JP5241649B2 - Seismic impact force measurement system and measurement method - Google Patents

Seismic impact force measurement system and measurement method Download PDF

Info

Publication number
JP5241649B2
JP5241649B2 JP2009187036A JP2009187036A JP5241649B2 JP 5241649 B2 JP5241649 B2 JP 5241649B2 JP 2009187036 A JP2009187036 A JP 2009187036A JP 2009187036 A JP2009187036 A JP 2009187036A JP 5241649 B2 JP5241649 B2 JP 5241649B2
Authority
JP
Japan
Prior art keywords
impact force
pressure
color
dye precursor
developer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009187036A
Other languages
Japanese (ja)
Other versions
JP2011038913A (en
Inventor
宏行 坂井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Railway Technical Research Institute
Original Assignee
Railway Technical Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Railway Technical Research Institute filed Critical Railway Technical Research Institute
Priority to JP2009187036A priority Critical patent/JP5241649B2/en
Publication of JP2011038913A publication Critical patent/JP2011038913A/en
Application granted granted Critical
Publication of JP5241649B2 publication Critical patent/JP5241649B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Geophysics And Detection Of Objects (AREA)
  • Force Measurement Appropriate To Specific Purposes (AREA)

Description

本発明は、地震の発生等によって基礎杭等の地下埋設物が受ける衝撃力を測定する地震衝撃力の測定システムおよび測定方法の技術分野に関するものである。   The present invention relates to a technical field of a measurement system and a measurement method of an earthquake impact force that measures an impact force received by an underground buried object such as a foundation pile due to the occurrence of an earthquake or the like.

構造物が地震の発生等によって強い衝撃を受けた場合、該構造物の地下部分に埋設された基礎杭等の地下埋設物がどれ程の衝撃力を受けたかを知ることは、構造物や地下埋設物における亀裂や破壊等の地震被害の可能性を判断したり、或いは被害発生の場合における補修方法を決定したりする上でとても重要である。
ところで地下埋設物の地震被害の程度については、目視等によっては知ることが難しく、そこで基礎杭として埋設された鉄筋に導線を接続し、該導線を電気抵抗測定器に接続して、通常時における電気抵抗値を予め測定しておき、地震が発生した場合は地震後の電気抵抗値を測定して前記通常時の測定値と比較し、異なる測定値を得た場合には基礎杭が破壊若しくは損傷を受けたと評価するように構成したもの(特許文献1)や、地下埋設物に振動装置で振動を与え、該振動によって発生する反射波の状態を地震前と地震後とで比較することによって基礎杭の破壊の有無や程度を評価するようにしたものが提唱されている(特許文献2)。しかしながらこれらのものは、地下埋設物の破壊の有無や程度を評価するものであって、構造物がどれ程の衝撃力を受けたかを知るものではない。
また、受けた外力によって生じる応力に比例して発光する応力発光材料を用い、該応力発光材料の発光状態を観測することで応力測定をするようにしたもの(特許文献3)や、二液反応により発光する発光前駆体を、所定の応力で破壊される脆性材料に封入して基礎杭内部に挿入し、地震により基礎杭に生じた応力によって脆性材料が破壊されると二液が反応して発光するよう構成し、該発光の有無を観測することで所定以上の応力を受けたか否かを検知するようにしたものが知られている(特許文献4)。
When a structure is subjected to a strong impact due to the occurrence of an earthquake, etc., knowing how much impact force is applied to underground structures such as foundation piles embedded in the underground part of the structure This is very important in determining the possibility of earthquake damage such as cracks and destruction in buried objects, or in determining the repair method in the event of damage.
By the way, it is difficult to know the degree of earthquake damage of underground buried objects by visual inspection, etc., so connecting a lead wire to a reinforcing bar buried as a foundation pile, connecting the lead wire to an electrical resistance measuring instrument, The electrical resistance value is measured in advance, and if an earthquake occurs, the electrical resistance value after the earthquake is measured and compared with the measured value at the normal time. By applying a vibration device to a structure that is evaluated to be damaged (Patent Document 1) or an underground buried object, and comparing the state of reflected waves generated by the vibration before and after the earthquake The thing which evaluated the presence or absence and the grade of destruction of a foundation pile is proposed (patent document 2). However, these are for evaluating the presence or degree of destruction of the underground buried object, and do not know how much impact force the structure has received.
In addition, a stress luminescent material that emits light in proportion to the stress generated by the received external force is used, and stress measurement is performed by observing the light emission state of the stress luminescent material (Patent Document 3), or two-component reaction The luminescent precursor that emits light is enclosed in a brittle material that is destroyed by a predetermined stress and inserted into the foundation pile. When the brittle material is destroyed by the stress generated in the foundation pile by an earthquake, the two liquids react. There is known a configuration in which light is emitted and whether or not a predetermined stress is applied or not is observed by observing the presence or absence of the light emission (Patent Document 4).

特開平10−183658号公報Japanese Patent Laid-Open No. 10-183658 特開平10−183659号公報JP 10-183659 A 特開2001−215157号公報JP 2001-215157 A 特開2003−262554号公報JP 2003-262554 A

しかしながら、前記特許文献3のものを地震による衝撃力の測定に用いようとした場合、該応力発光材料の発光は絶えず変動する地震の応力に対する追従性が悪く、正確な応力測定ができないという問題がある。また特許文献4のものは、所定応力を超えたか否かという一点検知であって、どれくらいの応力が発生したか、ということの測定ができないという問題がある。しかも前者のものは応力に比例する発光であり、また後者のものは化学発光であるため発光時間に制限があり、このため、殆どリアルタイムでの観測が必要であるが、地震発生時に伴い停電になったりパソコン等の観測機械が故障したりすると、電気の供給や観測機械が復旧するまで事実上の観測ができないという問題があり、これらに本発明が解決しようとする課題がある。   However, when the thing of the said patent document 3 is going to be used for the measurement of the impact force by an earthquake, the light emission of this stress light-emitting material has the problem that followability with respect to the stress of the earthquake which fluctuates constantly is bad, and an accurate stress measurement cannot be performed. is there. Moreover, the thing of patent document 4 is one point detection whether it exceeded the predetermined stress, Comprising: There exists a problem that it cannot measure how much stress generate | occur | produced. In addition, the former is luminescence proportional to stress, and the latter is chemiluminescence, so the emission time is limited, so it is necessary to observe almost real time. If an observation machine such as a personal computer breaks down, there is a problem that the actual observation cannot be performed until the power supply or the observation machine is restored, and there are problems to be solved by the present invention.

本発明は、上記の如き実情に鑑みこれらの課題を解決することを目的として創作されたものであって、請求項1の発明は、被検体が地震によって受ける衝撃力を可視化して測定する地震衝撃力測定システムであって、該地震衝撃力測定システムは、発色前の染料前駆体と前記染料前駆体を発色させるための顕色剤とを備え、該染料前駆体と顕色剤のうち少なくとも一方を破壊強度の異なる複数種類のマイクロカプセルに封入して形成される感圧発色体が前記被検体の衝撃力測定部位に設けられ、被検体が受けた地震衝撃力に応じて前記マイクロカプセルが破壊されることにより染料前駆体と顕色剤とが反応して発色する感圧発色体の発色濃度によって被検体が受けた地震衝撃力を測定するにあたり、前記感圧発色体は長尺の硬性部材である発色体取付けプレートに貼着されるとともに、該発色体取付けプレートは前記衝撃力測定部位に設けられる担体に形成された溝部に抜き差し自在に取付けられることで新たな感圧発色体を担持させることができるようにしたことを特徴とする地震衝撃力の測定システムである。
請求項2の発明は、感圧発色体は、シート状であることを特徴とする請求項1記載の地震衝撃力の測定システムある。
請求項3の発明は、被検体が地震によって受ける衝撃力を可視化して測定する地震衝撃力測定方法であって、該地震衝撃力測定方法は、発色前の染料前駆体と前記染料前駆体を発色させるための顕色剤とを備え、該染料前駆体と顕色剤のうち少なくとも一方を破壊強度の異なる複数種類のマイクロカプセルに封入して形成される感圧発色体を前記被検体の衝撃力測定部位に設けて、被検体が受けた地震衝撃力に応じて前記マイクロカプセルが破壊されることにより染料前駆体と顕色剤とが反応して発色する感圧発色体の発色濃度によって被検体が受けた地震衝撃力を測定するにあたり、前記感圧発色体を長尺の硬性部材である発色体取付けプレートに貼着するとともに、該発色体取付けプレートを前記衝撃力測定部位に設けられる担体に形成された溝部に抜き差し自在に取付けるようにすることで新たな感圧発色体を担持させることができるようにしたことを特徴とする地震衝撃力の測定方法である。
The present invention was created with the object of solving these problems in view of the above circumstances, and the invention of claim 1 is an earthquake that visualizes and measures the impact force that a subject receives due to an earthquake. An impact force measurement system comprising: a dye precursor before color development; and a developer for coloring the dye precursor, wherein at least one of the dye precursor and the developer Pressure sensitive color bodies formed by enclosing one of them in a plurality of types of microcapsules having different breaking strengths are provided at the impact force measurement site of the subject, and the microcapsules are arranged according to the seismic impact force received by the subject. When measuring the seismic impact force applied to the specimen by the color density of the pressure sensitive colorant that develops color by the reaction between the dye precursor and the developer due to the destruction , the pressure sensitive colorant is long and rigid. The material While being attached to the body mounting plate, the color body mounting plate can be removably attached to a groove formed in the carrier provided at the impact force measurement site, so that a new pressure sensitive color body can be carried. This is a measurement system for seismic impact force.
The invention according to claim 2 is the seismic impact force measuring system according to claim 1, characterized in that the pressure-sensitive color former is in the form of a sheet.
The invention according to claim 3 is an earthquake impact force measuring method for visualizing and measuring an impact force received by an object due to an earthquake, the earthquake impact force measuring method comprising a dye precursor before coloring and the dye precursor. A pressure-sensitive color former formed by sealing at least one of the dye precursor and the developer in a plurality of types of microcapsules having different breaking strengths. It is provided at the force measurement site, and the microcapsule is destroyed according to the seismic impact force received by the subject, so that the dye precursor and the developer react with each other to develop the color depending on the color density of the pressure sensitive color former. When measuring the seismic impact force received by the specimen , the pressure sensitive color body is attached to a color body mounting plate which is a long rigid member, and the color body mounting plate is provided on the impact force measurement site. Formed into The is a method for measuring seismic impact force, characterized in that to be able to support a new sensitive pressure chromosomal By so attaching telescopically into the groove.

請求項1またはの発明とすることにより、地震が発生して被検体が衝撃を受けると、該衝撃力に応じた数量のマイクロカプセルが破壊され、これによって衝撃力に応じた発色濃度を得ることができる。つまり、衝撃力が強い場合には強い発色を、衝撃力が弱い場合には弱い発色を得ることができて、衝撃力の程度を可視化して測定できることになり、これによって簡単に衝撃力の測定をすることができる。
しかも、該感圧発色体は、衝撃力が最大となった時に最大量のマイクロカプセルが破壊されることから、感圧発色体の測定値は最大衝撃力の値となり、従って、構造物が受けた最大衝撃力を測定することができる。
また、大地震が発生した場合、リアルタイムでの測定は困難である場合も多いが該感圧発色体は、時間が経過しても変色や退色が少ないため、地震発生の後に測定を行っても正確な測定データを得ることができる。従って、仮令停電等の事故が発生した場合であっても、データが消失してしまうといったようなトラブルがなく、確実に衝撃力を測定することができる。
さらにこの発明によれば、衝撃力測定部位に感圧発色体を設けるだけで衝撃力測定を行うことが出来て、衝撃力測定部位に分光器や光検出器といったような特別な装置を設ける必要がなく、地震による衝撃力の測定を簡単なシステムで行うことができる。しかも、どのような場所でも設置することができるため、測定地点を広範囲に設定することができて、より正確な地震衝撃力の測定を行うことができる。
また、感圧発色体を取り出す場合、担体に担持されている感圧発色体を担体から抜き出すことで地中から取り出すことができて、掘削して感圧発色体を地中から取り出したりする必要がなく、簡単に地中から取出すことができる。
請求項2の発明とすることにより、被検体の周囲に設けた支持部材に貼付するだけの簡単な作業で取付けることができるため、任意の場所での衝撃力測定が可能であり、またシート状であることから貼付も簡単であり、計測箇所を多数設けることも容易である。
According to the invention of claim 1 or 3 , when an earthquake occurs and the subject receives an impact, the number of microcapsules corresponding to the impact force is destroyed, thereby obtaining a color density according to the impact force. be able to. In other words, strong color development can be obtained when the impact force is strong, and weak color development can be obtained when the impact force is weak, and the degree of impact force can be visualized and measured. Can do.
Moreover, since the maximum amount of microcapsules is destroyed when the impact force reaches the maximum, the measured value of the pressure-sensitive color former becomes the value of the maximum impact force. The maximum impact force can be measured.
In addition, when a large earthquake occurs, real-time measurement is often difficult, but the pressure-sensitive color former has little discoloration or fading over time, so even if measurement is performed after the earthquake occurs Accurate measurement data can be obtained. Therefore, even when an accident such as a temporary power failure occurs, there is no trouble that data is lost, and the impact force can be measured reliably.
Further, according to the present invention, it is possible to measure the impact force simply by providing a pressure-sensitive color former at the impact force measurement site, and it is necessary to provide a special device such as a spectroscope or a photodetector at the impact force measurement site. It is possible to measure the impact force due to an earthquake with a simple system. Moreover, since it can be installed at any location, the measurement point can be set in a wide range, and the seismic impact force can be measured more accurately.
In addition, when removing the pressure-sensitive color former, the pressure-sensitive color body supported by the carrier can be removed from the ground by removing it from the carrier, and the pressure-sensitive color body needs to be excavated and removed from the ground. There is no, you can easily take out from the ground.
According to the invention of claim 2, since it can be attached by a simple operation of simply affixing to a support member provided around the subject , it is possible to measure an impact force at any place, and a sheet shape Therefore, sticking is easy, and it is easy to provide many measurement points.

構造物および担体の概略図である。It is the schematic of a structure and a support | carrier. (A)、(B)は、それぞれ担体に感圧発色体が取付けられた様子を示す斜視図および発色体取付けプレートの縦断面図である。(A), (B) is the perspective view which shows a mode that the pressure sensitive color body was attached to the support | carrier, respectively, and the longitudinal cross-sectional view of a color body attachment plate. 感圧発色体の第一の実施の形態を示す要部拡大図である。It is a principal part enlarged view which shows 1st embodiment of a pressure sensitive color development body. 感圧発色体の相対濃度と地震の衝撃力によって発生する応力の相関関係を示す図である。It is a figure which shows the correlation of the stress which generate | occur | produces with the relative density | concentration of a pressure sensitive color body, and the impact force of an earthquake. (A)、(B)、(C)はそれぞれ感圧発色体の第二、第三、第四の実施の形態を示す要部拡大図である。(A), (B), (C) are the principal part enlarged views which show 2nd, 3rd, and 4th embodiment of a pressure sensitive color body, respectively.

以下、本発明の実施の形態について、図面に基づいて説明する。
図1に示すように、1は被検体である構造物であって、該構造物の土台を構成する地下杭(基礎杭)2の側面には、長尺の板材である担体3が、長尺方向が上下となるようにて地下杭2に沿って垂直状に埋設されている。該担体3は、例えば熱硬化性プラスチック或いはステンレス板等の硬性部材によって形成されており、図2(A)に示すように、担体3の表面中央部位には、担体3の上端部3aから下端部3bに至る溝部3cが形成されている。そして、該溝部3cの左右両側面には、それぞれ上端部3aから下端部3bに至る凹溝3d、3eが対向して形成されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
As shown in FIG. 1, reference numeral 1 denotes a structure which is a subject, and a carrier 3, which is a long plate material, is attached to the side surface of an underground pile (foundation pile) 2 constituting the foundation of the structure. It is buried vertically along the underground pile 2 so that the scale direction is up and down. The carrier 3 is formed of a hard member such as a thermosetting plastic or a stainless plate, for example, and as shown in FIG. A groove portion 3c reaching the portion 3b is formed. Then, on both the left and right side surfaces of the groove portion 3c, concave grooves 3d and 3e extending from the upper end portion 3a to the lower end portion 3b are formed to face each other.

一方、4は、担体3に形成された溝部3cにスライド嵌合する長尺の板材である発色体取付けプレートであって、担体3と同様に熱硬化性プラスチック或いはステンレス板等の硬性部材で形成されている。該発色体取付けプレート4の表面には、後述する正方形状のシート体である感圧発色体5が直列状に貼着される貼着部4aが形成されており、左右両端部には、前記担体3の凹溝3d、3eにスライド嵌合する凸条4b、4cが形成されている。そして、担体3の凹溝3d、3eに発色体取付けプレート4の凸条4b、4cを、貼着部4aが外側を向くようにしてスライド嵌合させることで発色体取付けプレート4が担体3に対して抜き差し自在に取付けられるようになっている。尚、図2(B)に示すように、感圧発色体5が貼着された発色体取付けプレート4の表面には軟性樹脂材等からなる被膜4dが一様に被覆されており、これによって感圧発色体5が発色体取付けプレート4から脱落したり、地中の水分等によって変質したりすることのないようになっている。   On the other hand, 4 is a color body mounting plate that is a long plate material that is slidably fitted in the groove 3c formed in the carrier 3, and is formed of a hard member such as a thermosetting plastic or a stainless steel plate, like the carrier 3. Has been. On the surface of the color body mounting plate 4, there are formed sticking portions 4a to which a pressure sensitive color body 5 which is a square-shaped sheet body to be described later is stuck in series. Convex ridges 4b and 4c are formed in the grooves 3d and 3e of the carrier 3 to be slidably fitted. Then, the protrusions 4b and 4c of the color body mounting plate 4 are slid and fitted into the concave grooves 3d and 3e of the carrier 3 so that the sticking portion 4a faces outward, so that the color body mounting plate 4 is attached to the carrier 3. On the other hand, it can be removably attached. As shown in FIG. 2B, the surface of the color body mounting plate 4 to which the pressure-sensitive color body 5 is adhered is uniformly coated with a coating 4d made of a soft resin material, etc. The pressure-sensitive color developing body 5 is prevented from falling off the color developing body mounting plate 4 or being altered by moisture in the ground.

前述した感圧発色体5は、図3に示すように、基材6と、該基材6上に塗布される顕色剤層7と、該顕色剤層7の上側に塗布される発色剤層8とから構成され、正方形状のシート体となって形成されている。上記基材6は板状であって、例えば、紙、合成紙、プラスティックフィルム等のある程度の硬性を有したもので形成されており、裏側面(反顕色剤層側面)には貼着剤6aが塗布されており、該貼着剤6aによって発色体取付けプレート4に貼着されるようになっている。   As shown in FIG. 3, the pressure-sensitive color former 5 described above includes a base material 6, a developer layer 7 applied on the base material 6, and a color applied on the upper side of the developer layer 7. It is comprised from the agent layer 8, and is formed as a square-shaped sheet body. The substrate 6 is plate-shaped, and is formed of, for example, paper, synthetic paper, plastic film, or the like having a certain degree of hardness, and has an adhesive on the back side (anti-developer layer side). 6a is applied, and is attached to the color body mounting plate 4 by the adhesive 6a.

また、発色剤層8には、発色前の染料前駆体が封入された多数のマイクロカプセル9が含有されているが、該染料前駆体としては、例えばロイコ染料が用いられる。該ロイコ染料は、例えばトリフェニルメタンフタリド系、フルオラン系、フェノチアジン系、フェノキシジン系、インドリルフタリド系、スピロピラン系、ローダミンラクタム系、ジフェニルメタン系、トリフェニルメタン系、クロメノインドール系の化合物やこれらの混合物を使用することができる。尚、発色剤層8には、マイクロカプセル9の保護材料として、アラビアゴムやゼラチン、でんぷん粒子等が配合されている。   The color former layer 8 contains a large number of microcapsules 9 in which a dye precursor before color development is encapsulated. As the dye precursor, for example, a leuco dye is used. Examples of the leuco dye include triphenylmethane phthalide, fluorane, phenothiazine, phenoxidine, indolylphthalide, spiropyran, rhodamine lactam, diphenylmethane, triphenylmethane, and chromenoindole compounds. Or mixtures thereof. The color former layer 8 is blended with gum arabic, gelatin, starch particles or the like as a protective material for the microcapsules 9.

マイクロカプセル9は、圧力を受けることにより破壊されてマイクロカプセル9内に封入された染料前駆体を流出させるが、該マイクロカプセル9の破壊強度は均一ではなく、地震によって発生する様々な外力に応じて破壊されるよう種々の異なる破壊強度を有するものが混在した状態となって染料前駆体層を形成している。例えば、地震によって発生する外力(kN/cm)が、5kN/cmから250kN/cmであったとすると、該マイクロカプセル9は、圧縮応力(kN/cm)が5kN/cmで破壊されるものから250kN/cmで破壊されるものまで例えば5kN/cm或いは10kN/cm刻みに異なる破壊強度を有するものに形成されている。この様な破壊強度の異なるマイクロカプセル9の製造については、既に周知となっているため説明は省略するが、マイクロカプセル9の粒径や膜厚を異ならしめることによって破壊強度を調節することができる。因みに、このような壁膜を形成する樹脂としては、例えばポリ尿素樹脂、尿素−ホルムアルデヒド樹脂、メラニン−ホルムアルデヒド樹脂、飽和ポリエステル、ポリウレタン系、エポキシ系、シリコーン系等の樹脂が用いられる。 The microcapsule 9 is broken by receiving pressure and causes the dye precursor encapsulated in the microcapsule 9 to flow out. However, the breaking strength of the microcapsule 9 is not uniform and depends on various external forces generated by an earthquake. Thus, the dye precursor layer is formed in a state in which various materials having different breaking strengths are mixed. For example, external force generated by earthquakes (kN / cm 2) is, when was 250 kN / cm 2 from 5 kN / cm 2, the microcapsules 9, compressive stress (kN / cm 2) is broken at 5 kN / cm 2 It is formed into one having a different breaking strength up to eg 5 kN / cm 2 or 10 kN / cm 2 increments that are destroyed in 250 kN / cm 2 from those. The manufacture of such microcapsules 9 having different breaking strengths is already well known and will not be described, but the breaking strength can be adjusted by making the particle size and film thickness of the microcapsules 9 different. . Incidentally, as a resin for forming such a wall film, for example, a polyurea resin, a urea-formaldehyde resin, a melanin-formaldehyde resin, a saturated polyester, a polyurethane-based resin, an epoxy-based resin, a silicone-based resin, or the like is used.

一方、顕色剤層7は、前記マイクロカプセル9が破壊されることで流出する染料前駆体と反応して発色せしめる顕色剤を含有する層であって、該顕色剤としては、例えば、活性白土、有機酸(フェノール樹脂系、サリチル酸誘導体金属塩系)等が用いられる。   On the other hand, the developer layer 7 is a layer containing a developer that reacts with the dye precursor that flows out when the microcapsules 9 are broken, and develops color. Examples of the developer include: Activated clay, organic acid (phenolic resin, salicylic acid derivative metal salt) and the like are used.

このように構成される感圧発色体5は、圧力を受けることによりマイクロカプセル9が破壊され、該マイクロカプセル9から流出した染料前駆体と顕色剤との反応によって発色することになるが、この場合、前述したように、マイクロカプセル9は異なる破壊強度を有したものが混在しているため、圧力の大きさに応じてマイクロカプセル9の破壊量が増減する、つまりは圧力の大きさに応じて染料前駆体と顕色剤との反応量が増減することになる。従って、該反応量の増減に基づいて発色濃度が濃淡変化し、これによって感圧発色体5が受けた衝撃力の大きさを可視化して測定できるようになっている。   The pressure-sensitive color developing body 5 configured as described above breaks the microcapsule 9 by receiving pressure, and develops a color by the reaction between the dye precursor flowing out of the microcapsule 9 and the developer. In this case, as described above, since the microcapsules 9 having different breaking strengths are mixed, the breaking amount of the microcapsules 9 increases or decreases depending on the pressure, that is, the pressure is increased. Accordingly, the amount of reaction between the dye precursor and the developer increases or decreases. Therefore, the color density changes depending on the increase / decrease of the reaction amount, whereby the magnitude of the impact force received by the pressure-sensitive color developing body 5 can be visualized and measured.

ここで、感圧発色体5の発色の相対濃度と地盤に作用する応力との関係について、図4に示すように、予め実験によって検量線を作成しておく。これにより、感圧発色体5の発色濃度によって地盤に作用する応力の大きさが測定できるようになっている。   Here, as shown in FIG. 4, a calibration curve is prepared in advance by experiments as to the relationship between the relative density of color development of the pressure-sensitive color developing body 5 and the stress acting on the ground. Thereby, the magnitude of the stress acting on the ground can be measured by the color density of the pressure-sensitive color developing body 5.

叙述の如く構成された本実施の形態において、構造物1の地下杭2が受けた地震の衝撃力を測定するにあたり、まず感圧発色体5が貼着された発色体取付けプレート4を担体3にスライド嵌合させた後、該担体3を地下杭2の側壁に沿って埋設しておく。そして、地震発生後には発色体取付けプレート4を担体3から抜き出し、該発色体取付けプレート4に貼着された感圧発色体5の発色濃度を目視或いは色濃度計で発色濃度を定量することによって衝撃力の測定をする。ここで、感圧発色体5は、破壊強度の異なる複数種類のマイクロカプセル9に発色前の染料前駆体が封入され、マイクロカプセル9が地震による衝撃力に応じて破壊されることで染料前駆体と顕色剤とが反応して発色するよう構成されているため、感圧発色体5は地震による衝撃力に応じた発色濃度で発色し、これによって地下杭2に加わった衝撃力が可視化されて測定されることになる。
そして、衝撃力の測定が終了した後には、発色体取付けプレート4の貼着部4aに新たな感圧発色体5を貼着した後、発色体取付けプレート4を担体3にスライド嵌合することで担体3に担持させ、その後再び地下に埋設することで、引き続き地震の衝撃力を継続して測定することができる。
In the present embodiment configured as described, in measuring the impact force of the earthquake received by the underground pile 2 of the structure 1, first, the color body mounting plate 4 to which the pressure sensitive color body 5 is attached is attached to the carrier 3. Then, the carrier 3 is embedded along the side wall of the underground pile 2. After the occurrence of the earthquake, the color body mounting plate 4 is removed from the carrier 3, and the color density of the pressure-sensitive color body 5 adhered to the color body mounting plate 4 is determined visually or with a color densitometer. Measure the impact force. Here, in the pressure-sensitive color former 5, the dye precursor before color development is encapsulated in a plurality of types of microcapsules 9 having different breaking strengths, and the microcapsules 9 are destroyed according to the impact force caused by the earthquake, thereby the dye precursor. The pressure-sensitive color-developing body 5 develops color with a color density corresponding to the impact force caused by the earthquake, and thereby the impact force applied to the underground pile 2 is visualized. Will be measured.
After the measurement of the impact force is completed, a new pressure-sensitive color developing body 5 is pasted on the pasting portion 4a of the color body mounting plate 4, and then the color body mounting plate 4 is slid onto the carrier 3. In this case, it is possible to continuously measure the impact force of the earthquake by supporting the carrier 3 and then burying it again underground.

本実施の形態によれば、感圧発色体5の発色濃度は、該感圧発色体5が受けた最大応力を示すことになるため、地震の最大衝撃力を確実に測定することができる。
しかも、衝撃力が可視化された感圧発色体5の発色濃度を目視或いは色濃度計によって測定することで簡単に地震の衝撃力を測定することができる。
そのうえ、感圧発色体5は、シート体であるため、容易に着脱することが出来て交換も簡単である。また、貼着する場所を選ばないため、広範囲での測定が可能となり、測定地点を増やすことで正確な測定結果を得ることができる。
また、感圧発色体の発色濃度は時間の経過によって変化してしまうようなことがないため、データが消失したり、変質したりすることがなく、地震や余震が確実に治まってから感圧発色体5を地中から取出して測定すれば良いことになって、安全を確保した上での作業による測定ができる。
According to the present embodiment, the color density of the pressure-sensitive color body 5 indicates the maximum stress received by the pressure-sensitive color body 5, so that the maximum impact force of an earthquake can be reliably measured.
Moreover, it is possible to easily measure the impact force of an earthquake by measuring the color density of the pressure-sensitive color developing body 5 in which the impact force is visualized by visual observation or using a color densitometer.
In addition, since the pressure-sensitive color developing body 5 is a sheet body, it can be easily detached and replaced easily. Moreover, since the place to stick is not chosen, measurement in a wide range becomes possible, and an accurate measurement result can be obtained by increasing the number of measurement points.
In addition, since the color density of the pressure-sensitive color former does not change over time, the data will not be lost or altered, and the pressure-sensitive color after the earthquake or aftershock has subsided. It is only necessary to take out and measure the colored body 5 from the ground, and the measurement can be performed by work while ensuring safety.

尚、本実施の形態においては、感圧発色体5は、染料前駆体をマイクロカプセル9に封入し、該マイクロカプセル9が破壊されることによって顕色剤層7に含有される顕色剤と反応して発色するよう構成したが、これに限定されるものではなく、図5(A)に示す第二の実施の形態のように、顕色剤をマイクロカプセル9に封して顕色剤層7に含有せしめ、発色剤層8には、染料前駆体をマイクロカプセルに封入されない状態で含有せしめたものに構成しても良いし、図5(B)に示す第三の実施の形態のように、染料前駆体と顕色剤とをそれぞれ別個にマイクロカプセルに封入し、該マイクロカプセルが混在した混在層10を形成して構成しても良い。勿論、この場合、図5(C)に示す第四の実施の形態のように、染料前駆体と顕色剤とがそれぞれ封入されたマイクロカプセルを発色剤層8、顕色剤層7の各層に分けて含有せしめても良く、このように構成すれば、染料前駆体と顕色剤とがより均一に分散された状態にすることができる。   In the present embodiment, the pressure-sensitive color developing body 5 includes a developer contained in the developer layer 7 by enclosing a dye precursor in a microcapsule 9 and breaking the microcapsule 9. Although it is configured to react and develop color, the present invention is not limited to this, and the developer is sealed in the microcapsule 9 as in the second embodiment shown in FIG. The dye 7 may be contained in the layer 7 and the dye precursor 8 may be contained in a state in which the dye precursor is not encapsulated in the microcapsule. In the third embodiment shown in FIG. As described above, the dye precursor and the developer may be separately sealed in microcapsules, and the mixed layer 10 in which the microcapsules are mixed may be formed. Of course, in this case, as in the fourth embodiment shown in FIG. 5 (C), the microcapsules in which the dye precursor and the developer are respectively encapsulated are formed as the color developer layer 8 and the developer layer 7. In this way, the dye precursor and the developer can be dispersed more uniformly.

また、本実施の形態においては、感圧発色体5を正方形状のシート体としたが、これに限定されるものではなく、長方形状や円形状であっても良く、また、発色体取付けプレート4の表面全てを覆うような一枚の長尺状シート体としても良い。
さらに、発色体取付けプレート4のみを地中に埋設して、測定時には該発色体取付けプレート4を地中から引き抜くように構成しても良いし、発色体取付けプレート4がスライド嵌合した担体3を直接地下杭2に取付けても良い。
さらにまた、感圧発色体5は垂直方向に設置されるものに限られず、水平方向に設置しても良いのであって、このように設置することで水平方向の衝撃力も測定することが出来て、より立体的に地震の衝撃力を測定することができる。
In the present embodiment, the pressure-sensitive color developing body 5 is a square sheet, but is not limited to this, and may be a rectangular or circular shape. It is good also as a single elongate sheet | seat body which covers all the surfaces of 4. FIG.
Further, only the color body mounting plate 4 may be embedded in the ground, and the color body mounting plate 4 may be pulled out from the ground at the time of measurement, or the carrier 3 on which the color body mounting plate 4 is slide-fitted. also it has good attached directly to the underground pile 2.
Furthermore, the pressure-sensitive color developing body 5 is not limited to the one installed in the vertical direction, but may be installed in the horizontal direction. By installing in this way, the impact force in the horizontal direction can be measured. , Ru can be measured more impact sterically earthquake.

本発明は、地震の発生等によって建造物の基礎杭等の地下埋設物が受ける衝撃力を測定する衝撃力測定の分野に利用可能である。   INDUSTRIAL APPLICABILITY The present invention can be used in the field of impact force measurement for measuring the impact force received by underground structures such as foundation piles of buildings due to the occurrence of earthquakes and the like.

1 構造物
2 地下杭
5 感圧発色体
7 顕色剤層
8 発色剤層
9 マイクロカプセル
DESCRIPTION OF SYMBOLS 1 Structure 2 Underground pile 5 Pressure-sensitive coloring body 7 Developer layer 8 Color former layer 9 Microcapsule

Claims (3)

被検体が地震によって受ける衝撃力を可視化して測定する地震衝撃力測定システムであって、該地震衝撃力測定システムは、発色前の染料前駆体と前記染料前駆体を発色させるための顕色剤とを備え、該染料前駆体と顕色剤のうち少なくとも一方を破壊強度の異なる複数種類のマイクロカプセルに封入して形成される感圧発色体が前記被検体の衝撃力測定部位に設けられ、被検体が受けた地震衝撃力に応じて前記マイクロカプセルが破壊されることにより染料前駆体と顕色剤とが反応して発色する感圧発色体の発色濃度によって被検体が受けた地震衝撃力を測定するにあたり、前記感圧発色体は長尺の硬性部材である発色体取付けプレートに貼着されるとともに、該発色体取付けプレートは前記衝撃力測定部位に設けられる担体に形成された溝部に抜き差し自在に取付けられることで新たな感圧発色体を担持させることができるようにしたことを特徴とする地震衝撃力の測定システム。 A seismic impact force measuring system for visualizing and measuring an impact force received by an object by an earthquake, the seismic impact force measuring system comprising a dye precursor before color development and a developer for coloring the dye precursor A pressure-sensitive color former formed by enclosing at least one of the dye precursor and the developer in a plurality of types of microcapsules having different breaking strengths is provided at the impact force measurement site of the subject, The seismic impact force received by the subject by the color density of the pressure-sensitive color former that develops color by the reaction between the dye precursor and the developer due to the destruction of the microcapsules according to the seismic impact force received by the subject. per to measure, the sense of pressure chromosome together with is adhered to the coloring material mounting plate which is rigid elongated member, emitting color bodies mounting plate is formed on a carrier provided in the impact force measurement site Measurement system seismic impact force, characterized in that a new sensitive pressure chromosome that mounted telescopically and to be able to be supported on part. 感圧発色体は、シート状であることを特徴とする請求項1記載の地震衝撃力の測定システム。   2. The seismic impact force measuring system according to claim 1, wherein the pressure-sensitive color former is in the form of a sheet. 被検体が地震によって受ける衝撃力を可視化して測定する地震衝撃力測定方法であって、該地震衝撃力測定方法は、発色前の染料前駆体と前記染料前駆体を発色させるための顕色剤とを備え、該染料前駆体と顕色剤のうち少なくとも一方を破壊強度の異なる複数種類のマイクロカプセルに封入して形成される感圧発色体を前記被検体の衝撃力測定部位に設けて、被検体が受けた地震衝撃力に応じて前記マイクロカプセルが破壊されることにより染料前駆体と顕色剤とが反応して発色する感圧発色体の発色濃度によって被検体が受けた地震衝撃力を測定するにあたり、前記感圧発色体を長尺の硬性部材である発色体取付けプレートに貼着するとともに、該発色体取付けプレートを前記衝撃力測定部位に設けられる担体に形成された溝部に抜き差し自在に取付けるようにすることで新たな感圧発色体を担持させることができるようにしたことを特徴とする地震衝撃力の測定方法。 An earthquake impact force measuring method for visualizing and measuring an impact force received by an object due to an earthquake, the earthquake impact force measuring method comprising a dye precursor before color development and a developer for coloring the dye precursor And a pressure-sensitive color former formed by enclosing at least one of the dye precursor and the developer in a plurality of types of microcapsules having different breaking strengths is provided at the impact force measurement site of the subject, The seismic impact force received by the subject by the color density of the pressure-sensitive color former that develops color by the reaction between the dye precursor and the developer due to the destruction of the microcapsules according to the seismic impact force received by the subject. In measuring the pressure, the pressure-sensitive color-forming body is attached to a color-forming body mounting plate that is a long rigid member, and the color-forming body mounting plate is pulled out into a groove formed in a carrier provided at the impact force measurement site. difference Method of measuring the seismic impact force, characterized in that to be able to support a new sensitive pressure chromosomal By so mounting freely.
JP2009187036A 2009-08-12 2009-08-12 Seismic impact force measurement system and measurement method Expired - Fee Related JP5241649B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009187036A JP5241649B2 (en) 2009-08-12 2009-08-12 Seismic impact force measurement system and measurement method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009187036A JP5241649B2 (en) 2009-08-12 2009-08-12 Seismic impact force measurement system and measurement method

Publications (2)

Publication Number Publication Date
JP2011038913A JP2011038913A (en) 2011-02-24
JP5241649B2 true JP5241649B2 (en) 2013-07-17

Family

ID=43766841

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009187036A Expired - Fee Related JP5241649B2 (en) 2009-08-12 2009-08-12 Seismic impact force measurement system and measurement method

Country Status (1)

Country Link
JP (1) JP5241649B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013183080A1 (en) * 2012-06-04 2013-12-12 Empire Technology Development Llc Coating materials, manufacturing methods thereof, and coated structures

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5724852B2 (en) * 1974-10-29 1982-05-26
JPH0233175Y2 (en) * 1984-09-05 1990-09-06
JPS63266357A (en) * 1987-04-24 1988-11-02 Hitachi Ltd Acceleration sensor
JP2732178B2 (en) * 1992-12-14 1998-03-25 富士写真フイルム株式会社 Pressure-sensitive recording sheet and occlusal pressure diagnostic sheet
JP3329029B2 (en) * 1993-11-11 2002-09-30 株式会社大林組 Intelligent structural members
JPH08290522A (en) * 1995-04-20 1996-11-05 Nippon Steel Corp Deformation indicating coated steel material
JP2000234975A (en) * 1999-02-16 2000-08-29 Fuji Electric Co Ltd Face pressure sensor
JP2003028622A (en) * 2001-07-13 2003-01-29 Fujita Corp Method for measuring shape of structure and method for measuring degradation/damage
JP4215686B2 (en) * 2004-06-10 2009-01-28 旭化成ホームズ株式会社 Strength element and its deterioration diagnosis method
JP4947471B2 (en) * 2008-02-07 2012-06-06 清水建設株式会社 Display device

Also Published As

Publication number Publication date
JP2011038913A (en) 2011-02-24

Similar Documents

Publication Publication Date Title
JP6580789B2 (en) Ground anchor capable of self-diagnosis of stress and its construction method
JP5241684B2 (en) Seismic impact force measurement system and measurement method
JP2004317510A (en) Measuring instrument
CN110836651B (en) Landslide flexibility monitoring device and method thereof
US20200116021A1 (en) Pre-cast segment for tunnels and method for producing and monitoring said pre-cast segment
JP5241649B2 (en) Seismic impact force measurement system and measurement method
JP7270926B2 (en) Lock bolt axial force detection fixture
JP5436990B2 (en) Seismic impact force measurement system and measurement method
Chen et al. Early warning indicators of landslides based on deep displacements: Applications on Jinping landslide and Wendong landslide, China
JP5241683B2 (en) Seismic impact force measurement system and measurement method
CN206803954U (en) Sub-micro strain transducer based on fiber grating
KR101009195B1 (en) Verticality measuring method
JP5317347B2 (en) Seismic impact force measurement system and measurement method
KR20110035499A (en) The load cell which a load bearing equipment measurement sensitivity is superior
EP3443316A1 (en) Method and investigation device for measuring stresses in an agglomerate structure
CN206300747U (en) A kind of anti-eccentric of prestressed anchor dynamometer
JPH0252222A (en) Landslide sensor using optical fiber and its disposing method
KR20070039705A (en) Mono load cell for measuring axial strength of anchors using strong strands or cables, and anchoring structure
JP2016105104A5 (en)
CN113152538B (en) Steel pipe sheet pile integrity detection method
CN106768573A (en) A kind of anti-eccentric of prestressed anchor dynamometer
JP2011122825A (en) Method of visualizing stress in foundation
JP2011033590A (en) Stress visualizing method in foundation
Simonsen et al. Performance of vibrating wire piezometers in very low permeable clay
JP2011094973A (en) Method for visualizing stress in ground

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120718

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120924

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130402

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5241649

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees