further improved. Study was carried out. Specifically, the surface roughness of the SiO x layer 4 was also variously changed and further experiments were repeated, and the experimental results were verified.

その結果、SiOx層4の表面粗さについても、少なくとも2.5nmを超える試料に関しては、十分に高い水蒸気バリア性を確保できていないことが判明した。この点に関しては、表1に例示した比較例1〜6においても、比較例5以外は、SiOx層4の表面粗さが2.5nmを超える測定結果となっており、実施例1〜3ほど高い水蒸気バリア性を備えていないことがわかる。 As a result, it was found that the surface roughness of the SiO x layer 4 was not able to ensure a sufficiently high water vapor barrier property for a sample having at least 2.5 nm. In this regard, in Comparative Examples 1 to 6 illustrated in Table 1, except for Comparative Example 5, the surface roughness of the SiO x layer 4 exceeds 2.5 nm. It can be seen that the water vapor barrier property is not so high.

一方、比較例5に関しては、SiOx層4の表面粗さが2.5nm以下ながら、実施例1〜3ほどは高い水蒸気バリア性を示さない結果となった。そこで、さらにこの点についても、さらに多数の実験結果を検証したところ、水の接触角が55度未満になると、十分に高い水蒸気バリア性を確保できない傾向が見受けられた。 On the other hand, as for Comparative Example 5, although the surface roughness of the SiO x layer 4 was 2.5 nm or less, Examples 1 to 3 did not show a high water vapor barrier property. Therefore, further in this respect, when a lot of experimental results were verified, when the contact angle of water was less than 55 degrees, there was a tendency that a sufficiently high water vapor barrier property could not be secured.

この傾向は、表1に例示した試料においても見受けられ、例えば、実施例1〜3については、平坦化処理層3の表面における水の接触角が62度、60度、64度と、いずれも55度以上の大きい角度となっている。これに対し、上述した比較例5の場合、SiOx層4の表面粗さは2.5nm以下であるものの、水の接触角については51度となっており、55度を下回っている。 This tendency is also observed in the samples illustrated in Table 1. For example, in Examples 1 to 3, the contact angles of water on the surface of the planarization layer 3 are 62 degrees, 60 degrees, and 64 degrees, respectively. It is a large angle of 55 degrees or more. On the other hand, in the case of the comparative example 5 described above, the surface roughness of the SiO x layer 4 is 2.5 nm or less, but the contact angle of water is 51 degrees, which is less than 55 degrees.

さらに、以上のような検証を行う中で、SiOx層4の酸素量xも透湿度に影響を及ぼす傾向があることを見いだした。具体的には、酸素量xが1.6を下回ると(例えば、比較例6)、水蒸気バリア性が低下する(すなわち、透湿度が高くなる)傾向があった。 Furthermore, during the verification as described above, it was found that the oxygen amount x of the SiO x layer 4 also has a tendency to affect moisture permeability. Specifically, when the oxygen amount x is less than 1.6 (for example, Comparative Example 6), there is a tendency that the water vapor barrier property is lowered (that is, the moisture permeability is increased).

この酸素量xについては、1.6以上とすれば十分に透湿度を低下させることができ、所期の水蒸気バリア性を発現させることができ、特に、酸素量xを1.8以上とすれば、格段に透湿度を低下させることができた(例えば、実施例1〜3)。   If the oxygen amount x is 1.6 or more, the water vapor transmission rate can be sufficiently reduced, and the desired water vapor barrier property can be exhibited. In particular, the oxygen amount x is 1.8 or more. For example, the water vapor transmission rate could be significantly reduced (for example, Examples 1 to 3).

ただし、この酸素量xは多いほどよいものではなく、酸素量xが2.0以上になると水蒸気バリア性が低下する傾向を示した(例えば、比較例3〜5)。特に、比較例3にも示すように、酸素量xが2.2以上になると、著しく水蒸気バリア性が低下する傾向が見受けられた。   However, the larger the amount of oxygen x, the better, and when the amount of oxygen x is 2.0 or more, the water vapor barrier property tends to decrease (for example, Comparative Examples 3 to 5). In particular, as shown in Comparative Example 3, when the oxygen amount x was 2.2 or more, the water vapor barrier property tended to be remarkably lowered.

したがって、以上のような傾向を踏まえて、十分に高い水蒸気バリア性を確保するには、まずは、平坦化処理層3については表面粗さを2.5nm以下のレベルまで平坦化し、且つ、SiOx層4についても表面粗さを2.5nm以下のレベルまで平坦化することが好ましいと考えられる。また、SiOx層4については、その表面における水の接触角が55度以上となるように製造条件(例えば、スパッタリング時の処理時間や放電電圧等)を調節し、さらに、酸素量xは1.6以上2.0未満となるように調節すると、十分に高い水蒸気バリア性が発現するものと考えられる。 Therefore, in order to ensure a sufficiently high water vapor barrier property in consideration of the above-described tendency, first, the planarization treatment layer 3 is planarized to a surface roughness of 2.5 nm or less, and SiO x. It is considered preferable to flatten the surface roughness of the layer 4 to a level of 2.5 nm or less. For the SiO x layer 4, the production conditions (for example, the processing time during sputtering and the discharge voltage) are adjusted so that the contact angle of water on the surface is 55 degrees or more, and the oxygen amount x is 1 When adjusted so that it is 6 or more and less than 2.0, it is considered that a sufficiently high water vapor barrier property is exhibited.

〔3〕変形例等
以上、本発明の実施形態について説明したが、本発明は上記の具体的な一実施形態に限定されず、この他にも種々の形態で実施することができる。
[3] Modifications and the like Although the embodiment of the present invention has been described above, the present invention is not limited to the specific embodiment described above, and can be implemented in various other forms.

例えば、上記実施形態では、樹脂基材2の一例として、ポリエチレンテレフタレート製のフィルムを示したが、他のポリエステル樹脂フィルムを用いることもでき、例えば、ポリブチレンテレフタレート、ポリエチレンナフタレートなどフィルムを用いてもよい。また、この他、必要とされる透明性や機械的強度に問題がなければ、ポリエステル樹脂以外のフィルム材でもよく、例えば、ポリカーボネート、ポリエチレン、ポリプロピレン、ポリスチレン、トリアセチルセルロース、アクリル、ポリ塩化ビニルなどのフィルムを樹脂基材2として用いてもよい。   For example, in the said embodiment, although the film made from a polyethylene terephthalate was shown as an example of the resin base material 2, other polyester resin films can also be used, for example, using films, such as a polybutylene terephthalate and a polyethylene naphthalate. Also good. In addition, if there is no problem in required transparency and mechanical strength, a film material other than polyester resin may be used. For example, polycarbonate, polyethylene, polypropylene, polystyrene, triacetyl cellulose, acrylic, polyvinyl chloride, etc. These films may be used as the resin base material 2.

また、上記実施形態では、平坦化処理層3を形成する樹脂組成物として、紫外線硬化型のアクリル系樹脂組成物を例示したが、この他、電子線硬化型の樹脂組成物でコーティングを行っても、所期の平坦化処理層3を形成することができる。また、このような紫外線や電子線で硬化するエネルギー線硬化型のコーティング組成物以外であっても、樹脂基材表面に適用することにより、樹脂基材表面の平坦化を実現できるのであれば、任意の樹脂組成物を利用して、平坦化処理層3を形成することができる。   Moreover, in the said embodiment, although the ultraviolet curable acrylic resin composition was illustrated as a resin composition which forms the planarization process layer 3, it coats with an electron beam curable resin composition in addition to this. Also, the desired planarization layer 3 can be formed. Moreover, even if it is other than the energy ray curable coating composition that is cured by such ultraviolet rays or electron beams, by applying to the resin substrate surface, if the resin substrate surface can be planarized, The planarization layer 3 can be formed using any resin composition.

さらに、上記実施形態では、SiOx層4をスパッタリング法にて形成していたが、他の物理的蒸着技術によって形成することも可能であり、例えば、イオンプレーティング法により、所期のSiOx層4を形成してもよい。 Furthermore, in the above embodiment, to form a SiO x layer 4 by sputtering, it is also possible to form by other physical vapor deposition techniques, for example, by an ion plating method, intended SiO x Layer 4 may be formed.

加えて、上記実施形態では、樹脂基材2、平坦化処理層3、及びSiOx層4、それぞれの厚さについて、具体的な数値を例示したが、これら各層の厚さについては、ガスバリアフィルム1の用途に応じて適宜調整されていればよい。 In addition, in the above embodiment, the resin base material 2, planarization layer 3, and SiO x layer 4, the respective thicknesses, have been exemplified specific values for the thickness of these layers, the gas barrier film It suffices if it is appropriately adjusted according to the use of 1.

1・・・ガスバリアフィルム、2・・・樹脂基材、3・・・平坦化処理層、4・・・SiOx層。 1 ... gas barrier film, 2 ... resin substrate 3 ... planarization layer, 4 ... SiO x layer.

Claims (3)

透明なフィルム状の樹脂基材と、
前記樹脂基材の一方の面に樹脂組成物をコーティングして形成される層であり、前記コーティング後の表面粗さをJIS B 0601−2001に規定された算術平均粗さRaでRa≦2.5nmまで平坦化する平坦化処理層と、
前記樹脂基材に前記平坦化処理層が形成されてから、前記平坦化処理層側の面に成膜される層であり、表面粗さはJIS B 0601−2001に規定された算術平均粗さRaで、Ra≦2.5nm、表面における水の接触角は55度以上、且つ、酸素量xは1.6≦x<2.0の範囲内とされたSiOx層と
を備えることを特徴とするガスバリアフィルム。
A transparent film-like resin substrate;
It is a layer formed by coating a resin composition on one surface of the resin base material, and the surface roughness after coating is the arithmetic average roughness Ra specified in JIS B 0601-2001, Ra ≦ 2. A planarization layer that planarizes to 5 nm;
After the planarization layer is formed on the resin substrate, the layer is formed on the surface on the planarization layer side, and the surface roughness is an arithmetic average roughness defined in JIS B 0601-2001. An SiO x layer in which Ra is Ra ≦ 2.5 nm, the contact angle of water on the surface is 55 ° or more, and the oxygen amount x is in the range of 1.6 ≦ x <2.0. Gas barrier film.
前記平坦化処理層を形成する樹脂組成物が、エネルギー線硬化型のアクリル系樹脂組成物である
ことを特徴とする請求項1に記載のガスバリアフィルム。
The gas barrier film according to claim 1, wherein the resin composition forming the planarization treatment layer is an energy ray curable acrylic resin composition.
前記樹脂基材が、ポリエステル樹脂フィルムである
ことを特徴とする請求項1又は請求項2に記載のガスバリアフィルム。
The gas barrier film according to claim 1, wherein the resin base material is a polyester resin film.
JP2010212418A 2010-09-22 2010-09-22 Gas barrier film Active JP5245094B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010212418A JP5245094B2 (en) 2010-09-22 2010-09-22 Gas barrier film

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010212418A JP5245094B2 (en) 2010-09-22 2010-09-22 Gas barrier film

Publications (2)

Publication Number Publication Date
JP2012066456A JP2012066456A (en) 2012-04-05
JP5245094B2 true JP5245094B2 (en) 2013-07-24

Family

ID=46164310

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010212418A Active JP5245094B2 (en) 2010-09-22 2010-09-22 Gas barrier film

Country Status (1)

