JP5240883B1 - Wind tunnel rotating blade - Google Patents

Wind tunnel rotating blade Download PDF

Info

Publication number
JP5240883B1
JP5240883B1 JP2012225717A JP2012225717A JP5240883B1 JP 5240883 B1 JP5240883 B1 JP 5240883B1 JP 2012225717 A JP2012225717 A JP 2012225717A JP 2012225717 A JP2012225717 A JP 2012225717A JP 5240883 B1 JP5240883 B1 JP 5240883B1
Authority
JP
Japan
Prior art keywords
wind
wind tunnel
blade
tunnel
receiving surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2012225717A
Other languages
Japanese (ja)
Other versions
JP2014077396A (en
Inventor
博重 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASHIMANO KANRI SABISU KABUSHIKI KAISHA
Original Assignee
KASHIMANO KANRI SABISU KABUSHIKI KAISHA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASHIMANO KANRI SABISU KABUSHIKI KAISHA filed Critical KASHIMANO KANRI SABISU KABUSHIKI KAISHA
Priority to JP2012225717A priority Critical patent/JP5240883B1/en
Application granted granted Critical
Publication of JP5240883B1 publication Critical patent/JP5240883B1/en
Priority to PCT/JP2013/075985 priority patent/WO2014057810A1/en
Publication of JP2014077396A publication Critical patent/JP2014077396A/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/002Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  the axis being horizontal
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D3/00Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor 
    • F03D3/04Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels
    • F03D3/0436Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor
    • F03D3/0445Wind motors with rotation axis substantially perpendicular to the air flow entering the rotor  having stationary wind-guiding means, e.g. with shrouds or channels for shielding one side of the rotor the shield being fixed with respect to the wind motor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F03MACHINES OR ENGINES FOR LIQUIDS; WIND, SPRING, OR WEIGHT MOTORS; PRODUCING MECHANICAL POWER OR A REACTIVE PROPULSIVE THRUST, NOT OTHERWISE PROVIDED FOR
    • F03DWIND MOTORS
    • F03D9/00Adaptations of wind motors for special use; Combinations of wind motors with apparatus driven thereby; Wind motors specially adapted for installation in particular locations
    • F03D9/20Wind motors characterised by the driven apparatus
    • F03D9/25Wind motors characterised by the driven apparatus the apparatus being an electrical generator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Landscapes

  • Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Wind Motors (AREA)

Abstract

【課題】 回転効率、発電効率につき、臨界点を向かえることのあった従来の構成を一変する風洞回転羽根の新たな構成風洞回転羽根を提供する。
【解決手段】 風洞20内で風を受けて回転している風洞回転羽根10の、あるブレード12の受風面14より軸寄り部分16が、風洞20を吹き抜ける風に対して直交する位置に回転移動して来た時に、風洞20内を吹き抜ける風が、通風孔1を通って、その風洞20のより風下側にある別のブレード12の受風面14に突き当たることになり、それによって、この別のブレード12の受風面14は、一番強い風を受けてから、次第に弱まって来たまさにその時に、新たに、通風孔1を通って来た風を受けて、さらに強い回転力が与えられることになり、その位置に置いても、より回転力が強まることになる。
【選択図】 図5
PROBLEM TO BE SOLVED: To provide a new configuration wind tunnel rotary blade of a wind tunnel rotary blade that completely changes the conventional configuration that has reached the critical point in terms of rotation efficiency and power generation efficiency.
SOLUTION: A wind tunnel rotating blade 10 rotating in response to wind in a wind tunnel 20 rotates a portion 16 closer to the axis than a wind receiving surface 14 of a blade 12 to a position orthogonal to the wind blowing through the wind tunnel 20. When moving, the wind blowing through the wind tunnel 20 will hit the wind receiving surface 14 of another blade 12 on the leeward side of the wind tunnel 20 through the ventilation hole 1, thereby The wind receiving surface 14 of the other blade 12 receives a strong wind from the strongest wind and then gradually weakens. Even if it is placed in that position, the rotational force will be stronger.
[Selection] Figure 5

Description

本発明は、風洞に設置されて、発電に使用される風洞回転羽根に関する。   The present invention relates to a wind tunnel rotating blade installed in a wind tunnel and used for power generation.

近年、車の走行中に、進行方向に受ける風を用いて、発電タービンの回転羽根を回し、該タービンの発電器で発電して、充電池に充電させ、電気自動車やプラグインハイブリッド車などの充電の補助に使用し、家庭用充電設備やバッテリ充電用ステーションでの充電回数を減らして、一充電で走行できる距離を伸ばそうとする技術の提案がなされている。   In recent years, while driving a car, using the wind received in the direction of travel, rotating the rotating blades of the power generation turbine, generating electricity with the generator of the turbine, charging the rechargeable battery, such as an electric vehicle or a plug-in hybrid vehicle Proposals have been made for techniques that are used to assist charging and reduce the number of times of charging at home charging facilities and battery charging stations to extend the distance that can be traveled with a single charge.

図8は、本発明者が電気自動車やプラグインハイブリッド車用の補助充電用に実験的に作成した、そのような発電タービンの機構を模式的に表した概略図である。同図に示すように、自動車の進行方向に風洞200が設置され、該風洞200内に、タービン用の回転羽根100が設けられている。該回転羽根100には、自動車の走行と共に風洞200内を吹き抜ける風を受ける複数枚のブレード121〜128が取り付けられている。従って、自動車が前進する度に該風洞200内に風が吹き込み、該風洞200内を吹き抜けようとする風をこれらのブレード121〜128の風受け面が受けて、該回転羽根100を回転せしめる。その回転する力を発電器400に伝達して発電させ、その電力を充電池410に充電する構成である。 FIG. 8 is a schematic view schematically showing the mechanism of such a power generation turbine experimentally created by the inventor for auxiliary charging for electric vehicles and plug-in hybrid vehicles. As shown in the figure, a wind tunnel 200 is installed in the traveling direction of the automobile, and turbine blades 100 are provided in the wind tunnel 200. A plurality of blades 121 to 128 for receiving wind blowing through the wind tunnel 200 as the automobile travels are attached to the rotary blade 100. Accordingly, wind blows into the wind tunnel 200 each time the automobile moves forward, and the wind receiving surfaces of these blades 121 to 128 receive wind that tries to blow through the wind tunnel 200 to rotate the rotary blade 100. The rotating force is transmitted to the generator 400 to generate electric power, and the rechargeable battery 410 is charged with the electric power.

実際には、風洞200内を風が吹き抜けようとする際に、これらの構成を駆動させようとする力(上記回転羽根100を上記方向に回転させる力、その回転を発電器400に伝達する際にロスする力、さらに発電器400を所定の方向に回転させようとする力)の反作用で、逆に、風洞200内を吹き抜けようとする風に対して抵抗が生じ、その抵抗によって、図9に示すように、一部は風洞200入り側の方に逆流し、風洞200入り側で、前方より吹き込む風によって、該風洞200の外側へあふれ出す、所謂オーバーフロー状態となる。このあふれ出す風にさらに引っ張られて、益々オーバーフローが激しくなり、思うような効率で発電がされないという問題を生じていた。 Actually, when the wind is about to blow through the wind tunnel 200, a force for driving these components (a force for rotating the rotary blade 100 in the above direction, when transmitting the rotation to the generator 400). 9, and a force that causes the generator 400 to rotate in a predetermined direction), a resistance is generated against the wind that is about to blow through the wind tunnel 200 . As shown in FIG. 4, a part of the air flows backward toward the wind tunnel 200 entering side, and the wind tunnel 200 enters the so-called overflow state in which the wind blows from the front and overflows to the outside of the wind tunnel 200. Pulled by this overflowing wind, the overflow became more intense, causing the problem of not generating electricity with the efficiency expected.

これに対し、本発明者は、下記特許文献1において、図10に示すように、風洞200内であって、前記回転羽根100の設置位置より風の入り側に、該風の流れに沿ってその流れを2つの段に分ける隔壁210を設けて、回転羽根100のブレード121〜128が風を受ける主風洞部分とそれとは別の従風洞部分を形成すると共に、前記回転羽根100のいずれかのブレード121〜128先端位置が最も風洞200側へ位置した場合に、該回転羽根100のブレード121〜128先端位置が隔壁210の延長線上に存在するように該回転羽根100を設置し、さらに回転羽根100のブレード121〜128先端部に、その突端が回転羽根100のブレード121〜128の風受け面より隔壁210延長線を介して従風洞部分側に突出し、該従風洞部分側を吹き抜ける風を受ける補助ブレード121a〜128aを備えた構成の提案を行った。 In contrast, in the following Patent Document 1, the present inventor, as shown in FIG. 10 , is located in the wind tunnel 200, along the wind flow from the installation position of the rotary blade 100 to the wind entrance side. A partition wall 210 that divides the flow into two stages is provided to form a main wind tunnel portion where the blades 121 to 128 of the rotary blade 100 receive wind and a separate wind tunnel portion, and any one of the rotary blades 100 When the tip positions of the blades 121 to 128 are located closest to the wind tunnel 200, the rotary blade 100 is installed so that the tip positions of the blades 121 to 128 of the rotary blade 100 are on the extension line of the partition wall 210. The tip of the blades 121 to 128 of the blade 100 protrudes from the wind receiving surface of the blades 121 to 128 of the rotary blade 100 toward the side of the follower tunnel through the extension of the partition wall 210. And, we have proposed a configuration in which an auxiliary blade 121a~128a receiving wind blowing through the driven wind tunnel portion side.

上記隔壁210によって形成された上記主風洞部分を吹き抜けようとする風が、回転羽根100のブレード121〜128にぶつかって該回転羽根100を回し、それによって発電器400を発電せしめ、充電池410の充電を行う。その一方で、上記主風洞部分に対して隔壁210を挟んでその外側にも、上記したように、隔壁210の入り側を回り込むようにオーバーフローが発生する。しかし、前方から吹き込む風によって、上記隔壁210のもう一方の側にある従風洞部分側に、上記オーバーフロー分の風が回り込むことになる。すると、該従風洞部分側に流れ込んだ上記風は、上記補助ブレード121a〜128aの風受け面にキャッチされ、回転羽根100を、同じ方向にさらに回す力を発生せしめることになる。従って、従風洞部分側に流れ込む該オーバーフロー分が、ロスされずに、反対に回転羽根100の回転に更に作用するようになるため、発電器400の発電ロスをその分なくし、発電効率を向上せしめることになって、それに伴って、充電率も高くなる。
特許第4607234号
The wind that is about to blow through the main wind tunnel portion formed by the partition wall 210 hits the blades 121 to 128 of the rotary blade 100 and turns the rotary blade 100, thereby generating the generator 400, and generating the rechargeable battery 410. Charge the battery. On the other hand, as described above, an overflow occurs around the main wind tunnel portion so as to go around the entrance side of the partition wall 210 on the outer side of the partition wall 210. However, the wind blown from the front causes the overflow wind to circulate to the side of the secondary wind tunnel on the other side of the partition wall 210. Then, the wind that has flowed into the side of the follower tunnel is caught by the wind receiving surfaces of the auxiliary blades 121a to 128a, and generates a force that further turns the rotary blade 100 in the same direction. Accordingly, the overflow flowing into the side of the follower tunnel is not lost, but on the contrary, it further acts on the rotation of the rotary blade 100. Therefore, the power generation loss of the power generator 400 is eliminated and the power generation efficiency is improved. As a result, the charging rate increases accordingly.
Japanese Patent No. 4607234

上記構成は、それなりの効果を達成できるものであったが、回転速度がある一定値まで達すると、それ以上に上がることは無く、その点で限界があった。それは、従風洞部分側に流れ込む該オーバーフロー分が、一定の分しかなくなり、オーバーフローがさらにその外側にも発生するため、その部分で臨界点を向かえるものと思慮される。   The above configuration can achieve a certain effect, but when the rotational speed reaches a certain value, it does not increase any more, and there is a limit in that respect. It is considered that the overflow flowing into the side of the wind tunnel portion is only a certain amount, and overflow occurs further outside, so that the critical point is reached in that portion.

本発明は、以上のような問題に鑑み創案されたもので、本発明者は、上記構成を一から考え直し、そのような臨界点を向かえることのない風洞回転羽根の新たな構成を提供せんとするものである。   The present invention has been devised in view of the above problems, and the present inventor has reconsidered the above configuration from the beginning and provided a new configuration of a wind tunnel rotor blade that does not face such a critical point. To do.

本発明の構成は、
風洞に設置された時に、該風洞に1乃至複数枚突き出るブレードによって、上記風洞を吹き抜ける風を受けて回転する回転羽根であって、該ブレードはその回転羽根の回転軸から外側に軸寄り部分が延出され、さらにその軸寄り部分延出方向に風を受け止め易い形状に成形された受風面が備えられていて、上記風洞を吹き抜ける風を上記ブレードの受風面に受けてその力によって回わる回転羽根の回転力を用いて発電器に発電させる風洞回転羽根において、
上記回転羽根は、該受風面より軸寄り部分が、風洞を吹き抜ける風に対して直交する位置に回転移動して来た時に、その軸寄り部分から風が吹き抜け、吹き抜けたその風が、上記風洞の、より風下側にある別のブレードの受風面に受けられる位置に来るように、手前のブレードの軸寄り部分の位置にのみ、通風孔乃至通風スリットが穿設されている
ことを基本的特徴としている。
The configuration of the present invention is as follows:
When the blade is installed in a wind tunnel, the blade is rotated by one or more blades projecting into the wind tunnel and receives the wind blowing through the wind tunnel, and the blade has an off-axis portion outward from the rotation axis of the blade. A wind receiving surface that is extended and further shaped to easily receive wind in the axial extension direction is provided, and wind that blows through the wind tunnel is received by the wind receiving surface of the blade and is rotated by the force. In wind tunnel rotor blades that generate electricity using the rotational force of the rotating rotor blades,
When the rotary vane rotates and moves to a position perpendicular to the wind passing through the wind tunnel, the portion closer to the axis than the wind receiving surface blows through the portion near the shaft, Basically, vent holes or slits are drilled only at the position near the shaft of the front blade so that it can be received by the wind receiving surface of another blade on the leeward side of the wind tunnel. Characteristic.

上記構成によれば、風洞内で風を受けて回転している回転羽根の、あるブレードの受風面より軸寄り部分(根元側)が、風洞を吹き抜ける風に対して直交する位置に回転移動して来た時に、風洞内を吹き抜ける風が、上記通風孔乃至通風スリットを通って、その風洞のより風下側にある別のブレードの受風面に突き当たることになる。この別のブレードの受風面は、一番強い風を受けてから、次第に弱まって来たまさにその時に、新たに、通風孔乃至通風スリットを通って来た風を受けて、さらに強い回転力が与えられるため、その位置に置いても、より回転力が強まることになる。この際、そのような風の吹き抜けをさせた通風孔乃至通風スリットを有するブレードの受風面は、間もなく直接風洞内を吹き抜ける風を受けることになるので、少なくとも2つのブレード受風面で、この風洞回転羽根は、風洞を吹き抜ける風を受けることになり、それによって、より強い回転力得られるようになる。 According to the above configuration, the portion of the rotating blade that is rotating in response to the wind in the wind tunnel is rotated to a position perpendicular to the wind blown through the wind tunnel. Then, the wind blown through the wind tunnel hits the wind receiving surface of another blade on the leeward side of the wind tunnel through the ventilation hole or slit. The wind receiving surface of this another blade receives the strongest wind and then gradually weakens, and at that time, it receives a new wind that has passed through the ventilation holes or slits, resulting in a stronger rotational force. Therefore, even if it is placed at that position, the rotational force will become stronger. At this time, since the wind receiving surface of the blade having the ventilation hole or the ventilation slit through which such a wind has been blown will receive the wind that is blown directly through the wind tunnel, at least two blade receiving surfaces, wind tunnel rotary blade, will receive the wind blowing through the wind tunnel, thereby become stronger rotational force.

その一瞬の後、そこから上記の別のブレードがわずかに回転した位置で、下方に抜けていた風は、方向を変えて、風洞の風下側に吹き抜けていき、風洞内をそのまま吹き抜けていく風と合流することになる。従って、オーバーフローは、発生しない。実際に風洞実験を行ったところ、時速55km/h相当の風を流しても、風洞外へのオーバーフローは全く発生していない。 After that moment, at the position where the other blade was slightly rotated from there, the wind that was passing downward changed the direction and was blown to the leeward side of the wind tunnel, and it was blown through the wind tunnel as it was Will join. Therefore, no overflow occurs. When an actual wind tunnel experiment was conducted, no overflow to the outside of the wind tunnel occurred at all even when a wind equivalent to 55 km / h was passed.

本構成によれば、発電器のコイルなどを焼き切ってしまうほど、回転羽根が異常に回ってしまうことが懸念される。また本回転羽根自身や風洞等にも、十分な剛性が無い場合、これらも壊れる原因となる。他方、上記通風孔乃至通風スリットの開口面積が、予めこの風洞内を抜ける最大風速に合わせて設定してあった場合(上記問題を発生せず、且つオーバーフローも発生しない状態に設計)、その設計最大風速より弱い風がその通風孔乃至通風スリットを通り抜けていっても、その後方にある別のブレードの受風面を押す力は弱くなる。そのため、本発明では、上記風洞回転羽根の回転に応じて、上記通風孔乃至通風スリットの開口面積を調整できる回転速度制御装置を有する構成とした。この開口面積を調整することで、上記風洞回転羽根の回転量、回転速度、回転加速度等を自由に調整できるようにし、上記のような問題が発生しないようにすると共に、通風孔乃至通風スリットを吹き抜ける風の流速を適切なものに調整して、後方にある別のブレードの受風面を押す力を最適なものにできるようにしている。   According to this configuration, there is a concern that the rotating blades rotate abnormally as the generator coil and the like are burned out. In addition, if the rotating blades themselves or the wind tunnel do not have sufficient rigidity, they can be broken. On the other hand, when the opening area of the ventilation hole or slit is set in advance according to the maximum wind speed passing through the wind tunnel (designed so that the above problem does not occur and overflow does not occur), the design Even if a wind that is weaker than the maximum wind speed passes through the ventilation hole or slit, the force that presses the air receiving surface of another blade behind the air becomes weak. Therefore, in this invention, it was set as the structure which has a rotational speed control apparatus which can adjust the opening area of the said ventilation hole thru | or a ventilation slit according to rotation of the said wind tunnel rotary blade. By adjusting the opening area, it is possible to freely adjust the rotation amount, rotation speed, rotation acceleration, etc. of the wind tunnel rotor blade, so that the above problems do not occur, and the ventilation hole or ventilation slit is provided. The flow velocity of the wind that blows through is adjusted to an appropriate one so that the force that pushes the wind receiving surface of another blade behind can be optimized.

そのような回転速度制御装置の1つの構成としては、
風洞回転羽根の回転量、回転速度、乃至回転加速度を検知するセンサと、
上記通風孔乃至通風スリットの開口部を絞ったり、解放する可変体と、
上記センサの検知したデータに基づいて、可変体の動きを制御し、該部分の開口面積を制御する制御装置と
を有している構成が考えられる。
As one configuration of such a rotational speed control device,
A sensor for detecting the rotation amount, rotation speed, or rotation acceleration of the wind tunnel rotor blades;
A variable body that squeezes or releases the opening of the vent hole or slit;
A configuration having a control device that controls the movement of the variable body based on the data detected by the sensor and controls the opening area of the portion is conceivable.

すなわち、上記センサで風洞回転羽根の回転量、回転速度、乃至回転加速度などのパラメータが検知され、そのデータに基づき、制御装置が、開口部の可変体(例えば開口部に出入りする板状のものやカメラのシャッタのような構成など)の動きを制御し、上記開口部を自動的に絞ったり、解放することで、風洞回転羽根の回転量、回転速度、乃至回転加速度が制御できるようになり、風洞回転羽根の回転状態を異常な状態に近づかないように制御することが可能となる。   That is, the sensor detects parameters such as the amount of rotation, rotation speed, and rotation acceleration of the wind tunnel rotor blades, and based on the data, the control device detects the variable body of the opening (for example, a plate-like one that enters and exits the opening). The amount of rotation, rotation speed, or rotation acceleration of the wind tunnel rotor blades can be controlled by automatically squeezing or releasing the opening. Thus, it is possible to control the rotational state of the wind tunnel rotor blade so as not to approach an abnormal state.

さらに、通風孔乃至通風スリットの開口面積が、予めこの風洞内を抜ける最大風速に合わせて設定してあり(設計最大風速;発電器のコイルなどを焼き切ってしまったり、回転羽根自身や風洞が壊れる等の問題を発生せず、且つオーバーフローも発生しない状態に最大風速を設計上見積もって設定してある)、それより低い流速の風がその通風孔乃至通風スリットを通り抜けていった場合でも、上記回転速度制御装置により、通風孔乃至通風スリットの開口面積が調整されるため、通風孔乃至通風スリットを吹き抜ける風の流速を適切なものに制御することで、後方にある別のブレードの受風面を押す力を最適な状態に保つことができることになる。   In addition, the opening area of the ventilation holes or slits is set in advance according to the maximum wind speed that passes through this wind tunnel (design maximum wind speed; the coil of the generator is burned out, the rotating blade itself and the wind tunnel are The maximum wind speed is set by design estimation so that no problems such as breakage occur and overflow does not occur), even when a wind with a lower flow velocity passes through the ventilation hole or slit, Since the opening area of the ventilation hole or the ventilation slit is adjusted by the rotational speed control device, the air flow of the other blade on the rear side is received by controlling the flow velocity of the air blown through the ventilation hole or the ventilation slit to an appropriate one. The pressing force on the surface can be maintained in an optimum state.

以上のような本発明の構成によれば、風洞内で風を受けて回転している回転羽根の、あるブレードの受風面より軸寄り部分が、風洞を吹き抜ける風に対して直交する位置に回転移動して来た時に、風洞内を吹き抜ける風が、上記通風孔乃至通風スリットを通って、その風洞のより風下側にある別のブレードの受風面に突き当たることになり、そのため、この別のブレードの受風面は、一番強い風を受けてから、次第に弱まって来たまさにその時に、新たに、通風孔乃至通風スリットを通って来た風を受けて、さらに強い回転力が与えられることになり、従って、その位置に置いても、より回転力が強まることになるという優れた効果を奏することになる。   According to the configuration of the present invention as described above, a portion closer to the axis than the wind receiving surface of a blade of a rotating blade that receives and rotates in the wind tunnel is at a position orthogonal to the wind blowing through the wind tunnel. When rotating, the wind that blows through the wind tunnel passes through the ventilation hole or slit and hits the wind receiving surface of another blade on the leeward side of the wind tunnel. The wind receiving surface of the blades of the blades received the strongest wind and then gradually weakened. At that time, the wind received through the ventilation holes or slits was newly applied to give a stronger rotational force. Therefore, even if it is placed at that position, an excellent effect is obtained in that the rotational force becomes stronger.

また、別のブレードの受風面を押していたすぐに、風洞の風下側に吹き抜けていき、風洞内をそのまま吹き抜けていく風と合流することになるので、オーバーフローの発生はない。 In addition, the wind was pushing the wind receiving surface of another blade, immediately, will blow through the leeward side of the wind tunnel, it means that merges with the wind going as it is blowing through the wind tunnel, is not the occurrence of overflow.

さらに、本発明構成で、上記通風孔乃至通風スリットの開口面積を調整できる回転速度制御装置が設けられることで、風洞回転羽根の回転に関する検知されたデータに基づいて、回転速度制御装置が、上記開口部を自動的に絞ったり、解放するようにしているため、発電器のコイルなどを焼き切ってしまったり、本回転羽根自身や風洞等が破壊されるほど、回転羽根が異常に回ってしまうことがないように、風洞回転羽根の回転状態を制御することが可能となる。   Furthermore, in the configuration of the present invention, a rotation speed control device capable of adjusting the opening area of the ventilation hole or the ventilation slit is provided, so that the rotation speed control device is based on the detected data related to the rotation of the wind tunnel rotor blades. Since the opening is automatically squeezed and released, the rotating blades rotate abnormally as the generator coils are burned out, or the rotating blades themselves and the wind tunnel are destroyed. Therefore, it is possible to control the rotation state of the wind tunnel rotating blades.

また、通風孔乃至通風スリットの開口面積が、予めこの風洞内を抜ける最大風速に合わせて設定してあり(設計最大風速に合わせて開口されている)、それより低い流速の風がその通風孔乃至通風スリットを通り抜けていった場合でも、上記回転速度制御装置により、通風孔乃至通風スリットの開口面積を調整し、通風孔乃至通風スリットを吹き抜ける風の流速を適切なものに制御することで、後方にある別のブレードの受風面を押す力を最適な状態に保つことができるようになる。   In addition, the opening area of the ventilation holes or slits is set in advance according to the maximum wind speed that passes through the wind tunnel (opens according to the design maximum wind speed), and winds with a lower flow velocity are the ventilation holes. Even if it passes through the ventilation slit, by adjusting the opening area of the ventilation hole or ventilation slit by the rotational speed control device, by controlling the flow velocity of the air blown through the ventilation hole or ventilation slit to an appropriate one, It becomes possible to keep the force that pushes the wind receiving surface of another blade at the rear in an optimum state.

以下、本発明の実施の形態を、説明する。   Hereinafter, embodiments of the present invention will be described.

本実施例にかかる風洞回転羽根は、これまでに説明してきたように、風洞20(これらの採番された番号は後述する)に設置された時に、該風洞に1乃至複数枚突き出るブレード12によって、上記風洞20を吹き抜ける風を受けて回転する回転羽根10であって、該ブレード12はその回転羽根の回転軸から外側に軸寄り部分(後述の16)が延出され、さらにその軸寄り部分(16)延出方向に風を受け止め易い形状に成形された受風面(後述の14)が備えられていて、上記風洞20を吹き抜ける風を上記ブレード12の受風面(14)に受けてその力によって回わる回転羽根10の回転力を用いて、発電器(図示無し)に発電させる構成である。 As described above, the wind tunnel rotary blade according to the present embodiment is provided by one or more blades 12 protruding into the wind tunnel when installed in the wind tunnel 20 (the numbering will be described later). A rotating blade 10 that rotates in response to wind blown through the wind tunnel 20, and the blade 12 has an axially extending portion (described later 16) extending outwardly from the rotating shaft of the rotating blade, and further the axially extending portion. (16) A wind receiving surface (14 to be described later) formed in a shape that easily receives the wind in the extending direction is provided, and the wind blowing through the wind tunnel 20 is received by the wind receiving surface (14) of the blade 12. This is a configuration in which a power generator (not shown) generates power using the rotational force of the rotary blade 10 rotating by the force.

図1は、そのような風洞回転羽根10に設けられる1枚のブレード12を示している。同図に示すように、風洞回転羽根10(後述)の軸より離れた位置で、上記風を受けるブレード12部分が風を受け止め易い形状に成形された受風面14として形成されており、該受風面14より軸寄り部分を16として図面に示している。この軸寄り部分16の後述する箇所に、通風孔1が穿設されている。その下の一番縁の部分は、回転羽根10の軸に固定される固定片(図上採番していない)である。図2は、そのブレード12の正面図(b)と側面図(a)である。   FIG. 1 shows one blade 12 provided in such a wind tunnel rotating blade 10. As shown in the figure, at a position away from the axis of the wind tunnel rotary blade 10 (described later), the blade 12 portion for receiving the wind is formed as a wind receiving surface 14 formed in a shape that easily receives the wind, A portion closer to the shaft than the wind receiving surface 14 is shown as 16 in the drawing. Ventilation holes 1 are formed in the later-described portions of the off-axis portion 16. The lowermost part below is a fixed piece (not numbered in the figure) fixed to the shaft of the rotary blade 10. FIG. 2 is a front view (b) and a side view (a) of the blade 12.

図3は、これらのブレード12を回転羽根10の軸の周りの90度ずつ離れた箇所に、上記固定片を固定している。もちろん、各ブレード12の受風面14や軸寄り部分16は、上記回転羽根10の軸に沿う形で取り付けられることになる。   In FIG. 3, the fixing pieces are fixed to the blades 12 at positions separated by 90 degrees around the axis of the rotary blade 10. Of course, the wind receiving surface 14 and the off-axis portion 16 of each blade 12 are attached along the axis of the rotary blade 10.

そして、このような風洞回転羽根10は、図3及び次の図4に示すように、外部から入ってくる風を通り抜けさせる風洞20に、以下に説明するように設置する。すなわち、該風洞20に対して、1乃至複数枚ブレード12が突き出るような高さ位置であって、突き出たブレード12(の受風面14)によって風洞20を吹き抜ける風を受けて、風洞回転羽根10全体が回転できる位置に、回転自在に軸着される。図面では、軸の一方が軸着されていないように見えるが、実際には、両側で、ベアリングロール等の軸受けで、風洞20内に軸着され、その一方又は両方に、変速ギア(図示無し)を介して発電器(図示無し)が取り付けられている。   Then, as shown in FIG. 3 and the next FIG. 4, such a wind tunnel rotating blade 10 is installed in the wind tunnel 20 through which the wind entering from the outside passes as described below. That is, the wind tunnel 20 is at a height position where one or a plurality of blades 12 protrudes from the wind tunnel 20 and receives the wind blown through the wind tunnel 20 by the protruding blade 12 (the wind receiving surface 14). The whole 10 is rotatably mounted at a position where it can rotate. In the drawing, it seems that one of the shafts is not attached to the shaft, but actually, the shaft is attached to the wind tunnel 20 on both sides by bearings such as bearing rolls, and one or both of them are provided with a transmission gear (not shown). ) Is attached to the generator (not shown).

図3及び図4では、風洞20内を抜けてきた風の大半が、1つのブレード12の受風面14に当たり、その風力を受風面14が受けて、風洞回転羽根10の回転力に変換される。もちろん、風洞20内を抜けてきた風の一部(風洞回転羽根10のこのブレード12の上辺より上側)は、そのまま、この風洞20を、その後方に吹き抜けることになる。   3 and 4, most of the wind that has passed through the wind tunnel 20 hits the wind receiving surface 14 of one blade 12, and the wind receiving surface 14 receives the wind force and converts it into the rotational force of the wind tunnel rotary blade 10. Is done. Of course, a part of the wind that has passed through the wind tunnel 20 (above the upper side of the blade 12 of the wind tunnel rotating blade 10) is blown through the wind tunnel 20 as it is.

次に各ブレード12の軸寄り部分16における通風孔1の穿設位置を、図5を使って説明する。   Next, the drilling position of the ventilation hole 1 in the off-axis portion 16 of each blade 12 will be described with reference to FIG.

図5では、2枚のブレード12が風の吹き抜ける風洞20側に突出した状態であるが、どちらのブレード12の受風面14も、図4に示すように、それらが全面的に、風洞20を吹き抜けようとする風を受けているわけでは無く、風下後方のブレード12の受風面14は、一番強い風を受けてから、次第に弱まって来て、現状ほぼ風を受ける役割を終わっている状態で有り、すでに生じた慣性力によって、風洞回転羽根10を回している状態である。他方その前方(風上側)にあるブレード12の受風面14は、これから、風を受けようとする直前の状態に有り、回転力を得る前の状態にある。   In FIG. 5, the two blades 12 protrude to the side of the wind tunnel 20 through which the wind blows. However, as shown in FIG. The wind receiving surface 14 of the blade 12 behind the leeward is gradually weakened after receiving the strongest wind, and the role of receiving almost the current wind is over. In this state, the wind tunnel rotating blades 10 are rotated by the inertial force already generated. On the other hand, the wind receiving surface 14 of the blade 12 on the front side (windward side) is in a state immediately before the wind is about to be received, and is in a state before the rotational force is obtained.

このような理想状態を前提として、ブレード12の軸寄り部分14に、上記通風孔1の穿設位置が決まることになる。   On the premise of such an ideal state, the drilling position of the ventilation hole 1 is determined in the axially offset portion 14 of the blade 12.

すなわち、上記回転羽根10につき、受風面14より軸寄り部分16が、風洞20を吹き抜ける風に対して直交する位置に前方(風上側)のブレード12が回転移動して来た時に、その軸寄り部分16から風が吹き抜け、吹き抜けたその風が、上記風洞20の、より風下側(後方)にある別のブレード12の受風面14に受けられる位置に来るように、手前のブレード12の軸寄り部分16の位置に、通風孔1が穿設される。   That is, when the blade (12) on the front side (windward side) of the rotary blade 10 is rotated to a position perpendicular to the wind blown through the wind tunnel 20, the axis portion 16 closer to the shaft than the wind receiving surface 14 has its axis. The wind blows out from the side portion 16, and the wind blown through is located at a position where it can be received by the wind receiving surface 14 of another blade 12 on the leeward side (rear side) of the wind tunnel 20. A ventilation hole 1 is formed at the position of the off-axis portion 16.

このような構成とすることにより、風洞20内で風を受けて回転している風洞回転羽根10の、或るブレード12の受風面14より軸寄り部分16(根元側)が、風洞を吹き抜ける風に対して直交する位置に回転移動して来た時に、図5に示すように、風洞20内を吹き抜ける風が、上記通風孔1を通って、その風洞20のより風下側にある別のブレード12の受風面14に突き当たることになる。   By adopting such a configuration, a portion 16 (root side) closer to the shaft than the wind receiving surface 14 of a certain blade 12 of the wind tunnel rotating blade 10 rotating by receiving wind in the wind tunnel 20 blows through the wind tunnel. As shown in FIG. 5, the wind blown through the wind tunnel 20 passes through the ventilation hole 1 and is further on the leeward side of the wind tunnel 20 when it has been rotated to a position orthogonal to the wind. It strikes against the wind receiving surface 14 of the blade 12.

この別のブレード12の受風面14は、一番強い風を受けてから、次第に弱まって来たまさにその時に、新たに、通風孔1を通って来た風を受けて、さらに強い回転力が与えられることになる。そのため、通常ならその位置で増えることの無い回転力を、その位置で新たに生じさせることになる。   The wind receiving surface 14 of the other blade 12 receives the wind that has passed through the ventilation hole 1 at the same time when the wind receiving surface 14 is gradually weakened after receiving the strongest wind. Will be given. For this reason, a rotational force that normally does not increase at that position is newly generated at that position.

この際、そのような風の吹き抜けをさせた通風孔1を有するブレード12の受風面14は、間もなく直接風洞20内を吹き抜ける風を受けることになるので、少なくとも2つのブレード12の受風面14で、この風洞回転羽根10は、風洞20を吹き抜ける風によって、より強い回転力を得られるようになる。   At this time, since the wind receiving surface 14 of the blade 12 having the ventilation hole 1 through which such wind has been blown is received, the wind receiving surface of the at least two blades 12 is immediately received through the wind tunnel 20. 14, the wind tunnel rotary blade 10 can obtain a stronger rotational force by the wind blowing through the wind tunnel 20.

その一瞬の後、そこから上記の別のブレード12がわずかに回転した位置で、図6に示すように、該別のブレード12の受風面14を押していた風は、風洞20の風下側に吹き抜けていき、風洞20内をそのまま吹き抜けていく風と合流することになる。従って、オーバーフローは、発生することがない。上述のように、実際に風洞実験を行ったところ、時速55km/h相当の風を流しても、風洞20外へのオーバーフローは全く発生しなかった。 After that moment, at the position where the other blade 12 is slightly rotated from there, the wind that has pushed the wind receiving surface 14 of the other blade 12 is moved to the leeward side of the wind tunnel 20 as shown in FIG. It blows through and joins with the wind that blows through the wind tunnel 20 as it is. Therefore, overflow does not occur. As described above, when an actual wind tunnel experiment was performed, overflow to the outside of the wind tunnel 20 did not occur at all even when a wind equivalent to 55 km / h was passed.

本実施例構成では、上記実施例構成に加えて、上記風洞回転羽根10の回転に応じて、上記通風孔1の開口面積を調整できる回転速度制御装置を有する構成とした。   In the present embodiment configuration, in addition to the above-described embodiment configuration, a rotation speed control device capable of adjusting the opening area of the ventilation hole 1 in accordance with the rotation of the wind tunnel rotating blade 10 is employed.

そのような回転速度制御装置の1つの構成としては、風洞回転羽根10の回転速度(その他、回転量や回転加速度でも良い)を検知するセンサ(図示無し;最近では非接触でも軸の回転速度を検知できるものがある)と、図7に示すように、上記通風孔1の開口部を絞ったり、解放する、可変体1a及び1b(開口部に出入りする板状のものとそれを動かすアクチュエータなど)と、上記センサの検知したデータに基づいて、可変体1a及び1bの動きを制御し、該部分の開口面積を制御する制御装置(図示無し;同じく可変体の動きの制御を非接触で行う無線などで可変体1a及び1bと交信できる構成すると良い)とを有している。 As one configuration of such a rotational speed control device, a sensor (not shown; detecting the rotational speed of the wind tunnel rotary blade 10 (otherwise, rotation amount or rotational acceleration) may be used; As shown in FIG. 7 , the variable body 1a and 1b (plate-like thing which goes in and out of an opening part, an actuator which moves it, etc.) which narrows or releases the opening part of the said ventilation hole 1, as shown in FIG. ) And the data detected by the sensor to control the movement of the variable bodies 1a and 1b and control the opening area of the portion (not shown; similarly, the movement of the variable body is controlled without contact) It may be configured to be able to communicate with the variable bodies 1a and 1b by wireless or the like.

このような構成とすることにより、上記センサで風洞回転羽根10の回転速度などのパラメータが検知され、そのデータに基づき、制御装置が、開口部の可変体1a及び1bの上下動を制御し、上記開口部を自動的に絞ったり、解放することで、風洞回転羽根10の回転速度が制御できるようになる。   By setting it as such a structure, parameters, such as the rotational speed of the wind tunnel rotary blade 10, are detected with the said sensor, Based on the data, a control apparatus controls the vertical motion of the variable bodies 1a and 1b of an opening part, By automatically squeezing or releasing the opening, the rotational speed of the wind tunnel rotary blade 10 can be controlled.

これは、上記のような構成により、風洞回転羽根10の回転速度が高まり、それによって、発電器のコイルなどを焼き切ってしまうほど、風洞回転羽根10が異常に回ってしまうことが懸念される。また、本風洞回転羽根10自身や風洞20等にも、十分な剛性が無い場合、これらも壊れる原因ともなる。   This is because there is a concern that the rotational speed of the wind tunnel rotary blade 10 increases due to the configuration as described above, and thereby the wind tunnel rotary blade 10 rotates abnormally enough to burn out the generator coil and the like. . In addition, if the wind tunnel rotary blade 10 itself, the wind tunnel 20 and the like do not have sufficient rigidity, they may be broken.

しかし、上記のような回転速度制御装置を設け、通風孔1の開口面積を調整することで、風洞回転羽根10の回転速度(回転量や回転加速度なども同じ)の制御が可能となり、風洞回転羽根10の回転状態を、以上のような異常な状態に近づけないように制御することが可能となる。   However, by providing the rotational speed control device as described above and adjusting the opening area of the ventilation hole 1, the rotational speed of the wind tunnel rotary blade 10 (the same amount of rotation and rotational acceleration, etc.) can be controlled, and the wind tunnel rotation It is possible to control the rotation state of the blade 10 so as not to approach the abnormal state as described above.

他方、上記通風孔1の開口面積が、予めこの風洞内を抜ける最大風速に合わせて設定してあった場合(設計最大風速にて設定)、そのような設計最大風速より弱い風がその通風孔1を通り抜けていっても、その後方にある別のブレード12の受風面14を押す力は弱くなる。その場合でも、上記回転速度制御装置の構成によって、上記風洞回転羽根10の回転に応じて、上記通風孔1の開口面積を調整できるようにしたので、通風孔1を吹き抜ける風の流速を適切なものに調整して、後方にある別のブレード12の受風面14を押す力を最適なものにできるようにしてある。従って、設計最大風速より弱い風がその通風孔1を吹き抜けようとする時に、最適な開口面積に設定されていることで、その風下側にある別のブレード12の受風面14を押す力が弱くなることは無い。   On the other hand, when the opening area of the vent hole 1 is set in advance according to the maximum wind speed that passes through the wind tunnel (set at the designed maximum wind speed), wind weaker than the designed maximum wind speed is the vent hole. Even if it passes through 1, the force which pushes the wind-receiving surface 14 of the other blade 12 in the back becomes weak. Even in such a case, the configuration of the rotational speed control device allows the opening area of the ventilation hole 1 to be adjusted according to the rotation of the wind tunnel rotary blade 10, so that the flow velocity of the wind that blows through the ventilation hole 1 is set appropriately. It adjusts to the thing, and the force which pushes the wind-receiving surface 14 of the other blade 12 in the back can be optimized. Therefore, when a wind that is weaker than the design maximum wind speed tries to blow through the ventilation hole 1, the optimum opening area is set, so that the force of pushing the wind receiving surface 14 of another blade 12 on the leeward side is increased. There is no weakening.

上記上記通風孔1の開口部に板状のものを出入りさせる可変体1a及び1bのような構成では無く、カメラのシャッタのような構成でも良い。   Instead of the configuration of the variable bodies 1a and 1b for allowing a plate-shaped object to enter and exit from the opening of the ventilation hole 1, a configuration like a shutter of a camera may be used.

尚、本発明の風洞回転羽根は、上述の図示例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The wind tunnel rotating blades of the present invention are not limited to the above-described illustrated examples, and various modifications can be made without departing from the scope of the present invention.

本発明の風洞回転羽根は、発電用設備など、たとえば、電気自動車やプラグインハイブリッド車、その他自動車以外にも、風を利用して発電できるものであれば、他への利用も可能であることは言うまでもない。 That wind tunnel rotating blade of the present invention, such as for power generation equipment, for example, electric vehicles and plug-in hybrid vehicles, in addition to other motor vehicles, as long as it can generate electricity by using the wind, use of the other is also possible Needless to say.

本発明の実施例構成の回転羽根10に設けられる1枚のブレード12を示す斜視図である。It is a perspective view which shows one blade 12 provided in the rotary blade 10 of the Example structure of this invention. 上記ブレード12の正面図(b)と側面図(a)である。It is the front view (b) and side view (a) of the said blade 12. FIG. 上記風洞回転羽根10を風洞20内に設置した状態を示す断面斜視図である。FIG. 2 is a cross-sectional perspective view showing a state where the wind tunnel rotary blade 10 is installed in a wind tunnel 20. ブレード12の受風面14が風洞20内の風を最も受けた状態の時の側面図である。FIG. 3 is a side view when the wind receiving surface 14 of the blade 12 receives the most wind in the wind tunnel 20. 本実施例構成により通風孔1から、別のブレード12の受風面12が風洞20内の風を最も受けた状態の時の側面図である。It is a side view when the wind receiving surface 12 of another blade 12 receives the most wind in the wind tunnel 20 from the ventilation hole 1 according to this embodiment configuration. 本実施例構成により通風孔1から、別のブレード12の受風面12が風洞20内の風を最も受けた状態の時よりさらに回転した時の側面図である。It is a side view when the wind receiving surface 12 of another blade 12 further rotates from the state where the wind in the wind tunnel 20 is most received from the ventilation hole 1 according to the configuration of the present embodiment . 回転速度制御装置の一部を構成する開口部の可変体1a及び1bの動きを示す説明図である。It is explanatory drawing which shows a motion of the variable bodies 1a and 1b of the opening part which comprises some rotation speed control apparatuses. 本発明者が電気自動車やプラグインハイブリッド車用の補助充電用に実験的に作成した、発電タービンの機構を模式的に表した概略図である。It is the schematic which represented typically the mechanism of the power generation turbine which this inventor created experimentally for the auxiliary charge for electric vehicles or plug-in hybrid vehicles. 上記実験構成で、風洞200入り側の方に逆流し、同入り側で、前方より吹き込む風によって、該風洞200の外側へあふれ出す、所謂オーバーフローの発生状態を示す説明図である。It is explanatory drawing which shows what is called the overflow generation | occurrence | production state which flows backward toward the wind tunnel 200 entrance side in the said experiment structure, and overflows to the outer side of this wind tunnel 200 with the wind which blows in from the front on the entrance side. 本発明者が、特許文献1において提案した、上記オーバーフローの発生を防ぎ、回転羽根100の回転効率、発電器400の発電効率をあげる構成を示す説明図である。It is explanatory drawing which shows the structure which prevents generation | occurrence | production of the said overflow which this inventor proposed in patent document 1, and raises the rotation efficiency of the rotary blade 100, and the power generation efficiency of the generator 400. FIG.

1 通風孔
1a、1b 可変体
10 風洞回転羽根
12、121〜128 ブレード
121a〜128a 補助ブレード
14 受風面
16 軸寄り部分
20、200 風洞
210 隔壁
400 発電器
410 充電器
DESCRIPTION OF SYMBOLS 1 Ventilation hole 1a, 1b Variable body 10 Wind-tunnel rotary blade 12, 121-128 Blade 121a-128a Auxiliary blade 14 Wind receiving surface 16 Axis part 20, 200 Wind tunnel 210 Bulkhead 400 Generator 410 Charger

Claims (3)

風洞に設置された時に、該風洞に1乃至複数枚突き出るブレードによって、上記風洞を吹き抜ける風を受けて回転する回転羽根であって、該ブレードはその回転羽根の回転軸から外側に軸寄り部分が延出され、さらにその軸寄り部分延出方向に風を受け止め易い形状に成形された受風面が備えられていて、上記風洞を吹き抜ける風を上記ブレードの受風面に受けてその力によって回わる回転羽根の回転力を用いて発電器に発電させる風洞回転羽根において、
上記回転羽根は、該受風面より軸寄り部分が、風洞を吹き抜ける風に対して直交する位置に回転移動して来た時に、その軸寄り部分から風が吹き抜け、吹き抜けたその風が、上記風洞の、より風下側にある別のブレードの受風面に受けられる位置に来るように、手前のブレードの軸寄り部分の位置にのみ、通風孔乃至通風スリットが穿設されていることを特徴とする風洞回転羽根。
When the blade is installed in a wind tunnel, the blade is rotated by one or more blades projecting into the wind tunnel and receives the wind blowing through the wind tunnel, and the blade has an off-axis portion outward from the rotation axis of the blade. A wind receiving surface that is extended and further shaped to easily receive wind in the axial extension direction is provided, and wind that blows through the wind tunnel is received by the wind receiving surface of the blade and is rotated by the force. In wind tunnel rotor blades that generate electricity using the rotational force of the rotating rotor blades,
When the rotary vane rotates and moves to a position perpendicular to the wind passing through the wind tunnel, the portion closer to the axis than the wind receiving surface blows through the portion near the shaft, Ventilation holes or ventilation slits are drilled only at the position near the shaft of the front blade so that the wind tunnel is positioned to be received by the wind receiving surface of another blade on the leeward side. Wind tunnel rotating blades.
上記風洞回転羽根の回転に応じて、上記通風孔乃至通風スリットの開口面積を調整できる回転速度制御装置を有することを特徴とする請求項1記載の風洞回転羽根。   The wind tunnel rotating blade according to claim 1, further comprising a rotation speed control device capable of adjusting an opening area of the ventilation hole or the ventilation slit according to the rotation of the wind tunnel rotating blade. 上記回転速度制御装置は、
風洞回転羽根の回転量、回転速度、乃至回転加速度を検知するセンサと、
上記通風孔乃至通風スリットの開口部を絞ったり、解放する可変体と、
上記センサの検知したデータに基づいて、可変体の動きを制御し、該部分の開口面積を制御する制御装置と
を有することを特徴とする請求項2記載の風洞回転羽根。
The rotational speed control device is
A sensor for detecting the rotation amount, rotation speed, or rotation acceleration of the wind tunnel rotor blades;
A variable body that squeezes or releases the opening of the vent hole or slit;
The wind tunnel rotor blade according to claim 2, further comprising a control device that controls movement of the variable body based on data detected by the sensor and controls an opening area of the portion.
JP2012225717A 2012-10-11 2012-10-11 Wind tunnel rotating blade Expired - Fee Related JP5240883B1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2012225717A JP5240883B1 (en) 2012-10-11 2012-10-11 Wind tunnel rotating blade
PCT/JP2013/075985 WO2014057810A1 (en) 2012-10-11 2013-09-26 Wind tunnel rotating vane

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012225717A JP5240883B1 (en) 2012-10-11 2012-10-11 Wind tunnel rotating blade

Publications (2)

Publication Number Publication Date
JP5240883B1 true JP5240883B1 (en) 2013-07-17
JP2014077396A JP2014077396A (en) 2014-05-01

Family

ID=49041776

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012225717A Expired - Fee Related JP5240883B1 (en) 2012-10-11 2012-10-11 Wind tunnel rotating blade

Country Status (2)

Country Link
JP (1) JP5240883B1 (en)
WO (1) WO2014057810A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110044575A (en) * 2019-05-23 2019-07-23 重庆大学 The wind-tunnel of the prominent wind scorpion of the mobile downburst of analog

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5877458B1 (en) * 2015-07-15 2016-03-08 かしま野管理サービス株式会社 Wind tunnel rotating blade
CN106194603B (en) * 2016-08-31 2018-10-19 沈阳航空航天大学 A kind of device and method of synchronism detection wind energy conversion system pneumatic efficiency and generating efficiency

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50132340A (en) * 1974-04-06 1975-10-20
JPS55110786U (en) * 1979-01-30 1980-08-04
US4545729A (en) * 1983-07-28 1985-10-08 Joe Storm Wind turbine apparatus
JPS61151080U (en) * 1985-03-12 1986-09-18
JP2001153025A (en) * 1999-11-29 2001-06-05 Masaya Nagashima Wind power energy conversion device installed in building
JP2003049760A (en) * 2001-08-08 2003-02-21 Noriyasu Matsumoto Wind power generating device
JP2003120502A (en) * 2001-10-19 2003-04-23 Ogawa Tekku:Kk Windmill
JP2003206851A (en) * 2002-01-17 2003-07-25 Mitsubishi Electric Corp Hydrodynamic force power generating system
JP2004285968A (en) * 2003-03-25 2004-10-14 Studio Punteiina:Kk Wind mill
JP2004332716A (en) * 2003-04-18 2004-11-25 Tokai Univ Savonius turbine
JP2010133411A (en) * 2008-12-02 2010-06-17 Dong-Hua Yeh Vane structure for vertical axis wind power generator
US7744338B2 (en) * 2008-09-04 2010-06-29 California Energy & Power Fluid turbine systems

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007064155A1 (en) * 2005-11-30 2007-06-07 Geumpoong Energy Aerogenerator
WO2011136353A1 (en) * 2010-04-28 2011-11-03 Sasa Satoru Vertical axis windmill for wind power generation

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS50132340A (en) * 1974-04-06 1975-10-20
JPS55110786U (en) * 1979-01-30 1980-08-04
US4545729A (en) * 1983-07-28 1985-10-08 Joe Storm Wind turbine apparatus
JPS61151080U (en) * 1985-03-12 1986-09-18
JP2001153025A (en) * 1999-11-29 2001-06-05 Masaya Nagashima Wind power energy conversion device installed in building
JP2003049760A (en) * 2001-08-08 2003-02-21 Noriyasu Matsumoto Wind power generating device
JP2003120502A (en) * 2001-10-19 2003-04-23 Ogawa Tekku:Kk Windmill
JP2003206851A (en) * 2002-01-17 2003-07-25 Mitsubishi Electric Corp Hydrodynamic force power generating system
JP2004285968A (en) * 2003-03-25 2004-10-14 Studio Punteiina:Kk Wind mill
JP2004332716A (en) * 2003-04-18 2004-11-25 Tokai Univ Savonius turbine
US7744338B2 (en) * 2008-09-04 2010-06-29 California Energy & Power Fluid turbine systems
JP2010133411A (en) * 2008-12-02 2010-06-17 Dong-Hua Yeh Vane structure for vertical axis wind power generator

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110044575A (en) * 2019-05-23 2019-07-23 重庆大学 The wind-tunnel of the prominent wind scorpion of the mobile downburst of analog
CN110044575B (en) * 2019-05-23 2024-01-26 重庆大学 Wind tunnel capable of simulating movable down-stroke storm surge effect

Also Published As

Publication number Publication date
JP2014077396A (en) 2014-05-01
WO2014057810A1 (en) 2014-04-17

Similar Documents

Publication Publication Date Title
EP3365222B1 (en) Vehicle drag reduction and electricity generation system
JP5240883B1 (en) Wind tunnel rotating blade
JP5676540B2 (en) In-vehicle wind power generator
KR20070054331A (en) The wind turbine blade pitch control device
CN104385910A (en) Multi-energy vehicle
KR200408178Y1 (en) The Wind turbine blade pitch control device
JP5220289B2 (en) Vehicle control device
US9979056B2 (en) Battery pack flow control system with fan assembly
JP2011025790A (en) Air conditioner for vehicle interior
WO2018092810A2 (en) Wind-driven rotating device and wind power generation device
KR101450611B1 (en) Wind turbine
KR101562384B1 (en) A rudder and brake with wind power generator
JP5637388B2 (en) In-vehicle wind power generator
EP3363674A1 (en) Wind power recovery system and method for a guided vehicle
KR101381247B1 (en) Wind power generator for a fence for a lane regulation
KR101146089B1 (en) Wind power generator for vehicle and electric vehicle having the same
KR20200040866A (en) Vehicle resistance reduction and electricity generation system
CN104723891A (en) Wind energy electric vehicle
US9985325B2 (en) Battery pack flow control method
JPWO2019045114A1 (en) Wind power generator
KR101038904B1 (en) Wind Power Generator
JP2019120178A (en) Air channel rotary vane
JP4934476B2 (en) In-vehicle wind power generator
CN105922861A (en) Heat radiation device used for vehicle and vehicle with same
CN103883383A (en) Radiating device and vehicle with same

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160412

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5240883

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees