JP2019120178A - Air channel rotary vane - Google Patents

Air channel rotary vane Download PDF

Info

Publication number
JP2019120178A
JP2019120178A JP2017255245A JP2017255245A JP2019120178A JP 2019120178 A JP2019120178 A JP 2019120178A JP 2017255245 A JP2017255245 A JP 2017255245A JP 2017255245 A JP2017255245 A JP 2017255245A JP 2019120178 A JP2019120178 A JP 2019120178A
Authority
JP
Japan
Prior art keywords
wind
wind tunnel
tunnel
rotary
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2017255245A
Other languages
Japanese (ja)
Other versions
JP6383481B1 (en
Inventor
博重 石川
Hiroshige Ishikawa
博重 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
KASHIMANO KANRI SERVICE KK
Original Assignee
KASHIMANO KANRI SERVICE KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by KASHIMANO KANRI SERVICE KK filed Critical KASHIMANO KANRI SERVICE KK
Priority to JP2017255245A priority Critical patent/JP6383481B1/en
Application granted granted Critical
Publication of JP6383481B1 publication Critical patent/JP6383481B1/en
Publication of JP2019120178A publication Critical patent/JP2019120178A/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/70Wind energy
    • Y02E10/74Wind turbines with rotation axis perpendicular to the wind direction

Abstract

To provide an air channel rotary vane of which rotation can be increased up to a higher rotation range and enabling a rotation power of higher torque to be attained.SOLUTION: An air channel is divided into at least two stages 2a and 2b of an air channel of a rotation vane mounting position part and an upper stage air channel in regard to an air flowing direction, both sides of a part near an inlet side opening of each of the stages are constituted by several vertical blades having a wind receiving surface formed to accept wind easily at one surface side. As seen from the air channel opening side, each of the wind receiving surfaces at both sides receives wind and rotates to enable wind to be pushed to the air channel by its rotation, there is provided each of wind push-in rotors 3a and 3b, 30a and 30b, and shafts of wind push-in rotors arranged at the same position of the air channel divided into each of the upper and lower stages are connected to have a coaxial relation.SELECTED DRAWING: Figure 1

Description

本発明は、風洞に設置されて、発電に使用される風洞回転羽根に関する。   The present invention relates to a wind tunnel rotary blade installed in a wind tunnel and used for power generation.

本出願の発明者は、後述する特許文献1で、先端側に風を受け止め易い受風面を有し、軸寄りの(軸に近い)側に、特定の条件の場合に風を通す開口部(通風孔乃至通風スリット)を設けて、風下側にある他の受風面でその風を受けてより回転し易くする風洞回転羽根を考案した。   The inventor of the present application, in Patent Document 1 described later, has a wind receiving surface on the tip end side that can easily receive the wind, and an opening that allows the wind to pass under a specific condition on the side close to the axis (close to the axis). We have devised a wind tunnel rotor blade which is provided with (vent holes or vent slits) to make it easier to receive the wind on the other wind receiving surface on the downwind side and to make it easier to rotate.

その後も、後述する特許文献2や3の提案を行い、これらの改良に努めた。   After that, we proposed the patent documents 2 and 3 mentioned below, and tried for improvement of these.

特許第5240883号Patent No. 5240883 特許第5768234号Patent No. 5768234 特許第5877458号Patent No. 5877458

しかし、これらの特許発明は、これまでよりその効果は認められるものの、350回転/分位までの回転数にとどまり、500回転/分以上の実用的な回転数が得られるようなものではなく、このような高回転域で且つ高トルクの回転力が得られる風洞回転羽根の実用化が望まれていた。その中でも、近年航続距離の延長が望まれている電気自動車は、走りながら発電と充電が行える、当該構成の改良が待ち望まれている。   However, although these patented inventions are more effective than before, they can not stay at rotational speeds up to 350 revolutions per minute and can not obtain practical rotational speeds of 500 revolutions per minute or more. There has been a demand for practical use of wind tunnel rotary vanes capable of obtaining such high rotational speed and high torque rotational force. Among them, electric vehicles, for which extension of the cruising distance is desired in recent years, are expected to be improved in the configuration that can generate and charge while running.

本発明は、以上のような問題に鑑み創案されたものであって、特許文献1の発明構成を前提に、より高回転域まで回転を上げることのでき、且つ高トルクの回転力が得られる風洞回転羽根を提供せんとするものである。   The present invention has been made in view of the problems as described above, and it is possible to increase the rotation to a higher rotation range on the premise of the invention configuration of Patent Document 1, and obtain high torque torque. It is intended to provide a wind tunnel rotary blade.

上記特許文献2及び3を見ても明らかなように、本発明者は、この風洞回転羽根の回転数を上げようとして、該回転羽根のブレードに設けられる受風面に工夫を凝らしてきた。そして、その後も、該受風面に改良を加えて実験を何度も行ってきたが、新しい知見は得られるものの、どうしても350回転/分範囲内までの回転数にとどまり、それ以上の、例えば自動車や列車に用いられた場合に発電し、その電気をこれらの走行や他の目的に使える実用的な発電力が得られる構成とすることが出来ず、受風面に工夫を加えるこれまでの発想に限界を感じていた。   As apparent from the above-mentioned Patent Documents 2 and 3, the inventor has devised a wind receiving surface provided on the blades of the rotary vanes in an attempt to increase the rotational speed of the wind tunnel rotary vanes. And even after that, the experiment has been repeated many times with the improvement of the wind receiving surface, but although new findings are obtained, the number of rotations within the range of 350 rotations / minute is absolutely limited, and more, for example, It can not generate power when used in cars and trains, and can not provide a practical power generation capacity that can be used for these traveling and other purposes, and so far, devices have been devised for the wind receiving surface I felt the limit in my idea.

そこで、本発明者は、根本的な発想の転換を試み、上記受風面に工夫を凝らすことからの発想から脱却し、構造全体として、新しい構成のものを一から考えることにした。   Therefore, the present inventor attempted to fundamentally change the idea, deviated from the idea from devising the above-mentioned wind receiving surface, and decided to consider a new configuration from the ground as a whole structure.

新しい発想は、風洞を吹き抜ける風のトータルな量を如何に増やし、その圧を高めることに、その照準を定めた。即ち、風洞を吹き抜ける風の圧力を高めることで、上記回転羽根の回転数を実用域まで高めることである。   The new idea aimed at increasing the total amount of wind blowing through the wind tunnel and increasing its pressure. That is, by increasing the pressure of the wind blowing through the wind tunnel, the number of rotations of the rotating blades is increased to the practical range.

そのため、発明者は、風洞の風の入り側で如何に風を風洞内に押し込めることができるかを考えた。そこでもその基本となる発想に基づく構成だけではどうしてもその目的に至ることは出来なかった。   Therefore, the inventor considered how the wind can be pushed into the wind tunnel on the windy side of the wind tunnel. Here too, it was not possible to reach the purpose just by the configuration based on the basic idea.

以上の経緯から、本発明者は次のような構成からなる本発明を発明にするに至った。即ち、本発明に係る構成は、
風洞に設置された時に、該風洞に1乃至複数枚突き出るブレードによって、上記風洞を吹き抜ける風を受けて回転する共に、上記風洞を吹き抜ける風を上記ブレードに受けてその力によって回わる回転羽根の回転力を用いて発電器に発電させる風洞回転羽根であって、上記回転羽根は、その軸より離れた位置で、上記風を受けるブレード部分が風を受け止め易い形状に成形された受風面として形成されており、該受風面より軸寄り部分が、風洞を吹き抜ける風に対して直交する位置に回転移動して来た時に、その軸寄り部分から風が吹き抜け、吹き抜けたその風が、上記風洞の、より風下側にある別のブレードの受風面に受けられる位置に来るように、手前のブレードの軸寄り部分の位置に、通風孔乃至通風スリットが穿設された風洞回転羽根において、
上記風洞を、風の抜ける方向に対して、上記回転羽根設置位置部分の風洞とその上段の風洞の少なくとも二段に分けると共に、
各段の入り側開口近傍部側両側に、同じく風を受け止め易い形状に成形された受風面を少なくとも片面側に有する複数枚の縦ブレードで構成され、風洞開口部側から見た場合、両側の各受風面が風洞中央部側で風を受けて回転し、その回転で風を風洞側へ押し込むことができるように、風押込回動体が夫々設けられ、且つ各上下段に分かれた風洞の同じ位置に配した風押込回動体の軸を繋げて同軸にしたことを基本的特徴としている。
From the above history, the present inventor has made the present invention having the following configuration as an invention. That is, the configuration according to the present invention is
When installed in a wind tunnel, the blade which is blown out of the wind tunnel is rotated by one or a plurality of blades projecting into the wind tunnel and rotates while the wind which blows the wind tunnel is received by the blade and the rotating blade rotates It is a wind tunnel rotary blade that causes a generator to generate power using a force, and the rotary blade is formed as a wind receiving surface shaped into a shape that easily receives the wind at a position away from its axis. When the part closer to the axis than the wind receiving surface has moved to a position orthogonal to the wind that blows the wind tunnel, the wind blows from the part near the axis, and the wind that blows through the wind tunnel A wind tunnel rotary wing in which a ventilating hole or ventilating slit is formed at a position closer to the axis of the front blade so that it can be received by the wind receiving surface of another blade on the further leeward side. In,
The wind tunnel is divided into at least two stages of the wind tunnel of the rotary blade installation position portion and the wind tunnel of the upper stage with respect to the wind escape direction,
It is composed of a plurality of vertical blades on at least one side of the entry side near the entry side opening of each step, and also has a wind receiving surface molded into a shape that easily catches the wind, and viewed from the wind tunnel opening The wind tunnels are respectively provided with wind pushing and rotating bodies so that the respective wind receiving surfaces of the wind tunnel can receive and rotate the wind on the central portion side of the wind tunnel and the rotation can push the wind toward the wind tunnel side. The basic feature is that the axes of the wind-pushing and rotating bodies arranged at the same position are connected to be coaxial.

当初の構成は、風洞開口部両側に、縦ブレードで構成される風押込回動体を単に設けて、風洞を吹き抜ける風を押し込むだけの構成としたが、そのような構成だけでは、風洞の後方にある、回っている回転羽根自身が抵抗になり、押し込まれた空気が、その後方へ効率よく抜けることが出来ないことが判明した。   In the original configuration, a wind push-in rotating body consisting of vertical blades is simply provided on both sides of the wind tunnel opening, and the wind is blown through the wind tunnel, but with such a configuration alone, the wind tunnel is It turns out that some rotating blades themselves become resistance, and the pushed-in air can not escape efficiently to the rear.

そこで、もっと風の吹き抜けを良くする構成を考え、風洞を上下方向に複数段とし、最下段に、上記回転羽根を置き、その上段の風洞は基本的に風を吹き抜けさせる構成としたのである。   Therefore, in consideration of a configuration for further improving the wind blow-through, the wind tunnel is formed in a plurality of stages in the vertical direction, and the above-mentioned rotary vanes are placed at the lowermost level, and the upper wind tunnel is basically configured to blow the wind.

上段側の風洞は吹き抜けるだけで、他に抵抗となるものは特にないので、当然そこを吹き抜ける風の量は多くなる。この上段の風洞を流れる風の力を利用しない手はない。そこで、最下段だけでなく、その上段側の開口部両側に、縦ブレードで構成される風押込回動体を同時に設けて、上段側の風洞を吹き抜ける風を押し込まさせて、それらの風洞を吹き抜ける量をその押込によって、より増やすと共に、上段側で良く回る該風押込回動体の軸を、最下段にある風押込回動体の軸に繋げることで、これまで、上記風洞回転羽根があるために抵抗となって、最下段の風量が落ちていたのを、上段から最下段までの風押込回動体の軸を繋げて回すことで、上段側風洞の増大させた風の吹き込み量による力を、最下段の風押込回動体の軸に伝達させることで、その風押込回動体の回転力をより一層高めることで、最下段の風洞を吹き抜ける風をより強い力で押し込んで、上記風洞回転羽根に送り込み、該風洞回転羽根の回転数、並びに回転トルクを上げることが可能となった。結果を見れば、該風洞回転羽根の回転数は、優に550回転/分を超える結果を得られることとなった。   The wind tunnel on the upper side only blows through, and there is no other resistance in particular, so naturally the amount of wind blowing through there will be large. There is no way not to use the force of the wind flowing through the upper wind tunnel. Therefore, not only at the lowermost stage, but also at the opening on both sides of the upper stage, wind push-in rotating bodies composed of vertical blades are simultaneously provided, and the wind blowing through the upper wind tunnel is forced to blow through those wind tunnels. Is connected to the shaft of the wind push-in rotary body located at the lowermost stage, so that the above-mentioned wind tunnel rotary vane is present, so that the resistance is increased. The wind volume of the lowermost stage is falling, and by connecting the axes of the wind-inward pivoting members from the upper stage to the lowermost stage, the force of the increased wind volume of the upper-stage wind tunnel can be maximized. By transmitting it to the shaft of the wind-pushing rotary body at the lower stage, the rotational force of the wind-pushing rotary body is further increased, thereby pushing the wind blowing through the lower wind tunnel with a stronger force and sending it to the wind tunnel rotary vanes. , Of the wind tunnel rotary blade Rolling speed, and it becomes possible to increase the rotation torque. According to the results, the number of revolutions of the wind tunnel rotor was well over 550 revolutions / min.

以上の構成からなる本発明によれば、抵抗のほぼない上段側の風洞を自由に吹き抜ける風を利用して、その力を、最下段の風押込回動体に伝え、該最下段の風押込回動体の風を押し込む力を高めて、上記風洞回転羽根を回転せしめているため、自動車や列車等に用いられた場合に発電し、その電気をこれらの走行や他の目的に使える実用的な発電力を得ることが可能となった。ここで、上段側風洞を吹き抜ける風について、通過中にほとんど抵抗を受けないことが、ここを通過する風によって、最終的に下段側の風押込回動体を強く回すことになる。   According to the present invention having the above configuration, the wind is used to freely blow the wind tunnel on the upper stage side having almost no resistance, and the force is transmitted to the wind pushing rotary body at the lower stage, and the wind pushing turn at the lower stage. Since the wind tunnel rotating blades are rotated by increasing the force to push the wind of the moving body, it generates power when used in cars and trains, etc. A practical power generation that can use the electricity for these traveling and other purposes It became possible to gain power. Here, the wind blowing through the upper-stage wind tunnel is hardly resisted during passage, and the wind passing through the lower end finally strongly turns the wind-pushing rotating body on the lower side.

以上の風押込回動体につき、上段の風洞両側に備えられる風押込回動体の径を最下段の風洞両側に備えられる風押込回動体の径より大きくすると良い。これは、風洞への風の抵抗の少ない上段側風洞では、もの凄い勢いで風が吹き抜け、その際に、入り側の風押込回動体も、沢山の量の風を風洞内に押し込めるため、良く回ることになる。その力が、最下段の風押込回動体の回転推進力となり、最下段のそれを回すことになる。そのため、上段の風洞に備えられる風押込回動体の径を最下段の風洞に備えられる風押込回動体の径より大きくすれば、最下段の風押込回動体の回転が高くなって、最下段の風押込回動体の風洞内に風を押し込む力が、仮に上段に風洞がない時に比べ、格段に高くなるからである。   With regard to the above-described wind pushing and rotating body, it is preferable that the diameter of the wind pushing and rotating body provided on both sides of the upper wind tunnel be larger than the diameter of the wind pushing and rotating body provided on the lowermost wind tunnel. This is because in the upper stage wind tunnel where there is little wind resistance to the wind tunnel, the wind blows through with great speed, and at that time, the wind pushing rotary body on the entry side also turns well because it can push a large amount of wind into the wind tunnel. It will be. The force acts as a rotational propulsive force of the lowermost wind-pushing rotating body, and turns it at the lowermost stage. Therefore, if the diameter of the wind pushing rotary body provided in the upper wind tunnel is made larger than the diameter of the wind pushing rotary body provided in the lower wind tunnel, the rotation of the lower wind pushing rotary body becomes high. This is because the force of pushing the wind into the wind tunnel of the wind pushing and rotating body is significantly higher than when the wind tunnel is not provided in the upper stage.

風洞が上下二段になっている実際の構成の場合、そのような構成の場合に、風洞回転羽根の一つが最上方に来た時に、上下段風洞を仕切る板より、わずかにその上端が突出するように、風洞回転羽根の設置位置乃至上記仕切り板の後部の設定が行われていると、より好ましい結果をもたらすことになる。これは、下段の風押込回動体の回転が高くなって、下段の風押込回動体の風洞内に風を押し込む力が高くなるからと言う、上記の効果だけではなく、風洞回転羽根の設置位置乃至上記仕切り板の後部の設定が、風洞回転羽根の一つが最上方に来た時にその上端が突出するように行われていれば、この風洞回転羽根の上端が、抵抗のほとんど無い上段の風洞を吹き抜ける風に押されて、より回転力を増すからである。   In the case of an actual configuration in which the wind tunnel is two-tiered, in such a configuration, the upper end slightly protrudes from the plate partitioning the upper and lower wind tunnels when one of the wind tunnel rotary blades comes to the top. If the setting position of the wind tunnel rotary blade to the rear of the partition plate is set as described above, more preferable results will be obtained. This is not only due to the above effect, but also because the wind pushing rotary body at the lower stage is high in rotation and the force to push the wind into the wind tunnel of the wind pushing rotary body at the lower stage is high. If the setting of the rear part of the partition plate is performed so that the upper end thereof protrudes when one of the wind tunnel rotary blades comes to the top, the upper end of the wind tunnel rotary blade is an upper wind tunnel having almost no resistance. It is pushed by the wind that blows through and increases the rotational force more.

他方このような構成を有する風洞回転羽根において、上段の風洞出側下流部分を、上記回転羽根の設置された最下段の風洞出側下流部分にある該回転羽根の後方で滑らかに傾斜させながら絞り、風洞の空気の流れを合流させる構成とすると、より良い結果をもたらすことになる。後方での風洞を流れる空気の合流は、混合されて流れようとするが、最下段の風洞の空気密度が低い状態となり、それにつられて、その密度不足を補うために、最下段の空気がより、後方に引っ張られやすくなるからである。上下段風洞を仕切る板より、風洞回転羽根の一つの上端が突出する構成と組み合わせた構成では、650回転/分を超える回転数を得られる結果となった。   On the other hand, in the wind tunnel rotary blade having such a configuration, the upper end of the wind tunnel outlet side downstream portion is squeezed while being smoothly inclined behind the rotary blade in the lowermost wind tunnel outlet side downstream portion where the rotary blades are installed. If the air flow of the wind tunnel is combined, the result will be better. The merging of the air flowing through the wind tunnel at the rear is mixed and trying to flow, but the air density of the lowermost wind tunnel is low, and it is connected to it, and the lower air is more , Because it is easy to be pulled backward. In the structure combined with the structure which one upper end of a wind-tunnel rotary blade protrudes from the board which divides an upper-lower wind tunnel, it became a result which can obtain rotation speed exceeding 650 rotations / min.

以上の構成が風洞回転羽根の550回転/分以上の回転数を達せられるものであるが、これらの風洞に流れ込んだ風は、後方に抜けていくので、その後方に同様な構成を何段か設けて、複数の、上記風洞回転羽根構成により発電させ、用いることも可能である。すなわち、以上の風洞回転羽根において、これら一体の構成を、最初の風洞回転羽根の風洞風下後方に、複数体連続的に設けて、夫々に発電させる構成とすると、その数だけ発電量は増やすことができることになる。   The above configuration is capable of achieving the number of revolutions of 550 winds or more of the wind tunnel rotary blade, but since the wind which has flowed into these wind tunnels escapes to the rear, several stages of similar constructions behind it It is also possible to provide and generate electric power by a plurality of the above-mentioned wind tunnel rotary blade composition and to use. That is, in the above-described wind tunnel rotor blades, when the plurality of units are continuously provided with these integrated configurations behind the first wind tunnel rotor blade down the wind tunnel, power generation amount is increased by the number. Will be able to

本発明の一つ目の風洞回転羽根の構成によれば、抵抗のほぼない上段側の風洞を自由に吹き抜ける風を利用して、その力を、最下段の風押込回動体に伝え、該最下段の風押込回動体の風を押し込む力を高めて、上記風洞回転羽根を回転せしめているため、発電力が高められ、実用的な発電力を得ることが可能となるという優れた効果を奏し得ることになる。   According to the configuration of the first wind tunnel rotary blade of the present invention, the wind is used to freely blow the upper-stage wind tunnel having almost no resistance, and the force is transmitted to the lowest stage wind-pushing rotating body, Since the wind tunnel rotating blades are rotated by increasing the wind force of the wind pushing rotary body at the lower stage, the power generation capacity is enhanced, and it is possible to obtain an excellent effect that it is possible to obtain a practical power generation power. I will get it.

本発明の二つ目の構成によれば、風洞への風の抵抗の少ない上段側風洞では、もの凄い勢いで風が吹き抜け、その際に、入り側の風押込回動体も、沢山の量の風を風洞内に押し込めるため、良く回ることになり、その力が、最下段の風押込回動体の回転推進力となって、最下段のそれを回すことになるため、上段の風洞に備えられる風押込回動体の径を最下段の風洞に備えられる風押込回動体の径より大きくすれば、最下段の風押込回動体の回転が高くなり、最下段の風押込回動体の風洞内に風を押し込む力が、仮に上段に風洞がない時に比べ、格段に高くなると言う効果を得ることが可能となる。   According to the second configuration of the present invention, in the upper stage side wind tunnel having little wind resistance to the wind tunnel, the wind blows through with great momentum, and at that time, the wind pushing rotary body on the entry side also has a large amount of wind Will be turned well, and the force will be the rotational propulsive force of the lowermost wind-pushing rotating body, and it will turn it at the lowermost stage, so the wind provided in the upper-stage wind tunnel If the diameter of the pushing rotary body is made larger than the diameter of the wind pushing rotary body provided in the lowermost wind tunnel, the rotation of the lower wind pushing rotary body becomes high, and the wind is introduced into the wind tunnel of the lower wind pushing rotary body. It is possible to obtain an effect that the pushing force is much higher than when the upper stage has no wind tunnel.

本発明の三つ目の構成によれば、風洞回転羽根の設置位置乃至上記仕切り板の後部の設定が、風洞回転羽根の一つが最上方に来た時にその上端が突出するように行われていれば、この風洞回転羽根の上端が、抵抗のほとんど無い上段の風洞を吹き抜ける風に押されて、より回転力を増すため、風洞回転羽根の回転数を上げることが可能となる。   According to the third configuration of the present invention, the setting position of the wind tunnel rotary blade and the setting of the rear portion of the partition plate are performed such that the upper end thereof protrudes when one of the wind tunnel rotary blades comes to the top. Then, the upper end of the wind tunnel rotor blade is pushed by the wind blowing through the upper wind tunnel having almost no resistance, and the rotational force is further increased, so that the number of rotations of the wind tunnel rotor blade can be increased.

本発明の四つ目の構成によれば、上段の風洞出側下流部分を、上記回転羽根の設置された最下段の風洞出側下流部分にある該回転羽根の後方で滑らかに傾斜させながら絞り、風洞の空気の流れを合流させており、後方での風洞を流れる空気の合流は、混合されて流れようとするが、その際、最下段の風洞の空気密度が低い状態となり、それにつられて、その密度不足を補うために、最下段の空気がより、後方に引っ張られやすくなるので、最終的に、最下段の空気の流れはより多くなり、それにつられて風洞回転羽根の回転効率が上がることになる。この構成と三つ目の構成とを組み合わせることで、650回転/分を超える回転数を得られる結果となった。   According to the fourth configuration of the present invention, the upper end of the wind tunnel outlet side downstream portion is squeezed while being smoothly inclined behind the rotary vanes at the lower end wind tunnel outlet side downstream portion where the rotary vanes are installed. The air flow of the wind tunnel is merged, and the air merging in the wind tunnel at the rear is mixed and trying to flow, but at that time the air density of the lowermost wind tunnel becomes low, and it is Finally, the lower stage air flow is increased more and more, and the wind tunnel rotor blade rotation efficiency is increased because the lower stage air is more likely to be pulled backward to compensate for the lack of density. It will be. By combining this configuration with the third configuration, it is possible to obtain a rotational speed exceeding 650 rpm.

本発明の五つ目の構成によれば、一体一体の風洞回転羽根の構成を、最初の風洞回転羽根の風洞風下後方に、複数体連続的に設けて、夫々に発電させる構成とすることで、その数だけ発電量は増やすことができるようになる。   According to the fifth configuration of the present invention, the configuration of the integrally formed wind tunnel rotary blade is continuously provided in the back of the wind tunnel of the first wind tunnel rotary blade and the power generation is performed respectively. The amount of power generation can be increased by that number.

本発明の実施例1に係る構成を示す説明図である。It is an explanatory view showing the composition concerning Example 1 of the present invention. 上記実施例構成を真横からスケルトン状態で示す概略図である。It is the schematic which shows the said Example structure in a skeleton state from just beside. 本発明の実施例2の構成の重要部分を拡大して示す拡大図である。It is an enlarged view which expands and shows the important part of a structure of Example 2 of this invention. 本発明の実施例2に係る構成を真横からスケルトン状態で示す概略図である。It is the schematic which shows the structure which concerns on Example 2 of this invention from a side right in a skeleton state. 本発明の実施例3に係る概略構成の説明図である。It is explanatory drawing of schematic structure which concerns on Example 3 of this invention. 本発明の前提となる構成の斜視図である。It is a perspective view of the composition on which the present invention is premised. 上記前提構成の原理説明図である。It is principle explanatory drawing of the said premise structure. 同じく前提構成の原理説明図である。It is principle explanatory drawing of a premise structure similarly. 同じく前提構成の原理説明図である。It is principle explanatory drawing of a premise structure similarly.

以下、本発明の実施の形態を図示例と共に説明する。
上記特許文献1の風洞回転羽根の構成は、図6〜図9に示すように、風洞2aに設置された時に、該風洞2aに1乃至複数枚突き出るブレード10によって、上記風洞2aを吹き抜ける風を受けて回転する回転羽根100であり、該ブレード10はその回転羽根100の回転軸から外側に軸寄り部分10bが延出され、さらにその軸寄り部分10b延出方向に風を受け止め易い形状に成形された受風面10aが備えられていて、上記風洞2aを吹き抜ける風を上記ブレード10の受風面10aに受けてその力によって回わる回転羽根の回転力を用いて発電器に発電させる風洞回転羽根100であって、上記回転羽根100は、該受風面10aより軸寄り部分10bが、風洞2aを吹き抜ける風に対して直交する位置に回転移動して来た時に、その軸寄り部分10bから風が吹き抜け、吹き抜けたその風が、上記風洞2aより風下側にある別のブレード10の受風面10aに受けられる位置に来るように、手前のブレード10の軸寄り部分10bの位置にのみ、通風孔乃至通風スリット1が穿設されているというものである。
Hereinafter, embodiments of the present invention will be described together with illustrated examples.
As shown in FIGS. 6-9, when the wind tunnel rotary blade of Patent Document 1 is installed in the wind tunnel 2a, the wind blowing through the wind tunnel 2a is generated by the blade 10 that protrudes one or more to the wind tunnel 2a. The rotary blade 100 receives and rotates, and the blade 10 is formed into a shape in which the axially offset portion 10b is extended outward from the rotation axis of the rotary vane 100 and the wind is easily received in the extension direction of the axially offset portion 10b. A wind tunnel is provided which is provided with the received wind receiving surface 10a, receives wind blowing through the wind tunnel 2a on the wind receiving surface 10a of the blade 10, and generates electric power using a rotational blade of the rotating blades rotated by that force. In the blade 100, when the rotary blade 100 is rotationally moved to a position orthogonal to the wind blowing through the wind tunnel 2a, the portion 10b closer to the axis than the wind receiving surface 10a A part of the front blade 10 so that the wind blows from the part 10b near the axis of the blade and the wind that blows through is received by the wind receiving surface 10a of another blade 10 on the leeward side of the wind tunnel 2a. The ventilation hole or the ventilation slit 1 is bored only at the position 10b.

このような構成によって、風洞2a内で風を受けて回転している回転羽根100の、あるブレード10の受風面10aより軸寄り部分(根元側)10bが、風洞2aを吹き抜ける風に対して直交する位置に回転移動して来た時に、図8に示すように、風洞2a内を吹き抜ける風が、上記通風孔乃至通風スリット1を通って、その風洞2aのより風下側にある別のブレード10の受風面10aに突き当たることになる。この別のブレード10の受風面10aは、一番強い風を受けてから、次第に弱まって来たまさにその時に、新たに、通風孔乃至通風スリット1を通って来た風を受けて、さらに強い回転力が与えられるため、その位置に置いても、より回転力が強まることになる。この際、そのような風の吹き抜けをさせた通風孔乃至通風スリット1を有するブレード10の受風面10aは、間もなく直接風洞2a内を吹き抜ける風を受けることになるので、少なくとも2つのブレード受風面10aで、この風洞回転羽根100は、風洞2aを吹き抜ける風を受けることになり、それによって、より強い回転力が得られるようになる。その一瞬の後、そこから上記の別のブレード10がわずかに回転した位置で、図9に示すように、下方に抜けていた風は、方向を変えて、風洞2aの風下側に吹き抜けていき、風洞2a内をそのまま吹き抜けていく風と合流することになる。これが、オーバーフローを発生させずに、風洞内を吹き抜ける風を利用して発電等を行えるようにする特許文献1の発明の構成であった。   With such a configuration, a portion (root side) 10b closer to the axis than the wind receiving surface 10a of a certain blade 10 of the rotating blade 100 rotating in response to the wind in the wind tunnel 2a is against the wind blowing through the wind tunnel 2a. When rotational movement has been made to the orthogonal position, as shown in FIG. 8, the wind which blows through the inside of the wind tunnel 2a passes through the ventilating hole or ventilating slit 1 to another blade on the windward side of the wind tunnel 2a. It will come into contact with the 10 wind receiving surfaces 10a. The wind receiving surface 10a of the other blade 10 receives the strongest wind and then gradually weakens, and at the same time it receives the wind that has newly passed through the ventilation hole or the ventilation slit 1, further Because a strong rotational force is given, even if it is placed at that position, the rotational force will be stronger. At this time, since the wind receiving surface 10a of the blade 10 having the ventilation holes or the ventilation slits 1 through which such wind blows through will soon receive the wind blowing directly in the wind tunnel 2a, at least two blade winds are received. On the surface 10a, the wind tunnel rotary blade 100 receives the wind blowing through the wind tunnel 2a, whereby a stronger rotational force can be obtained. After that moment, at the position where the other blade 10 mentioned above is slightly rotated from there, the wind which has fallen downward as shown in FIG. 9 changes its direction and blows to the leeward side of the wind tunnel 2a. , It will join with the wind which blows through the inside of the wind tunnel 2a as it is. This is the configuration of the invention of Patent Document 1 that enables power generation and the like to be performed using the wind blowing through the inside of the wind tunnel without generating an overflow.

図1及び図2は、上記特許文献1の構成をそのまま利用してさらにその性能を向上させた本発明構成の一つ目及び二つ目の実施例構成を示す説明図である。同図に示すように、本実施例構成は、上記風洞を、風の抜ける方向に対して、上記回転羽根100設置位置部分の風洞2aとその上段の風洞2bの二段に分けている。   FIGS. 1 and 2 are explanatory views showing the first and second embodiments of the configuration of the present invention in which the performance is further improved by using the configuration of Patent Document 1 as it is. As shown in the figure, in the configuration of this embodiment, the wind tunnel is divided into two stages of the wind tunnel 2a at the installation position portion of the rotary vane 100 and the wind tunnel 2b at the upper stage thereof in the wind escape direction.

また、各段の風洞2a及び2bの入り側開口近傍部側両側に、同じく風を受け止め易い形状に成形された受風面を少なくとも片面側に有する複数枚の縦ブレードで構成され、風洞開口部側から見た場合、両側の各受風面が風洞中央部側で風を受けて回転し、その回転で風を風洞側へ押し込むことができるように、風押込回動体3a及び3bと30a及び30bとが夫々設けられ、且つ各上下段に分かれた風洞2aと2bの同じ位置に配した風押込回動体(3aと30a、3bと30b)の軸を繋げて同軸にし(31aと31b)ている。   Further, it comprises a plurality of vertical blades on at least one side of the wind tunnels 2a and 2b, each having at least one wind receiving surface similarly shaped to easily receive the wind, on both sides of the entrance side opening vicinity of the wind tunnels 2a and 2b. When viewed from the side, the wind receiving rotary bodies 3a and 3b and 30a and 30a and so that the respective wind receiving surfaces on both sides receive the wind at the wind tunnel central portion side and can rotate the wind by the rotation. Axes 30b are respectively provided, and the axes of wind-injecting rotating bodies (3a and 30a, 3b and 30b) arranged at the same position of the wind tunnels 2a and 2b divided into upper and lower parts respectively are connected and coaxial (31a and 31b) There is.

以上のような構成を有しているため、上段側の風洞2bについては、風は吹き抜けるだけで、他に特段、抵抗を受けないので、そこを吹き抜ける風の量は当然下段の風洞2aより多くなる。この上段の風洞2bを流れる風の力を利用しようとするのが本願の実施例構成である。そこで、下段の風洞2aの上に上段の風洞2aだけでなく、その上段側の開口部両側に、縦ブレードで構成される風押込回動体30a及び30bを同時に設けて、上段側の風洞2bを吹き抜ける風を押し込まさせて、それらの風洞2bを吹き抜ける量をその押込によって、より増やすと共に、上段側風洞2bで良く回る該風押込回動体30a及び30bの軸を、下段にある風押込回動体3a及び3bの軸に繋げる(31a及び31b)ことで、これまで、上記風洞回転羽根100があるために抵抗となって、下段の風量が落ちていたのを、上段から下段までの風押込回動体(3a及び3bと30a及び30b)の軸を繋げて(31a及び31b)回すことで、上段側風洞2bの増大させた風の吹き込み量による力を、下段の風押込回動体3a及び3bの軸に伝達させることで、その風押込回動体3a及び3bの回転力をより一層高めることで、下段の風洞2aを吹き抜ける風をより強い力で押し込んで、上記風洞回転羽根100に送り込み、該風洞回転羽根100の回転数、並びに回転トルクを上げることが可能となった。実験結果から、該風洞回転羽根100の回転数は、発電機を回しながら(風洞回転羽根100:発電機=1:1)、優に550回転/分を超える結果が得られた。   Because of the above configuration, the wind tunnel 2b on the upper side only blows the wind and does not receive any other resistance, so the amount of wind blowing there is naturally larger than that of the lower wind tunnel 2a. Become. It is an embodiment configuration of the present application to try to use the force of the wind flowing through the upper wind tunnel 2b. Therefore, not only the wind tunnel 2a of the upper stage but also the wind pushing rotary bodies 30a and 30b configured by the longitudinal blades are simultaneously provided on the upper side of the wind tunnel 2a and the wind tunnel 2b of the upper side. The wind-blowing rotary bodies 30a and 30b, which rotate well in the upper-stage wind tunnel 2b while increasing the amount by which the wind tunnel 2b is blown by the wind-blowing rotary winder 2a By connecting to the axis of 3 and 3b (31a and 31b), the wind tunnel rotary blade 100 up to this point has become a resistance, and the wind volume of the lower stage has fallen, the wind pushing rotary body from the upper stage to the lower stage By connecting the shafts (3a and 3b and 30a and 30b) and turning (31a and 31b), the force by the blowing amount of the increased wind of the upper-stage wind tunnel 2b can be obtained by rotating the lower wind-pushing pivot 3a. By further transmitting the torque to the shaft of the wind tunnel 3a and 3b, the rotational force of the wind pushing rotary bodies 3a and 3b is further increased, and the wind blowing through the wind tunnel 2a in the lower stage is pushed in with a stronger force and sent to the wind tunnel rotary vane 100. It has become possible to increase the rotational speed and rotational torque of the wind tunnel rotary blade 100. From the experimental results, it was found that the number of revolutions of the wind tunnel rotary vane 100 was well over 550 revolutions / minute while rotating the generator (wind tunnel rotary vane 100: generator = 1: 1).

また、本実施例構成では、図1及び図2に示すように、上段の風洞2b両側に備えられる風押込回動体30a及び30bの径を下段の風洞2a両側に備えられる風押込回動体3a及び3bの径より大きしている。これは、風洞への風の抵抗の少ない上段側風洞2bでは、もの凄い勢いで風が吹き抜け、その際に、入り側の風押込回動体30a及び30bも、沢山の量の風を風洞2b内に押し込めるため、良く回ることになる。その力が、下段の風洞2aの風押込回動体3a及び3bの回転推進力となり、下段のそれ(風押込回動体3a及び3b)を回すことになる。そのため、上段の風洞2bに備えられる風押込回動体30a及び30bの径を下段の風洞2aに備えられる風押込回動体3a及び3bの径より大きくすれば、下段の風押込回動体3a及び3bの回転が高くなって、下段の風押込回動体3a及び3bの風洞2a内に風を押し込む力が、仮に上段に風洞2bがない時に比べ、格段に高くなるからである。   Further, in the configuration of the present embodiment, as shown in FIGS. 1 and 2, the diameters of the wind pushing rotary bodies 30a and 30b provided on both sides of the upper wind tunnel 2b are the wind pushing rotary bodies 3a and 3b provided on both sides of the lower wind tunnel 2a. It is larger than the diameter of 3b. This is because in the upper stage wind tunnel 2b where there is little wind resistance to the wind tunnel, the wind blows with great speed, and at that time, the wind-inward pivoting members 30a and 30b also enter a large amount of wind into the wind tunnel 2b. It will turn well because it can be pushed. The force is the rotational propulsive force of the wind pushing rotary bodies 3a and 3b of the lower wind tunnel 2a, and it turns the lower one (the wind pushing rotary bodies 3a and 3b). Therefore, if the diameters of the wind pushing pivoting members 30a and 30b provided in the upper wind tunnel 2b are made larger than the diameters of the wind pushing rotary members 3a and 3b provided in the lower wind tunnel 2a, the wind pushing rotary members 3a and 3b The rotation becomes high, and the force of pushing the wind into the wind tunnel 2a of the wind pushing rotary bodies 3a and 3b in the lower stage is significantly higher than that when the wind tunnel 2b is not present in the upper stage.

以上の構成からなる本発明に係る一つ目及び二つ目の実施例構成によれば、抵抗のほぼない上段側の風洞2bを自由に吹き抜ける風を利用して、その力を、下段の風押込回動体3a及び3bに伝え、該下段の風押込回動体3a及び3bの風を押し込む力を高めて、上記風洞回転羽根100を回転せしめているため、自動車や列車等に用いられた場合に発電し、その電気をこれらの走行や他の目的に使える実用的な発電力を得ることが可能となった。ここで、上段側の風洞2bを吹き抜ける風について、通過中にほとんど抵抗を受けないことが、ここを通過する風によって、最終的に下段側の風押込回動体3a及び3bを強く回すことになる。   According to the first and second embodiment configurations according to the present invention having the above-described configuration, the wind is blown freely through the wind tunnel 2b on the upper side having almost no resistance, and the force thereof can be When the wind tunnel rotary vane 100 is rotated by transmitting to the pushing rotary bodies 3a and 3b and increasing the force of pushing the wind of the wind pushing rotary bodies 3a and 3b in the lower stage, the wind tunnel rotary vane 100 is used in cars and trains etc. It has become possible to generate electricity and to use that electricity for these and other purposes to obtain a practical generation capacity. Here, the wind blowing through the wind tunnel 2b on the upper side hardly receives any resistance during passing, and the wind passing through the wind will finally turn strongly the wind pushing rotary bodies 3a and 3b on the lower side. .

図3及び図4は、本発明構成を有する三つ目及び四つ目の実施例に係る風洞回転羽根100の構成を示している。こららの図面に示すように、風洞が上下二段になっている構成の場合に、風洞回転羽根100の一つが最上方に来た時に、上下段風洞を仕切る仕切り板板20より、わずかにその上端(10aの上端)が突出するように(図3では仕切り板20の延長線が20aと点線で示されている)、風洞回転羽根100の設置位置乃至上記仕切り板20の後部の設定が行われていると、より好ましい結果をもたらすことになる。これは、下段の風押込回動体3a及び3bの回転が高くなって、下段の風押込回動体3a及び3bの風洞2a内に風を押し込む力が高くなるからと言う、実施例1の効果だけではなく、風洞回転羽根100の設置位置乃至上記仕切り板20の後部の設定が、風洞回転羽根の一つが最上方に来た時にその上端が突出する(点線より上に突出している)ように行われていれば、この風洞回転羽根100の上端が、抵抗のほとんど無い上段の風洞2bを吹き抜ける風に押されて、より回転力を増すからである。しかも後述するように、本実施例では、絞り20bの構成により、風洞2b内の圧力が高まり、該風洞回転羽根100の先端を押し込み、はるかに強い回転力をうむことになる。これについては、後述する。   FIGS. 3 and 4 show the configuration of the wind tunnel rotary blade 100 according to the third and fourth embodiments having the configuration of the present invention. As shown in these drawings, when one of the wind tunnel rotating blades 100 comes to the top when the wind tunnel is in the upper and lower two stages, it is slightly smaller than the partition plate 20 that divides the upper and lower wind tunnels. The setting position of the wind tunnel rotary blade 100 or the setting of the rear portion of the partition plate 20 is such that the upper end (the upper end of 10a) protrudes (the extension line of the partition plate 20 is shown as a dotted line 20a in FIG. 3) If done, it will lead to more favorable results. This is because the rotation of the wind pushing rotary members 3a and 3b in the lower stage increases and the force of pushing the wind into the wind tunnel 2a of the wind pushing rotary members 3a and 3b in the lower stage increases. Rather, the installation position of the wind tunnel rotor blade 100 or the setting of the rear portion of the partition plate 20 is such that the upper end thereof projects (projects above the dotted line) when one of the wind tunnel rotor blades comes to the top. If this is the case, the upper end of the wind tunnel rotary blade 100 is pushed by the wind which blows through the upper wind tunnel 2b with almost no resistance, thereby further increasing the rotational force. Moreover, as will be described later, in the present embodiment, the pressure in the wind tunnel 2b is increased by the configuration of the throttle 20b, and the tip of the wind tunnel rotary blade 100 is pushed to absorb much stronger rotational force. This will be described later.

この構成は、元となった、特許文献1の構成の考え方と、コロンブスの卵的な、ある意味共通するコンセプトがある。即ち、前提構成となった特許文献1では、あるブレード10の受風面10aより軸寄り部分(根元側)10bが、風洞2aを吹き抜ける風に対して直交する位置に回転移動して来た時に、図8に示すように、風洞2a内を吹き抜ける風が、上記通風孔乃至通風スリット1を通って、その風洞2aのより風下側にある別のブレード10の受風面10aに突き当たることになる。通風孔乃至通風スリット1を通って来た風を受けて、さらに強い回転力が与えられるため、その位置に置いても、より回転力が強まることになる。この際、そのような風の吹き抜けをさせた通風孔乃至通風スリット1を有するブレード10の受風面10aは、間もなく直接風洞2a内を吹き抜ける風を受けることになるので、少なくとも2つのブレード受風面10aで、この風洞回転羽根100は、風洞2aを吹き抜ける風を受けることになり、それによって、より強い回転力が得られるようになる。   This configuration has an original concept of the configuration of Patent Document 1 and a concept similar to Columbus' egg-like in a sense. That is, in Patent Document 1 having the premise configuration, when a portion (root side) 10b closer to the axis than the air receiving surface 10a of a certain blade 10 is rotated to a position orthogonal to the wind blowing through the wind tunnel 2a. As shown in FIG. 8, the wind blowing through the wind tunnel 2a passes through the ventilation holes or the ventilation slits 1 and strikes the wind receiving surface 10a of another blade 10 on the more leeward side of the wind tunnel 2a. . In response to the wind coming through the ventilation holes or the ventilation slit 1, a stronger rotational force is given, so that the rotational force will be intensified even if placed at that position. At this time, since the wind receiving surface 10a of the blade 10 having the ventilation holes or the ventilation slits 1 through which such wind blows through will soon receive the wind blowing directly in the wind tunnel 2a, at least two blade winds are received. On the surface 10a, the wind tunnel rotary blade 100 receives the wind blowing through the wind tunnel 2a, whereby a stronger rotational force can be obtained.

これに対し、本実施例構成では、下段の風押込回動体3a及び3bの回転が高くなって、それによる風洞2a内に風を押し込む力が高くなるからと言う、上記実施例1の効果だけではなく、風洞回転羽根100の設置位置乃至上記仕切り板20の後部が、風洞回転羽根100の一つが最上方に来た時にその上端(10aの上端)が突出するように設定ていれば、この風洞回転羽根の上端が、抵抗のほとんど無い上段の風洞を吹き抜ける風に押されて、より回転力を増すことになり、風洞回転羽根100の回転位置によって、別の力が付勢して、より該風洞回転羽根100を回そうとする力が作用することになるからである。   On the other hand, in the configuration of the present embodiment, only the effect of the first embodiment is that the rotation of the wind-pushing pivoting members 3a and 3b at the lower stage becomes high and the force to push the wind into the wind tunnel 2a by it becomes high. If the setting position of the wind tunnel rotary blade 100 or the rear portion of the partition plate 20 is set so that the upper end (the upper end of 10a) protrudes when one of the wind tunnel rotary blades 100 comes to the top, The upper end of the wind tunnel rotor blade is pushed by the wind which blows through the upper wind tunnel having almost no resistance, and the rotational force is further increased, and another force is biased by the rotational position of the wind tunnel rotor blade 100 This is because a force to turn the wind tunnel rotary blade 100 acts.

さらに本実施例では、上段の風洞2b出側下流部分を、上記風洞回転羽根100の設置された下段の風洞2a出側下流部分にある該回転羽根100の後方で滑らかに傾斜させながら絞り(20b)、風洞2a及び2bの空気の流れを合流させる構成としている。この絞り20bの構成により、風洞2b内の圧力が高まることになる。しかもその後方での風洞2a及び2bを流れる空気の合流は、混合されて流れようとするが、下段の風洞2aの空気密度が低い状態となり、それにつられて、その密度不足を補うために、下段の風洞2a内の空気がより、後方に引っ張られやすくなる。これらの要因が、風洞回転羽根100の回転力をより増すことになる。   Furthermore, in the present embodiment, the lower end portion of the upper wind tunnel 2b on the outlet side is squeezed while being smoothly inclined behind the rotary vane 100 at the lower outlet portion of the lower wind tunnel 2a where the wind tunnel rotary vane 100 is installed. And the air flows of the wind tunnels 2a and 2b are merged. By the configuration of the throttle 20b, the pressure in the wind tunnel 2b is increased. Moreover, the merging of the air flowing through the wind tunnels 2a and 2b at the rear is mixed and trying to flow, but the air density of the lower wind tunnel 2a becomes low, and it is added to it to compensate for the density shortage. The air in the wind tunnel 2a is more likely to be pulled backward. These factors will further increase the rotational force of the wind tunnel rotor 100.

そればかりではなく、本実施例では、上段の風洞2b出側下流部分の絞り20bに対し、下段の風洞2a出側下流部分を対抗させて絞る20c構成としている。風洞出側の上下から絞り20b及び20cをかける構成としたことで、そこを突き抜ける風の流速は、絞られた分だけ速くなり、風洞後方での空気の流れを合流させて風洞2aの流れを引っ張り出させるだけでなく、合流部分の風の流れがより速くなるため、下段の空気が、更に後方に引っ張られやすくなるので、650回転/分を超える回転数を得られる結果となった。   Not only that, in the present embodiment, the lower end portion of the wind tunnel 2a on the outlet side is opposed to the throttle 20b on the outlet side downstream portion of the upper portion of the wind tunnel 2b, and the throttle 20c is configured. With the configuration of applying the throttles 20b and 20c from the upper and lower sides of the wind tunnel, the flow velocity of the wind penetrating through there is faster by the throttled portion, and the air flow behind the wind tunnel is joined to make the flow of the wind tunnel 2a Not only pulling out but also the flow of the wind at the merging portion becomes faster, so the air in the lower stage is more likely to be pulled backward, resulting in a rotational speed exceeding 650 rotations / minute.

上記実施例1及び実施例2の構成により、風洞回転羽根100単体で、550回転/分から650回転/分以上の回転数を達せられるようになった。上記構成で風洞2a及び2bの入り側で風の速度が70km/hと測定された時に、その出側での風の速度は63km/hと、なんと約90%の速度がこれらの風洞の風下側に抜けていく。そこで、本実施例では、図5に示すように、その後方に同様な構成を複数体(Xa〜Xd)設けて、複数の、上記風洞回転羽根構成により発電させ、用いることにした。すなわち、以上の風洞回転羽根において、これら一体の構成(X)を、最初の風洞回転羽根の風洞風下後方に、複数体連続的に設けて(Xa〜Xd)、夫々に発電させる構成としている。そのため、後方ほど、発電量は少なくなるものの、その数に応じて、発電量は増やすことができることになる。   According to the configurations of the first embodiment and the second embodiment, the wind tunnel rotary vane 100 alone can achieve the number of rotations of 550 rotations / minute to 650 rotations / minute or more. When the wind speed is measured at 70 km / h at the entrance side of the wind tunnels 2a and 2b in the above configuration, the wind speed at the exit side is 63 km / h, and about 90% of the speed is downwind of these wind tunnels. I'm going out to the side. Therefore, in the present embodiment, as shown in FIG. 5, a plurality of similar configurations (Xa to Xd) are provided behind the same to generate power using a plurality of the above-described wind tunnel rotary vane configurations. That is, in the above-mentioned wind tunnel rotary blade, a plurality of units (Xa to Xd) are continuously provided such that these integral configurations (X) are provided downstream of the first wind tunnel rotary blade down the wind tunnel (Xa to Xd) to generate power respectively. Therefore, although the amount of power generation decreases toward the rear, the amount of power generation can be increased according to the number.

尚、本発明の風洞回転羽根は、上述の実施例にのみ限定されるものではなく、本発明の要旨を逸脱しない範囲内において種々変更を加え得ることは勿論である。   The wind tunnel rotor blade of the present invention is not limited to the above-described embodiment, and it goes without saying that various modifications can be made without departing from the scope of the present invention.

本発明の風洞回転羽根は、発電用設備など、たとえば、電気自動車やプラグインハイブリッド車、その他自動車以外の電車や船舶などにも、風を利用して発電できるものであれば、他への利用も可能であることは言うまでもない。   The wind tunnel rotor blade according to the present invention may be used for power generation equipment, for example, electric vehicles and plug-in hybrid vehicles, and other trains and ships other than cars, as long as they can generate power using wind. It goes without saying that it is also possible.

1 通風孔乃至通風スリット
2a 下段側風洞
2b 上段側風洞
3a、3b、30a、30b 風押込回動体
10 ブレード
10a ブレード受風面
10b 軸寄り部分
20 仕切り板
20b、20c 絞り
100 風洞回転羽根
DESCRIPTION OF SYMBOLS 1 Ventilation hole thru | or ventilation slit 2a Lower side wind tunnel 2b Upper wind tunnel 3a, 3b, 30a, 30b Wind pushing rotary body 10 Blade 10a Blade air receiving surface 10b Axle part 20 Partition plate 20b, 20c Aperture 100 wind tunnel rotary blade

以上の経緯から、本発明者は次のような構成からなる本発明を発明にするに至った。即ち、本発明に係る構成は、
風洞に設置された時に、該風洞に1乃至複数枚突き出るブレードによって、上記風洞を吹き抜ける風を受けて回転する共に、上記風洞を吹き抜ける風を上記ブレードに受けてその力によって回わる回転羽根の回転力を用いて発電器に発電させる風洞回転羽根であって、上記回転羽根は、その軸より離れた位置で、上記風を受けるブレード部分が風を受け止め易い形状に成形された受風面として形成されており、該受風面より軸寄り部分が、風洞を吹き抜ける風に対して直交する位置に回転移動して来た時に、その軸寄り部分から風が吹き抜け、吹き抜けたその風が、上記風洞の、より風下側にある別のブレードの受風面に受けられる位置に来るように、手前のブレードの軸寄り部分の位置に、通風孔乃至通風スリットが穿設された風洞回転羽根において、
上記風洞を、風の抜ける方向に対して、上記回転羽根設置位置部分の風洞とその上段の風洞の少なくとも二段に分け、上段側の風洞については、風が吹き抜けるだけで、他に抵抗を受けない構成とすると共に、
各段の入り側開口近傍部側両側に、同じく風を受け止め易い形状に成形された受風面を少なくとも片面側に有する複数枚の縦ブレードで構成され、風洞開口部側から見た場合、両側の各受風面が風洞中央部側で風を受けて回転し、その回転で風を風洞側へ押し込むことができるように、風押込回動体が夫々設けられ、且つ各上下段に分かれた風洞の同じ位置に配した風押込回動体の軸を繋げて同軸にしたことを基本的特徴としている。
From the above history, the present inventor has made the present invention having the following configuration as an invention. That is, the configuration according to the present invention is
When installed in a wind tunnel, the blade which is blown out of the wind tunnel is rotated by one or a plurality of blades projecting into the wind tunnel and rotates while the wind which blows the wind tunnel is received by the blade and the rotating blade rotates It is a wind tunnel rotary blade that causes a generator to generate power using a force, and the rotary blade is formed as a wind receiving surface shaped into a shape that easily receives the wind at a position away from its axis. When the part closer to the axis than the wind receiving surface has moved to a position orthogonal to the wind that blows the wind tunnel, the wind blows from the part near the axis, and the wind that blows through the wind tunnel A wind tunnel rotary wing in which a ventilating hole or ventilating slit is formed at a position closer to the axis of the front blade so that it can be received by the wind receiving surface of another blade on the further leeward side. In,
The wind tunnel is divided into at least two stages of the wind tunnel at the rotary blade installation position portion and the wind tunnel at the upper stage in the wind escape direction, and the wind tunnel at the upper stage receives resistance only by the wind no configuration and be Rutotomoni,
It is composed of a plurality of vertical blades on at least one side of the entry side near the entry side opening of each step, and also has a wind receiving surface molded into a shape that easily catches the wind, and viewed from the wind tunnel opening The wind tunnels are respectively provided with wind pushing and rotating bodies so that the respective wind receiving surfaces of the wind tunnel can receive and rotate the wind on the central portion side of the wind tunnel and the rotation can push the wind toward the wind tunnel side. The basic feature is that the axes of the wind-pushing and rotating bodies arranged at the same position are connected to be coaxial.

そこで、もっと風の吹き抜けを良くする構成を考え、風洞を上下方向に複数段とし、最下段に、上記回転羽根を置き、その上段の風洞は基本的に風を吹き抜けさせる構成、すなわち、上段側の風洞については、風が吹き抜けるだけで、他に抵抗を受けない構成としたのである。 Therefore, more blow wind better thinking structure, and a plurality of stages of the wind tunnel in the vertical direction, the bottom, placing the rotating blades, air channel of the upper part to essentially be blow wind structure, i.e., the upper side For the wind tunnel, it was configured that only the wind blew through and no other resistance .

Claims (5)

風洞に設置された時に、該風洞に1乃至複数枚突き出るブレードによって、上記風洞を吹き抜ける風を受けて回転する共に、上記風洞を吹き抜ける風を上記ブレードに受けてその力によって回わる回転羽根の回転力を用いて発電器に発電させる風洞回転羽根であって、上記回転羽根は、その軸より離れた位置で、上記風を受けるブレード部分が風を受け止め易い形状に成形された受風面として形成されており、該受風面より軸寄り部分が、風洞を吹き抜ける風に対して直交する位置に回転移動して来た時に、その軸寄り部分から風が吹き抜け、吹き抜けたその風が、上記風洞の、より風下側にある別のブレードの受風面に受けられる位置に来るように、手前のブレードの軸寄り部分の位置に、通風孔乃至通風スリットが穿設された風洞回転羽根において、
上記風洞を、風の抜ける方向に対して、上記回転羽根設置位置部分の風洞とその上段の風洞の少なくとも二段に分けると共に、
各段の入り側開口近傍部側両側に、同じく風を受け止め易い形状に成形された受風面を少なくとも片面側に有する複数枚の縦ブレードで構成され、風洞開口部側から見た場合、両側の各受風面が風洞中央部側で風を受けて回転し、その回転で風を風洞側へ押し込むことができるように、風押込回動体が夫々設けられ、且つ各上下段に分かれた風洞の同じ位置に配した風押込回動体の軸を繋げて同軸にしたことを特徴とする風洞回転羽根。
When installed in a wind tunnel, the blade which is blown out of the wind tunnel is rotated by one or a plurality of blades projecting into the wind tunnel and rotates while the wind which blows the wind tunnel is received by the blade and the rotating blade rotates It is a wind tunnel rotary blade that causes a generator to generate power using a force, and the rotary blade is formed as a wind receiving surface shaped into a shape that easily receives the wind at a position away from its axis. When the part closer to the axis than the wind receiving surface has moved to a position orthogonal to the wind that blows the wind tunnel, the wind blows from the part near the axis, and the wind that blows through the wind tunnel A wind tunnel rotary wing in which a ventilating hole or ventilating slit is formed at a position closer to the axis of the front blade so that it can be received by the wind receiving surface of another blade on the further leeward side. In,
The wind tunnel is divided into at least two stages of the wind tunnel of the rotary blade installation position portion and the wind tunnel of the upper stage with respect to the wind escape direction,
It is composed of a plurality of vertical blades on at least one side of the entry side near the entry side opening of each step, and also has a wind receiving surface molded into a shape that easily catches the wind, and viewed from the wind tunnel opening The wind tunnels are respectively provided with wind pushing and rotating bodies so that the respective wind receiving surfaces of the wind tunnel can receive and rotate the wind on the central portion side of the wind tunnel and the rotation can push the wind toward the wind tunnel side. A wind tunnel rotary blade characterized in that the axes of the wind pushing and rotating members arranged at the same position are connected to be coaxial.
請求項1記載の風洞回転羽根において、上記風押込回動体につき、上段の風洞両側に備えられる風押込回動体の径を最下段の風洞両側に備えられる風押込回動体の径より大きくしたことを特徴とする請求項1記載の風洞回転羽根。 The wind tunnel rotary blade according to claim 1, wherein the diameter of the wind pushing rotary members provided on both sides of the upper wind tunnel is made larger than the diameter of the wind pushing rotary members provided on the lowermost wind tunnel both ends. The wind tunnel rotary blade according to claim 1, characterized in that: 請求項1乃至2記載の風洞回転羽根において、風洞の段が上下二段の場合に、風洞回転羽根の一つが最上方に来た時に、上下段風洞を仕切る板より、わずかにその上端が突出するように、風洞回転羽根の設置位置乃至上記仕切り板の後部の設定が行われていることを特徴とする請求項1乃至2記載の風洞回転羽根。 The wind tunnel rotor blade according to claim 1 or 2, wherein when one of the wind tunnel rotor blades comes to the top when the wind tunnel has two upper and lower steps, the upper end slightly protrudes from the plate partitioning the upper and lower wind tunnels. The wind tunnel rotor blade according to any one of claims 1 to 2, wherein the setting position of the wind tunnel rotor blade and the rear portion of the partition plate are set. 請求項1乃至3記載の風洞回転羽根において、上段の風洞出側下流部分を、上記回転羽根の設置された最下段の風洞出側下流部分にある該回転羽根の後方で滑らかに傾斜させながら絞り、風洞の空気の流れを合流させることを特徴とする請求項1乃至3記載の風洞回転羽根。 The wind tunnel rotor blade according to any one of claims 1 to 3, wherein the upper end of the wind tunnel outlet side downstream portion is smoothly inclined at the rear of the rotary vane located at the lowermost wind tunnel outlet side downstream portion where the rotary blades are installed. The wind tunnel rotor blade according to any one of claims 1 to 3, wherein the air flow of the wind tunnel is merged. 請求項1乃至4記載の風洞回転羽根において、これら一体の構成を、最初の風洞回転羽根の風洞風下後方に、複数体連続的に設けたことを特徴とする請求項1乃至4載の風洞回転羽根。 The wind tunnel rotating blade according to any one of claims 1 to 4, wherein the integral structure is continuously provided in a plurality of bodies behind the wind tunnel of the first wind tunnel rotating blade. Feather.
JP2017255245A 2017-12-29 2017-12-29 Wind tunnel rotating blade Active JP6383481B1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017255245A JP6383481B1 (en) 2017-12-29 2017-12-29 Wind tunnel rotating blade

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017255245A JP6383481B1 (en) 2017-12-29 2017-12-29 Wind tunnel rotating blade

Publications (2)

Publication Number Publication Date
JP6383481B1 JP6383481B1 (en) 2018-08-29
JP2019120178A true JP2019120178A (en) 2019-07-22

Family

ID=63354905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017255245A Active JP6383481B1 (en) 2017-12-29 2017-12-29 Wind tunnel rotating blade

Country Status (1)

Country Link
JP (1) JP6383481B1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172513A1 (en) 2020-02-28 2021-09-02 株式会社トクヤマ Moisture curable polyurethane composition and laminate

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0988800A (en) * 1995-09-18 1997-03-31 Tomoyuki Inose Wind tunnel type wind power generator, and simplified assembly method for large scale wind power generation system combined therewith
JP5877458B1 (en) * 2015-07-15 2016-03-08 かしま野管理サービス株式会社 Wind tunnel rotating blade

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021172513A1 (en) 2020-02-28 2021-09-02 株式会社トクヤマ Moisture curable polyurethane composition and laminate

Also Published As

Publication number Publication date
JP6383481B1 (en) 2018-08-29

Similar Documents

Publication Publication Date Title
US6365985B1 (en) Electricity generation from air conditioning exhaust
US8360713B2 (en) Wind manipulator and turbine
US8210817B2 (en) Wind turbine utilizing wind directing slats
KR101238256B1 (en) Median strip establishment type of wind force development system
US7946802B1 (en) Wind turbine utilizing wind directing slats
US10323621B2 (en) Wind power generation tower provided with gyromill type wind turbine
US11619204B2 (en) Wind aeolipile
JP2019120178A (en) Air channel rotary vane
JP2014508243A (en) Wind power generator with wind guide
US20110070083A1 (en) Streamlined Wind Turbine Optimized for Laminar Layer
US9702340B2 (en) Prime mover
RU2594839C1 (en) Wind-driven power plant
JP5637388B2 (en) In-vehicle wind power generator
JP5240883B1 (en) Wind tunnel rotating blade
KR101450611B1 (en) Wind turbine
JP4728008B2 (en) Horizontal axis windmill
KR101851102B1 (en) Electric car having wind power generation function using lift force
JP5372526B2 (en) Wind power generator
JPWO2019045114A1 (en) Wind power generator
JP4607234B1 (en) Power generation turbine
KR20110008789A (en) Blade for wind power generation and device for wind power generation
JP4751987B2 (en) Wind power generator
KR20140003891U (en) An aerogenerator with at least two generators
KR20140061327A (en) Wind power generator driven by wind-basket windmill
CN214120371U (en) Column cabinet swing leaf structure and air conditioner

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180208

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20180208

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20180319

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180418

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20180731

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20180803

R150 Certificate of patent or registration of utility model

Ref document number: 6383481

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250