Country Link
JP (1) JP5245094B2 (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9532697B2 (en) 2010-12-03 2017-01-03 Whirlpool Corporation Dishwasher with unitary wash module
US9532700B2 (en) 2012-06-01 2017-01-03 Whirlpool Corporation Dishwasher with overflow conduit
US9538898B2 (en) 2011-05-16 2017-01-10 Whirlpool Corporation Dishwasher with filter assembly
US9554688B2 (en) 2012-10-23 2017-01-31 Whirlpool Corporation Rotating filter for a dishwasher and methods of cleaning a rotating filter
US9668636B2 (en) 2010-11-16 2017-06-06 Whirlpool Corporation Method and apparatus for dishwasher with common heating element for multiple treating chambers
US9687135B2 (en) 2009-12-21 2017-06-27 Whirlpool Corporation Automatic dishwasher with pump assembly
US9730570B2 (en) 2012-05-30 2017-08-15 Whirlpool Corporation Reduced sound with a rotating filter for a dishwasher
US9833120B2 (en) 2012-06-01 2017-12-05 Whirlpool Corporation Heating air for drying dishes in a dishwasher using an in-line wash liquid heater
US9861251B2 (en) 2011-06-20 2018-01-09 Whirlpool Corporation Filter with artificial boundary for a dishwashing machine
US9918609B2 (en) 2009-12-21 2018-03-20 Whirlpool Corporation Rotating drum filter for a dishwashing machine
US10058227B2 (en) 2011-06-20 2018-08-28 Whirlpool Corporation Filter assembly for a dishwasher
US10058228B2 (en) 2012-02-27 2018-08-28 Whirlpool Corporation Soil chopping system for a dishwasher
US10076226B2 (en) 2012-05-30 2018-09-18 Whirlpool Corporation Rotating filter for a dishwasher
US10653291B2 (en) 2011-06-20 2020-05-19 Whirlpool Corporation Ultra micron filter for a dishwasher

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3037000B1 (en) * 2015-06-02 2021-09-24 Saint Gobain Isover MULTI-LAYER MEMBRANE

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004341541A (en) * 1994-02-15 2004-12-02 Dainippon Printing Co Ltd Optical functional membrane, optical functional film, antiglare- antireflection film, manufacturing method therefor, polarizing plate, and liquid crystal display device
JP2004001442A (en) * 2002-03-29 2004-01-08 Sumitomo Bakelite Co Ltd Gas / water vapor barrier film
JP4624152B2 (en) * 2005-03-24 2011-02-02 富士フイルム株式会社 Plastic film, gas barrier film, and image display element using the same
JP4917942B2 (en) * 2007-03-30 2012-04-18 リンテック株式会社 High smooth gas barrier film and method for producing the same

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10779703B2 (en) 2009-12-21 2020-09-22 Whirlpool Corporation Rotating drum filter for a dishwashing machine
US9918609B2 (en) 2009-12-21 2018-03-20 Whirlpool Corporation Rotating drum filter for a dishwashing machine
US9687135B2 (en) 2009-12-21 2017-06-27 Whirlpool Corporation Automatic dishwasher with pump assembly
US9668636B2 (en) 2010-11-16 2017-06-06 Whirlpool Corporation Method and apparatus for dishwasher with common heating element for multiple treating chambers
US9532697B2 (en) 2010-12-03 2017-01-03 Whirlpool Corporation Dishwasher with unitary wash module
US9532696B2 (en) 2010-12-03 2017-01-03 Whirlpool Corporation Dishwasher with unitary wash module
US9572473B2 (en) 2010-12-03 2017-02-21 Whirlpool Corporation Dishwasher with unitary wash module
US11882977B2 (en) 2011-05-16 2024-01-30 Whirlpool Corporation Dishwasher with filter assembly
US9538898B2 (en) 2011-05-16 2017-01-10 Whirlpool Corporation Dishwasher with filter assembly
US9700196B2 (en) 2011-05-16 2017-07-11 Whirlpool Corporation Dishwasher with filter assembly
US9861251B2 (en) 2011-06-20 2018-01-09 Whirlpool Corporation Filter with artificial boundary for a dishwashing machine
US10058227B2 (en) 2011-06-20 2018-08-28 Whirlpool Corporation Filter assembly for a dishwasher
US10813525B2 (en) 2011-06-20 2020-10-27 Whirlpool Corporation Ultra micron filter for a dishwasher
US10653291B2 (en) 2011-06-20 2020-05-19 Whirlpool Corporation Ultra micron filter for a dishwasher
US10314457B2 (en) 2011-06-20 2019-06-11 Whirlpool Corporation Filter with artificial boundary for a dishwashing machine
US10178939B2 (en) 2011-06-20 2019-01-15 Whirlpool Corporation Filter with artificial boundary for a dishwashing machine
US10058228B2 (en) 2012-02-27 2018-08-28 Whirlpool Corporation Soil chopping system for a dishwasher
US10076226B2 (en) 2012-05-30 2018-09-18 Whirlpool Corporation Rotating filter for a dishwasher
US9730570B2 (en) 2012-05-30 2017-08-15 Whirlpool Corporation Reduced sound with a rotating filter for a dishwasher
US10376128B2 (en) 2012-05-30 2019-08-13 Whirlpool Corporation Reduced sound with a rotating filter for a dishwasher
US11134825B2 (en) 2012-05-30 2021-10-05 Whirlpool Corporation Reduced sound with a rotating filter for a dishwasher
US9833120B2 (en) 2012-06-01 2017-12-05 Whirlpool Corporation Heating air for drying dishes in a dishwasher using an in-line wash liquid heater
US9532700B2 (en) 2012-06-01 2017-01-03 Whirlpool Corporation Dishwasher with overflow conduit
US9962060B2 (en) 2012-10-23 2018-05-08 Whirlpool Corporation Rotating filter for a dishwasher and methods of cleaning a rotating filter
US9757008B2 (en) 2012-10-23 2017-09-12 Whirlpool Corporation Rotating filter for a dishwasher and methods of cleaning a rotating filter
US9649007B2 (en) 2012-10-23 2017-05-16 Whirlpool Corporation Rotating filter for a dishwasher and methods of cleaning a rotating filter
US9554688B2 (en) 2012-10-23 2017-01-31 Whirlpool Corporation Rotating filter for a dishwasher and methods of cleaning a rotating filter
US9826882B2 (en) 2012-10-23 2017-11-28 Whirlpool Corporation Rotating filter for a dishwasher and methods of cleaning a rotating filter

Also Published As

Publication number Publication date
JP2012066456A (en) 2012-04-05

Similar Documents

Publication Publication Date Title
JP5245094B2 (en) Gas barrier film
JP4083564B2 (en) Organic layer forming method and gas barrier plastic film
JP5090197B2 (en) LAMINATE MANUFACTURING METHOD, BARRIER FILM SUBSTRATE, DEVICE, AND OPTICAL MEMBER
JP5749678B2 (en) Gas barrier film
JP6465019B2 (en) Gas barrier film
TWI638720B (en) Gas barrier film and method for manufacturing the same
JP2013530074A (en) Moisture resistant coating for barrier film
JP6070194B2 (en) Gas barrier film
JP2008221830A (en) Barrier laminate, barrier film base plate, its manufacturing method and device
JP4536417B2 (en) Gas barrier film
TWI464066B (en) A laminate
JP4148794B2 (en) Deposition film resin and gas barrier plastic film using the same
JP2004009395A (en) Transparent water vapor barrier film and its manufacturing process
JP2009196318A (en) Manufacturing method for laminated body and barrier type film board, barrier material, device, and optical member
JP2014087931A (en) Gas barrier film
JP2013237264A (en) Gas barrier film
JP7334624B2 (en) laminate
JP5874975B2 (en) Gas barrier film
JP7017041B2 (en) Laminate
JP6343250B2 (en) Gas barrier film, organic electronic device, substrate for organic electroluminescent device, organic electroluminescent device
JP2005279974A (en) Transparent gas barrier film
JP2012171238A (en) Transparent gas barrier film
JP2016124123A (en) Laminate
JP2023043359A (en) laminate
JP2015074160A (en) Gas barrier film

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121011

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121106

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130314

R150 Certificate of patent or registration of utility model

Ref document number: 5245094

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160419

Year of fee payment: 3

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250