JP5242217B2 - Flexible tube for cryogenic fluid transport - Google Patents

Flexible tube for cryogenic fluid transport Download PDF

Info

Publication number
JP5242217B2
JP5242217B2 JP2008087736A JP2008087736A JP5242217B2 JP 5242217 B2 JP5242217 B2 JP 5242217B2 JP 2008087736 A JP2008087736 A JP 2008087736A JP 2008087736 A JP2008087736 A JP 2008087736A JP 5242217 B2 JP5242217 B2 JP 5242217B2
Authority
JP
Japan
Prior art keywords
heat insulating
layer
flexible tube
vacuum heat
tube
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008087736A
Other languages
Japanese (ja)
Other versions
JP2009243496A (en
Inventor
健一 石井
正之 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
THE FURUKAW ELECTRIC CO., LTD.
Japan Oil Gas and Metals National Corp
Original Assignee
THE FURUKAW ELECTRIC CO., LTD.
Japan Oil Gas and Metals National Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by THE FURUKAW ELECTRIC CO., LTD., Japan Oil Gas and Metals National Corp filed Critical THE FURUKAW ELECTRIC CO., LTD.
Priority to JP2008087736A priority Critical patent/JP5242217B2/en
Publication of JP2009243496A publication Critical patent/JP2009243496A/en
Application granted granted Critical
Publication of JP5242217B2 publication Critical patent/JP5242217B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Thermal Insulation (AREA)
  • Rigid Pipes And Flexible Pipes (AREA)

Description

本発明は、例えば極低温である液化天然ガス等の流体を、海上に設置された洋上浮体施設からタンカ等へ輸送する際に用いられる極低温流体輸送用可撓管に関するものである。   The present invention relates to a flexible tube for transporting a cryogenic fluid used for transporting a fluid such as liquefied natural gas having a cryogenic temperature from an offshore floating facility installed on the sea to a tanker or the like.

従来、海底の油田等から算出した石油等を貯蔵する海上の浮体施設(基地)から、輸送用のタンカへ石油等を積み込むためには、浮体施設とタンカ等を浮遊式の可撓管を用いて接続し、石油等の輸送が行われている。石油等の常温の流体を輸送するための可撓管としては、通常樹脂製のものが使用される。このような流体輸送用の樹脂製の可撓管としては、樹脂製の内管の外周部に補強層、断熱層および防水層等を有する可撓性流体輸送管がある(特許文献1)。   Conventionally, floating oil facilities and tankers, etc., have been used floating floating facilities and tankers in order to load them into transport tankers from offshore floating facilities (bases) that store oil calculated from offshore oil fields, etc. Are connected, and oil is transported. As a flexible tube for transporting a fluid at room temperature such as petroleum, a resin tube is usually used. As such a resin-made flexible tube for transporting fluid, there is a flexible fluid-transporting tube having a reinforcing layer, a heat insulating layer, a waterproof layer, and the like on the outer peripheral portion of the resin-made inner tube (Patent Document 1).

一方、地上または近海のガス田等から算出した天然ガス等は、基地で液化され貯蔵される。液化天然ガス(以下「LNG」)を輸送用のタンカに積み込む際には、沿岸基地に設けられた多関節型のローディングアーム等が用いられる。LNG受け入れ基地としては、例えばローディングアーム方式を採用した特許文献1記載のLNG受け入れ基地およびLNG出荷基地システムがある(特許文献2)。
特開平5−180375号公報 特開平5−65718号公報
On the other hand, natural gas calculated from a gas field on the ground or in the near sea is liquefied and stored at the base. When loading liquefied natural gas (hereinafter “LNG”) onto a tanker for transportation, an articulated loading arm or the like provided at a coastal base is used. As the LNG receiving base, for example, there are an LNG receiving base and an LNG shipping base system described in Patent Document 1 adopting a loading arm system (Patent Document 2).
Japanese Patent Laid-Open No. 5-180375 JP-A-5-65718

しかし、特許文献2のようなローディングアーム方式は、地上基地からタンカへの積み込みは可能であるが、外海のガス田に設置されたLNGを生産貯蔵するような浮体施設から、タンカへLNGを積み込む際には、波、風等によって相互に大きく揺れる施設とタンカ間の動きにローディングアームが追従することができず、また、設備の大型化を招くという問題がある。   However, although the loading arm method as in Patent Document 2 can be loaded from a ground base into a tanker, the LNG is loaded into a tanker from a floating facility that produces and stores LNG installed in a gas field in the open sea. In this case, there is a problem that the loading arm cannot follow the movement between the facility and the tanker, which are greatly shaken by waves, winds, etc., and the size of the equipment is increased.

また、従来の石油の輸送方法のように、特許文献1のような樹脂製の浮遊式の可撓管を用いて、流体をタンカへ積み込む方式では、LNG等の極低温流体への対応が困難であるという問題がある。これは、LNGは約―160℃と極低温であるため、従来の樹脂製の浮遊式の可撓管は、このような極低温ではもろくなり、十分な可撓性が得られず、脆化によりLNGを圧送する圧力により可撓管が破壊するためである。したがって、極低温でも使用できる耐久性と断熱性を併せ持つ可撓管が要求されるが、従来、LNG等の極低温流体を海上での輸送に使用可能な、浮遊式の可撓管は存在しないという問題がある。   Further, in the conventional method of transporting oil, a method of loading a fluid into a tanker using a resin floating flexible tube as in Patent Document 1 is difficult to cope with a cryogenic fluid such as LNG. There is a problem that. This is because LNG has an extremely low temperature of about -160 ° C, so the conventional resin-type floating flexible tube is brittle at such an extremely low temperature, so that sufficient flexibility cannot be obtained and embrittlement occurs. This is because the flexible tube is broken by the pressure for pumping LNG. Therefore, there is a demand for a flexible tube that has both durability and heat insulation that can be used even at extremely low temperatures, but there is no floating flexible tube that can use a cryogenic fluid such as LNG for transportation over the sea. There is a problem.

特に、柔軟性の少ない断熱材を使用した場合には、可撓管が撓んだ際に、断熱材同士が接触することで破損し、高い断熱効果を維持することができない恐れがあるという問題がある。   In particular, when a heat-insulating material with little flexibility is used, there is a possibility that when the flexible tube is bent, the heat-insulating material may be damaged due to contact with each other and a high heat-insulating effect may not be maintained. There is.

本発明は、このような問題に鑑みてなされたもので、海上の洋上浮体施設からタンカへ流体を積み込む際に使用する可撓管であって、LNG等の極低温流体の輸送を可能とし、断熱特性に優れるとともに、可撓管の可撓性に追従可能な断熱層を有する可撓管を提供することを目的とする。   The present invention has been made in view of such problems, and is a flexible tube used when loading a fluid from an offshore floating facility to a tanker, and enables transport of a cryogenic fluid such as LNG. It aims at providing the flexible tube which has the heat insulation layer which is excellent in the heat insulation characteristic and can follow the flexibility of a flexible tube.

前述した目的を達成するため、本発明は、少なくとも可撓性を有する波付き金属製内管と、前記波付き金属製内管の外周部に設けられた補強層と、前記補強層の外周部に設けられた断熱層と、前記断熱層の外周部に設けられた防水層と、を具備し、前記断熱層は複数の真空断熱部材を有し、隣接する前記真空断熱部材同士の間にはギャップが設けられ、前記断熱層は、前記真空断熱部材が複数重ねられて形成され、前記真空断熱部材間には、前記真空断熱部材同士をすべらせるための摺動層が設けられることを特徴とする極低温流体輸送用可撓管である。この場合、前記摺動層は、樹脂テープ、不織布テープ、油浸紙テープのいずれかが巻き付けられた層であることが望ましい。
In order to achieve the above-described object, the present invention provides at least a flexible corrugated metal inner tube, a reinforcing layer provided on an outer peripheral portion of the corrugated metal inner tube, and an outer peripheral portion of the reinforcing layer. A heat insulating layer provided on the outer peripheral portion of the heat insulating layer, and the heat insulating layer has a plurality of vacuum heat insulating members, and between the adjacent vacuum heat insulating members. gap is provided, the heat insulation layer, said vacuum insulation member is formed by stacked plurality, wherein the inter-vacuum insulation member, characterized Rukoto sliding layer is provided for sliding the vacuum heat insulating members together It is a flexible tube for cryogenic fluid transport. In this case, the sliding layer is preferably a layer around which any of a resin tape, a nonwoven fabric tape, and an oil-impregnated paper tape is wound.

前記ギャップの幅は前記真空断熱部材の幅の8%以上であることが望ましい。   The width of the gap is desirably 8% or more of the width of the vacuum heat insulating member.

前記真空断熱部材は、金属層を有する外包材と、前記外包材内に充填された断熱材と、を具備し、前記外包材内が減圧されて密封されていることが望ましく、この場合、前記断熱材は、連通ウレタンフォームであることが望ましい。   The vacuum heat insulating member preferably includes an outer packaging material having a metal layer, and a heat insulating material filled in the outer packaging material, and the inside of the outer packaging material is preferably decompressed and sealed. The heat insulating material is preferably a continuous urethane foam.

ここで、極低温流体とは、例えばLNGのようなー160℃程度以下の流体をいう。   Here, the cryogenic fluid refers to a fluid of about −160 ° C. or lower, such as LNG.

本発明によれば、断熱層が真空断熱部材により形成されるため、波付き金属製内管内を流れる流体と外部との断熱効果が非常に高く、また、真空断熱部材同士の間にギャップ設けられるため、可撓管が撓んだ際にも、隣接する真空断熱部材同士が接触することがなく、このため、可撓管の可撓性に追従することが可能な断熱層を有する極低温流体輸送用可撓管を得ることができる。また、真空断熱部材同士の間隔が真空断熱部材の幅の8%以上とすれば、可撓管の最小曲げ半径においても、真空断熱部材同士が接触することがない。   According to the present invention, since the heat insulating layer is formed by the vacuum heat insulating member, the heat insulating effect between the fluid flowing in the corrugated metal inner pipe and the outside is very high, and a gap is provided between the vacuum heat insulating members. Therefore, even when the flexible tube is bent, adjacent vacuum heat insulating members do not come into contact with each other, and therefore, a cryogenic fluid having a heat insulating layer capable of following the flexibility of the flexible tube. A flexible tube for transportation can be obtained. Moreover, if the space | interval of vacuum heat insulation members shall be 8% or more of the width | variety of a vacuum heat insulation member, even in the minimum bending radius of a flexible tube, vacuum heat insulation members will not contact.

また、真空断熱部材には、断熱材が充填され、特に連通ウレタンフォームが充填された場合には、特に断熱効果に優れる。また、真空断熱部材間に摺動層を設ければ、可撓管が撓んだ際に、真空断熱部材同士が容易にすべるため、確実に可撓管の可撓性に追従可能な断熱層を有する可撓管を得ることができる。   Further, the vacuum heat insulating member is filled with a heat insulating material, and particularly when the continuous urethane foam is filled, the heat insulating effect is particularly excellent. In addition, if a sliding layer is provided between the vacuum heat insulating members, the vacuum heat insulating members easily slip when the flexible tube is bent, so that the heat insulating layer can reliably follow the flexibility of the flexible tube. Can be obtained.

本発明によれば、海上の洋上浮体施設からタンカへ流体を積み込む際に使用する極低温流体輸送用可撓管であって、LNG等の極低温流体の輸送に適し、断熱特性に優れるとともに、可撓管の可撓性に追従可能な断熱層を有する可撓管を提供することができる。   According to the present invention, it is a flexible pipe for transporting a cryogenic fluid used when loading a fluid from an offshore floating facility to a tanker, and is suitable for transporting a cryogenic fluid such as LNG, and has excellent heat insulation characteristics, A flexible tube having a heat insulating layer capable of following the flexibility of the flexible tube can be provided.

以下、本発明の実施の形態にかかる可撓管1について説明する。図1は、可撓管1の構成を示す斜視図であい、図2(a)は可撓管1の部分断面図、図2(b)は、図2(a)のA部拡大図である。可撓管1は、主に波付き管3、座床層5、補強層7、断熱層15、防水層13等から構成される。   Hereinafter, the flexible tube 1 concerning embodiment of this invention is demonstrated. FIG. 1 is a perspective view showing the configuration of the flexible tube 1, FIG. 2 (a) is a partial sectional view of the flexible tube 1, and FIG. 2 (b) is an enlarged view of a portion A of FIG. 2 (a). . The flexible tube 1 mainly includes a corrugated tube 3, a floor layer 5, a reinforcing layer 7, a heat insulating layer 15, a waterproof layer 13, and the like.

可撓管1の最内層には内管としての波付き管3が設けられる。可撓管1の使用時には、流体(以下、LNGが流れるものとして説明する)は波付き管3内を流される。波付き管3は、可撓性を有する管体であり、ある程度の強度を有し、低温耐性が優れる。すなわち、内部にLNG等の極低温流体が流れても可撓性を維持でき、割れやクラック等の発生しにくい材質が好ましい。波付き管3は、例えば金属製の波付き管であり、望ましくはステンレス製のベロー管である。なお、波付き管3に代えて、同様の可撓性を有し、低温耐性に優れる管体であれば、他の態様の内管を使用することも可能である。   The innermost layer of the flexible tube 1 is provided with a corrugated tube 3 as an inner tube. When the flexible tube 1 is used, a fluid (hereinafter described as a flow of LNG) flows through the corrugated tube 3. The corrugated tube 3 is a flexible tube, has a certain degree of strength, and has excellent low-temperature resistance. That is, it is preferable to use a material that can maintain flexibility even when a cryogenic fluid such as LNG flows therein, and is less likely to crack or crack. The corrugated tube 3 is, for example, a metal corrugated tube, and preferably a stainless bellows tube. It should be noted that instead of the corrugated tube 3, other types of inner tubes can be used as long as they have the same flexibility and excellent low-temperature resistance.

波付き管3の外周部には座床層5が設けられる。座床層5は、波付き管3の外周における凹凸(波付き形状による凹凸)を略平らにならすための層であり、波付き管3の可撓性に追従して変形可能である。すなわち、座床層5は、ある程度の厚みを有し、波付き管3外周の波付き形状による凹凸のクッションとしての役割を有する。ただし、凹部を完全に埋める必要はない。波付き管3の外周部には、更に後述する補強層7等が設けられるが、波付き管3の外周面の凹凸によって、補強層7を構成する補強テープ等の巻き付けが困難となり、また、使用時等において、補強テープ等のずれが生じることを防ぐためである。   A floor layer 5 is provided on the outer peripheral portion of the corrugated tube 3. The floor layer 5 is a layer for leveling the irregularities on the outer periphery of the corrugated tube 3 (unevenness due to the corrugated shape), and can be deformed following the flexibility of the corrugated tube 3. That is, the floor layer 5 has a certain thickness and serves as an uneven cushion due to the corrugated shape of the outer periphery of the corrugated tube 3. However, it is not necessary to completely fill the recess. The outer peripheral portion of the corrugated tube 3 is further provided with a reinforcing layer 7 and the like which will be described later. However, it is difficult to wind the reinforcing tape or the like constituting the reinforcing layer 7 due to the unevenness of the outer peripheral surface of the corrugated tube 3. This is to prevent the reinforcing tape from being displaced during use.

なお、座床層5としては、例えば不織布等が使用できる。また、内管の外周面に波付き等による大きな凹凸がない場合や、凹凸を有している場合であっても、外周部に設けられる補強層7等に悪影響を与えない場合には、座床層5は不要である。   In addition, as the floor layer 5, a nonwoven fabric etc. can be used, for example. Also, if the outer peripheral surface of the inner tube has no large unevenness due to corrugation or the like, or if it has unevenness, it will not adversely affect the reinforcing layer 7 provided on the outer peripheral portion. The floor layer 5 is not necessary.

座床層5の外周部には補強層7が設けられる。補強層7は、主に波付き管3が可撓管1の軸方向へ変形する(伸びる)ことを抑えるとともに、波付き管3の可撓性に追従して変形可能である。例えば、波付き管3内へLNGを流す際には、波付き管3内部には1MPa程度の内圧が生じる。波付き管3は、波付き管3の内周面への圧力には耐えうるが、可撓性を得るために設けられる波付き形状によって、波付き管3の軸方向へは内圧により容易に変形する(伸びる)。このため、波付き管3の軸方向の変形を抑制するために補強層7が設けられる。   A reinforcing layer 7 is provided on the outer periphery of the floor layer 5. The reinforcing layer 7 can be deformed following the flexibility of the corrugated tube 3 while suppressing the corrugated tube 3 from deforming (extending) mainly in the axial direction of the flexible tube 1. For example, when LNG is caused to flow into the corrugated tube 3, an internal pressure of about 1 MPa is generated inside the corrugated tube 3. The corrugated tube 3 can withstand the pressure on the inner peripheral surface of the corrugated tube 3, but the corrugated shape provided in order to obtain flexibility facilitates the internal pressure in the axial direction of the corrugated tube 3. Deforms (stretches). For this reason, the reinforcing layer 7 is provided in order to suppress the axial deformation of the corrugated tube 3.

補強層7は、繊維テープや金属テープ等の補強テープにより形成される。繊維テープとしては、たとえば、ポリエステル繊維織物テープ、アラミド繊維織物テープ、アリレート繊維織物テープ、超高分子ポリエチレン繊維織物テープ、炭素繊維織物テープなどが使用できる。また、金属テープとしては、例えばステンレステープ等が使用できる。   The reinforcing layer 7 is formed of a reinforcing tape such as a fiber tape or a metal tape. As the fiber tape, for example, a polyester fiber woven tape, an aramid fiber woven tape, an arylate fiber woven tape, an ultra high molecular weight polyethylene fiber woven tape, a carbon fiber woven tape, and the like can be used. Moreover, as a metal tape, a stainless steel tape etc. can be used, for example.

補強層7を形成するためには、補強テープが座床層5の外周に、所定のピッチで巻き付けられる。補強テープを巻き付ける際には、補強テープの幅方向の端部同士が互いに重なる必要はなく、すなわち、補強テープの幅よりも補強テープの巻付けピッチを大きくしても良い。補強テープは少なくとも2重に重ねられ、1巻き目の補強テープの巻き付け方向と、2巻き目の補強テープの巻き付け方向が逆向きとなるように座床層5へ巻きつけられる。すなわち、2重に巻き付けられたそれぞれの補強テープは、互いにクロスするように座床層5の外周に巻き付けられる(このような巻き付け方法を「交互巻き」と称する)。   In order to form the reinforcing layer 7, a reinforcing tape is wound around the outer periphery of the floor layer 5 at a predetermined pitch. When winding the reinforcing tape, the end portions in the width direction of the reinforcing tape do not need to overlap each other, that is, the winding pitch of the reinforcing tape may be larger than the width of the reinforcing tape. The reinforcing tape is overlapped at least twice and wound around the floor layer 5 so that the winding direction of the first reinforcing tape and the winding direction of the second reinforcing tape are opposite to each other. That is, the respective double-wrapped reinforcing tapes are wound around the outer periphery of the floor layer 5 so as to cross each other (this winding method is referred to as “alternate winding”).

補強テープを1方向のみから巻き付けたのでは、可撓管1が軸方向に力を受けた際に、補強テープの巻き付け方向に応じて、可撓管1へねじれ方向の力が発生するためである。必要に応じて、巻き付けられた補強テープの外周に、図示を省略した補強テープの押さえ巻き層を更に設けても良い。押さえ巻き層としては、例えば不織布テープが使用でき、不織布テープを交互巻きされた補強テープの外面や各巻き層の外周面に巻きつけても良い。   The reason why the reinforcing tape is wound only from one direction is that when the flexible tube 1 receives a force in the axial direction, a twisting force is generated on the flexible tube 1 according to the winding direction of the reinforcing tape. is there. If necessary, a pressing tape layer of the reinforcing tape (not shown) may be further provided on the outer periphery of the wound reinforcing tape. For example, a nonwoven fabric tape can be used as the presser winding layer, and the nonwoven fabric tape may be wound around the outer surface of the alternately wound reinforcing tape or the outer peripheral surface of each winding layer.

補強層7の外周部には断熱層15が設けられる。断熱層15は、波付き管3内を流れるLNGと可撓管1の外部とを断熱するとともに、波付き管3の可撓性に追従して変形可能である。断熱層15は、複数の真空断熱部材9a、9b、・・・から構成される。例えば、図2(b)に示すように、補強層7の外周部には、断熱部材幅23を有する真空断熱部材9a、9bが巻き付けられる。真空断熱部材9a、9bの間には、ギャップ幅25のギャップ11aが形成され、互いに隙間をあけて巻き付けられる。すなわち、真空断熱部材9a、9bは断熱層15の最下層(第1層)に位置する。なお。真空断熱部材9の構成は後述する。   A heat insulating layer 15 is provided on the outer periphery of the reinforcing layer 7. The heat insulating layer 15 insulates the LNG flowing in the corrugated tube 3 from the outside of the flexible tube 1 and can be deformed following the flexibility of the corrugated tube 3. The heat insulating layer 15 is composed of a plurality of vacuum heat insulating members 9a, 9b,. For example, as illustrated in FIG. 2B, vacuum heat insulating members 9 a and 9 b having a heat insulating member width 23 are wound around the outer peripheral portion of the reinforcing layer 7. A gap 11a having a gap width of 25 is formed between the vacuum heat insulating members 9a and 9b and is wound with a gap therebetween. That is, the vacuum heat insulating members 9 a and 9 b are located in the lowermost layer (first layer) of the heat insulating layer 15. Note that. The configuration of the vacuum heat insulating member 9 will be described later.

最下層に巻き付けられた真空断熱部材9a、9bの外周部には、真空断熱部材9c、9dが巻き付けられる。真空断熱部材9c、9dの間にはギャップ幅25のギャップ11bが形成され、互いに隙間をあけて巻き付けられる。すなわち、真空断熱部材9c、9dは最下層の外層となる第2の層を形成する。なお、最下層において形成されたギャップ11aと第2層において形成されるギャップ11bとは、可撓管1の長さ方向に位置がずれており、ギャップ同士がつながることはない。   The vacuum heat insulating members 9c and 9d are wound around the outer peripheral portions of the vacuum heat insulating members 9a and 9b wound around the lowermost layer. A gap 11b having a gap width of 25 is formed between the vacuum heat insulating members 9c and 9d and is wound with a gap therebetween. That is, the vacuum heat insulating members 9c and 9d form a second layer that is the outermost layer of the lowest layer. The gap 11a formed in the lowermost layer and the gap 11b formed in the second layer are displaced in the length direction of the flexible tube 1, and the gaps are not connected.

同様にして、真空断熱部材9c、9dの外周部に真空断熱部材9eが図示を省略した隣接する真空断熱部材との間にギャップ11を形成して巻き付けられる(第3層)。更に、真空断熱部材9eの外周には真空断熱部材9f、9gが重ねられて巻き付けられる(第4層、第5層)。   Similarly, the vacuum heat insulating member 9e is wound around the outer peripheral portion of the vacuum heat insulating members 9c and 9d while forming a gap 11 between adjacent vacuum heat insulating members (not shown) (third layer). Further, vacuum heat insulating members 9f and 9g are overlapped and wound around the outer periphery of the vacuum heat insulating member 9e (fourth layer, fifth layer).

なお、各層において、真空断熱部材9同士の間にはギャップ11が設けられるが、隣接する層に設けられた各ギャップ11同士は、可撓管1の長さ方向に位置がずらされて設けられる。すなわち、ギャップ11同士が互いにつながることはない。このため、ギャップ11が連続せず、真空断熱部材9の断熱効果を効果的に得ることができる。また、可撓管1の断熱層15は、真空断熱部材9が5層重ねて設けられるが、真空断熱部材9の巻きつけは、5層に限られない。すなわち、可撓管1に要求される仕様に応じて、適宜決定することができる。   In each layer, a gap 11 is provided between the vacuum heat insulating members 9, but the gaps 11 provided in adjacent layers are provided with their positions shifted in the length direction of the flexible tube 1. . That is, the gaps 11 are not connected to each other. For this reason, the gap 11 is not continuous, and the heat insulating effect of the vacuum heat insulating member 9 can be effectively obtained. Moreover, although the heat insulation layer 15 of the flexible tube 1 is provided by stacking five layers of the vacuum heat insulation member 9, the winding of the vacuum heat insulation member 9 is not limited to five layers. That is, it can be determined as appropriate according to the specifications required for the flexible tube 1.

断熱層15によって、波付き管3内を流れるLNGの熱は、可撓管1の外面へはほとんど伝達されない。このため、後述する最外層である防水層13が、LNGの温度の影響を受けることがない。同様に可撓管1の外温はLNGへは伝達されず、LNGが可撓管1内で気化することが防止される。   The heat of the LNG flowing through the corrugated tube 3 is hardly transmitted to the outer surface of the flexible tube 1 by the heat insulating layer 15. For this reason, the waterproof layer 13 which is the outermost layer described later is not affected by the temperature of the LNG. Similarly, the external temperature of the flexible tube 1 is not transmitted to the LNG, and the LNG is prevented from vaporizing in the flexible tube 1.

断熱層15の外周部には、防水層13が設けられる。防水層13は、外部からの水の浸入を防ぐとともに、波付き管3の可撓性に追従して変形可能である。すなわち、可撓管1が海上に浮かべられて、LNGの輸送を行う際にも、海水等が可撓管1内へ浸入することはない。なお、防水層13は、例えば樹脂製であり、ポリエチレン製が望ましい。前述したように、断熱層15により、極低温であるLNGの温度の影響は防水層13へはほとんど及ばない。このため、防水層13が低温になることで脆化して、波付き管3の可撓性に追従できなくなることはない。   A waterproof layer 13 is provided on the outer periphery of the heat insulating layer 15. The waterproof layer 13 can be deformed following the flexibility of the corrugated tube 3 while preventing water from entering from the outside. That is, when the flexible tube 1 is floated on the sea and LNG is transported, seawater or the like does not enter the flexible tube 1. The waterproof layer 13 is made of resin, for example, and is preferably made of polyethylene. As described above, the heat-insulating layer 15 hardly affects the waterproof layer 13 due to the temperature of LNG, which is a very low temperature. For this reason, the waterproof layer 13 does not become brittle when the temperature becomes low, and cannot follow the flexibility of the corrugated tube 3.

次に、真空断熱部材9の構造を図3に基づいて説明する。図3は、真空断熱部材9の断面図である。真空断熱部材9は、主に外包材17、充填材19、ゲッタ21等から構成される。真空断熱部材9は、厚さが2mm程度のシート状またはテープ状の部材である。   Next, the structure of the vacuum heat insulating member 9 will be described with reference to FIG. FIG. 3 is a cross-sectional view of the vacuum heat insulating member 9. The vacuum heat insulating member 9 is mainly composed of an outer packaging material 17, a filler 19, a getter 21, and the like. The vacuum heat insulating member 9 is a sheet-like or tape-like member having a thickness of about 2 mm.

充填材19は、樹脂部材等の断熱材が使用でき、例えば、多孔質体、繊維質、粉末等の形態で使用できる。特に効果の大きい材料としては、連通ウレタンフォームと称する多孔質の材料である。連通ウレタンフォームとしてはセル径が100μm以下であることが望ましい。例えば、セル径が100μmである連通ウレタンフォームを使用する場合には、充填部の圧力は0.5Torr程度の真空度により極めて高い断熱効果を有する。この場合、一般のポリウレタン断熱材に比べて熱伝導率が1/2.5程度となり、極めて高い断熱特性を有する真空断熱部材9を得ることができる。また、連通ウレタンフォームを使用した真空断熱部材9は、発泡ウレタン断熱材と比較して1.4倍以上の圧縮強度を有するため、可撓管1に用いても、内部で肉厚が減少することがない。   As the filler 19, a heat insulating material such as a resin member can be used. A particularly effective material is a porous material called continuous urethane foam. The continuous urethane foam preferably has a cell diameter of 100 μm or less. For example, when a continuous urethane foam having a cell diameter of 100 μm is used, the pressure in the filling portion has a very high heat insulating effect due to the degree of vacuum of about 0.5 Torr. In this case, the thermal conductivity is about 1 / 2.5 compared to a general polyurethane heat insulating material, and the vacuum heat insulating member 9 having extremely high heat insulating characteristics can be obtained. Moreover, since the vacuum heat insulating member 9 using a continuous urethane foam has a compressive strength of 1.4 times or more compared with the urethane foam heat insulating material, even if it is used for the flexible tube 1, the thickness is reduced inside. There is nothing.

外包材17は、充填材19を包み、外部と内部との通気を遮断する。外包材17としては、真空断熱部材の内部と外部との通気を遮断できれば良く、例えば金属箔を含むガスバリア性のラミネートフィルムであることが望ましい。   The outer packaging material 17 wraps the filler 19 and blocks ventilation between the outside and the inside. As the outer packaging material 17, it is only necessary to block the ventilation between the inside and the outside of the vacuum heat insulating member. For example, a gas barrier laminate film including a metal foil is desirable.

ゲッタ21は、微量に外部から浸入するガスを吸着するためのもので、必要に応じて設けられる。なお、ゲッタ21としては、合成ゼオライトや活性炭等が使用できる。   The getter 21 is for adsorbing a small amount of gas entering from the outside, and is provided as necessary. As the getter 21, synthetic zeolite, activated carbon, or the like can be used.

次に、真空断熱部材9が巻きつけられた可撓管1が変形した際の、真空断熱部材9の状態について説明する。図4は、可撓管1に巻きつけられた真空断熱部材9を示す模式図であり、図4(a)は可撓管1がまっすぐな状態、図4(b)は、可撓管1が変形した状態である。なお、図4においては、内管等の他の層の図示は省略する。   Next, the state of the vacuum heat insulating member 9 when the flexible tube 1 around which the vacuum heat insulating member 9 is wound will be described. 4A and 4B are schematic views showing the vacuum heat insulating member 9 wound around the flexible tube 1. FIG. 4A shows a state in which the flexible tube 1 is straight, and FIG. Is a deformed state. In FIG. 4, illustration of other layers such as the inner tube is omitted.

可撓管1の径をDとすると、真空断熱部材9は、可撓管1の中心27を中心として径が略Dの管体に巻きつけられているとみなすことができる。隣接する真空断熱部材9同士の間には、前述の通りギャップ11が設けられる。   When the diameter of the flexible tube 1 is D, the vacuum heat insulating member 9 can be regarded as being wound around a tube body having a diameter of approximately D with the center 27 of the flexible tube 1 as the center. As described above, the gap 11 is provided between the adjacent vacuum heat insulating members 9.

可撓管1の最小曲げ半径Rは、通常、可撓管1の径Dの7倍程度である。可撓管1が曲げられると、可撓管1の曲げ変形の内側は圧縮変形となり、外側は引張り変形となる。この際、可撓管1の曲げ変形の内側における真空断熱部材9同士のギャップ11は小さくなり、外側は大きくなる。真空断熱部材9の端部同士が接触すると、真空断熱部材9が損傷を受ける恐れがある。従って、最小曲げ半径Rの曲率で可撓管1が変形した際にも、真空断熱部材9同士が接触しないだけのギャップ幅が必要である。   The minimum bending radius R of the flexible tube 1 is usually about 7 times the diameter D of the flexible tube 1. When the flexible tube 1 is bent, the inside of the bending deformation of the flexible tube 1 becomes compression deformation and the outside becomes tensile deformation. At this time, the gap 11 between the vacuum heat insulating members 9 inside the bending deformation of the flexible tube 1 becomes smaller and the outer side becomes larger. If the ends of the vacuum heat insulating member 9 come into contact with each other, the vacuum heat insulating member 9 may be damaged. Therefore, even when the flexible tube 1 is deformed with the curvature of the minimum bending radius R, a gap width is required so that the vacuum heat insulating members 9 do not contact each other.

ここで、可撓管1が最小曲げ半径Rで変形した場合の可撓管1の内側の変形量と、これによる断熱部材幅23とギャップ幅25の関係は、(R−0.5D)/R=w/(w+g)で表される。   Here, the amount of deformation inside the flexible tube 1 when the flexible tube 1 is deformed at the minimum bending radius R, and the relationship between the heat insulating member width 23 and the gap width 25 is (R−0.5D) / R = w / (w + g).

ここで、Dは可撓管1の径、Rは可撓管1の最小曲げ半径、wは断熱部材幅23、gはギャップ幅25である。   Here, D is the diameter of the flexible tube 1, R is the minimum bending radius of the flexible tube 1, w is the heat insulating member width 23, and g is the gap width 25.

通常、可撓管の最小曲げ半径Rは可撓管の径Dの7倍程度とされる。最小曲げ半径Rが可撓管1の径Dの7倍である場合には、式1から、g=0.0775wとなる。   Usually, the minimum bending radius R of the flexible tube is about 7 times the diameter D of the flexible tube. When the minimum bending radius R is 7 times the diameter D of the flexible tube 1, g = 0.0775 w from Equation 1.

従って、可撓管1がまっすぐな状態において、ギャップ幅25が、真空断熱部材9の幅である断熱部材幅25の約8%以上であれば、可撓管1を最小曲げ半径Rで変形させた場合においても真空断熱部材9同士が重なり合うことはない。このため、真空断熱部材9同士のギャップ11は、真空断熱部材9の幅の8%以上の幅を有していることが望ましい。   Therefore, when the flexible tube 1 is straight and the gap width 25 is about 8% or more of the heat insulating member width 25 which is the width of the vacuum heat insulating member 9, the flexible tube 1 is deformed with the minimum bending radius R. Even in this case, the vacuum heat insulating members 9 do not overlap each other. For this reason, it is desirable that the gap 11 between the vacuum heat insulating members 9 has a width of 8% or more of the width of the vacuum heat insulating member 9.

なお、通常、流体の輸送効率を考慮して、海上での流体輸送に使用されるタンカとしては、10万から15万トンクラスのタンカが利用される。また、海上は天候の変動も激しいため、タンカ等への流体の積み込み作業は、通常24時間以内に終了することが望まれる。したがって、積み込み効率を考慮すると、流体の速度を5m/sec.とすると、可撓管1の径Dは400mm〜500mm程度のものが数本同時に用いられるものである。但し、可撓管1の径Dは、流体の輸送効率を高めるためには大きい方が望ましいが、可撓管1の許容曲げ半径Rが大きくなり、可撓管1の敷設装置が大型化するため、可撓管1の径は使用条件等に応じて適宜決定される。   Normally, a tanker of 100,000 to 150,000 tons class is used as a tanker used for fluid transportation at sea in consideration of fluid transportation efficiency. In addition, since the weather varies greatly on the sea, it is desirable that the operation of loading a fluid into a tanker or the like is usually completed within 24 hours. Therefore, considering the loading efficiency, the fluid velocity is 5 m / sec. Then, the diameter D of the flexible tube 1 is approximately 400 mm to 500 mm, and several of them are used simultaneously. However, the diameter D of the flexible tube 1 is preferably larger in order to increase the fluid transportation efficiency, but the allowable bending radius R of the flexible tube 1 is increased, and the laying device of the flexible tube 1 is enlarged. Therefore, the diameter of the flexible tube 1 is appropriately determined according to usage conditions and the like.

図5は、可撓管1の使用状況を示す図である。海上には洋上浮体施設30が設けられる。洋上浮体施設30は、特に外海上に設けられ、海底ガス田から算出した天然ガスを液化し、貯蔵する貯蔵基地である。洋上浮体施設30に貯蔵されたLNGは定期的にタンカ37へ輸送される。   FIG. 5 is a diagram illustrating a usage state of the flexible tube 1. An offshore floating facility 30 is provided on the sea. The offshore floating facility 30 is a storage base that is provided especially on the open sea and liquefies and stores the natural gas calculated from the seabed gas field. The LNG stored in the offshore floating facility 30 is periodically transported to the tanker 37.

洋上浮体施設30上には供給部31が設けられる。供給部31は、洋上浮体施設30に貯蔵されたLNGを送り出す部位である。一方、タンカ37には受給部35が設けられる。受給部35は、供給部31から送り出されたLNGを受け取る部位である。   A supply unit 31 is provided on the offshore floating facility 30. The supply unit 31 is a part that sends out LNG stored in the offshore floating facility 30. On the other hand, the tanker 37 is provided with a receiving unit 35. The receiving unit 35 is a part that receives the LNG sent out from the supply unit 31.

可撓管1は、ドラム39等に巻きつけられて保管され、使用時にはドラム39より海上へ送り出される。海上では、可撓管1の端部が図示を省略した小型船等でタンカ37へ誘導される。可撓管1が海上へ十分に送り出された後、可撓管1の両端をそれぞれ供給部31、受給部35へ接続する。可撓管1は海上に浮遊しながら、供給部31から送り出されたLNGを受給部35へ輸送し、洋上浮体施設30からタンカ37へのLNGの積み込みが行われる。この際、可撓管1は、可撓性を有するため、洋上浮体施設30とタンカ37との波等による相対的な位置変動等に対して追従でき、また、洋上浮体施設30上で保管時に、場所を取ることがない。   The flexible tube 1 is wound around the drum 39 and stored, and is sent out from the drum 39 to the sea when in use. On the sea, the end of the flexible tube 1 is guided to the tanker 37 by a small ship (not shown). After the flexible tube 1 is sufficiently sent to the sea, both ends of the flexible tube 1 are connected to the supply unit 31 and the receiving unit 35, respectively. While the flexible tube 1 floats on the sea, the LNG sent from the supply unit 31 is transported to the receiving unit 35, and the LNG is loaded from the offshore floating facility 30 to the tanker 37. At this time, since the flexible tube 1 has flexibility, it can follow relative positional fluctuations caused by waves between the offshore floating body facility 30 and the tanker 37 and is stored on the offshore floating body facility 30. Never take a place.

以上説明したように、本実施の形態にかかる可撓管1によれば、波付き管3の外周部に座床層5を介して補強層7が設けられるため、内部を流れる流体の圧力によって、波付き管3が可撓管1の軸方向へ変形することを抑制することができる。また、断熱層15により、波付き管3内の流体と可撓管1の外部とを断熱するため、流体が外温の影響を受けることがなく、また、流体の温度により、防水層13が影響を受けることがない。   As described above, according to the flexible tube 1 according to the present embodiment, the reinforcing layer 7 is provided on the outer peripheral portion of the corrugated tube 3 via the seat floor layer 5, so that the pressure of the fluid flowing inside It is possible to suppress the corrugated tube 3 from being deformed in the axial direction of the flexible tube 1. In addition, since the heat insulating layer 15 insulates the fluid in the corrugated tube 3 from the outside of the flexible tube 1, the fluid is not affected by the external temperature, and the waterproof layer 13 is formed depending on the temperature of the fluid. Not affected.

また、断熱層15は真空断熱部材9により構成されるため、極めて高い断熱特性を有する可撓管1を得ることができ、特に真空断熱部材9を重ねることで、更に断熱特性の高い可撓管1を得ることができる。また、断熱層15の厚さを薄くすることができるため、外径の増加を抑えた可撓管1を得ることができる。   Further, since the heat insulating layer 15 is composed of the vacuum heat insulating member 9, it is possible to obtain the flexible tube 1 having extremely high heat insulating characteristics. In particular, by stacking the vacuum heat insulating members 9, the flexible tube having higher heat insulating characteristics. 1 can be obtained. Moreover, since the thickness of the heat insulation layer 15 can be made thin, the flexible tube 1 which suppressed the increase in an outer diameter can be obtained.

また、隣接する真空断熱部材9同士の間にはギャップ幅25のギャップ11が設けられるため、可撓管1が最小曲げ半径Rで曲げ変形した場合にも、真空断熱部材9同士が接触することがない。従って、真空断熱部材9が損傷することがない。   Further, since the gap 11 having the gap width 25 is provided between the adjacent vacuum heat insulating members 9, even when the flexible tube 1 is bent and deformed with the minimum bending radius R, the vacuum heat insulating members 9 are in contact with each other. There is no. Therefore, the vacuum heat insulating member 9 is not damaged.

以上、添付図を参照しながら、本発明の実施の形態を説明したが、本発明の技術的範囲は、前述した実施の形態に左右されない。当業者であれば、特許請求の範囲に記載された技術的思想の範疇内において各種の変更例または修正例に想到し得ることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。   As mentioned above, although embodiment of this invention was described referring an accompanying drawing, the technical scope of this invention is not influenced by embodiment mentioned above. It is obvious for those skilled in the art that various modifications or modifications can be conceived within the scope of the technical idea described in the claims, and these are naturally within the technical scope of the present invention. It is understood that it belongs.

例えば、真空断熱部材9の構成は図2に示すような構成に限られない。内部に減圧した空間と当該空間に充填材が充填されていれば、形状やゲッタ21等の存在は適宜設定することができる。   For example, the configuration of the vacuum heat insulating member 9 is not limited to the configuration shown in FIG. If the decompressed space and the space are filled with a filler, the shape and the presence of the getter 21 and the like can be set as appropriate.

また、重ねて巻きつけられる真空断熱部材9同士の間に、更に摺動層を設けても良い。図6は、摺動層41(41a、41b、41c、41d)が設けられた可撓管40を示す図である。前述の通り、可撓管1が変形する際には、真空断熱部材9は可撓管1の長さ方向にすべりを生じる。従って真空断熱部材9同士のすべりが悪いと、可撓管1の変形の妨げとなり、また、可撓管1の変形の際に真空断熱部材9の損傷の恐れがある。摺動層41は、真空断熱部材9の片面または両面に設けられ、真空断熱部材9のすべりを向上するための層である。   Moreover, you may provide a sliding layer further between the vacuum heat insulation members 9 wound by overlapping. FIG. 6 is a view showing the flexible tube 40 provided with the sliding layer 41 (41a, 41b, 41c, 41d). As described above, when the flexible tube 1 is deformed, the vacuum heat insulating member 9 slips in the length direction of the flexible tube 1. Therefore, if the vacuum heat insulating members 9 do not slide smoothly, the deformation of the flexible tube 1 is hindered, and the vacuum heat insulating member 9 may be damaged when the flexible tube 1 is deformed. The sliding layer 41 is provided on one or both sides of the vacuum heat insulating member 9 and is a layer for improving the slip of the vacuum heat insulating member 9.

摺動層41としては、低温で可撓性を有し、表面が平滑ですべりの良い材質であれば良く、例えばポリエステル不織布などの不織布テープや、樹脂テープ、油浸紙テープ等が使用できる。摺動層に使用するテープとしては、熱抵抗の大きな非金属材料を用いることが望ましく、この場合、真空断熱部材9間の伝熱を防止することができる。摺動層41によって、真空断熱部材9同士のすべりが向上し、可撓管1の変形が容易となり、可撓管1の変形時に真空断熱部材9が損傷することを防止することができる。   The sliding layer 41 may be any material that has flexibility at low temperatures, a smooth surface, and good sliding properties. For example, a nonwoven fabric tape such as a polyester nonwoven fabric, a resin tape, an oil-paper tape, or the like can be used. As the tape used for the sliding layer, it is desirable to use a nonmetallic material having a large thermal resistance. In this case, heat transfer between the vacuum heat insulating members 9 can be prevented. The sliding layer 41 improves slippage between the vacuum heat insulating members 9, facilitates deformation of the flexible tube 1, and prevents the vacuum heat insulating member 9 from being damaged when the flexible tube 1 is deformed.

また、可撓管1はLNG輸送用に限られない。この他種々の流体の輸送用に使用することができる。   The flexible tube 1 is not limited to LNG transportation. In addition, it can be used for transportation of various fluids.

可撓管1の構成を示す斜視図。The perspective view which shows the structure of the flexible tube 1. FIG. (a)は可撓管1の構成を示す部分断面図、(b)は(a)のA部拡大図。(A) is a fragmentary sectional view which shows the structure of the flexible tube 1, (b) is the A section enlarged view of (a). 真空断熱部材9の構造を示す断面図。Sectional drawing which shows the structure of the vacuum heat insulation member 9. FIG. 可撓管1が変形した際の真空断熱部材9の状態を示す模式図で、(a)は可撓管1がまっすぐな状態、(b)は可撓管1が変形した状態を示す図。It is a schematic diagram which shows the state of the vacuum heat insulation member 9 when the flexible tube 1 deform | transforms, (a) is a state with the flexible tube 1 straight, (b) is a figure which shows the state with which the flexible tube 1 deform | transformed. 可撓管1の使用状況を示す図。The figure which shows the use condition of the flexible tube. 摺動層41が設けられた可撓管40を示す図。The figure which shows the flexible tube 40 in which the sliding layer 41 was provided.

符号の説明Explanation of symbols

1、40………可撓管
3………波付き管
5………座床層
7………補強層
9………真空断熱部材
11………ギャップ
13………防水層
17………外包材
19………充填材
21………ゲッタ
23………断熱部材幅
25………ギャップ幅
30………洋上浮体施設
31………供給部
35………受給部
37………タンカ
39………ドラム
41………摺動層
1, 40 ...... Flexible tube 3 ...... Corrugated tube 5 ...... Seat floor layer 7 ...... Reinforcement layer 9 ...... Vacuum insulation member 11 ...... Gap 13 ...... Waterproof layer 17 …… ... outer packaging material 19 ... ... filler 21 ... ... getter 23 ... ... heat insulation member width 25 ... ... gap width 30 ... ... offshore floating body facility 31 ... ... supply part 35 ... ... receiving part 37 ... ... Tanker 39 ……… Drum 41 ……… Sliding layer

Claims (5)

少なくとも可撓性を有する波付き金属製内管と、
前記波付き金属製内管の外周部に設けられた補強層と、
前記補強層の外周部に設けられた断熱層と、
前記断熱層の外周部に設けられた防水層と、
を具備し、
前記断熱層は複数の真空断熱部材を有し、
隣接する前記真空断熱部材同士の間にはギャップが設けられ
前記断熱層は、前記真空断熱部材が複数重ねられて形成され、
前記真空断熱部材間には、前記真空断熱部材同士をすべらせるための摺動層が設けられることを特徴とする極低温流体輸送用可撓管。
A corrugated metal inner tube having at least flexibility;
A reinforcing layer provided on the outer periphery of the corrugated metal inner tube;
A heat insulating layer provided on the outer periphery of the reinforcing layer;
A waterproof layer provided on the outer periphery of the heat insulating layer;
Comprising
The heat insulating layer has a plurality of vacuum heat insulating members,
A gap is provided between the adjacent vacuum heat insulating members ,
The heat insulating layer is formed by stacking a plurality of the vacuum heat insulating members,
Wherein Between the vacuum heat insulating member, the cryogenic fluid transport flexible tube, characterized in Rukoto sliding layer is provided for sliding the vacuum insulation members to each other.
前記摺動層は、樹脂テープ、不織布テープ、油浸紙テープのいずれかが巻き付けられた層であることを特徴とする請求項に記載の極低温流体輸送用可撓管。 2. The flexible tube for transporting a cryogenic fluid according to claim 1 , wherein the sliding layer is a layer around which any one of a resin tape, a nonwoven fabric tape, and an oil immersion paper tape is wound. 前記ギャップの幅は前記真空断熱部材の幅の8%以上であることを特徴とする請求項1または請求項2記載の極低温流体輸送用可撓管。 The flexible pipe for transporting cryogenic fluid according to claim 1 or 2, wherein a width of the gap is 8% or more of a width of the vacuum heat insulating member. 前記真空断熱部材は、
金属層を有する外包材と、
前記外包材内に充填された断熱材と、
を具備し、
前記外包材内が減圧されて密封されていることを特徴とする請求項1から請求項3のいずれかに記載の極低温流体輸送用可撓管。
The vacuum heat insulating member is
An outer packaging material having a metal layer;
A heat insulating material filled in the outer packaging material;
Comprising
4. The flexible tube for transporting a cryogenic fluid according to claim 1, wherein the outer packaging material is sealed under reduced pressure.
前記断熱材は、連通ウレタンフォームであることを特徴とする請求項記載の極低温流体輸送用可撓管。
The flexible pipe for transporting a cryogenic fluid according to claim 4 , wherein the heat insulating material is a continuous urethane foam.
JP2008087736A 2008-03-28 2008-03-28 Flexible tube for cryogenic fluid transport Active JP5242217B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008087736A JP5242217B2 (en) 2008-03-28 2008-03-28 Flexible tube for cryogenic fluid transport

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008087736A JP5242217B2 (en) 2008-03-28 2008-03-28 Flexible tube for cryogenic fluid transport

Publications (2)

Publication Number Publication Date
JP2009243496A JP2009243496A (en) 2009-10-22
JP5242217B2 true JP5242217B2 (en) 2013-07-24

Family

ID=41305653

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008087736A Active JP5242217B2 (en) 2008-03-28 2008-03-28 Flexible tube for cryogenic fluid transport

Country Status (1)

Country Link
JP (1) JP5242217B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5165770B2 (en) * 2011-01-12 2013-03-21 大同特殊工業株式会社 Heat resistant flexible tube
ES2528895T3 (en) * 2011-01-18 2015-02-13 Leoni Kabel Holding Gmbh Device for automated feeding of joining elements to a processing unit as well as feeding sleeve for joining elements
CN103470876A (en) * 2013-09-27 2013-12-25 苏州市依星橡塑有限公司 Flexible heat preservation rubber tube
JP6367129B2 (en) * 2015-01-29 2018-08-01 タイガースポリマー株式会社 Flexible insulation hose
JP7393983B2 (en) 2020-03-12 2023-12-07 古河電気工業株式会社 fluid transport pipe
CN114382957B (en) * 2022-01-14 2023-12-01 中海石油气电集团有限责任公司 LNG low-temperature hose body forming method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05180375A (en) * 1991-12-26 1993-07-20 Furukawa Electric Co Ltd:The Flexible fluid transport tube
JPH09184594A (en) * 1995-12-28 1997-07-15 Sumitomo Electric Ind Ltd Heat insulating pipe for very low temperature
JP4130982B2 (en) * 2004-01-30 2008-08-13 有限会社メタルパネル Vacuum insulation
JP2007205503A (en) * 2006-02-03 2007-08-16 Kuraray Plast Co Ltd Thermal insulated double-walled pipe

Also Published As

Publication number Publication date
JP2009243496A (en) 2009-10-22

Similar Documents

Publication Publication Date Title
JP5242217B2 (en) Flexible tube for cryogenic fluid transport
JP5184177B2 (en) Flexible tube for cryogenic fluid transport
US8196611B2 (en) Pipe
CN100498028C (en) Load-bearing, lightweight, and compact super-insulation system
US8439603B2 (en) Improvements relating to hose
JP5746822B2 (en) Axial reinforcement hose
US8708606B2 (en) Relating to pipe
US8079619B2 (en) Hose end fitting
JP2015092112A (en) Hose assembly for transferring cryogenic fluid and composite hose
WO2007055583A1 (en) Flexible duct for cryogenic fluids
JP5184176B2 (en) Flexible tube for cryogenic fluid transport
JP2010526256A (en) Unloading pipeline
US9945508B2 (en) Flexible pipe for transporting a cryogenic fluid, and associated equipment and method
JP5534980B2 (en) Flexible pipe for fluid transportation, carbon dioxide storage system, and carbon dioxide storage method
JP5170883B2 (en) Flexible pipe laying device
JP6719412B2 (en) Flexible tube for fluid transportation and method for manufacturing flexible tube for fluid transportation
US20100229995A1 (en) Hose
JP2022144702A (en) Fluid transport pipe
CN113056632A (en) Storage device for liquefied gas

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110325

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121218

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130218

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130312

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130403

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5242217

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250