JPH05180375A - Flexible fluid transport tube - Google Patents

Flexible fluid transport tube

Info

Publication number
JPH05180375A
JPH05180375A JP3357710A JP35771091A JPH05180375A JP H05180375 A JPH05180375 A JP H05180375A JP 3357710 A JP3357710 A JP 3357710A JP 35771091 A JP35771091 A JP 35771091A JP H05180375 A JPH05180375 A JP H05180375A
Authority
JP
Japan
Prior art keywords
specific gravity
layer
low specific
low density
length
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3357710A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Makino
良之 牧野
Original Assignee
Furukawa Electric Co Ltd:The
古河電気工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Furukawa Electric Co Ltd:The, 古河電気工業株式会社 filed Critical Furukawa Electric Co Ltd:The
Priority to JP3357710A priority Critical patent/JPH05180375A/en
Publication of JPH05180375A publication Critical patent/JPH05180375A/en
Application status is Pending legal-status Critical

Links

Abstract

PURPOSE: To prevent crushing of a low specific gravity layer of a flexible fluid transport tube having a good heat insulation property and a good buoyancy for transporting fluid of petroleum, chemical, etc., and improve its resistance to a side pressure and an external pressure.
CONSTITUTION: A low specific gravity layer 5 of a specific gravity of 1 or less having a heat insulation property is provided on a circumferential reinforcement layer 3 for reinforcement of a plastic inner tube 2 and an axial reinforcement layer 4. This low specific gravity layer 5 is composed of a rigid low specific gravity body 5a and a soft low specific gravity body 5b disposed alternately along the length of a tube. A length L of the soft low specific gravity body 5b along the tube length and its thickness (t) have relationship of L≥0.5t, and a length H of the rigid low specific gravity body 5a and the length L of the soft low specific gravity body 5b along the tube length have relationship of H≥0.6L.
COPYRIGHT: (C)1993,JPO&Japio

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、たとえば、石油、化学薬品等の流体を輸送するために用いられる可撓性流体輸送管に関するものである。 The present invention relates, for example, it relates to a flexible fluid transport pipe used to transport petroleum, a fluid such as chemicals.

【0002】 [0002]

【従来の技術】可撓性流体輸送管は通常、以下のように構成されている。 BACKGROUND OF THE INVENTION flexible fluid transport tubes typically configured as follows. まず、外圧強度または側圧強度を得るために断面形状S状のステンレステープを螺旋状に噛み合わせてなるインターロック管の周囲に内部流体の漏洩を防止するためのプラスチックを被覆した内管の周囲に、輸送流体の圧力により生ずるフープストレスから内管を補強する周方向補強層が配置されている。 First, the periphery of the inner tube coated with plastic in order to prevent leakage of internal fluid around the interlocking tube made by engaging the cross section S-shaped stainless steel tape helically in order to obtain the external pressure strength or lateral pressure strength , the circumferential reinforcing layer for reinforcing the inner tube from the hoop stress caused by the pressure of the transport fluid is disposed. この周方向補強層は、たとえば、金属条または金属テープや高強度繊維を短ピッチで螺旋巻して構成されている。 The circumferential reinforcing layer, for example, is configured by a spiral winding a metal strip or metal tape and high strength fibers in a short pitch. 周方向補強層の外側には、内圧力や張力に対する軸方向補強層が配置されている。 On the outside of the circumferential reinforcing layer, the axial reinforcing layer is disposed against the inner pressure and tension. 軸方向補強層は、金属条や繊維強化プラスチック条を長ピッチで螺旋巻して構成されている。 Axial reinforcing layer, a metal strip or fiber-reinforced plastic strip is constituted by helically winding a long pitch. さらにこの軸方向補強層の周囲には、たとえば、プラスチックからなる保護シース層が設けられている。 More around the axial reinforcing layer, for example, protective sheath layer made of plastic is provided.

【0003】このような可撓性流体輸送管が、大水深海域において懸垂状態で使われる場合、可撓性流体輸送管は長大になるため、可撓性流体輸送管の自重に起因して大きな張力が発生し使用が困難になる。 [0003] large such flexible fluid transport pipe, when used in a suspended state in the deep sea, since the flexible fluid transport pipe becomes long, due to the own weight of the flexible fluid transport pipe tension occurs use becomes difficult. またこのような流体輸送管において、高粘度の流体を輸送する場合、輸送流体温度の低下を少なくし流体粘度の上昇を最小限度におさえる必要がある。 In such a fluid transport pipe, when transporting high viscosity fluids, to reduce the lowering of the transport fluid temperature is required to suppress the increase in the fluid viscosity to a minimum.

【0004】従来、このような問題を解決することを目的として、可撓性流体輸送管の浮力を増大しまた断熱性を改善するために、たとえば、発泡プラスチック層、シンタクチックフォーム層やプラスチックチューブからなる断熱性を有する比重が1以下の低比重層を軸方向補強層の外側や保護シース層の外側に設けている。 Conventionally, for the purpose of solving such a problem, the buoyancy of the flexible fluid transport tubes increases also to improve the thermal insulation, for example, foamed plastic layer, the syntactic foam layer and a plastic tube specific gravity having a heat insulating property made of are provided 1 following the low specific gravity layer to the outside of the outer or protective sheath layer in the axial direction reinforcement layer.

【0005】 [0005]

【発明が解決しようとする課題】たとえば、可撓性流体輸送管を海中に布設する場合、自重で海中に落下することを防ぐために、布設船上で無限軌道式引取機等により可撓性流体輸送管を挟み込むことによりブレーキをかけながら海中に落としこんでいくことが行われている。 [SUMMARY OF THE INVENTION For example, when laying the flexible fluid transport pipe into the sea, to prevent falling into the sea due to its own weight, the flexible fluid transport by crawler winder etc. by laying board it has been made to continue crowded dropped into the sea while applying the brake by sandwiching the tube. 発泡プラスチックのテープやプラスチックのチューブを低比重層にもちいた可撓性流体輸送管は、低比重層の側圧強度が弱いために、このような布設時に無限軌道式引取機等による圧縮により、低比重層が潰されたり、また低比重層の外圧強度が低いために海中で水圧により低比重層が潰され、海中で所望の機能が損なわれるという問題点がある。 Flexible fluid transport tube using a plastic foam tape or plastic tubes to the low specific gravity layer, for lateral pressure strength of the low density layer is weak, the compression by the crawler puller or the like during such laying, low or specific gravity layer is crushed and low specific gravity layer is crushed by the water pressure in the sea for external pressure strength of the low density layer is low, there is a problem that a desired function in the sea is impaired.

【0006】また可撓性流体輸送管にシンタクチックフォームのように堅い低比重層を設ける場合、上記の側圧・外圧による問題は回避可能であるが、シンタクチックフォームに可撓性がないため全長にわたり連続的に低比重層を設けることができない。 [0006] When providing a rigid low density layer as in the syntactic foam to flexible fluid transport pipe, but a problem by the lateral pressure-external pressure can be avoided, the overall length because flexibility is not in syntactic foam can not be continuously providing the low specific gravity layer over. そこで可撓性を付与するために、長手方向に間隔をあけて部分的に低比重層を設けることが行われる。 Therefore, in order to impart flexibility, it is performed longitudinally spaced partially providing the low specific gravity layer. しかし可撓性流体輸送管に低比重層がない部分が生じ、断熱性・浮力が充分に得られないという問題点や低比重層間のすきまがあることにより管長手方向に潮流等による流体力の影響を受け易くなり、 However, the flexible fluid transport pipe resulting low density layer is not part of a fluid force due to tidal current or the like in the longitudinal direction of the tube by thermal insulation, buoyancy is clearance problems and low density layers of not sufficiently obtained is easily affected,
可撓性流体輸送管に過大な張力を与えやすくなるといった問題点がある。 There is a problem that tends to give an excessive tension to the flexible fluid transport pipe.

【0007】本発明はかかる点に、鑑みてなされたものであり、充分な断熱効果や浮力があり、低比重層が潰されることのない、可撓性流体輸送管を提供するものである。 [0007] The present invention is in this respect has been made in view, there is sufficient heat insulation effect and buoyancy, low specific gravity layer is never crushed, there is provided a flexible fluid transport pipe.

【0008】 [0008]

【課題を解決するための手段】本発明は、内部に流体が流通するプラスチック内管と、該内管の周囲に配置され該内管の周方向に加わる応力から該内管を補強する周方向補強層と、該周方向補強層の周囲に配置され前記内管の軸方向に加わる張力から前記内管を補強する軸方向補強層と、該軸方向補強層の周囲に配置された低比重層と、該低比重層の周囲に被覆した保護シース層とを具備する可撓性流体輸送管において、前記低比重層が硬質低比重体と軟質低比重体により構成され、管長手方向に該硬質低比重体と該軟質低比重体が交互に配列され、該軟質低比重体の管長手方向長さLと該低比重層厚さtの間にはL≧0.5tの関係を有し、かつ該硬質低比重体の管長手方向長さHと該軟質低比重体の管長手方向長さL The present invention SUMMARY OF] is circumferentially reinforced plastic inner pipe in which the fluid flows inside the inner tube from stress applied in the circumferential direction of the disposed around the inner tube inner tube reinforcing layer and an axial reinforcing layer for reinforcing said inner tube from tension placed around applied in the axial direction of the inner tube of the peripheral-direction reinforcement layer, the low specific gravity layer disposed around the axial direction reinforcement layer When, in the flexible fluid transport pipe having a protective sheath layer coated around the low specific gravity layer, the low specific gravity layer is constituted by a rigid low density material and the soft low density material, rigid in the longitudinal direction of the tube low specific gravity material and a soft quality low specific gravity material are arranged alternately, between the soft quality low density of longitudinal direction of the tube length L and low specific gravity layer thickness t have a relationship of L ≧ 0.5 t, and the longitudinal direction of the tube length of the rigid low density material pipe longitudinal direction length H and the soft quality low density of L
の間にはH≧0.6Lの関係を有することを特徴とする可撓性流体輸送管である。 Between a flexible fluid transport pipe and having a relationship of H ≧ 0.6 L.

【0009】 [0009]

【作用】本発明の可撓性流体輸送管は、低比重層が軟質低比重体と硬質低比重体が管長手方向に交互に配置され、該軟質低比重体の管長手方向長さLと該軟質低比重体厚さtの間にはL≧0.5tの関係を有しかつ該硬質低比重体の管長手方向長さHと該軟質低比重体の管長手方向長さLの間にはH≧0.6Lの関係を有している。 Flexible fluid transport pipe of the effects of the present invention, the low specific gravity layer is soft low density material and the hard low specific gravity material are alternately arranged in the longitudinal direction of the tube, the pipe longitudinal direction length L of the soft quality low density body between L ≧ 0.5 t have the relationship and pipe longitudinal direction of the rigid low density material length H and the soft quality low density of pipe longitudinal direction length L between the soft quality low density body thickness t We have a relationship of H ≧ 0.6L in.
これにより、側圧・外圧には硬質低比重体により保持され、可撓性は軟質低比重体により機能され、また該低比重層は保護シースにより被われるので可撓性流体輸送管の表面は平滑であり、無用の流体力をうけることを防止することができる。 Thus, retained by the rigid low density material in the lateral pressure-external pressure, flexibility is function of a soft low density material and low specific gravity layer is covered by a protective sheath surface of the flexible fluid transport pipe smooth in it, it is possible to prevent the receive fluid forces useless.

【0010】 [0010]

【実施例】以下、本発明の実施例を図1(a)、(b) EXAMPLES Hereinafter, the embodiments of the present invention FIG. 1 (a), (b)
を参照して説明する。 With reference to the description. 図中、1は断面形状S条で噛み合わせた金属製のインターロック管である。 In the figure, 1 is a metallic interlocking tubes which engage in cross-section S strip. インターロック管1の周囲には、可撓性を有するプラスチックパイプから成るプラスチック内管2が配置されている。 Around the interlock pipe 1, a plastic inner pipe 2 made of plastic pipes having flexibility is disposed. プラスチックパイプの材質は通常ポリエチレンやポリアミド樹脂が使われる。 The material of the plastic pipes are usually polyethylene or polyamide resin is used.

【0011】プラスチック内管2の周囲にはその内管2 [0011] around the plastic inner tube 2 that the inner tube 2
の周方向に発生するフープ応力から内管2を補強する周方向補強層3が配置されている。 Circumferential circumferential reinforcing layer 3 for reinforcing the inner tube 2 from the hoop stress generated in the direction is arranged in. 周方向補強層3は、断面形状C字状の金属条をその凸部が互いにかみ合うようにして2層、短ピッチで螺旋巻したものである。 Circumferential reinforcing layer 3, second layer and the metal strip cross-section C-shape as the convex portion engage with each other is obtained by helically winding a short pitch.

【0012】周方向補強層3の上層にはプラスチック内管2の軸方向に加わる外力からその内管2を補強する軸方向補強層4が配置されている。 [0012] The upper layer of circumferential reinforcement layer 3 axial reinforcing layer 4 to reinforce the inner tube 2 from external force applied in the axial direction of the plastic inner tube 2 is arranged. 軸方向補強層4は、断面が矩形または円形の金属や繊維強化プラスチック等からなる線状体4a、4bを長ピッチでかつ望ましくは線状体4a、4bの巻き方向を変えて周方向補強層3の周囲に2層螺旋巻きしたものである。 Axial reinforcement layer 4 is linear body 4a, and 4b and long pitch desirably linear body 4a, the circumferential reinforcement layer by changing the winding direction of 4b in cross-section consists of a rectangular or circular metal or fiber reinforced plastics, etc. around 3 is obtained by winding two layers spiral.

【0013】軸方向補強層4の周囲には、浮力や断熱性を付与するために比重が1以下の低比重層5が配置されている。 [0013] about the axial reinforcing layer 4, the low specific gravity layer 5 a specific gravity of 1 or less in order to impart buoyancy and thermal insulation is arranged. 低比重層5は硬質低比重体5aおよび軟質低比重体5bより構成されており、硬質低比重体5aおよび軟質低比重体5bは長手方向に交互に配列されている。 Low specific gravity layer 5 is composed of a hard low density bodies 5a and soft low density material 5b, rigid low density material 5a and soft low density material 5b are alternately arranged in the longitudinal direction.
また、硬質低比重体5aは例えば、中空のガラス玉やプラスチック玉をエポキシ樹脂等に分散させたシンタクチックフォーム、木材、独立気泡の発泡金属等からなる成形品で形成される。 Also, rigid low density material 5a for example, syntactic foam hollow glass beads or plastic beads are dispersed in epoxy resin, wood, is formed by a molded article made of foamed metal or the like of closed cells. さらに、軟質低比重体5bは、例えば、ポリエチレン、ポリプロピレン、塩化ビニル、ウレタンの発泡体のような発泡プラスチックで押出被覆またテープ巻等により形成される。 Furthermore, the soft low density material 5b is, for example, polyethylene, polypropylene, polyvinyl chloride, is formed by extrusion coating The tape winding or the like in plastic foam such as urethane foam. またさらに適度な可撓性を付与するために軟質低比重体5bの管長手方向長さL Further suitable flexibility the tube longitudinal direction length of the soft low density material 5b in order to impart L
と軟質低比重体の厚さtとの間にはL≧0.5tの関係を有し、充分な耐外圧性・耐側圧性を付与するために硬質低比重体5aの管長手方向長さHと軟質低比重体5b L ≧ 0.5 t of having a relationship, the longitudinal direction of the tube length of the rigid low density material 5a in order to impart sufficient 耐Gaiatsu resistance and lateral pressure resistance between the thickness t of the soft low density material H and the soft low specific gravity bodies 5b
の管長手方向長さLとの間にはH≧0.6Lの関係を有している。 Have a relationship of H ≧ 0.6 L between the pipe longitudinal direction length L of the.

【0014】低比重層5の周囲には、保護シース層6が被覆されている。 [0014] around the low specific gravity layer 5, the protective sheath layer 6 is covered. 保護シース6は通常ポリエチレンやポリアミド樹脂が使われる。 Protection sheath 6 is typically polyethylene or polyamide resin is used. また、外傷防止のためにさらに保護シース6の外側には金属テープ巻きや金属テープを断面形状S状で噛み合わせ周回巻きした保護層(図示せず)が設けられることがある。 Also, the further outer protective sheath 6 in order to prevent trauma sometimes protective layer wound laps engaging the metal tape winding or metal tape in cross-section S-shaped (not shown) is provided.

【0015】本発明の可撓性流体輸送管は上記のように、低比重層5は硬質低比重体5aと軟質低比重体5b The flexible fluid transport pipe of the present invention as described above, the low specific gravity layer 5 is rigid low density material 5a and the soft low density material 5b
が管長手方向に交互に配列され、軟質低比重体5bの管長手方向長さLと軟質低比重体の厚さtとの間にはL≧ L ≧ Between There are alternately arranged in the longitudinal direction of the tube, the thickness t of the longitudinal direction of the tube length L and a soft low density of soft low density material 5b
0.5tの関係を有し、硬質低比重体5aの管長手方向長さHと軟質低比重体5bの管長手方向長さLとの間にはH≧0.6Lの関係を有している。 Has a relationship of 0.5 t, between the pipe longitudinal direction length L of the rigid low density material 5a in the longitudinal direction of the tube length H and the soft low density material 5b has a relationship of H ≧ 0.6 L there.

【0016】このような低比重層5の構成により、流体輸送管の可撓性と耐外圧・耐側圧性を両立することができる。 [0016] Such a structure of the low specific gravity layer 5, it is possible to achieve both flexibility and 耐Gaiatsu-lateral pressure resistance of the fluid transport pipe. すなわち、外圧・側圧による変形が押さえられるので、浮力低下が最低限に押さえられ、可撓性流体輸送管上端部に過大な張力が加わることがなく、また充分な可撓性を有しているので、波浪や潮流により外力を受けたときに容易に曲がり、浮体等の移動に追従することができ、大水深海域で使用することが可能である。 That is, since it is pressing deformation due to outside pressure-side pressure, buoyancy reduction is suppressed to a minimum, flexible fluid transport pipe upper part without an excessive tension is applied to, also has sufficient flexibility so easy to bend when subjected to external forces by waves and tidal current, it is possible to follow the movement of the floating body such as can be used in deep sea. さらに高粘度流体を輸送する場合、布設時や外水圧による変形を押さえることができるため、海底で断熱性を低下することなく高温で流体を粘度低下を最小限に押さえて輸送することが可能となる。 Further when transporting high viscosity fluids, it is possible to suppress the deformation due to laying or when external water pressure, and can be transported with minimal viscosity reduction fluid at high temperature without lowering the heat insulating property at the seabed Become.

【0017】つぎに、内径101mm、軸方向補強層4 Next, an inner diameter of 101 mm, axial reinforcing layer 4
の外径142mm、低比重層5の厚さ12mm、軟質低比重体5bは3倍発泡ポリプロピレンフォームからなり、硬質低比重体5aは比重0.5のシンタクチックフォームからなる可撓性流体輸送管において低比重層5の構成を表1に示す種々の値にしたものを作成し、実験を行った。 Outer diameter 142 mm, thickness 12mm of the low specific gravity layer 5, the soft low density material 5b is a three-fold foamed polypropylene foam, rigid low density material. 5a of syntactic foam having a specific gravity of 0.5 flexible fluid transport tube the configuration of the low density layer 5 to create what was to various values ​​shown in Table 1 in the experiments were conducted. また比較のために前記可撓性流体輸送管において低比重層が3倍発泡ポリプロピレンフォームを全長にわたり周回巻きし厚さ12mmの低比重層を有する従来構造品も試験に供した。 The conventional structure product having a low specific gravity layer of laps wound to 12mm thick low density layer over the entire length of 3 times expanded polypropylene foam in the flexible fluid transport pipe for comparison were also subjected to the test. 表1に実験に供した試料の諸元を示す。 Table 1 shows the specifications of samples subjected to the experiment.

【0018】実験では最小曲げ径と側圧試験を行った。 [0018] was the minimum bend radius and lateral pressure test in the experiment.
最小曲げ径は約3m長の該可撓性流体輸送管の両端をワイヤにより結び、そのワイヤはロードセル、チェインブロックを介しており、チェインブロックにより曲げ作用を与え、ロードセルにより曲げ時の荷重を測定される。 Minimum bend diameter tied both ends of the flexible fluid transport pipe of about 3m long by wire, the wire is a load cell, and through the chain block, giving the effect bent by chain block, measured load during bending by the load cell It is.
該可撓性流体輸送管に曲げを与えたとき該荷重が急激に上昇し始めた時の曲げ径を最小曲げ径とした。 Of the minimum bending diameter bend radius when 該荷 heavy began rapidly increased when given bending in the flexible fluid transport pipe.

【0019】また、側圧試験は長さ約50cmの該可撓性流体輸送管を鉄板で上下にはさみ、上部よりロードセルを接続した油圧シリンダにより圧縮荷重を加えることにより行った。 Further, the lateral pressure test sandwiching the flexible fluid transport pipe having a length of about 50cm up and down in iron, was carried out by applying a compressive load by a hydraulic cylinder connected to the load cell from the top. 2500kgまで荷重をあたえて破壊の有無を観察した。 To observe the presence or absence of destruction by applying a load up to 2500kg. 表2に実験結果を示す。 Table 2 shows the experimental results.

【0020】 [0020]

【表1】 [Table 1]

【0021】 [0021]

【表2】 [Table 2]

【0022】表2によると、本発明に基づく試料1は最小曲げ径は従来構造品なみであるが、耐側圧性に優れている。 [0022] According to Table 2, the sample 1 according to the present invention is the minimum bend radius is a conventional structure products comparable, has excellent resistance to lateral pressure. また軟質低比重体の長さを短くした試料2は耐側圧性は良好であるが最小曲げ径が大きすぎ、実用には適さない。 The soft low density material sample 2 was shorter length lateral pressure resistance is good it is but the minimum bend radius is too large, the not suitable for practical use. また、試料3は試料2より軟質低比重体の長さを若干長くしたものであり最小曲げ径が実用上の限界である3mとなる。 In Sample 3 the minimum bend radius is obtained by slightly increasing the length of the soft low density material than the sample 2 is the limit of practical use 3m.

【0023】一方硬質低比重体の長さを短く、軟質低比重体の長さを長くした試料4は最小曲げ径は充分であるが、耐側圧性が充分でない。 On the other hand shortening the length of the rigid low density material, but the sample 4 obtained by increasing the length of the soft low density material is the minimum bend radius is sufficient, is not sufficient lateral pressure resistance. また、硬質比重体の長さを試料4より若干長くした試料5は塑性変形が少し見られたが、2500kgの耐側圧性があり実用上差支えない。 In Sample 5 the length of the rigid gravity body was slightly longer than Sample 4 is plastically deformed was observed a little, no problem in practical use has lateral pressure resistance of 2500 kg.

【0024】上記の数値を軟質低比重体の長さL、軟質低比重体の厚さtおよび硬質低比重体の長さHで示すと、Lはtの0.41倍であると可撓性で問題を生じ、 The length of the above-mentioned numerical soft low density material L, and indicated by the length H of the thickness t and the rigid low density of soft low density material, L is a 0.41 times t flexible cause problems with sex,
Lはtの0.5倍であると実用上充分な可撓性が得られる。 L is practically sufficient flexibility to be 0.5 times the t is obtained. またHはLの0.5倍であると耐側圧性に問題を生じ、HはLの0.6倍であると実用に耐え得る耐側圧性を有することが分かる。 The H causes a problem in the lateral pressure resistance to be 0.5 times the L, H is found to have a lateral pressure resistance for practical use and is 0.6 times the L. したがって、L<0.5tでなくかつH<0.6Lでない場合、可撓性に優れ、耐側圧・耐外圧性に優れた低比重層付き可撓性流体輸送管を得ることができる。 Therefore, if not L <and H <0.6 L instead of 0.5 t, excellent flexibility, it is possible to obtain a low density layer with a flexible fluid transport pipe having excellent lateral pressure-耐Gaiatsu properties.

【0025】 [0025]

【発明の効果】本発明の可撓性流体輸送管によれば、前記低比重層が硬質低比重体と軟質低比重体により構成され、管長手方向に該硬質低比重体と該軟質低比重体が交互に配列され、該軟質低比重体の管長手方向長さLと該軟質低比重体厚さtの間にはL≧0.5tの関係を有し、かつ該硬質低比重体の管長手方向長さHと該軟質低比重体の管長手方向長さLの間にはH≧0.6Lの関係を有するため、曲げ作用を受けた場合、軟質低比重体がその曲げ作用を吸収することにより可撓性を生みだし、 According to a flexible fluid transport pipe of the present invention according to the present invention, the low specific gravity layer is constituted by a rigid low density material and the soft low density material, the rigid low density material in the pipe longitudinal direction and soft quality low density body are arranged alternately between the soft quality low density of longitudinal direction of the tube length L and soft quality low density material thickness t satisfy the relationship of L ≧ 0.5 t, and the rigid low density material because during the pipe longitudinal direction length L of the longitudinal direction of the tube length H and the soft quality low density having a relationship H ≧ 0.6 L, when subjected to bending action, the soft low density material is the bending action flexibility produces by absorbing,
また側圧・外圧を受けた場合、硬質低比重体がその圧縮力を受け、低比重層の変形を最小限に押さえる事ができる。 Also when subjected to lateral pressure-external pressure, rigid low density body receives the compressive force, it is possible to minimize the deformation of the low specific gravity layer.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1(a)】本発明の可撓性流体輸送管の一実施例を示す上半部切断正面図である。 [FIGS. 1 (a) is a half sectional front view on showing an embodiment of a flexible fluid transport pipe of the present invention.

【図1(b)】図1(a)に示す流体輸送管の上半部切断側面図である。 Is a half cut-away side view on a fluid transport tube shown in FIG. 1 (b)] FIG. 1 (a).

【符号の説明】 1 インターロック管 2 プラスチック内管 3 周方向補強層 4 軸方向補強層 5 低比重層 5a 硬質低比重体 5b 軟質低比重体 6 保護シース [Reference Numerals] 1 interlock pipe 2 plastic inner tube 3 circumferential reinforcement layer 4 axially reinforced layer 5 low specific gravity layer 5a rigid low density material 5b soft low density material 6 protective sheath

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 内部に流体が流通するプラスチック内管と、該内管の周囲に配置され該内管の周方向に加わる応力から該内管を補強する周方向補強層と、該周方向補強層の周囲に配置され前記内管の軸方向に加わる張力から前記内管を補強する軸方向補強層と、該軸方向補強層の周囲に配置された断熱性を有する比重1以下の低比重層と、該低比重層の周囲に被覆した保護シース層とを具備する可撓性流体輸送管において、前記低比重層が硬質低比重体と軟質低比重体により構成され、管長手方向に該硬質低比重体と該軟質低比重体が交互に配列され、該軟質低比重体の管長手方向長さLと該軟質低比重体厚さt 1. A plastic inner tube through which fluid flows inside, and the circumferential reinforcing layer for reinforcing the inner tube from stress applied in the circumferential direction of the disposed around the inner tube inner tube, circumferential-direction reinforcement the axial reinforcing layer for reinforcing said inner tube from tension placed around the layer applied in the axial direction of the inner tube, a specific gravity less than one low specific gravity layer having arranged thermal insulation around the axial direction reinforcement layer When, in the flexible fluid transport pipe having a protective sheath layer coated around the low specific gravity layer, the low specific gravity layer is constituted by a rigid low density material and the soft low density material, rigid in the longitudinal direction of the tube low specific gravity material and a soft quality low specific gravity material are arranged alternately, the soft pipe longitudinal direction length of the electrolyte a low specific gravity material L and soft quality low density body thickness t
    の間にはL≧0.5tの関係を有し、かつ該硬質低比重体の管長手方向長さHと該軟質低比重体の管長手方向長さLの間にはH≧0.6Lの関係を有することを特徴とする可撓性流体輸送管。 Between have the relationship L ≧ 0.5 t, and H ≧ 0.6 L between the rigid low density of longitudinal direction of the tube length H and the soft quality low density of pipe longitudinal direction length L flexible fluid transport pipe and having a relationship.
JP3357710A 1991-12-26 1991-12-26 Flexible fluid transport tube Pending JPH05180375A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3357710A JPH05180375A (en) 1991-12-26 1991-12-26 Flexible fluid transport tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3357710A JPH05180375A (en) 1991-12-26 1991-12-26 Flexible fluid transport tube

Publications (1)

Publication Number Publication Date
JPH05180375A true JPH05180375A (en) 1993-07-20

Family

ID=18455518

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3357710A Pending JPH05180375A (en) 1991-12-26 1991-12-26 Flexible fluid transport tube

Country Status (1)

Country Link
JP (1) JPH05180375A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085310A (en) * 2007-09-28 2009-04-23 Furukawa Electric Co Ltd:The Floating flexible pipe
JP2009121618A (en) * 2007-11-15 2009-06-04 Yokohama Rubber Co Ltd:The Fluid conveying hose
WO2009119296A1 (en) 2008-03-28 2009-10-01 古河電気工業株式会社 Flexible tube for transporting cryogenic fluid and structure for detecting leakage of fluid in tube
WO2009119297A1 (en) 2008-03-28 2009-10-01 古河電気工業株式会社 Fluid conveying tube and fluid leakage detecting system
JP2009243496A (en) * 2008-03-28 2009-10-22 Furukawa Electric Co Ltd:The Cryogenic fluid transportation flexible tube
JP2017518182A (en) * 2014-02-24 2017-07-06 ロッキード マーティン コーポレーション Friction stir welding pipe

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009085310A (en) * 2007-09-28 2009-04-23 Furukawa Electric Co Ltd:The Floating flexible pipe
JP2009121618A (en) * 2007-11-15 2009-06-04 Yokohama Rubber Co Ltd:The Fluid conveying hose
WO2009119296A1 (en) 2008-03-28 2009-10-01 古河電気工業株式会社 Flexible tube for transporting cryogenic fluid and structure for detecting leakage of fluid in tube
WO2009119297A1 (en) 2008-03-28 2009-10-01 古河電気工業株式会社 Fluid conveying tube and fluid leakage detecting system
JP2009243496A (en) * 2008-03-28 2009-10-22 Furukawa Electric Co Ltd:The Cryogenic fluid transportation flexible tube
US8479565B2 (en) 2008-03-28 2013-07-09 Furukawa Electric Co., Ltd. Fluid conveying tube and fluid leakage detecting system
US8789562B2 (en) 2008-03-28 2014-07-29 Furukawa Electric Co., Ltd Flexible tube for transporting cryogenic fluid and structure for detecting leakage of fluid in tube
JP2017518182A (en) * 2014-02-24 2017-07-06 ロッキード マーティン コーポレーション Friction stir welding pipe

Similar Documents

Publication Publication Date Title
US3400737A (en) Composite tubing product and apparatus for manufacturing the same
US5785092A (en) High-pressure fiber reinforced composite pipe joint
RU2419737C2 (en) Insulated pipe and procedure for its fabrication
US4514245A (en) Method for reinforcing a hollow body made by winding a profiled section
US4585487A (en) Filiform elements usable for reinforcing moldable materials, particularly concrete
KR101156311B1 (en) Thermally insulating pipe and methods for the same
CA2445586C (en) Improved composite tubing
US5678609A (en) Aerial duct with ribbed liner
US5645110A (en) Flexible high pressure pipe
RU2368755C2 (en) Flexible drill string
US5509097A (en) Optical fiber core and cable with reinforced buffer tube loosely enclosing optical fibers
US4549581A (en) Flexible pipe
US3604461A (en) Composite tubing
EP0803877A2 (en) Arrangement in a cable
US5795102A (en) Marine and submarine apparatus
CN1020961C (en) Optical cable
US20040055657A1 (en) Flexible tubular pipe
CA2490176C (en) Fiber reinforced spoolable pipe
EP0157948B1 (en) Improvements relating to the lining of pipelines and passageways
US20040182462A1 (en) Armoured, flexible pipe and use of same
RU2072060C1 (en) Flexible tubular framework
US5499661A (en) Tube comprising composite layers with different modulii of elasticity
US3858616A (en) Tight flexible pipe
CN1262719C (en) Reinforcing bar and method for the production thereof
US6409226B1 (en) “Corrugated thick-walled pipe for use in wellbores”